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Utilizing nonlinear elements, SU(1,1) interferometers demonstrate superior phase sensitivity compared to
passive interferometers. However, the precision is significantly impacted by photon losses, particularly internal
losses. We propose a theoretical scheme to improve the precision of phase measurement using homodyne detec-
tion by implementing a number-conserving operation (NCO), i.e., aa† and a†a, inside the SU(1,1) interferometer,
with the coherent state and the vacuum state as the input states. We analyze the effects of the NCO on the phase
sensitivity, the quantum Fisher information (QFI), and the quantum Cramér-Rao bound under both ideal and
photon-loss scenarios. Our findings reveal that the internal non-Gaussian operations can enhance the phase
sensitivity and the QFI and effectively improve the robustness of the SU(1,1) interferometer against internal
photon losses. Notably, the a†a scheme exhibits superior improvement in both the ideal and photon-loss cases
in terms of phase sensitivity. Moreover, in the ideal case, the aa† scheme slightly outperforms the a†a scheme
in terms of the QFI. However, in the presence of high photon losses, the a†a scheme demonstrates a greater
advantage.
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I. INTRODUCTION

Optical interference measurement plays a crucial role
in many scientific and technological applications such as
quantum metrology for precise measurements, imaging for
capturing detailed visual information, sensing for detect-
ing and measuring physical quantities, and information
processing for manipulating and transmitting data [1–9]. Con-
sequently, there has been extensive research and significant
advancements in the field of optical interference measure-
ment. To satisfy the need for high precision, a variety of
optical interferometers have been proposed and developed.
One of the most practical interferometers is the Mach-Zehnder
interferometer (MZI), whose phase sensitivity is limited by
the standard quantum-noise limit (SQL) �φ = 1/

√
N (N is

the average number of photons within the interferometer),
together with solely classical resources as the input of the MZI
[10]. In recent decades, various schemes have been proposed
to improve the phase sensitivity of the traditional MZI [11,12].
It has been demonstrated that using quantum states as the
input states to make the traditional MZI beat the SQL. For
example, NOON states [13,14], twin Fock states [15], and
the squeezed state [16,17] can achieve or even exceed the
Heisenberg limit (HL) �φ = 1/N [18,19].

Another possibility to realize quantum-enhanced phase
sensitivity is the SU(1,1) interferometer [20,21], which re-
placed traditional linear beam splitters (BSs) with optical
parametric amplifiers (OPAs). It splits and mixes beams us-
ing nonlinear transformations, which was first proposed by
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Yurke et al. [22]. In the SU(1,1) interferometer comprising
two OPAs, the first OPA serves the dual purpose of acquiring
entangled resources and suppressing amplified noise. Mean-
while, the subsequent use of the second OPA can lead to
signal enhancement, offering a viable pathway for achieving
higher precision in phase estimation. By utilizing entangled
photon states, the SU(1,1) interferometer can surpass the
SQL, enabling higher precision. This technique revolutionized
phase estimation, becoming a vital tool in quantum precision
measurements. As a result, there has been significant interest
in studying the SU(1,1) interferometer [23–26]. For instance,
Hudelist et al. demonstrated that the gain effect of the OPA
results in the SU(1,1) interferometer exhibiting higher sensi-
tivity compared to traditional linear interferometers [27]. In
2011, Jing et al. [28] successfully implemented this interfer-
ometer experimentally. In this nonlinear interferometer, the
maximum output intensity can be much higher than that of a
linear interferometer due to the OPA. Apart from the standard
form, various configurations of the SU(1,1) interferometer
have also been proposed [24,29–37].

As previously mentioned, although the SU(1,1) interfer-
ometer is highly valuable for precision measurement [38,39],
the precision is still affected by dissipation, particularly pho-
ton losses inside the interferometer [40,41]. Consequently,
to further enhance precision, non-Gaussian operations should
serve as an effective approach to mitigate internal dissi-
pation. Most theoretical [42–45] and experimental [46–48]
studies have fortunately indicated that non-Gaussian opera-
tions, such as photon subtraction (PS), photon addition (PA),
photon catalysis (PC), and quantum scissors and their coher-
ent superposition, effectively enhance the nonclassicality and
entanglement degrees of quantum states, thereby enhancing
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FIG. 1. Schematic diagram of the SU(1,1) interferometer. (a) The
standard SU(1,1) interferometer and (b) the SU(1,1) interferometer
with the NCO. The two input ports are a coherent state |α〉a and a
vacuum state |0〉b. av and bv are vacuum modes. US1 and US2 are the
optical parametric amplifiers, and Uφ is the phase shifter. UP is the
NCO operator, and Da is the homodyne detector.

their potential in quantum information processing [49,50].
Experimental studies have illustrated the conditional genera-
tion of superpositions of distinct quantum operations through
single-photon interference, providing a practical approach for
preparing non-Gaussian operations [51]. This advancement
has unveiled new possibilities in quantum state manipula-
tion and implications for various quantum technologies. In
Ref. [52], Zhang et al. proposed a number-conserving op-
eration (NCO) on the inputs of the MZI for improving the
resolution and precision of phase measurement with parity
detection. They showed that the phase sensitivity can be better
than that of both the photon-subtraction operation and photon-
addition operation in the presence of photon losses. Different
from Ref. [52], Xu et al. examined the phase sensitivity with
internal photon losses in SU(1,1) interferometers, rather than
in the MZI, an SU(2) interferometer. They found that perform-
ing photon-addition operations internally provides superior
results compared to those at the input [53]. Thus, a question
arises naturally: can the NCO be operated inside the SU(1,1)
interferometer (i.e., the non-Gaussian operation on the output
states after the first OPA) to mitigate the impact of internal
photon losses?

Therefore, in this paper, we concentrate on employing the
NCO scheme inside the SU(1,1) interferometer to enhance
the measurement accuracy and then analyze the improvement
effect of the internal non-Gaussian operation on the phase
sensitivity and the quantum Fisher information (QFI) in the
presence of photon losses. The remainder of this paper is ar-
ranged as follows. Section II outlines the theoretical model of
the NCO. Section III delves into phase sensitivity, encompass-
ing both the ideal and internal-photon-loss cases. Section IV
centers on the QFI and quantum Cramér-Rao bound (QCRB)
[54,55]. Finally, Sec. V provides a comprehensive summary.

II. MODEL

This section begins with an introduction to the SU(1,1)
interferometer, as illustrated in Fig. 1(a). The SU(1,1) inter-
ferometer typically consists of two OPAs and a linear phase

shifter, making it one of the most commonly used interfer-
ometers in quantum metrology research. The first OPA is
characterized by a two-mode squeezing operator US1 (ξ1) =
exp(ξ ∗

1 ab − ξ1a†b†), where a and b and a† and b† represent
the photon annihilation and creation operators, respectively.
The squeezing parameter ξ1 can be expressed as ξ1 = g1eiθ1 ,
where g1 represents the gain factor and θ1 represents the
phase shift. This parameter plays a critical role in shaping
the interference pattern and determining the system’s phase
sensitivity. Following the first OPA, mode a undergoes a
phase shift process Uφ = exp[iφ(a†a)], while mode b remains
unchanged. Subsequently, the two beams are coupled in the
second OPA with the operator US2 (ξ2) = exp(ξ ∗

2 ab − ξ2a†b†),
where ξ2 = g2eiθ2 and θ2 − θ1 = π . In this paper, we set the
parameters g1 = g2 = g, θ1 = 0, and θ2 = π . We utilize the
coherent state |α〉a and the vacuum state |0〉b as input states,
and homodyne detection is employed on mode a of the output.

The SU(1,1) interferometer is generally susceptible to pho-
ton losses, particularly in the case of internal losses. To
simulate photon losses, the use of fictitious BSs is proposed,
as depicted in Fig. 1(a). The operators of these fictitious
BSs can be represented as UB = UBa ⊗ UBb , with UBa =
exp[θa(a†av − aa†

v )] and UBb = exp[θb(b†bv − bb†
v )], where

av and bv represent vacuum modes. Here, Tk (k = a, b) de-
notes the transmissivity of the fictitious BSs, associated with
θk through Tk = cos2 θk ∈ [0, 1]. The value of transmittance
equal to 1 (Tk = 1) corresponds to the ideal case without
photon losses [53]. In an expanded space, the expression for
the output state of the standard SU(1,1) interferometer can be
represented as the following pure state:∣∣�0

out

〉 = US2UφUBUS1 |ψin〉, (1)

where |ψin〉 = |α〉a|0〉b|0〉av
|0〉bv

.
To mitigate the impact of photon losses, we introduce a

distinct non-Gaussian operation inside the SU(1,1) interfer-
ometer, called the NCO scheme, as illustrated in Fig. 1(b). We
utilize simple and easy-to-prepare input states (|α〉a ⊗ |0〉b)
and experimentally feasible homodyne detection. Following
Ref. [45], the NCO can be seen as an equivalent operator:

UP = saa† + ta†a, (2)

where s2 + t2 = 1, with s and t being real numbers, and a and
a† are the annihilation operator and creation operator, respec-
tively. From Eq. (2), one can obtain the photon addition then
photon subtraction (PA-then-PS) aa† and photon subtraction
then photon addition (PS-then-PA) a†a. The process can be
described by operator UPj , where j = 1 and 2; UP1 = aa†,
and UP2 = a†a. Actually, the NCOs aa† and a†a are non-
Gaussian operations, which can be experimentally realized via
conditional measurement, like a and a†. For instance, on the
basis of a BS with high transmissivity and photon detection,
one can arrive at the experimental implementation of a single
PS [48]. In addition, PA operation can be implemented by a
four-wave mixing technique, and it is also implemented by
a BS with zero photon detection and a single-photon input
[56,57]. When the two consecutive conditional measurements
are achieved, the quantum state corresponding to the detected
results is selected to be our study object. In the ideal case, the
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obtained state is not a mixed state but a pure one for a pure
input.

In this case of the NCO applied inside the SU(1,1) interfer-
ometer, the output state can be written as the following pure
states: ∣∣�1

out

〉 = A1US2UφUp1
UBUS1 |ψin〉 (3)

and ∣∣�2
out

〉 = A2US2UφUp2
UBUS1 |ψin〉. (4)

A1 and A2 are the normalization constants for the PA-then-PS
and PS-then-PA schemes, respectively, given by [53]

A1 = (P2,2,0,0 + 3P1,1,0,0 + 1)−
1
2 , (5)

A2 = (P2,2,0,0 + P1,1,0,0)−
1
2 , (6)

where Px1,y1,x2,y2 = ∂x1+y1+x2+y2/∂λ
x1
1 ∂λ

y1
2 ∂λ

x2
3 ∂λ

y2
4 {ew4}

|λ1=λ2=λ3=λ4=0, with

w1 = λ1T (λ2 sinh g − λ3 cosh g) sinh g

+ λ4T (λ3 sinh g − λ2 cosh g) sinh g, (7)

w2 = λ1

√
T cosh g − λ4

√
T sinh g, (8)

w3 = λ2

√
T cosh g − λ3

√
T sinh g, (9)

w4 = w1 + w2α
∗ + w3α. (10)

III. PHASE SENSITIVITY

Quantum metrology is an effective approach utilizing
quantum resources for precise phase measurements [58,59].
The objective is to achieve highly sensitive measurements of
unknown phases. In this section, we delve further into inves-
tigating the phase sensitivity for the NCO inside the SU(1,1)
interferometer [60]. Various detection methods are available
for this purpose, such as homodyne detection [61,62], par-
ity detection [16,63], and intensity detection [64]. Each of
these methods offers different trade-offs between sensitivity,
complexity, and practical implementation. It is important to
note that the phase sensitivities of different detection schemes
may vary for different input states and interferometers [65].
Each measurement method has its own advantages. In many
schemes, parity detection has been proven to be the optimal
detection method for linear phase estimation [16,19], but it is
relatively complex and is harder to implement experimentally.
Reference [61] noted that the phase sensitivity of an SU(1,1)
interferometer with homodyne detection surpasses that with
intensity detection. Homodyne detection is not only easy
to implement with current experimental technology [56] but
also simple from a theoretical-calculation perspective, thereby
playing a key role in the field of continuous-variable quantum
key distribution [66,67]. For this reason, we use homodyne
detection on mode a at one output port to estimate the phase
sensitivity.

In homodyne detection, the measured variable is one of
the two orthogonal components of mode a, given by X =
(a + a†)/

√
2. Based on the error-propagation equation [22],

FIG. 2. The phase sensitivity of the NCO based on the homodyne
detection as a function of φ with α = 1 and g = 1. (a) The phase
sensitivity for different values of the parameter t . (b) The black
solid line corresponds to the standard SU(1,1) interferometer; the red
dashed line and the blue dotted line correspond to the PA-then-PS and
PS-then-PA schemes, respectively.

the phase sensitivity can be expressed as

�φ =
√

〈�2X 〉
|∂〈X 〉/∂φ| =

√
〈X 2〉 − 〈X 〉2

|∂〈X 〉/∂φ| . (11)

Based on Eqs. (3), (4), and (11), the phase sensitivity of
the NCO can be theoretically determined. Detailed calculation
steps for the phase sensitivity �φ of the PA-then-PS and PS-
then-PA schemes are provided in Appendix A.

A. Ideal case

Initially, we consider the ideal case, Tk = 1 (where k =
a, b), representing the scenario without photon losses. The
phase sensitivity �φ is plotted as a function of φ in Fig. 2.
Figure 2(a) shows different superposition operations, from
which it is observed that when 0 < t < 1 (dashed lines),
the phase sensitivity consistently falls between the extremes
of t = 0 (red solid line) and t = 1 (blue solid line), which
correspond to the PA-then-PS and PS-then-PA schemes,
respectively. This indicates that the effects of superposi-
tion operations are between the PS-then-PA and PA-then-PS
schemes in the improvement of phase sensitivity. Thus, for the
sake of simplicity, our subsequent investigation concentrates
only on these two boundary cases. Figure 2(b) shows the
standard case and these two boundary cases. The following
is shown: (1) The phase sensitivity improves initially and then
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FIG. 3. The phase sensitivity as a function of g, with α = 1 and
φ = 0.6.

decreases as the phase increases, with the optimal sensitivity
deviating from φ = 0. (2) Both the PA-then-PS and PS-then-
PA schemes effectively enhance the phase sensitivity �φ. (3)
The phase sensitivity of the PS-then-PA scheme is better than
that of the PA-then-PS scheme, and the difference increases
with increasing phase.

Figure 3 illustrates that the phase sensitivity �φ plotted
against the gain factor g for different schemes. The plot con-
firms that an increase in the gain factor g enhances the phase
sensitivity. It is interesting to notice that, when the g value
is small, the PA-then-PS scheme demonstrates greater im-
provement. Conversely, when the g value is large, the opposite
is true. Although the improvement of both is related to the
parameter g, the PS-then-PA scheme is better in terms of
accuracy; i.e., the PS-then-PA scheme achieves the optimal
phase sensitivity. Thus, the following studies mainly focus on
large values of the parameter g.

Similarly, we analyze the phase sensitivity �φ as a func-
tion of the coherent amplitude α, as depicted in Fig. 4.
The phase sensitivity improves with the coherent amplitude
α, attributed to the increase in the mean photon number
with α, which enhances intramode correlations and quan-
tum entanglement between the two modes. Furthermore,
the enhancement effect diminishes as the coherent am-
plitude α increases. It is noteworthy that the PS-then-PA

FIG. 4. The phase sensitivity as a function of α, with g = 1 and
φ = 0.6.

FIG. 5. The phase sensitivity as a function of transmittance Tk ,
with g = 1, φ = 0.6, and α = 1.

scheme demonstrates greater improvement than the PA-then-
PS scheme at small values of α, while the improvement effects
of both schemes are consistent at larger values of α.

B. Photon-loss case

The SU(1,1) interferometer plays a critical role in achiev-
ing high-precision measurements. However, precision is
significantly affected by photon losses, particularly internal
losses. Here, we focus on internal photon losses, correspond-
ing to Tk ∈ (0, 1). The phase sensitivity, depicted as a function
of the transmittance Tk in Fig. 5 for fixed g, α, and φ, improves
as anticipated with higher transmittance Tk . Lower transmit-
tance corresponds to increased internal losses, weakening the
performance of phase estimation. Both the PA-then-PS and
PS-then-PA schemes within the SU(1,1) interferometer ef-
fectively enhance the phase sensitivity �φ. Moreover, it is
notable that as transmittance Tk increases, the improvement
in phase sensitivity first increases and then decreases for
both schemes. Notably, the PS-then-PA scheme consistently
demonstrates higher phase sensitivity than the PA-then-PA
scheme across the entire range.

The robustness to photon losses denotes the measurement
process’s insensitivity to photon losses. A quantum precision
measurement system with strong robustness can maintain high
accuracy and stability even in the presence of photon losses,
thereby reducing measurement errors and uncertainties. By
designing and optimizing interferometer measurement pro-
cesses, the system’s robustness to photon losses can be
improved.

To better study the enhancing effect of the NCO on robust-
ness against photon losses, we further compare the changes
in the phase sensitivity in ideal and photon-loss cases for
different schemes in Fig. 6. The comparison reveals that the
phase sensitivity of the standard SU(1,1) interferometer is
more significantly affected by photon losses. In contrast, the
phase sensitivity of the NCO is less affected, indicating that
the non-Gaussian operations can mitigate the impact of inter-
nal photon losses and enhance the interferometer’s robustness
against losses.
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FIG. 6. Comparisons of robustness against photon losses. (a) The
phase sensitivity as a function of g, with α = 1 and φ = 0.6. (b) The
phase sensitivity as a function of α, with g = 1 and φ = 0.6.

C. Comparison with the SQL and HL

Additionally, we compare the phase sensitivity with the
SQL and HL in this section. The SQL and HL are defined
as �φSQL = 1/

√
Nj and �φHL = 1/Nj , respectively. Here, Nj

represents the total mean photon number inside the interfer-
ometer before the second OPA for each scheme [10,68], with
j = 1 or 2. Nj can be calculated as

N1 = A2
1〈ψin|U †

S1
U †

BU †
P1

(a†a + b†b)UP1UBUS1 |ψin〉
= A2

1(P3,3,0,0 + 5P2,2,0,0 + 4P1,1,0,0

+ P2,2,1,1 + 3P1,1,1,1 + P0,0,1,1) (12)

for the PA-then-PS scheme and

N2 = A2
2〈ψin|U †

S1
U †

BU †
P2

(a†a + b†b)UP2UBUS1 |ψin〉
= A2

2(P3,3,0,0 + 3P2,2,0,0 + P1,1,0,0

+ P2,2,1,1 + P1,1,1,1) (13)

for the PS-then-PA scheme.
For these two schemes at fixed g and α, we plot the phase

sensitivity �φ as a function of φ for comparison with the
SQL and the HL of the standard SU(1,1) interferometer. Our
findings demonstrate the following: (1) The original inter-
ferometer (without NCO) cannot surpass the SQL. (2) The
NCO schemes are capable of surpassing the SQL within a
wide range, even in the presence of significant photon losses
[Fig. 7(b)]. This suggests that the NCO schemes show greater
robustness against internal photon losses. (3) The phase

FIG. 7. Comparison of phase sensitivity with the SQL and HL
for fixed g = 0.7 and α = 1. The blue circles show the SQL, and the
yellow triangles show the HL. (a) T = 1 and (b) T = 0.7.

sensitivity of the PS-then-PA scheme is better than that of the
PA-then-PS scheme.

IV. THE QUANTUM FISHER INFORMATION

In the previous discussion, we explored the influence
of NCO schemes on phase sensitivity and the correlation
between phase sensitivity and relevant parameters using ho-
modyne detection. It is crucial to recognize that the discussed
phase sensitivity is influenced by the chosen measurement
method. Hence, the question arises: how can we achieve maxi-
mum phase sensitivity in an interferometer that is independent
of the measurement method used? This section shifts our
focus to the QFI, which represents the maximum information
extracted from the interferometer system, regardless of the
measurement method employed. We will examine the QFI in
ideal and realistic scenarios.

A. Ideal case

For a pure-state system, the QFI can be derived by [69]

Fj = 4[〈� ′
j |� ′

j〉 − |〈� ′
j |� j〉|2], (14)

where |� j〉 is the quantum state after the phase shift and
before the second OPA and |� ′

j〉 = ∂|� j〉/∂φ. Then the QFI
can be rewritten as [69]

Fj = 4〈�2na〉, (15)

where 〈�2na〉 = 〈� j |(a†a)2|� j〉 − (〈� j |a†a|� j〉)2.
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FIG. 8. (a) The QFI as a function of g, with α = 1. (b) The QFI
as a function of α, with g = 1.

In the ideal NCO, the quantum state is given by |� j〉 =
AjUφUpjUS1 |α〉a|0〉b, with UP1 = aa† ( j = 1) and UP2 = a†a
( j = 2). Thus, the QFI is derived as

F1 = 4
{
A2

1(P4,4,0,0 + 8P3,3,0,0 + 14P2,2,0,0 + 4P1,1,0,0)

−[
A2

1(P3,3,0,0 + 5P2,2,0,0 + 4P1,1,0,0)
]2}

(16)

for the PA-then-PS scheme and

F2 = 4
{
A2

2(P4,4,0,0 + 6P3,3,0,0 + 7P2,2,0,0 + P1,1,0,0)

−[
A2

2(P3,3,0,0 + 3P2,2,0,0 + P1,1,0,0)
]2}

(17)

for the PS-then-PA scheme. In the above equations, Tk = 1. It
is possible to explore the connection between the QFI and the
related parameters using Eqs. (16) and (17).

Figure 8 illustrates the QFI as a function of g (α) for a spe-
cific α (g). It is evident that a higher value of g (α) corresponds
to greater QFI. Both the PA-then-PS and PS-then-PA schemes
result in enhanced QFI due to the non-Gaussian nature. The
QFI of the PA-then-PS scheme is slightly higher than that of
the PS-then-PA scheme in both plots. Moreover, we observe
that the improvement in QFI due to non-Gaussian operations
increases with the increase of the value of g [as shown in
Fig. 8(a)], while it does not significantly change with the
variation of the value of α [as shown in Fig. 8(b)].

Actually, the QFI can be associated with the phase sensi-
tivity through [70]

�φQCRB = 1√
vF

, (18)

FIG. 9. Comparisons of the phase sensitivity �φ obtained by
homodyne detection with the ultimate sensitivity �φQCRB obtained
from QFI.

where v represents the number of measurements. For sim-
plicity, we set v = 1 . Another quantum limit, the QCRB
[54,55], denoted as �φQCRB, defines the ultimate limit for a
set of probabilities derived from measurements on a quan-
tum system. It is an estimator implemented asymptotically
by a maximum-likelihood estimator and provides detection-
independent phase sensitivity. In order to better help us
understand how optimal the phase sensitivity obtained from
the SU(1,1) interferometer with the NCO really is, we com-
pare the phase sensitivity �φ obtained by using the second
OPA and homodyne detection with the sensitivity �φQCRB

obtained from the QFI. Figure 9 illustrates the variation of
�φQCRB as a function of g (α) for a specific α (g). It shows
that �φQCRB improves with increasing g and α. Similarly, due
to the non-Gaussian nature, both the PA-then-PS and PS-then-
PA schemes are able to improve �φQCRB. Furthermore, the
improvement in �φQCRB is more obvious for a small coherent
amplitude α [see Fig. 9(b)]. It is shown that for a smaller gain
factor or a greater coherent amplitude, the measurement-based
sensitivity better reflects the Fisher-information situation (de-
scribed via �φQCRB).

B. Photon-loss case

In this section, we extend our analysis to cover the QFI
in the presence of photon losses. Specifically, we examine
homodyne detection on mode a, which is susceptible to pho-
ton losses. Consequently, our attention is directed toward the
QFI of the system with photon losses in mode a, as depicted
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FIG. 10. Schematic diagram of the photon losses in mode a. The
losses occur before the NCO.

in Fig. 10. Here, we should emphasize that the Fisher in-
formation is obtained using the state preceding the second
OPA; i.e., despite Fig. 10 featuring an SU(1,1) interferometer
diagram, the second OPA is not essential. For realistic quan-
tum systems, we demonstrate the feasibility of computing the
QFI with internal non-Gaussian operations according to the
method proposed by Escher et al. [69]. See Appendix B for
the detailed process. The method is briefly summarized as
follows.

For the case of photon losses, we can treat the system as
a pure state in an extended space, similar to Eq. (3). Then
following Eq. (14), we can obtain the QFI under the pure state,
denoted as CQj , which is larger than or equal to the QFI FL j for
the mixed state (our consideration), i.e., FL j � CQj . CQj is the
QFI before optimizing over all possible measurements, i.e.,

CQj = 4[〈ψ |Ĥ1 j |ψ〉 − |〈ψ |Ĥ2 j |ψ〉|2], (19)

where Ĥ1 j and Ĥ2 j are defined as

Ĥ1 j = B2
j

∞∑
l=0

d

dφ
�

†
l (η, φ, λ)U †

p j
Upj

d

dφ
�l (η, φ, λ), (20)

Ĥ2 j = iB2
j

∞∑
l=0

[
d

dφ
�

†
l (η, φ, λ)

]
U †

p j
Upj �l (η, φ, λ). (21)

Here, Bj are normalization factors shown in Eq. (B10), and
�l (η, φ, λ) is the phase-dependent Krause operator shown in
Eq. (B8), satisfying

∑
�

†
l (η, φ, λ)�l (η, φ, λ) = 1, with λ =

0 and λ = −1 representing the photon losses before the phase
shifter and after the phase shifter, respectively. η is related to
the dissipation factor, with η = 1 and η = 0 being the cases
of complete loss and absorption, respectively. Particularly,
Eqs. (19), (20), and (21) just reduce to those in Ref. [69]
when there are no non-Gaussian operations. Following the
spirit of Ref. [69], we can further obtain the minimum value
of CQj by optimizing over λ, corresponding to FL j , i.e., FL j =
min�l (η,φ,λ) CQj � CQj . See Appendix B for more details.

Next, we further analyze the effects of each parameter on
the QFI of the NCO schemes under photon loss by numer-
ical calculation. Figure 11 plots the QFI and QCRB as a
function of transmittance η, from which it is observed that
the QFI increases with increasing transmittance η, and the
NCO can enhance the QFI. This increase can be attributed
to the NCO increasing the number of photons internally,
resulting in more quantum information, similar to the ideal
case. For both non-Gaussian operations, the improved QFI
increases with the transmittance η. It is interesting that, over a
wide range of about 0 < η < 0.85, the PS-then-PA scheme
exhibits more QFI or higher precision than the PA-then-PS
scheme. However, as η approaches 1, the PA-then-PS scheme
demonstrates superior QFI or QCRB within the range of about

FIG. 11. FL and �φQCRBL as a function of transmittance η, with
g = 1 and α = 1.

0.85 < η < 1. This implies that the PS-then-PA scheme
presents better performance than the PA-then-PS scheme in
the high-dissipation situation.

To explore the underlying reasons for the above case, we
further examine the nonclassicality of the NCO using the
negative volume of the Wigner function (WF) [71]. For sim-
plicity, we consider only the WF of ideal quantum states after
non-Gaussian operations. Some details of the WF are sum-
marized in Appendix C. Figure 12 illustrates the WF in phase
space corresponding to two different operations. It is clear that
(1) both non-Gaussian operations can increase the negative

FIG. 12. The WF in phase space for quantum states after the
NCO with α = 1. (a)–(d) The PA-then-PS scheme and (e)–(h) the
PS-then-PA scheme, with g = 0.6, 0.8, 1.0, 1.2 (from left to right).
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FIG. 13. (a) FL as a function of g, with α = 1 and η = 0.6. (b) FL

as a function of α, with g = 1 and η = 0.6.

volume of the WF, i.e., increase the nonclassicality [71], and
(2) for given α and g, the PS-then-PA scheme presents a
much bigger negative volume than the PA-then-PS scheme.
For example, for α = 1 and g = 0.6, 0.8, 1.0, 1.2, the negative
volumes are 0.034 and 0.009, 0.033 and 0.014, 0.031 and
0.017, and 0.030 and 0.020 for the PS-then-PA and PA-then-
PS schemes, respectively. These observations suggest that the
non-Gaussian operation increases the nonclassicality, and the
stronger the nonclassicality of the internal non-Gaussian op-
eration is, the more effective it is in suppressing the effect of
the internal high noise.

Similar to the ideal case, Fig. 13 illustrates the QFI as a
function of g (α) for a given α (g) for the loss case with η =
0.6. Some results similar to those in Fig. 8 can be obtained
(not shown here). Different from the ideal case in Fig. 8, the
PS-then-PA scheme performs better than PA-then-PS scheme
when g is larger, as shown in Fig. 13(a). This case is also true
for the QFI with α, as shown in Fig. 13(b). These two cases are
almost the opposite of the previous ideal situation. The reason
may be that the PS-then-PA operation prepares the higher
nonclassical states, which are more conducive to improving
the measurement accuracy, especially in the presence of high
photon losses.

V. CONCLUSION

In this paper, we analyzed the effects of NCO schemes on
the phase sensitivity, the QFI, and the QCRB in both ideal and
photon-loss cases. Additionally, we investigated the effects of

the gain coefficient g of the OPA, the coherent-state amplitude
α, and the transmittance Tk of the BS on the performance of
the system. Through analytical comparison, we verified that
the NCO schemes can improve the measurement accuracy
of the SU(1,1) interferometer and enhance the robustness
against internal photon losses. The non-Gaussian operations
can elevate the total mean photon number of the SU(1,1) in-
terferometer, consequently reinforcing intramode correlations
and quantum entanglement between the two modes.

We further analyzed the differences between the two non-
Gaussian operations. Concerning the phase sensitivity, the
improvement of the PS-then-PA scheme is superior in both the
ideal and photon-loss cases. In terms of the QFI and QCRB,
in the ideal case, the PA-then-PS scheme slightly outperforms
the PS-then-PA scheme. However, in the photon-loss case, the
PS-then-PA scheme demonstrates a greater advantage.

In summary, the NCO schemes play a role in overcoming
the internal photon losses within SU(1,1) interferometers and
in improving the accuracy of quantum measurements. This
study highlights the potential of the non-Gaussian operations
as valuable tools for improving the performance of quantum
metrology and information-processing systems. It should be
noted that we mainly paid attention to an ideal PS or PA case.
Actually, there are some methods to realize these operations.
The different experimental parameters will impact the perfor-
mance, which will be further examined in the near future.
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APPENDIX A: THE PHASE SENSITIVITY WITH THE NCO

In this Appendix, we give the calculation formulas of the
phase sensitivity with the NCO as follows:

�φ1 =
√〈

�1
out

∣∣(a† + a)2∣∣�1
out

〉 − 〈
�1

out

∣∣(a† + a)
∣∣�1

out

〉2
|∂ 〈

�1
out

∣∣(a† + a)
∣∣�1

out

〉
/∂φ| .

(A1)
Here, the output state |�1

out〉 is given by Eq. (3), so the expec-
tations related to the phase sensitivity in PA-then-PS scheme
are specifically calculated as follows [53]:〈

�1
out

∣∣(a† + a)
∣∣�1

out

〉
= A2

1[e−iφ cosh g(P3,2,0,0 + 4P2,1,0,0 + 2P1,0,0,0)

+ sinh g(P2,2,0,1 + 3P1,1,0,1 + P0,0,0,1)

+ eiφ cosh g(P2,3,0,0 + 4P1,2,0,0 + 2P0,1,0,0)

+ sinh g(P2,2,1,0 + 3P1,1,1,0 + P0,0,1,0)] (A2)

and 〈
�1

out

∣∣(a† + a)2|�1
out〉

= A2
1

[
e−2iφ cosh2 g(P4,2,0,0 + 5P3,1,0,0 + 3P2,0,0,0)
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× e2iφ cosh2 g(P2,4,0,0 + 5P1,3,0,0 + 3P0,2,0,0)

+ 2 cosh2 g(P3,3,0,0 + 5P2,2,0,0 + 4P1,1,0,0)

+ 2e−iφ sinh gcosh g(P3,2,0,1 + 4P2,1,0,1

+ 2P1,0,0,1 + P3,2,1,0 + 4P2,1,1,0 + 2P1,0,1,0)

+ 2eiφ sinh gcosh g(P2,3,1,0 + 4P1,2,1,0

+ 2P0,1,1,0 + P2,3,0,1 + 4P1,2,0,1 + 2P0,1,0,1)

+ sinh2 g(P2,2,0,2 + 3P1,1,0,2 + P0,0,0,2

+ P2,2,2,0 + 3P1,1,2,0 + P0,0,2,0 + 2P2,2,1,1

+ 6P1,1,1,1 + 2P0,0,1,1 + 2P2,2,0,0

+ 6P1,1,0,0 + 2) + A−2
1

]
. (A3)

The phase sensitivity in the PS-then-PA scheme can be calcu-
lated as

�φ2 =
√〈

�2
out

∣∣(a† + a)2∣∣�2
out

〉 − 〈
�2

out

∣∣(a† + a)
∣∣�2

out

〉2
|∂ 〈

�2
out

∣∣(a† + a)
∣∣�2

out

〉
/∂φ| ,

(A4)

where the output state |�2
out〉 is given by Eq. (4), and the

expectations associated with the phase sensitivity in the PS-
then-PA scheme can similarly be calculated as follows:〈

�2
out

∣∣(a† + a)
∣∣�2

out

〉
= A2

2[e−iφ cosh g(P3,2,0,0 + 2P2,1,0,0)

+ sinh g(P2,2,0,1 + P1,1,0,1)

+ eiφ cosh g(P2,3,0,0 + 2P1,2,0,0)

+ sinh g(P2,2,1,0 + P1,1,1,0)] (A5)

and 〈
�2

out

∣∣(a† + a)2
∣∣�2

out

〉
= A2

2

[
e−2iφ cosh2 g(P4,2,0,0 + 3P3,1,0,0)

+ e2iφ cosh2 g(P2,4,0,0 + 3P1,3,0,0)

+ 2 cosh2 g(P3,3,0,0 + 3P2,2,0,0 + P1,1,0,0)

+ 2e−iφ sinh gcosh g(P3,2,1,0 + 2P2,1,1,0

+ P3,2,0,1 + 2P2,1,0,1)

+ 2eiφ sinh gcosh g(P2,3,0,1 + 2P1,2,0,1

+ P2,3,1,0 + 2P1,2,1,0)

+ sinh2 g(P2,2,2,0 + P1,1,2,0 + P2,2,0,2

+ P1,1,0,2 + 2P2,2,1,1 + 2P1,1,1,1

+ 2P2,2,0,0 + 2P1,1,0,0) + A−2
2

]
. (A6)

APPENDIX B: THE QFI WITH PHOTON LOSSES

Here, we further examine the QFI with photon losses for
the system shown in Fig. 10. After the first OPA US1 , the
photon losses, the non-Gaussian operation UPj ( j = 1 or 2),
and, before the detection, the output state in an expanded

space are given by∣∣�Ej

〉 = BjUφUpjUB|0〉av
|ψ〉, (B1)

a form of the pure state, where |ψ〉 = US1 |α〉a|0〉b and Bj is
the normalization factor, determined by Tr|�Ej 〉〈�Ej | = 1.

For a pure-state system, the QFI can be calculated us-
ing Eq. (14) and is denoted CQj . Substituting Eq. (B1) into
Eq. (14) yields

CQj = 4[〈ψ |Ĥ1 j |ψ〉 − |〈ψ |Ĥ2 j |ψ〉|2], (B2)

where Ĥ1 j and Ĥ2 j are operators defined as

Ĥ1 j = B2
j av

〈0|
dU †

BU †
p j

U †
φ

dφ

dUφUpjUB

dφ
|0〉av

, (B3)

Ĥ2 j = iB2
j av

〈0|
dU †

BU †
p j

U †
φ

dφ
UφUpjUB|0〉av

. (B4)

Noticing that [Uφ,Upj ] = 0, i.e., Uφ and Upj are commu-
tative, and inserting the completeness relation of the number
state

∑ |l〉av ,av
〈l| = 1, one can obtain

Ĥ1 j = B2
j

∞∑
l=0

av
〈0|

dU †
BU †

p j
U †

φ

dφ
|l〉av ,av

〈l|dUφUpjUB

dφ
|0〉av

= B2
j

∞∑
l=0

d

dφ
av

〈0|U †
BU †

φ
|l〉av

U †
p j

Upj

d

dφ
av

〈l|UφUB|0〉av

= B2
j

∞∑
l=0

d

dφ
�

†
l (η, φ)U †

p j
Upj

d

dφ
�l (η, φ) (B5)

and

Ĥ2 j = iB2
j

∞∑
l=0

av
〈0|

dU †
BU †

p j
U †

φ

dφ
|l〉av ,av

〈l|UφUpjUB|0〉av

= iB2
j

∞∑
l=0

[
d

dφ
�

†
l (η, φ)

]
U †

p j
Upj �l (η, φ), (B6)

where �
†
l (η, φ) = [�l (η, φ)]† and

�l (η, φ) = av
〈l|UφUB|0〉av

=
√

(1 − η)l

l!
eiφnη

n
2 al . (B7)

Here, �l (η, φ) is actually the Kraus operator, which describes
the photon losses and satisfies

∑
�

†
l (η, φ)�l (η, φ) = 1, and

n = a†a is the number operator. η is related to the dissipation
factor, with η = 1 and η = 0 being the cases of complete loss
and absorption, respectively.

For a pure state in extended space, the quantum Fisher
information CQj about the parameter φ is larger than or equal
to the quantum Fisher information FL j for a mixed state, i.e.,
FL j � CQj . CQj is the quantum expression for the Fisher in the
formation before optimizing over all possible measurements.
Following the spirit of Ref. [69], i.e., in an interferometer with
photon losses in one arm, a possible set of Kraus operators
describing the process is

�l (η, φ, λ) =
√

(1 − η)l

l!
eiφ(n−λl )η

n
2 al , (B8)
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which also satisfies
∑

�
†
l (η, φ, λ)�l (η, φ, λ) = 1. Here,

λ = 0 and λ = −1 represent the photon losses before the
phase shifter and after the phase shifter, respectively. Thus,
one can obtain FL j by optimizing the parameter λ correspond-
ing to all possible measurements, i.e.,

FL j = min
�l (η,φ,λ)

CQj � CQj . (B9)

In this paper, we use Eqs. (B2), (B8), and (B9) to discuss FL j

under photon losses by minimizing CQj over λ.
Next, we further derive the normalization factor Bj . Using

Eq. (B1), it is easy to find that

B−2
j =

∞∑
l=0

(1 − η)l

l!
〈ψ |a†lηnU †

p j
Upj a

l |ψ〉. (B10)

To obtain the specific expression of B−2
j , we employ the

technique of integrating within an ordered product of op-
erators [72], i.e., ηnnq =: ∂q/∂xq{e(ηex−1)n}|x=0 :, where : · :
indicates the symbol of the normal ordering form, which fur-
ther leads to the formula

∞∑
l=0

(1 − η)l

l!
l

p
a†lηnnqal

= ∂q+p

∂xq∂yp
[ηex + (1 − η)ey]n|x=y=0. (B11)

Then we can obtain the specific forms for B1 and B2, i.e.,

B1 = [1 + (3η − η2)〈ψ |n|ψ〉 + η2〈ψ |n2|ψ〉]− 1
2
, (B12)

B2 = [(η − η2)〈ψ |n|ψ〉 + η2〈ψ |n2|ψ〉]− 1
2
, (B13)

where
〈ψ |n|ψ〉 = α2 cosh2 g + sinh2 g, (B14)

〈ψ |n2|ψ〉 = α2 cosh2 g + sinh2 g + α4 cosh4 g

+ 2 sinh4 g + 4α2 sinh2 gcosh2 g, (B15)

〈ψ |n3|ψ〉 = α2 cosh2 g + sinh2 g + 3α4 cosh4 g

+ 6 sinh4 g + 12α2 sinh2 gcosh2 g

+ α6 cosh6 g + 18α2 cosh2 g sinh4 g

+ 6 sinh6 g + 9α4 cosh4 g sinh2 g, (B16)

and

〈ψ |n4|ψ〉 = α2 cosh2 g + sinh2 g + 7α4 cosh4 g

+ 14 sinh4 g + 28α2 sinh2 gcosh2 g

+ 36 sinh6 g + 6α6 cosh6 g + 24 sinh8 g

+ 108α2 cosh2 g sinh4 g + α8 cosh8 g

+ 54α4 cosh4 g sinh2 g + 96α2 cosh2 g sinh6 g

+ 72α4 cosh4 g sinh4 g + 16α6 cosh6 g sinh2 g.

(B17)

Here 〈·〉 is the average under the state |ψ〉, and |ψ〉 =
US1 |α〉a|0〉b is the state after the first OPA.

Finally, using Eq. (B11) and Eqs. (B2), (B8), and (B9) to
derive CQj depending on λ for the PA-then-PS scheme (CQ1 )

and for the PS-then-PA scheme (CQ2 ), we have

CQ1 = 4
{
B2

1(u1〈ψ |n4|ψ〉 + u2〈ψ |n3|ψ〉
+ u3〈ψ |n2|ψ〉 + u4〈ψ |n|ψ〉)

− [
B2

1(u5〈ψ |n3|ψ〉 + u6〈ψ |n2|ψ〉
+ u7〈ψ |n|ψ〉)

]2}
(B18)

and

CQ2 = 4
{
B2

2(u1〈ψ |n4|ψ〉 + u8〈ψ |n3|ψ〉
+ u9〈ψ |n2|ψ〉 + u10〈ψ |n|ψ〉)

− [
B2

2(u5〈ψ |n3|ψ〉 + u11〈ψ |n2|ψ〉
+ u12〈ψ |n|ψ〉)

]2}
, (B19)

where

u1 = λ2η4 − 2λ2η3 + λ2η2 + 2λη4 − 2λη3 + η4, (B20)

u2 = − 6λ2η4 + 14λ2η3 − 11λ2η2 + 3λ2η

− 12λη4 + 22λη3 − 10λη2 − 6η4 + 8η3, (B21)

u3 =11λ2η4 − 28λ2η3 + 24λ2η2 − 8λ2η

+ λ2 + 22λη4 − 52λη3 + 38λη2

− 8λη + 11η4 − 24η3 + 14η2, (B22)

u4 = − 6λ2η4 + 16λ2η3 − 14λ2η2 + 4λ2η

− 12λη4 + 32λη3 − 28λη2 + 8λη

− 6η4 + 16η3 − 14η2 + 4η, (B23)

u5 = λη3 − λη2 + η3, (B24)

u6 = 6λη2 − 3λη − 3λη3 + 5η2 − 3η3, (B25)

u7 = 4η − λ + 4λη − 5λη2 + 2λη3 − 5η2 + 2η3, (B26)

u8 = − 6λ2η4 + 12λ2η3 − 7λ2η2 + λ2η

− 12λη4 + 18λη3 − 6λη2 − 6η4 + 6η3, (B27)

u9 = 11λ2η4 − 22λ2η3 + 13λ2η2 − 2λ2η

+ 22λη4 − 40λη3 + 20λη2

− 2λη + 11η4 − 18η3 + 7η2, (B28)

u10 = − 6λ2η4 + 12λ2η3 − 7λ2η2 + λ2η

− 12λη4 + 24λη3 − 14λη2

+ 2λη − 6η4 + 12η3 − 7η2 + η, (B29)

u11 = 4λη2 − λη − 3λη3 + 3η2 − 3η3, (B30)

u12 = η + λη − 3λη2 + 2λη3 − 3η2 + 2η3. (B31)

Then, we can further optimize λ to get the minimum value of
CQj using Eq. (19), which corresponds to FL j .
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APPENDIX C: THE WF WITH THE NCO

For a two-mode quantum state ρ, its WF under the
coherence-state representation can be calculated as

Wj (z, γ ) = e2(|z|2+|γ |2 )
∫

d2βad2βb

π4
〈−βa, βb|ρ|βa, βb〉

× e2(zβ∗
a −z∗βa+γ β∗

b −γ ∗βb), (C1)

where j = 1 or 2 and |βa, βb〉 = |βa〉 ⊗ |βb〉 are two-mode
coherent states. From Eq. (C1), the analytic expression of
the WF can be obtained by providing the density operator
ρ of the quantum state. Here, we consider only the ideal
case, i.e., without losses. The quantum state after the NCO
is |ψP〉 = AjUPjUS1 |α〉a|0〉b. Therefore, the density operator ρ

can be expressed as

ρ = |ψP〉〈ψP|. (C2)

By substituting Eq. (C2) into Eq. (C1), we can obtain the WF
after the NCO. Here, the specific expressions are not shown
for simplicity.

To clearly observe the effect of the gain factor g on the
nonclassicality of two different non-Gaussian operations (aa†,
a†a), we use the negative volume Vj of the WF to quantita-
tively describe the nonclassicality of the quantum state after
the NCO. The calculation formula for the negative volume Vj

of the WF is given by

Vj =
∫

dx1dx2dy1dy2[|Wj (z, γ )| − Wj (z, γ )]

2
, (C3)

where z = (x1 + iy1)/
√

2 and γ = (x2 + iy2)/
√

2. According
to Eq. (C3), the WF negative volume of state |ψP〉 can be
numerically calculated.
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