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Although entanglement is considered as a crucial resource for quantum information processing, it is still
unknown whether the presence of quantum entanglement in the working medium can enhance the charging
performance of a quantum battery (QB). Here, we address this problem by considering a QB with working
medium consisted of an entangled coupled-cavity array. We show that the optimal charging performance of the
QB is achieved in the two-cavity case when cavities are initially in a maximum entangled state without cavity
couplings. We then extend our discussion to multicavity case. It is demonstrated that the charging power of the
QB under an entangled coupled-cavity array can be further enhanced by increasing the number of cavities. Our
findings reveal the advantage of an entangled working medium in enhancing the charging performance of a QB,
and therefore, contribute to the experimental realization of quantum batteries with excellent performance.
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I. INTRODUCTION

The quantum battery (QB) [1–8], capable of storing and
extracting energy, has emerged as a popular research topic,
offering valuable insights into thermodynamics at the quan-
tum scale. Recently, significant research efforts have been
dedicated to enhancing the performance of the QB, both
theoretically [9–40] and experimentally [41–43]. Theoreti-
cal researchers have constructed different QB models based
on various quantum systems [21–31]. They have examined
various facets of the QB, including stored energy, average
charging power, and ergotropy, through the lens of their re-
spective models [32–40]. Strategies to augment the charging
performance of a QB have also been expounded. For instance,
the authors have illustrated that the QB can be fully charged
using a harmonic driving field [29]. It has been found that
the single-cavity-mediated charging process for a QB can
significantly improve the energy transfer efficiency compared
to both the qubit-mediated charging process and the direct
charging process of the QB [32]. In experiments, the charging
process of the QB has been explored using superconducting
qutrit systems [41], optical systems [42], and organic micro-
cavity systems [43].

In addition, researchers have discovered that exploiting
quantum phenomena, such as quantum coherence and entan-
glement, can improve the charging performance (i.e., stored
energy, average charging power, and extractable work) of
quantum batteries [44–48]. It has been shown that when the
battery and charger are initially in a product pure state and
no energy can be initially extracted from the battery, quantum
coherence in the battery or the battery-charger entanglement is
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a necessary resource for generating nonzero extractable work
during the charging process [47]. The extractable work of
the QB can be improved by exploiting the charger-charger
entanglement [48]. Furthermore, a recent experiment showed
that the energy conversion efficiency of quantum engines
using entangled atoms as the working medium can be signifi-
cantly improved [49]. Based on this experiment, an interesting
question arises: Can entangled working media improve the
charging performance of the QB? If so, this could provide
assistance for the realization of optimal QB experimentally
using an entangled working medium.

In this paper, we investigate the impact of an entangled
coupled-cavity array on the charging performance of a QB
when it serves as a working medium. We demonstrate that the
QB achieves optimal charging performance in the two-cavity
case when the cavities are initially in a maximum entangled
state without cavity couplings. We separately explain the
reason for the impact of initial cavity-cavity entanglement,
as well as the intercavity coupling, on the QB’s charging
performance by examining the changes in the QB-charger
entanglement and the frequency detuning between the QB
and charger and the cavity fields during the charging process.
Subsequently, we extend our model to the multicavity case.
Consistent with the two-cavity scenario, the achievement of
optimal battery charging performance requires no coupling
between the multiple cavities, regardless of whether the mul-
tiple cavities are initially in an entangled state or a separable
state. Moreover, it has been shown that under an entangled
coupled-cavity array, the average charging power of a QB can
be further enhanced by increasing the number of cavities.

This paper is organized as follows. In Sec. II, physical
quantities (i.e., the stored energy, the average charging power,
and ergotropy) to evaluate the charging performance of QB
are introduced. In Sec. III, the conditions for obtaining the
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FIG. 1. Schematic representation of the two entangled coupled-
cavity that mediate energy transfer between the QB and the charger.

optimal charging performance of a QB are explored when
two entangled coupled-cavity mediate the charging process
of a QB. When multiple cavities mediate the QB charging
process, how to obtain the optimal charging performance is
investigated in Sec. IV. Finally, a simple conclusion of this
paper is given in Sec. V.

II. QUANTUM BATTERY

To assess the performance of a quantum battery (QB), the
average charging power, the ergotropy, and the energy stored
in a given time interval are introduced. By considering a time
interval [0, τ ] during which the interaction occurs, the energy
stored of the QB at time τ is given by [5,32,46]

EB(τ ) = Tr{ρB(τ )HB} − Tr{ρB(0)HB}, (1)

where ρB(τ ) is the reduced density matrix of the QB at time
τ , HB is the Hamiltonian of the QB.

The average charging power of a QB can be defined as [9]

PB(τ ) = EB(τ )/τ. (2)

To quantify the maximum energy that can be extracted
from a QB at the end of the charging process through cyclic
unitary operations, the ergotropy is introduced as [50–52]

WB(τ ) = Tr{ρB(τ )HB} − Tr{σρB HB}, (3)

where σρB is the passive state of ρB(τ ) [53]. The passive states
σρB are defined as those states that do not allow for work
extraction in a cyclic (unitary) process.

Then to assess the conditions for acquiring the optimal
QB, we concentrate on the maximum energy storage Emax =
maxτ [EB(τ )], maximum average charging power Pmax =
maxτ [PB(τ )], and maximum ergotropy Wmax = maxτ [WB(τ )].
In the subsequent analysis, we utilize EB(τ ) (Emax), PB(τ )
(Pmax), and WB(τ ) (Wmax) to examine the effect of the
entangled coupled-cavity on the charging performance of
the QB. Larger values of EB(τ ), PB(τ ), and WB(τ ) are
required to achieve the optimal charging performance of
a QB.

III. TWO ENTANGLED COUPLED-CAVITY MEDIATED
THE CHARGING PROCESS OF A QB

We first consider the scenario where two entangled coupled
cavities mediate the charging process of a QB, as shown in

Fig. 1. We focus on the effects of initial cavity-cavity entan-
glement and the coupling between the cavities on the QB’s
charging performance. Under the rotating-wave approxima-
tion (RWA), the total Hamiltonian can be written as (with
h̄ = 1)

H = H0 + f (t )HI , (4)

where

H0 = ω

2
σ B

z + ω

2
σC

z + ωa†
1a1 + ωa†

2a2, (5)

HI = κ (σ B
+a1 + σ B

−a†
1 + σ B

+a2 + σ B
−a†

2)

+ κ (σC
+a1 + σC

−a†
1 + σC

+a2 + σC
−a†

2)

+ �(a†
1a2 + a1a†

2). (6)

Here H0 refers to the free Hamiltonian of the total system. The
interaction Hamiltonian HI respectively describes the interac-
tion between the QB and the cavities with a coupling strength
of κ , the interaction between the charger and the cavities
with a coupling strength of κ , and the interaction between
the cavities with a coupling strength of �. The interaction
Hamiltonian can also be tuned on (off) by manipulating f (t ).
The parameter f (t ) is set to 1 during the charging period
[0, τ ] and 0 otherwise, serving as a classical parameter that
represents the external control applied to the system. Before
t = 0, there is no interaction among the charger, the cavities,
and a QB, hence preventing any energy exchange from occur-
ring. In the time interval 0 < t < τ , the coupled Hamiltonian
is turned on and the four subsystems are coupled together
to facilitate the transfer of energy from the charger, through
the cavities, and then to the QB. The energy stored in the
battery is preserved after the interaction is switched off at
the moment t = τ . We are interested in how energy can be
transferred to QB more efficiently. For this purpose, we study
the performance of the QB at the end of the charging process.

For convenience, we assume that the initial state of the total
system is

|ψ (0)〉 = |1C〉|0B〉(α|10〉 + β|01〉), (7)

where |1C〉 and |0B〉 signify that the charger and QB are
in the excited state and ground state, respectively, whereas
α|10〉 + β|01〉 indicates that the cavities are in an entangled-
like state. The initial entanglement can be characterized by the
concurrence C, as defined in Refs. [54–58]. For the entangled
states α|10〉 + β|01〉 we consider, the concurrence can be im-
mediately calculated as C = 2|αβ| [54]. In the following, we
aim to determine the conditions for achieving optimal charg-
ing performance of the QB when the entangled coupled cavity
is used as the working medium for QB charging. It is worth
noting that, in our discussion, we will treat the composite
system as a closed quantum system, neglecting the dissipative
effects associated with relaxation and dephasing phenomena.
This is possible when the typical relaxation time tr and de-
phasing time tφ are significantly longer than the evolution time
τ under consideration, i.e., tr, tφ � τ [59,60].
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Starting from the initial state [i.e., Eq. (7)], the total
evolved pure state reads

|ψ (t )〉 = c1(t )|1C〉|0B〉|01〉 + c2(t )|1C〉|0B〉|10〉
+ c3(t )|0C〉|1B〉|01〉 + c4(t )|0C〉|1B〉|10〉
+ c5(t )|0C〉|0B〉|11〉 + c6(t )|0C〉|0B〉|20〉
+ c7(t )|0C〉|0B〉|02〉 + c8(t )|1C〉|1B〉|00〉. (8)

From the Schrödinger equation, the time evolution of
the total system in the interaction picture is determined
by the set of differential equations in Appendix A. By solving
the differential equations, these probability amplitudes [i.e.,
c1(t ) . . . c8(t )] can be obtained. The reduced density matrix of
the QB can be obtained by tracing over the freedoms of the
cavity field and the charger. Then according to Eqs. (1) to (3),
the stored energy EB(τ ), the average charging power PB(τ ),
and the ergotropy WB(τ ) are represented by

EB(τ ) = ω(|c3(τ )|2 + |c4(τ )|2 + |c8(τ )|2),

PB(τ ) = ω(|c3(τ )|2 + |c4(τ )|2 + |c8(τ )|2)/τ,

WB(τ ) = ω[2(|c3(τ )|2 + |c4(τ )|2 + |c8(τ )|2) − 1]

�
[
(|c3(τ )|2 + |c4(τ )|2 + |c8(τ )|2) − 1

2

]
, (9)

where �(x − x0) is the Heaviside function. Then, according to
Eq. (9), the effect of the presence of entangled coupled-cavity
on the charging performance of the QB can be analyzed.

First, we show how the cavity m1-m2 initial entanglement
C affects EB(τ ), PB(τ ), and WB(τ ) in Figs. 2(a) to 2(c). We
find that higher entanglement C results in better charging
performance of the QB [i.e., the larger EB(τ ), PB(τ ), and
WB(τ )]. To fully understand the influence of entanglement on
the charging process and achieve the optimal QB, we also plot
the variations of Emax, Pmax, and Wmax with the entanglement
C and the coupling strength �/ω between the two cavities,
as shown in Figs. 2(d) to 2(f). It is clear that Emax, Pmax, and
Wmax will be at their optimal values when the cavities are
initially in the maximally entangled (C = 1) and there is no
coupling �/ω = 0 between the cavities. In particular, when
C = 1 and �/ω = 0, the stored energy of the QB reaches its
maximum value and the energy can be fully extracted. There-
fore, to obtain the optimal performance of the QB when the
two entangled coupled cavities mediate the charging process,
the cavities should be set initially to be in the maximally
entangled state with no coupling between them.

Now, one may wonder why the cavity m1-m2 initial en-
tanglement and the coupling between the cavities cause the
above effects on the performance of the QB. To account for
the effect of the coupling, we apply the Bogoliubov transfor-
mations to the Hamiltonian of the total system [i.e., Eq. (4)].
See Appendix B for details of the procedure. We find that
the presence of the coupling leads to a frequency detuning
between the cavities and the QB or charger. This means a non-
maximum effective coupling between the QB or charger and
the cavities can occur, which is not conducive to the energy
flow of the charger to the QB and then leads to the existence of
coupling will be detrimental to the charging process of a QB.
According to Ref. [48], the QB-charger entanglement can lead
to more energy injection into the QB and consequently more
ergotropy. Then to illustrate the effect of the cavity m1-m2

FIG. 2. Behaviors of (a) stored energy EB(τ ) (in units of ω),
(b) average charging power PB(τ ) (in units of ω), and (c) ergotropy
WB(τ ) (in units of ω) as a function of ωτ for the different initial cavity
m1 − m2 entanglement C. Behaviors of (d) maximum stored energy
Emax (in units of ω), (e) maximum average charging power Pmax (in
units of ω), and (f) maximum ergotropy Wmax (in units of ω) as a
function of C and the coupling strength �/ω between the cavity m1

and the cavity m2. The parameters are (a)–(c) κ = 0.1ω and � = 2ω;
(d)–(f) κ = 0.1ω.

initial entanglement C on the performance of the QB, we start
from the QB-charger entanglement S. See Appendix C for
details. In Fig. 3, we show the dynamics behavior of S as
a function of ωτ for the different values of C. We find that
as C increases, the value of S also increases. This suggests
that an increase in the m1-m2 initial entanglement leads to
an increase in the QB-charger entanglement, which in turn
allows more energy to be injected into the QB. That is to
say, the greater QB-charger entanglement is the reason for the
improved battery performance.

IV. MULTIPLE COUPLED-CAVITY MEDIATED THE
CHARGING PROCESS OF A QB

To obtain the optimal QB, we also study the case of
multicavity mediating the QB charging process. Since the
measurement of many-body entanglement is currently diffi-
cult and is not the focus of our paper, we mainly concentrate
on the effect of the coupling between the nearest-neighbor
cavities on the charging performance of the QB.
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FIG. 3. Dynamics behavior of the QB-charger entanglement S as
a function of ωτ for the different cavity m1 − m2 initial entanglement
C. The parameters are κ = 0.1ω and � = 2ω.

To gain a comprehensive understanding of how the
coupling affects the performance of the QB, we consider
scenarios where the multiple coupled-cavity is initially in
both entangled and unentangled states. The total system
Hamiltonian is given by H = H0 + f (t )HI . The free
Hamiltonian H0 is written as

H0 = ω

2
σ B

z + ω

2
σC

z +
N∑

n=1

ωa†
nan. (10)

Each term from left to right in Eq. (10) represents the free
Hamiltonian for the QB, charger, and cavities, respectively.
Then the interaction Hamiltonian HI is denoted as

HI =
N∑

n=1

κ (σ B
+an + σ B

−a†
n) +

N∑
n=1

κ (σC
+an + σC

−a†
n)

+
∑
〈i j〉

�(a†
i a j + aia

†
j ), (11)

where the first term represents the interaction between the QB
and the cavities, the second term represents the interaction
between the charger and the cavities, and the third term refers
to the interaction between the nearest-neighbor cavities. 〈i j〉
means the nearest-neighbor cavities.

A. Multiple entangled coupled-cavity mediated
the charging process of a QB

We first discuss the impact of the coupling between the
nearest cavities on the QB’s performance in the entangled
coupled-cavity array scenario, as shown in Fig. 4. For con-
venience, we consider four coupled cavities. We assume the
initial state of the total system to be

|ψ (0)〉 = |1C〉|0B〉(α1|1000〉 + α2|0100〉 + α3|0010〉
+ α4|0001〉). (12)

The charger is initially in the excited state |1C〉, the QB is
initially in the ground state |0B〉, and the four cavities are in the
entangled state α1|1000〉 + α2|0100〉 + α3|0010〉 + α4|0001〉.
For the sake of convenience, we consider α1 = α2 = α3 =
α4 = 1/2. Since the total system is in the dual excitation

FIG. 4. Schematic representation of the multiple coupled-cavity
that mediate energy transfer between the QB and the charger.

space, the evolution state of the system at any time t can be
written as

|ψ (t )〉 = c1|1C〉|0B〉|1000〉 + c2|1C〉|0B〉|0100〉
+ c3|1C〉|0B〉|0010〉 + c4|1C〉|0B〉|0001〉
+ c5|0C〉|1B〉|1000〉 + c6|0C〉|1B〉|0100〉
+ c7|0C〉|1B〉|0010〉 + c8|0C〉|1B〉|0001〉
+ c9|0C〉|0B〉|1100〉 + c10|0C〉|0B〉|1010〉
+ c11|0C〉|0B〉|1001〉 + c12|0C〉|0B〉|0110〉
+ c13|0C〉|0B〉|0101〉 + c14|0C〉|0B〉|0011〉
+ c15|0C〉|0B〉|2000〉 + c16|0C〉|0B〉|0200〉
+ c17|0C〉|0B〉|0020〉 + c18|0C〉|0B〉|0002〉
+ c19|1C〉|1B〉|0000〉. (13)

According to the Schrödinger equation, the time-dependent
amplitudes (i.e., c1, c2, . . . , c19) are determined by the system
of differential equations provided in Appendix D. By numer-
ically solving these differential equations, these probability
amplitudes can be obtained. Then the reduced density matrix
of the QB can be obtained by tracing over the degrees of
freedom of the charger and the four cavities. Based on Eqs. (1)
to (3), the stored energy EB(τ ), the average charging power
PB(τ ), and the ergotropy WB(τ ) can be expressed as

EB(τ ) = ω(|c5|2 + |c6|2 + |c7|2 + |c8|2 + |c19|2),

PB(τ ) = ω(|c5|2 + |c6|2 + |c7|2 + |c8|2 + |c19|2)/τ,

WB(τ ) = ω[2(|c5|2 + |c6|2 + |c7|2 + |c8|2

+ |c19|2) − 1]�
[
(|c5|2 + |c6|2 + |c7|2

+ |c8|2 + |c19|2) − 1
2

]
. (14)

The influence of the coupling between the nearest-neighbor
cavities on the performance of the QB can be analyzed from
Eq. (14).

In Fig. 5, we plot the variations of maximum stored
energy Emax, maximum average charging power Pmax, and
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FIG. 5. In the scenario of multiple entangled coupled-cavity,
behaviors of (a) maximum stored energy Emax (in units of ω),
(b) maximum average charging power Pmax (in units of ω), and
(c) maximum ergotropy Wmax (in units of ω) as a function of �/ω

between the nearest-neighbor cavities. The parameter is κ = 0.1ω.

maximum ergotropy Wmax with respect to �/ω between the
nearest-neighbor cavities. Similar to Fig. 2, reducing of the
coupling �/ω can improve the maximum value of Emax, Pmax,
and Wmax. Furthermore, we find that, compared to using two
entangled coupled-cavity, by employing four of the entangled-
coupled cavities further would enhance the average charging
power of the QB. This enhancement can be attributed to the
increased number of cavities, which strengthens the effective
coupling between the QB and the cavities, as well as between
the charger and the cavities. To achieve the optimal charging
performance of the QB, an array of large-scale entangled
uncoupled cavities is required.

B. Multiple unentangled coupled-cavity
mediated the charging process of a QB

In the previous section, we investigate the effect of inter-
cavity coupling on the charging performance of the QB
in the multiple entangled coupled-cavity scenario. To fully
understand the influence of the coupling between the nearest-
neighbor cavities on the charging performance of the QB,
the initial multiple unentangled coupled cavity should also be
considered with equal importance. We assume that the initial
state of the total system can be written as

|ψ (0)〉 = |1C〉|1000〉|0B〉. (15)

Equation (15) can be obtained by Eq. (12) (that is, setting
α1 = 1 and α2 = α3 = α4 = 0). The evolution state of the
total system at any time can be written as Eq. (13). Then
according to the same process and steps as in the previous
section, the stored energy EB(τ ), average power PB(τ ), and

FIG. 6. In the scenario of multiple unentangled coupled-cavity,
behaviors of (a) maximum stored energy Emax (in units of ω),
(b) maximum average charging power Pmax (in units of ω), and
(c) maximum ergotropy Wmax (in units of ω) as a function of �/ω

between the nearest-neighbor cavities. The parameter is κ = 0.1ω.

ergotropy WB(τ ) of the QB can be expressed as Eq. (14). In
the multiple unentangled coupled-cavity scenario, the effect
of the coupling �/ω between the nearest-neighbor cavities on
the performance of the QB can be described.

The variation of Emax, Pmax, and Wmax with �/ω has been
shown in Fig. 6. The smaller �/ω can excite the larger
Emax, Pmax, and Wmax. However, it is noted that, compared with
Fig. 5, the scenario of multiple entangled coupled-cavity is
more beneficial to the QB charging process under the same
conditions. Therefore, the entangled uncoupled-cavity array
is required to realize the optimal QB.

C. Effect of the scale of the coupled-cavity
on the performance of a QB

In the previous two sections, we focus on the effect
of the coupling between the nearest-neighbor cavities on
the performance of the QB when the initial states of
multiple coupled-cavity are different. The scale effect of
the coupled-cavity is not considered. Currently, large-scale
coupled-cavity array can be realized by superconducting cir-
cuits [61]. Coupled-cavity arrays play an important role in
large-scale quantum information processing and quantum net-
work construction. Therefore, the effect of the scale of the
coupled-cavity array on the charging performance of the QB
should be carefully considered.

To facilitate the study of the effect of the size of the coupled
cavity on the performance of the QB, the whole system is
considered in the single excitation space. We assume that the
initial state of the entire system is

|ψ (0)〉 = |1C〉|0 · · · 0〉|0B〉. (16)
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Here the charger is in the excited state |1C〉, the QB and the
cavity array are in their ground states (i.e., |0B〉 and |0 · · · 0〉),
respectively. The evolution state of the total system at any time
t can be written as

|ψ (t )〉 = g1(t )|1C〉|0B〉|0 · · · 0〉 + g2(t )|0C〉|1B〉|0 · · · 0〉

+
N∑

n=1

cn(t )|0C〉|0B〉|0 · · · 1 · · · 0〉, (17)

where |0 · · · 0〉 represents the cavity array in the ground state,
and |0 · · · 1 · · · 0〉 represents the nth cavity in the excited state
while the other cavities are in the ground state. According
to the Schrödinger equation, the time evolution of the total
system in the interaction picture can be determined by the
following differential equations:

ġ1(t ) = −i
N∑

n=1

κcn(t ),

ġ2(t ) = −i
N∑

n=1

κcn(t ),

N∑
n=1

ċn(t ) = −iNκg1(t ) − iNκg2(t ) − i
N∑

n=1

2�cn(t ). (18)

The above differential equations can be solved by means of
standard Laplace transformations combined with numerical
simulations to obtain the reduced density operators of the
QB. According to Eqs. (1) to (3), the stored energy EB(τ ),
average charging power PB(τ ), and ergotropy WB(τ ) are
represented by

EB(τ ) = ω|g2(τ )|2,
PB(τ ) = ω|g2(τ )|2/τ,

WB(τ ) = ω[2|g2(τ )|2 − 1]�
[|g2(τ )|2 − 1

2

]
. (19)

In the following, the effect of the number N of cavities in the
array and the coupling �/ω on the QB’s performance can be
investigated.

Figures 7(a) to 7(c) depict the influence of the number N
of cavities on the parameters EB(τ ), PB(τ ), and WB(τ ). The
parameter N exerts a negligible influence on the maxima of
EB(τ ) and WB(τ ), contrasting with its effect on PB(τ ). An
escalation in N is observed to markedly augment the charging
power of the QB, suggesting that a rapid charging regimen
is contingent upon an increased number of cavities. Then
to elucidate the optimal battery performance, the impact of
N and �/ω on Emax, Pmax, and Wmax is delineated within
Figs. 7(d) to 7(f). It becomes apparent that the achievement
of superior battery performance is predicated upon a large N
and minimal intercavity coupling. Specifically, at N = 6 with
zero coupling, the QB reaches full charge capacity, and the
energy is entirely extractable, which is exactly what is needed
to realize the performance of an ideal QB. Consequently, the
utilization of a cavity array as the medium for battery charg-
ing mandates an increased number of cavities in conjunction
with an absence of coupling between them to secure optimal
battery charging performance.

FIG. 7. Behaviors of (a) stored energy EB(τ ) (in units of ω),
(b) average charging power PB(τ ) (in units of ω), and (c) ergotropy
WB(τ ) (in units of ω) as a function of ωτ for the different numbers N
of cavities. Behaviors of (d) maximum stored energy Emax (in units
of ω), (e) maximum average charging power Pmax (in units of ω), and
(f) maximum ergotropy Wmax (in units of ω) as a function of N and the
coupling strength �/ω between the nearest-neighbor cavities. The
parameters are (a)–(c) κ = 0.1ω and �/ω = 0; (d)–(f) κ = 0.1ω.

V. CONCLUSION

We investigated the charging performance of a QB with an
entangled coupled-cavity array as the working medium. It was
demonstrated that the charging performance is optimal in the
two-cavity case when cavities were initially in a maximum
entangled state without cavity couplings. We elucidated the
impact of initial cavity-cavity entanglement and intercavity
coupling on the charging performance of the QB by examin-
ing the QB-charger entanglement and the frequency detuning
between the QB and charger and the cavities. Subsequently,
we extended our model to the scenario involving the multi-
cavity. Similar to the two-cavity case, the ideal performance
of the QB was obtained without inter-cavity coupling, which
was independent of whether the cavities were initially in the
entangled or separated state. Furthermore, it was found that
the average charging power of the QB under the entangled
coupled-cavity array can be further improved by increasing
the number of cavities. These results can provide some theo-
retical guidance for realizing the optimal charging process of a
QB with the working medium of an entangled coupled-cavity
array.
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Finally, we discuss the experimental implementations of
our model. A promising platform in the realm of quantum
technology is the superconducting circuits [62], which is
renowned for its excellent controllability and its compatibil-
ity with various interfaces. Specifically, the coupled-cavity
array can be made of superconducting microwave cavities
embedded with superconducting quantum interference device
(SQUID) loops [63,64], and the coupling strength between the
nearest-neighbor cavities can be modulated by manipulating
the capacitance. Based on the feasibility of this experiment,
we believe that our research will have a positive impact on the
realization of the optimal charging performance of quantum
batteries in the future.
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APPENDIX A: DIFFERENTIAL EQUATIONS FOR THE
PROBABILITY AMPLITUDE OF THE EVOLUTION STATE

OF THE TOTAL SYSTEM WHEN TWO ENTANGLED
COUPLED-CAVITY MEDIATED THE CHARGING

PROCESS OF A QB

Based on the Schrödinger equation and Eqs. (5) to (8), we
can obtain a series of differential equations that the probability
amplitudes satisfy

ċ1(t ) = −iκc5(t ) + (−i)
√

2κc7(t ) + (−i)κc8(t )

+ (−i)�c2(t ),

ċ2(t ) = −iκc5(t ) + (−i)
√

2κc6(t ) + (−i)κc8(t )

+ (−i)�c1(t ),

ċ3(t ) = −iκc8(t ) + (−i)κc5(t ) + (−i)
√

2κc7(t )

+ (−i)�c4(t ),

ċ4(t ) = −iκc8(t ) + (−i)κc5(t ) + (−i)
√

2κc6(t )

+ (−i)�c3(t ),

ċ5(t ) = −iκc1(t ) + (−i)κc2(t ) + (−i)κc3(t )

+ (−i)κc4(t ) + (−i)
√

2�c7(t ) + (−i)
√

2�c6(t ),

ċ6(t ) = −i
√

2κc2(t ) + (−i)
√

2κc4(t ) + (−i)
√

2�c5(t ),

ċ7(t ) = −i
√

2κc1(t ) + (−i)
√

2κc3(t ) + (−i)
√

2�c5(t ),

ċ8(t ) = −iκc1(t ) + (−i)κc2(t ) + (−i)κc3(t )

+ (−i)κc4(t ). (A1)

APPENDIX B: BOSE BOGOLIUBOV TRANSFORMATIONS

To elucidate the impact of the coupling strength �/ω be-
tween the cavity fields on the performance of the QB, we
perform a Bogoliubov transformation in Eqs. (5) and (6)

a1 = ud1 + vd2, a2 = vd1 + ud2. (B1)

To be a unitary transformation, the coefficients u and v must
satisfy the relation

u2 + v2 = 1. (B2)

Taking Eq. (B1) into Eqs. (5) and (6), and setting the coupling
term between d1 and d2 to zero, can be obtained

uv∗ + u∗v = −�/ω, (B3)

where v∗ and u∗ denote the complex conjugate of v and u,
respectively. Then the Hamiltonian of the total system [i.e.,
Eq. (4)] can be written as

H = ωσ B
z /2 + ωσC

z /2 + (ω − �2/ω)d†
1 d1

+ (ω − �2/ω)d†
2 d2 + κ (Mσ B

+d1 + M∗σ B
−d†

1 + Mσ B
+d2

+ M∗σ B
−d†

2 + κ (MσC
+d1 + M∗σC

−d†
1 + MσC

+d2

+ M∗σC
−d†

2 ), (B4)

where M = u + v.

APPENDIX C: QB-CHARGER ENTANGLEMENT

According to Eq. (8), the evolution density matrix of the
total system can be obtained ρ(t ) = |ψ (t )〉〈ψ (t )|. By tracing
out the freedom of the cavities, the reduced density matrices
of the QB-charger under the basis {|11〉, |10〉, |01〉, |00〉} can
be obtained, i.e.,

ρCB(t ) =

⎛
⎜⎜⎜⎜⎝

|c8|2 0 0 0

0 |c1|2 + |c2|2 c2c∗
4 + c1c∗

3 0

0 c∗
2c4 + c∗

1c3 |c3|2 + |c4|2 0

0 0 0 m

⎞
⎟⎟⎟⎟⎠

,

(C1)

where m = |c5|2 + |c6|2 + |c7|2. For the biqubit system, the
genuinely multiqubit (GM) concurrence can be simplified to
the Wootter’s concurrence. For the two-qubit state ρCB(t ),
the GM concurrence can be immediately obtained S =
2 max{0, |c∗

2c4 + c∗
1c3| −

√
|c8|2(|c5|2 + |c6|2 + |c7|2)}.

APPENDIX D: DIFFERENTIAL EQUATIONS FOR THE
PROBABILITY AMPLITUDE OF THE EVOLUTION STATE

OF THE TOTAL SYSTEM WHEN MULTIPLE
COUPLED-CAVITY MEDIATED THE CHARGING

PROCESS OF A QB

According to the Schrödinger equation and Eqs. (10) to
(13), the differential equation for the probability amplitude of
the evolution state of the total system can be written as

ċ1 = −iκc9 + (−i)κc10 + (−i)κc11 + (−i)κc19

+ (−i)
√

2κc15 + (−i)�c2 + (−i)�c4,

ċ2 = −iκc9 + (−i)κc12 + (−i)κc13 + (−i)κc19

+ (−i)
√

2κc16 + (−i)�c1 + (−i)�c3,

ċ3 = −iκc10 + (−i)κc12 + (−i)κc14 + (−i)κc19

+ (−i)
√

2κc17 + (−i)�c2 + (−i)�c4,
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ċ4 = −iκc11 + (−i)κc13 + (−i)κc14 + (−i)κc19

+ (−i)
√

2κc18 + (−i)�c1 + (−i)�c3,

ċ5 = −iκc9 + (−i)κc10 + (−i)κc11 + (−i)κc19

+ (−i)
√

2κc15 + (−i)�c6 + (−i)�c8,

ċ6 = −iκc9 + (−i)κc12 + (−i)κc13 + (−i)κc19

+ (−i)
√

2κc16 + (−i)�c7 + (−i)�c5,

ċ7 = −iκc10 + (−i)κc12 + (−i)κc14 + (−i)κc19

+ (−i)
√

2κc17 + (−i)�c6 + (−i)�c8,

ċ8 = −iκc11 + (−i)κc13 + (−i)κc14 + (−i)κc19

+ (−i)
√

2κc18 + (−i)�c5 + (−i)�c7,

ċ9 = −iκc1 + (−i)κc2 + (−i)κc5 + (−i)κc6

+ (−i)
√

2�c15 + (−i)
√

2�c16 + (−i)�c10

+ (−i)�c13,

˙c10 = −iκc1 + (−i)κc3 + (−i)κc5 + (−i)κc7

+ (−i)�c9 + (−i)�c11 + (−i)�c12 + (−i)�c14,

˙c11 = −iκc1 + (−i)κc4 + (−i)κc5 + (−i)κc8

+ (−i)
√

2�c15 + (−i)
√

2�c18 + (−i)�c10

+ (−i)�c13,

˙c12 = −iκc2 + (−i)κc3 + (−i)κc6 + (−i)κc7

+ (−i)
√

2�c16 + (−i)
√

2�c17 + (−i)�c10

+ (−i)�c13,

˙c13 = −iκc2 + (−i)κc4 + (−i)κc6 + (−i)κc8

+ (−i)�c9 + (−i)�c11 + (−i)�c12 + (−i)�c14,

˙c14 = −iκc3 + (−i)κc4 + (−i)κc7 + (−i)κc8

+ (−i)
√

2�c17 + (−i)
√

2�c18 + (−i)�c10

+ (−i)�c17,

˙c15 = −i
√

2κc1 + (−i)
√

2κc5 + (−i)
√

2�c9

+ (−i)
√

2�c11,

˙c16 = −i
√

2κc2 + (−i)
√

2κc6 + (−i)
√

2�c9

+ (−i)
√

2�c12,

˙c17 = −i
√

2κc3 + (−i)
√

2κc7 + (−i)
√

2�c12

+ (−i)
√

2�c14,

˙c18 = −i
√

2κc4 + (−i)
√

2κc8 + (−i)
√

2�c11

+ (−i)
√

2�c14,

˙c19 = −iκc1 + (−i)κc2 + (−i)κc3 + (−i)κc4

+ (−i)κc5 + (−i)κc6 + (−i)κc7 + (−i)κc8. (D1)
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