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Solving constrained optimization problems via the variational quantum eigensolver with constraints
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Variational quantum approaches have shown great promise in finding near-optimal solutions to computa-
tionally challenging tasks, including solving optimization problems. Nonetheless, optimization problems with
constraints may not have been handled in a disciplined fashion thus far. To address this gap, this work proposes
a hybrid quantum-classical algorithmic paradigm termed the variational quantum eigensolver with constraints
(VQEC) that extends the celebrated VQE to handle optimization with constraints. As with the standard VQE,
the vector of optimization variables is captured by the state of a variational quantum circuit (VQC). To deal
with constraints, VQEC optimizes a Lagrangian function classically over both the VQC parameters as well as
the dual variables associated with constraints. To comply with the quantum setup, variables are updated via a
perturbed primal-dual method leveraging the parameter shift rule. Among a wide gamut of potential applications,
we showcase how VQEC can approximately solve quadratically constrained binary optimization problems, find
stochastic binary policies satisfying quadratic constraints on the average and in probability, and solve large-scale
linear programs over the probability simplex. Under an assumption on the error for the VQC to approximate
an arbitrary probability mass function, we provide bounds on the optimality gap attained by a VQC. Numerical
tests on a quantum simulator investigate the effect of various parameters and corroborate that VQEC can generate
high-quality solutions.
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I. INTRODUCTION

Quantum computing could be a disruptive technology
in dealing with challenging computational tasks. Seminal
works have developed quantum computing algorithms to
tackle problems, such as integer factorization [1], searching
in databases [2], solving systems of linear equations [3,4],
and various machine learning tasks [5,6], with polynomial or
exponential speed-ups over their classical computing alterna-
tives. However, these algorithms are assumed to operate on
fault-tolerant quantum computers, which are projected not to
be available in the near future. Recent research and develop-
ment efforts focus on devising algorithms that are of relevance
to practical applications on contemporary, qubit-limited, low-
circuit depth, and noisy quantum hardware, often referred to
as noisy intermediate-scale quantum (NISQ) [7]. Variational
quantum approaches (VQAs) exploit parameterized quantum
circuits (VQCs) of limited depth and reduced number of
qubits, and become the leading candidates to showcase quan-
tum advantage in the NISQ context [8,9].

The variational quantum eigensolver (VQE) is one of
the most well-studied variational quantum approaches. Given
a sequence of parameterized quantum gates, VQE aims at
seeking the eigenvector corresponding to the minimum eigen-
value (energy) of an exponentially large Hermitian matrix
representing a quantum observable [10]. While VQE has
been successfully utilized as a heuristic to find near-optimal
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solutions for quadratic unconstrained binary optimization
(QUBO) problems [11–15], quadratic problems oftentimes
come with constraints. A constrained binary problem can
be converted to an unconstrained one upon penalizing con-
straint violations by adding them to the objective function.
Nonetheless, the weights associated with each penalty term
are nontrivial to select unless the constraints are of specific
forms, such as Boolean functions or linear equalities [16,17].
Another VQA that has been particularly successful for binary
optimization is the quantum approximate optimization algo-
rithm (QAOA) [18]. The QAOA is a special case of VQE that
uses a problem-dependent VQC or ansatz.

To incorporate constraints, Refs. [19–21] adapt the mixer
Hamiltonian of the QAOA’s ansatz to ensure that the target
quantum state remains within the feasible subspace. This
strategy is also studied on quantum annealing, the analog
counterpart of QAOA [22,23]. However, confining the mixer
Hamiltonian applies only to a single linear equality con-
straint and requires a larger number of additional gates [21].
Reference [24] considers binary quadratic programs with
linear constraints again, by combining the quantum adia-
batic approach with the classical branch-and-bound method.
Reference [14] proposes a VQA to minimize an objective
expressed as a sum of a quadratic function over binary vari-
ables and a convex function over continuous variables. Binary
and quadratic variables are set to be equal through linear
equality constraints. The problem is solved using the alternat-
ing direction method of multipliers (ADMM). Each ADMM
iteration entails solving the convex subproblem over the
continuous variables using standard convex optimization tech-
niques on a classical computer, and the QUBO subproblem
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via VQE/QAOA. Nonetheless, solving a VQE or QAOA to
optimality for each ADMM iteration may be computationally
demanding. In [25] a VQA method is proposed to improve the
chance of acquiring feasible solutions for constrained combi-
natorial problems through a greedy postprocessing method,
which nonetheless is applicable only to linear constraints. To
deal with linear and semidefinite programs by VQA, Ref.
[26] transforms inequality constraints into equality constraints
by means of introducing slack variables. Again, the penalty
method is employed to modify the equality-constrained op-
timization to the unconstrained one. Solving the resultant
unconstrained problem offers a lower bound on the optimal
value of the original constrained problem. In practice, how-
ever, the penalty parameter should be chosen carefully, as
unreasonably large values could lead to ill-conditioning. To
find a suitable value that avoids numerical issues and gives
a strict bound at the same time, the unconstrained problem
has to be solved for a sequence of penalty parameters. Such
penalty-based methods have been proposed in the context
of quantum many-body problems with constraints as well
[27–29].

Lagrangian duality offers a more systematic way of han-
dling optimization problems with constraints. In the context of
VQA, the vector of VQC parameters θ constitutes the primal
optimization variables, and the vector of Lagrange multipliers
λ corresponds to dual variables. Albeit the primal problem
is nonconvex, the dual problem is known to be always con-
vex [30]. References [31,32] deal with quadratic constrained
binary optimization (QCBO) using dual decomposition, a
variation of subgradient descent that aims at solving the dual
problem. Reference [33] engages dual decomposition too to
solve semidefinite programs using variational quantum opti-
mization. However, each update of dual variables involves a
complete run of quantum annealing [31], or solving a VQE
to optimality [32,33], either of which can be computationally
formidable.

In contrast, the primal-dual method used in [34,35] to train
neural networks under constrained optimization problems is
more suitable, since each primal step requires only updating
the primal variable inexactly. The convergence of the primal-
dual method is guaranteed under strict settings, such as the
Lagrangian function being strictly convex and strictly concave
[36]. However, by updating the primal and dual variables at
appropriate perturbed points, Refs. [37,38] ensures the se-
quence of the primal-dual pairs converging to the optimal
point without putting strict assumptions on the Lagrangian
function. Another variant of the primal-dual method with
perturbations is used in [39], which is often referred to as
the extragradient method (EGM). EGM has been expanded
recently to the stochastic setting [40]. Nonetheless, in the
VQC context, EGM increases substantially the number of
VQC compilations.

Although our approach is presented for solving optimiza-
tion problems with constraints, it can be expanded to other
setups, such as when a VQC is used as a machine learning
(ML) model. This idea has attracted sizable research inter-
est recently; see, e.g., [41,42]. A popular choice of the loss
function for quantum ML is the minimization of expectations
of quantum observables concerning a quantum state prepared
by the VQC. Although there is no quantum equivalent to

automatic differentiation, Refs. [43,44] derive an analytical
formula for the gradient of typical loss functions. However,
estimating the gradient through quantum measurements is
always subject to noise. Studies [45,46] show that estimating
gradients using a finite number of measurements engenders
an unbiased estimator and can facilitate stochastic gradient
descent. In light of interpreting VQCs as ML models, it is also
of crucial importance to explore VQCs from the perspective of
learning models for constrained setups.

A. Contributions

Acknowledging the gap in incorporating constraints into
VQAs and its relevance to optimization and ML tasks, the
contribution of this work is on four fronts.

Contribution 1. Section II puts forth an algorithmic frame-
work for handling constrained optimization problems in a
principled manner via a VQA, termed the variational quan-
tum eigensolver with constraints (VQEC). This framework
applies to problems where cost and constraint functions can be
captured as quantum observables over general, exponentially
large, Hermitian matrices. As with VQE, rather than solving
the problem over the original, exponentially large decision
variable, VQEC adopts a hybrid quantum-classical approach.
A quantum circuit parameterized over fewer parameters stored
in vector θ measures the observables, and a classical com-
puter updates θ iteratively. To incorporate constraints in a
disciplined fashion, VQEC implements a primal-dual method,
wherein the classical computer updates not only θ, but also
the vector of Lagrange multipliers associated with the con-
straints. For improved convergence properties, a perturbed
variant termed the perturbed primal-dual (PPD) method is
adapted to the quantum setup by capitalizing on the parameter
shift rule. Interestingly, if cost and constraint observables can
be measured simultaneously, VQEC requires approximately
the same quantum computations as VQE.

Contribution 2. Section III subsequently exemplifies how
VQEC applies to problems with diagonal observables (ob-
servables defined over diagonal Hermitian matrices), and
shows that a wide gamut of optimization tasks can be formu-
lated as such. The list includes problems such as constrained
quadratic binary optimization (QCBO), designing stochastic
policies over binary-valued vectors that satisfy constraints on
the average or in probability as chance constraints, learning
large-scale PMFs, and solving large-scale LPs over the proba-
bility simplex. Such problems abound in diverse application
domains, including reinforcement and machine learning in
general, wireless communications, portfolio optimization, and
optimal resource allocation. Although the focus of this work
is on problems with diagonal observables, in principle, VQEC
can be also applied to problems with nondiagonal observables.
The implications arising when working with nondiagonal ob-
servables are the topic of ongoing research.

Contribution 3. Section IV provides analytical bounds on
the optimality gap experienced when a problem with diagonal
observables is solved in its variational form over θ rather
than its original form over an exponentially large variable.
Under an assumption resembling the universal approximation
theorem for deep neural networks, the optimality gap is shown
to depend on the approximation within which a VQC can
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approximate any PMF as well as the sensitivity of the original
problem to perturbations in the constraints.

Contribution 4. Section V numerically investigates the
performance of VQEC on problems with diagonal observ-
ables. The tests demonstrate its convergence, reasonable
performance even with finitely many quantum measurements,
sensitivity to VQC depth, and ability to provide high-quality
solutions to binary programs with constraints and large-scale
LPs over the probability simplex.

Section VI concludes this work, and sketches exciting on-
going and future research directions for VQEC.

This Introduction closes with a quick note on notation:
The symbol (.)� denotes transposition; (.)H stands for Her-
mitian transposition. Matrices (column vectors) are denoted
by upper- (lower-) case boldface letters; scalars are denoted
by lower-case letters. The operator dg(x) defines a diagonal
matrix with vector x on its main diagonal. E is the expectation
operator. Calligraphic symbols are reserved for sets.

II. PROPOSED ALGORITHM

This section develops a general algorithmic framework for
incorporating constraints into variational quantum optimiza-
tion. This broadens the applicability of VQE to cope with
constrained programs over binary variables or large-scale con-
tinuous variables. We set the stage and introduce notation with
a brief summary of VQE.

Given a 2n × 2n Hermitian matrix H0, VQE aims at finding
the eigenvector associated with the smallest eigenvalue of
H0 [10]. From Rayleigh’s quotient, this eigenvector coincides
with the minimizer of

min
x:xHx=1

xHH0x. (1)

Because the dimension N = 2n of x is exponentially large,
VQE models x via the state |x〉 of a variational quantum circuit
operating on n qubits. Given a prespecified ansatz, this quan-
tum circuit is parameterized by a parameter vector θ ∈ RP,
and its output state is denoted by |x(θ)〉. Rather than solv-
ing (1), VQE solves the ensuing parameterized eigenproblem
over θ:

min
θ

〈x(θ)|H0|x(θ)〉 . (2)

The VQE operates in a hybrid quantum/classical computing
fashion. A quantum computer samples from |x(θ)〉, and mea-
sures the observable

F0(θ) := 〈x(θ)|H0|x(θ)〉 (3)

and possibly its gradient ∇θF0(θ). A classical computer
subsequently optimizes F0(θ) with respect to θ using stan-
dard optimization techniques, such as coordinate descent and
stochastic gradient descent [42,46].

The cardinal question is how to extend VQE to handle
optimization problems with constraints. We consider the pro-
totypical constrained problem

P∗
θ : = min

θ
F0(θ)

subject to (s. to) Fm(θ) � 0, m = 1 : M. (4)

Similarly to the cost function in (2), constraint functions
should be expressible as quantum observables

Fm(θ) := 〈x(θ)|Hm|x(θ)〉 , m = 1 : M

defined by Hermitian matrices Hm. Problem (4) is nonconvex
as quantum observables are known to be trigonometric func-
tions of θ [47].

Lagrange duality constitutes a systematic way of dealing
with constrained optimization. Towards solving (4), let λm be
the Lagrange multiplier or dual variable associated with in-
equality constraint Fm(θ) � 0. Stack all Lagrange multipliers
in vector λ ∈ RM . To simplify notation, let us also define the
constant λ0 = 1. Then the Lagrangian function of (4) can be
expressed as

Lθ (θ; λ) :=
M∑

m=0

λmFm(θ). (5)

The associated dual function is defined as

Dθ (λ) := min
θ

Lθ (θ; λ),

and the corresponding dual problem aims at maximizing

D∗
θ := max

λ�0
Dθ (λ). (6)

The dual problem is convex regardless if the primal problem is
convex or not. Moreover, weak duality asserts that D∗

θ � P∗
θ .

In [32] we attempted solving (6) using the iterative method
of dual decomposition. Given an estimate λt of the optimal
λ∗ at the beginning of iteration t , iteration t updates the dual
variables in two steps:

θt ∈ arg min
θ

Lθ (θ; λt ), (7a)

λt+1
m : = [

λt
m + μt

λFm(θt )
]
+, m = 1 : M, (7b)

where μλ > 0 is a step size and [x]+ = max{x, 0} projects
dual variables to the non-negative reals. Dual decomposition
is known to be a projected subgradient ascent method to
maximize Dθ (λ). This is because the constraint function value
Fm(θt ) belongs to the subdifferential of Dθ (λ) with respect
to λm evaluated at λt . Obviously, the primal update step
in (7a) constitutes a standard (unconstrained) VQE task us-
ing the observable Lθ (θ; λt ) = F0(θ) + ∑M

m=1 λt
mFm(θ) rather

than F0(θ) alone. Unfortunately, solving a VQE task to op-
timality per iteration of the dual decomposition method is
computationally impractical.

To alleviate this limitation, we propose switching from dual
decomposition to the so-termed primal-dual (PD) method; see
[36,48]. The latter seeks a saddle point of the Lagrangian
function over primal/dual variables as

max
λ�0

min
θ

Lθ (θ; λ). (8)

A saddle point is a pair (θ∗,λ∗) ∈ RP × RM
+ of primal-dual

vectors satisfying

Lθ (θ∗; λ) � Lθ (θ∗; λ∗) � Lθ (θ; λ∗)

for all (θ,λ) ∈ RP × RM
+ . For problems where strong duality

holds, a pair of primal-dual vectors is optimal if and only if
it is a saddle point of the Lagrangian [30, p. 239]. Moreover,
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the optimal value of the Lagrangian function equals the opti-
mal values of the primal and dual problems. How about the
nonconvex problem over θ in (4)? Although the latter may not
feature strong duality, Sec. IV bounds the distance between
Lθ (θ∗; λ∗) and the optimal cost of the original, nonparam-
eterized constrained optimization problem. This motivates
solving (4) using saddle point-seeking algorithms, such as the
primal-dual method proposed next.

Instead of a fully fledged VQE, the PD method updates
primal variables by taking a gradient descent step on Lθ (θ; λ)
with respect to θ, evaluated at (θt ,λt ), that is,

θt+1 := θt − μt
θ∇θLθ (θt ; λt ).

The required gradient follows from (5) as

∇θLθ (θt ; λt ) =
M∑

m=0

λt
m∇θFm(θt ) (9)

with λt
0 = 1 for all t . Analogously, the PD method updates λ

by taking a gradient ascent step on Lθ (θ; λ) with respect to λ,
evaluated again at (θt ,λt ). The partial derivative of Lθ (θ; λ)
with respect to λm is Fm(θ).

Putting the two steps together yields a single iteration of
the PD method:

θt+1 := θt − μt
θ

M∑
m=0

λt
m∇θFm(θt ), (10a)

λt+1
m := [

λt
m + μt

λFm(θt )
]
+, m = 1 : M, (10b)

where μt
θ and μt

λ are positive step sizes. We next elaborate
on the practical implementation of (10) and comment on the
related convergence guarantees.

Dual update step (10b). To update the vector of multipliers,
we need to compute the quantum observables {Fm(θt )}M

m=1. As
with VQE and other VQAs, quantum observables cannot be
computed exactly, but only estimated through measurements.
More specifically, the quantum circuit is parameterized by
θt and is run S times. The number S will be referred to as
the number of measurement shots. Given these S independent
runs, the quantum observable can be estimated classically or
quantumly, within accuracy ε if S scales as O(ε−2); see [42, p.
181]. For the optimization programs considered in this work
and delineated later in Sec. III, all M + 1 quantum observables
involved in (4) are estimated classically and in parallel using
the same S measurement shots.

Primal update step (10a). The gradients {∇θFm(θt )}M
m=0

are first estimated with the aid of the quantum computer.
The primal variables are then updated using the classical
computer. The required gradients can be computed using the
parameter shift rule [43,44]. If the ansatz takes the form
U(θ) = ∏P

i=p exp(− jθpGp), where each Gp is a single-qubit
Hermitian generator with two distinctive eigenvalues ±r, each
partial derivative of Fm(θ) with respect to θp can be computed
exactly as the difference of two function evaluations at shifted
values of θ:

∂Fm(θt )

∂θp
= r

[
Fm

(
θt + π

4r ep
) − Fm

(
θt − π

4r ep
)]

,

where ep is the pth column of the identity IP. For exam-
ple, if Gi are the generator matrices corresponding to Pauli

rotations 1
2 {ρx, ρy, ρz}, then r = 1

2 and the angle shift is π
2 . As

with Fm(θt ) in the dual update step, the quantum observables
Fm(θt ± π

4r ep) can only be estimated through measurements.
Overall, the quantum circuit has to be compiled for 2P differ-
ent values of θ, two for each partial derivative. For each one
of these 2P compilations, the quantum circuit is executed S
times to estimate Fm(θt ± π

4r ep). For the problems considered
later in Sec. III, quantum observables are estimated classically
and in parallel for m = 0, . . . , M. Heed that if λt

m = 0, there
is no need to measure ∇θFm(θt ).

Overall, each PD iteration entails compiling the quantum
circuit for 2P + 1 different values of θ and executing the
circuit (2P + 1)S times.

The convergence of the PD method has been widely stud-
ied for convex problems. For example, under a constant
step-size rule a subsequence of the sequence {(θt ,λt )} gen-
erated by the PD method is known to converge within a
neighborhood of a saddle point of the Lagrangian [36]. For
a diminishing step-size rule, a subsequence of the iterates has
been shown to converge to a saddle point [48]. To guarantee
that the entire sequence of PD updates converges to a saddle
point, the function defining the saddle point should be strictly
convex in θ and strictly concave in λ [36], which unfortunately
does not hold for the Lagrangian function in general.

These limitations of the PD method can be resolved using
a slight modification, which enjoys convergence of the en-
tire sequence without heavy assumptions on the Lagrangian
function [37,38,49]. The so-termed PPD method updates
primal/dual variables upon evaluating gradients ∇θLθ (θ; λ)
and ∇λLθ (θ; λ) not at (θt ,λt ), but at a pair of perturbed
primal/dual variables denoted by (θ̃

t
, λ̃

t
). In particular, the

primal-dual variables are updated as

θt+1 := θt − μt
θ∇θLθ (θt ; λ̃

t
), (11a)

λt+1
m := [

λt
m + μt

λFm(θ̃
t
)
]
+, m = 1 : M. (11b)

The perturbed variables are updated according to the standard
primal-dual method, that is,

θ̃
t

:= θt − νθ∇θLθ (θt ; λt ), (12a)

λ̃t
m := [

λt
m + νλFm(θt )

]
+, m = 1 : M, (12b)

for positive step sizes νθ and νλ.
Substituting (9) and putting the updates in order, each

iteration of PPD involves the next four steps:

θ̃
t

:= θt − νθ

M∑
m=0

λt
m∇θFm(θt ), (13a)

λ̃t
m := [

λt
m + νλFm(θt )

]
+, m = 1 : M, (13b)

θt+1 := θt − μt
θ

M∑
m=0

λ̃t
m∇θFm(θt ), (13c)

λt+1
m := [

λt
m + μt

λFm(θ̃
t
)
]
+, m = 1 : M (13d)

with λt
0 = λ̃t

0 = 1 for all t . The iterations in (13) constitute the
proposed algorithm, termed variational quantum eigensolver
with constraints VQEC.

Although the PPD method may seem complicated com-
pared to PD, the additional computations do not incur
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FIG. 1. Coordination between a quantum and a classical com-
puter while running the PD or PPD method to solve a constrained
optimization problem through a variational quantum approach. The
VQC is encoded by unitary matrix S(θ). The proposed method
features minimal computational overhead over the standard, uncon-
strained VQE. If all involved quantum observables {Fm(θ)}M

m=0 can
be measured simultaneously, the overhead is insignificant and is
confined only to the classical computer.

significant overhead and are primarily run on the classical
computer. A simple count of quantum observables to be
measured reveals minimal quantum computation overhead.
Fortunately, steps (13a) and (13c) share the exact same gradi-
ents ∇θFm(θt ), which can be evaluated using 2P compilations
of the quantum circuit as in (10a). Step (13b) requires com-
piling the quantum circuit only for θt as in (10b). Step (13d)
introduces the sole extra quantum computation as it requires
compiling the quantum circuit for θ̃

t
. Overall, the PPD method

requires 2P + 2 compilations of the quantum circuit, whereas
the PD method needs 2P + 1 compilations. The workflow for
implementing the PPD method is illustrated in Fig. 1. This
completes the presentation of VQEC. Additional implemen-
tation details are provided in Sec. III, as such details pertain
to the particular applications considered in this work. A salient
feature of VQEC is highlighted next.

Remark 1. The VQEC framework is presented here in the
context of optimization problems associated with diagonal
observables. Nonetheless, VQEC can handle problems with
nondiagonal observables as well. It should be emphasized that
so long as cost and constraint observables are compatible (i.e.,
they can be measured simultaneously), the quantum computa-
tions of VQEC do not differ substantially from those of VQE,
while the complexity of its classical computations increases
only by the number of constraints M. Diagonal observ-
ables are obviously compatible, in which case the previous
statement holds trivially. For problems with noncompatible
nondiagonal observables, challenges related to measuring ob-
servables may arise. Dealing with these challenges is a topic
of our ongoing work.

Some comments on the convergence of PPD are in order.
As discussed earlier, the assumptions for the convergence
of PD iterates are quite restrictive. PPD iterates enjoy more
favorable convergence guarantees. If functions {Fm(θ)}M

m=0 are

convex, continuously differentiable, and have Lipschitz con-
tinuous gradients, the PPD method with decreasing step sizes
μt

θ and μt
λ generates a sequence of {(θt ,λt )} converging to an

optimal primal/dual pair [49]. Unfortunately, the parameter-
ized variational problem in (4) is nonconvex, and hence, the
mentioned guarantees may not carry over. The convergence
analysis of VQEC becomes even more challenging due to its
stochastic nature as quantum observables and their gradients
are only measured in noise.

In the context of unconstrained optimization, albeit the
convergence of stochastic gradient descent has not been fully
analyzed, the method constitutes the spearhead for scaling up
deep learning in classical computing. For variational quantum
optimization without constraints, preliminary studies on the
effect of stochastic gradients can be found in [45,46]. Toward
handling constraints, stochastic PD methods have been uti-
lized before in the context of training deep neural networks to
satisfy stochastic constraints [34,35]. Nevertheless, the con-
vergence of stochastic PD/PPD methods has not been fully
established, even in the convex setting. In the convex setting,
only saddle point problems featuring particular forms such as
bilinear structure, have been analyzed so far. Despite the lack
of convergence guarantees, the numerical tests of Sec. V study
the effect of S and indicate that VQEC iterates do converge to
meaningful points and exhibit superior performance over the
stochastic PD iterates.

It is worth adding a quick note on another PPD variant,
termed the extragradient method [39]. The perturbed points in
EGM are computed as in (13a)–(13b), yet steps (13c)–(13d)
are altered as

θt+1 := θ̃
t − μt

θ

M∑
m=0

λ̃t
m∇θFm(θ̃

t
),

λt+1
m := [

λ̃t
m + μt

λFm(θ̃
t
)
]
+, m = 1 : M.

Although seemingly minor, this modification incurs substan-
tial computational overhead in the quantum setting. This is
because measuring ∇θFm(θ̃

t
) requires 2P additional compila-

tions of the quantum circuit.

III. APPLICATIONS

This section presents prototypical examples of optimiza-
tion problems with constraints that can be handled by VQEC.
Although VQEC applies to quantum observables of the gen-
eral form Fm(θ) = 〈x(θ)|Hm|x(θ)〉, we hereafter focus on
observables defined by diagonal Hermitian matrices Hm for
all m. This restriction simplifies the process of measuring
cost and constraint observables and facilitates the perfor-
mance analysis of Sec. IV. Despite the restriction, quantum
observables with diagonal Hermitian matrices can handle a
wide gamut of optimization problems, including binary prob-
lems with constraints and large-scale LPs over the probability
simplex. Quantum observables with nondiagonal Hermitian
matrices comprise the subject of our ongoing research.

Consider a diagonal Hermitian matrix Hm = dg(fm),
whose diagonal is defined by vector fm ∈ RN . It can be
trivially verified that the corresponding quantum observable
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evaluates as

Fm(θ) = 〈x(θ)|Hm|x(θ)〉 = f�
m p(θ), (14)

where the kth entry of vector p(θ) is defined as

pk (θ) := | 〈k|x(θ)〉 |2, k = 0, . . . , N − 1. (15)

Apparently, observables defined by diagonal Hermitian matri-
ces correspond to inner products. These observables can be
measured on the computational basis. They will henceforth
referred to as diagonal observables. For such observables, the
general variational problem in (4) can be expressed as

min
θ

f�
0 p(θ),

s.to f�
m p(θ) � 0, m = 1 : M. (16)

Recall that diagonal observables admit an additional neat
interpretation. By the properties of |x(θ)〉, vector p(θ) defines
a probability mass function (PMF). If vector fm carries the
N possible values of a discrete random variable distributed
according to p(θ), then f�

0 p(θ) yields the mean value of this
random variable.

Suppose we measure the VQC state |x(θ)〉 in the compu-
tational basis. The outcome of this measurement would be
binary vectors b ∈ {0, 1}n distributed per p(θ). For each b,
suppose we evaluate a quadratic or other function fm(b). If
vector fm carries the evaluations of fm for all possible values of
b [i.e., the kth entry of fm is fm(|k〉)], the diagonal observable
provides

Fm(θ) = Eθ[ fm(b)], (17)

where Eθ denotes the expectation operator over the PMF p(θ)
of random variable b.

Given the previous interpretations, we next elaborate on
what types of problems can be posed as (16). Before doing so,
let us recall how VQE handles a famous unconstrained binary
optimization problem.

A. QUBO and MaxCut

The quadratic unconstrained binary optimization (QUBO)
is one of the problems tackled by VQE. It is originally
posed as

min
b∈{0,1}n

f0(b) := b�A0b + b�c0 + d0. (QUBO)

Without harming generality, parameters (A0, c0, d0) are as-
sumed to be real-valued, and matrix A0 is symmetric. QUBO
is known to be NP-hard in general, yet VQE-based heuristics
have been particularly successful in finding near-optimal so-
lutions [11–15].

We briefly review how VQE is utilized for solving
(QUBO). If we introduce the N-long vector f0 whose kth
entry is f0(|k〉) for k = 0, . . . , N − 1, problem (QUBO) can
be equivalently reformulated as

min
p∈Pc

f�
0 p, (18)

where Pc is the set of all N canonical vectors in RN . The
minimizer of (18) is the canonical vector corresponding to
the smallest entry of f0. If (QUBO) has multiple minimizers,

problem (18) will identify one of them. Problem (18) is as
hard as QUBO.

In pursuit of a computationally more tractable solution, the
feasible set of (18) can be relaxed from Pc to its convex hull,
that is, the probability simplex in RN :

P := conv(Pc) = {p ∈ RN : p � 0, p�1 = 1}. (19)

This relaxation yields rise to a linear program (LP)

min
p∈P

f�
0 p. (20)

Problem (20) is equivalent to (QUBO) despite the relaxation.
This is easy to see since the minimizer of the LP coincides
with one of the corners of P , or convex combinations thereof.

Despite being an LP, problem (20) is still computationally
challenging as p is exponentially large. Rather than solving
(20), VQE parameterizes p through |x(θ)〉 as in (15), and
solves QUBO in the variational form

min
θ

f�
0 p(θ). (21)

Therefore, QUBO can be posed as an instance of the VQE
task in (2) with a diagonal observable.

MaxCut is an instance of QUBO and an NP-hard problem
[50], for which VQE/QAOA have been successful in finding
candidate solutions [15,51,52]. Given an undirected graph
G = (V, E ) over vertex set V = {1, 2, . . . , n} and edge set
E = {(i, j) : i, j ∈ V} of edges weighted by non-negative wi j ,
MaxCut aims at partitioning V into two subsets so that the
size of the cut between the subsets is maximized. A cut is
a set of edges spanning across two subsets of vertices. The
size of a cut is the sum of its edge weights. For instance, in
VLSI circuit design, each circuit component is modeled by a
vertex. The preference to connect two components in the same
or different layers of the circuit is captured by the indicated
weight of the edge between them [53].

Let spin variable si ∈ {±1} indicate the partition vertex i is
assigned to. If vector s ∈ {±1}n collects all spin variables, the
cut size defined by assignment s is

1

4

∑
(i, j)∈E

wi j (1 − sis j ).

Obviously, edge (i, j) contributes unity to the cut only when
si and s j have different signs. If symmetric matrix W stores
the edge weights as Wi j = wi j , MaxCut is equivalent to min-
imizing s�Ws. The latter can be written as a QUBO upon
converting spin to binary variables via the transformation
bi = (1 − si )/2 for i = 1, . . . , n. Having reviewed QUBO and
MaxCut, we next embark on incorporating constraints into
them.

B. Stochastic QCBO and learning PMFs

Consider the quadratic constrained binary optimization
(QCBO) problem:

min
b∈{0,1}n

f0(b)

s. to fm(b) � 0, m = 1 : M (22)

where fm(b) := b�Amb + b�cm + dm for m = 0, . . . , M. As
with (QUBO), parameters (Am, cm, dm) are real-valued, and
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matrices Am are symmetric for all m. Being a generalization
of QUBO, QCBO is also NP-hard. A motivating example of a
QCBO is discussed next and more can be found in [54–56].

Albeit MaxCut has been widely studied as an uncon-
strained problem, constrained versions are of relevance too. In
the VLSI design example, the designer may know in advance
that specific pairs of components must be on the same or
different layers. In that setting, a MaxCut with constraints
can minimize the cost of wires used to connect components
within and between layers while respecting prior connectivity
specifications. Specifications can be encoded in matrix C with
entries [55]

Ci j =
⎧⎨
⎩

+1, if (i, j) are in the same partition
−1, if (i, j) are in different partitions
0, no prior information on (i, j) or i = j.

We can now define a constrained version of MaxCut [55]:

min
s∈{±1}n

s�Ws, (23a)

s.to s�Cs �
n∑

i=1

n∑
j=1

|Ci j |. (23b)

Obviously, if a pair (i, j) is correctly assigned to partitions,
it contributes 2Ci j sis j = +2 in the left-hand side of (23b).
Otherwise, it contributes −2 and the constraint is violated.
Upon converting spin to binary variables, problem (23) can
be posed as a QCBO.

Each specification can also be expressed as a linear con-
straint si = Ci j s j . However, the formulation in (23) has a
single quadratic constraint instead of multiple linear ones.
In fact, the single quadratic constraint can be obtained by
squaring and summing up the linear constraints because∑

(i, j):Ci j �=0(si − Ci j s j )2 � 0 is equivalent to (23b). In general,
linear equality constraints such as Eb = g can be handled by a
single quadratic constraint ‖Eb − g‖2

2 = 0 or ‖Eb − g‖2
2 � 0.

MaxCut may also come with the balance constraint −B �
s�1 � B, which ensures that the cardinalities of the two par-
titions do not differ more than a given constant B from each
other.

Given the maturity of mixed-integer linear program
(MILP) solvers, quadratic binary programs are oftentimes
converted to MILPs. This is possible by introducing an aux-
iliary variable zi j for each product bib j of binary variables.
The constraint zi j = bib j is then handled using McCormick
linearization, which requires a few linear constraints involv-
ing (zi j, bi, b j ). Nonetheless, this approach can increase the
number of constraints and variables by O(n2). Hence, it may
be meaningful to solve quadratic binary problems directly and
use quantum computing approaches in particular. Having mo-
tivated the need for QCBOs, we next resume with variational
quantum approaches for solving them.

Mimicking QUBO, QCBO can be recast as a minimization
over the canonical vectors of RN as

min
p∈Pc

f�
0 p

s. to f�
m p � 0, m = 1 : M. (24)

As with f0, each N-long vector fm evaluates the mth quadratic
function over all possible values of the binary vector b. The

feasible set of (24) can be subsequently relaxed from Pc to
the probability simplex P , to yield the large-scale LP

min
p∈P

f�
0 p

s. to f�
m p � 0, m = 1 : M. (25)

Contrary to QUBO, the minimizer of (25) may not be at a
vertex of P . Hence, the problem in (25) is not equivalent to
(22). Nonetheless, problem (25) is of interest in its own right
as will be explicated shortly. We first explain how (25) can be
solved variationally and then discuss possible applications.

Solving (25) classically is technically challenging. Com-
puting the values of vectors {fm}M

m=0 alone requires O(NMn2)
operations. The size of p precludes interior-point methods,
while first-order methods would require at least O(MN ) op-
erations per iteration only to evaluate the constraint functions.
In contrast, a quantum approach could offer a more practical
solution as delineated next. Again, variable p is substituted by
its parameterized form p(θ), and problem (25) is surrogated
by the variational problem in (16) with diagonal observables
having Hm = dg(fm) for m = 0, . . . , M. Consequently, it can
be handled by VQEC.

We coin (25) and its variational form as the average QCBO
for the following reason. The VQC state |x(θ)〉 can be used
as a sampler of binary vectors b ∈ {0, 1}n drawn from PMF
p(θ). From the viewpoint of (17), the sampled binary vectors
minimize the average cost Eθ[ f0(b)] and satisfy constraints in
the average sense Eθ[ fm(b)] � 0 for m = 1, . . . , M.

The average QCBO can be alternatively interpreted as the
task of learning a PMF. The PMF p(θ) is designed to satisfy
specifications when applied to given functions. This could
be of relevance to machine learning tasks over exponentially
large PMFs. Such PMFs arise when dealing with joint PMFs
over discrete-valued random variables (categorical), and/or
probability density functions (PDFs) over continuous random
variables that have been finely quantized. Moreover, in certain
applications (e.g., reinforcement learning, wireless communi-
cations, optimal scheduling), it may be of interest to find a
stochastic policy to draw binary vectors from, that solve the
average QCBO of (4). The optimized quantum circuit |x(θ)〉
can serve as such policy. The policy can also be used to sample
candidate solutions for the deterministic QCBO in (22), yet
more elaborate solutions for that follow.

C. QCBO and chance-constrained QCBO

So far, vectors fm were assumed to evaluate quadratic func-
tions fm(b) of binary vectors. Nevertheless, functions fm(b)
do not have to be quadratic necessarily. Let us see an inter-
esting example. Consider again the QCBO in (22) and define
functions

gm(b) =
{

1, fm(b) � 0
0, fm(b) > 0 , m = 1, . . . , M. (26)

We next let vectors fm evaluate functions gm(b) rather than
fm(b) for m = 1, . . . , M, and evaluate the corresponding diag-
onal observables with Hermitian matrices Hm = dg(fm). It is
not hard to verify that the new constraint observables compute
the probability

Fm(θ) = Eθ[gm(b)] = Pr ( fm(b) � 0).
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Vector f0 still evaluates the original quadratic f0(b), and so
observable F0(θ) remains unchanged.

Due to the previous modeling, the constraint

Fm(θ) = f�
m p(θ) � 1 − β (27)

guarantees that when drawing binary vectors from p(θ), they
satisfy fm(b) � 0 with probability larger than 1 − β. Here β

is a small positive constant capturing the violation probability.
Measuring these observables entails counting the frequency at
which each one of the logical statements ( fm(b) � 0) evalu-
ates as true. Constraint (27) can be made to comply with (16)
because

f�
m p(θ) � 1 − β = (1 − β )1�p(θ)

is equivalent to

[(1 − β )1 − fm]�p(θ) � 0.

The latter constraint can take the form f�
m p(θ) � 0 needed in

(16) with yet another simple change in fm’s.
The previous discussion shows that the variational form

in (16) allows for dealing with chance-constrained QCBOs.
This allows us to design stochastic policies from which we
can draw binary vectors satisfying quadratic constraints with
a prescribed probability. Joint chance constraints can be cap-
tured too if we define an observable counting the frequency
of multiple logical statements being satisfied simultaneously.
Designing policies satisfying (joint) chance constraints may
be of interest to application domains such as wireless com-
munications. Clearly, setting β = 0 provides a heuristic for
dealing with the original deterministic QCBO in (22).

D. Large-scale LPs on the probability simplex

Lastly, the constrained variational problem in (16) can be
used to deal with large-scale LPs over the probability sim-
plex. In this case, vectors fm’s may bear arbitrary entries, not
provided by a particular function. Such large-scale LPs could
appear in different application domains, including optimal
resource allocation, portfolio optimization, or learning large-
scale PMFs from data. In this case, measuring an observable
entails VQEC reading out a particular entry of {fm}M

m=0. The
entries of these vectors may not correspond to evaluations
of quadratic or other functions. Dealing with such LPs is
still computationally challenging on a classical computer, and
hence, variational quantum solutions could be welcome.

E. Implementation details

Some remarks are now due on some implementation details
of VQEC. We start with measuring observables. For the aver-
age QCBO setting, observables can be computed by running
the VQC for a particular θt , measuring its state to get a binary
vector bs, and evaluating the quadratic function fm(bs). The
process is repeated S times for the same θ and observable
Fm(θt ) is estimated as

F̂m(θt ) = 1

S

S∑
s=1

fm(bs). (28)

For the deterministic and chance-constrained QCBOs, a simi-
lar process estimates the frequency at which each constraint is

violated across all measurement shots. For the case of large-
scale LPs, measuring Fm(θt ) entails reading out the entries of
fm’s indexed by the sampled bs’s and computing the sample
mean of these entries.

Gradients {∇θFm(θt )}M
m=0 can be measured similarly thanks

to the parameter shift rule. For a particular θt , we need to
compute F̂m(θt ± π

4r ep) as discussed earlier, for p = 1, . . . , P.
Hence, the complete measuring process has to be repeated 2P
times.

Interestingly, the parameter shift rule applies to all problem
types identified in this section, i.e., regardless of whether
observables evaluate quadratic, binary, or other functions, or
simply read out the coefficient vectors of an LP. It is worth
stressing that because all observables are diagonal, they can be
measured simultaneously. In other words, the number of con-
straints M does not affect the number of VQC compilations or
runs of VQEC as all cost/constraint functions and gradients
are estimated classically using the same measurements:

P1) The average QCBO of (4).
P2) The deterministic QCBO in (22) expressed as (4)

with constraints Fm(θ) � 1. Here observables evaluate binary
functions by counting the probability of satisfying quadratic
constraints.

P3) Chance-constrained QCBOs expressed as (4) with
constraints Fm(θ) � 1 − ε, for small ε � 0. P2) is a special
case of P3) for ε = 0.

P4) Binary optimization problems with cost and constraint
functions more general than quadratic, which are nonetheless,
easy to compute or measure.

P5) Large-scale LPs over the probability simplex as
in (25).

F. Discussion

The previous discussion suggests that depending on how
vectors fm’s are defined, the formulation in (16) can handle
a wide variety of optimization problems. Vectors fm essen-
tially define the objective and constraint observables. Vector
fm may not necessarily evaluate quadratic functions on the
computational basis. Instead, it may evaluate a binary-valued,
polynomial, or other analytic function on the computational
basis. The presumption is that this function can be efficiently
evaluated or measured on a classical (or possibly quantum)
computer. Is there any price paid when observables do not
correspond to quadratic functions? We do not have an an-
swer to this question but only provide some thoughts. When
diagonal observables originate from quadratic functions, the
VQC can be tailored to the problem at hand as in QAOA.
Nonquadratic diagonal observables, on the other hand, are not
amenable to efficient implementations of problem Hamiltoni-
ans in the ansatz. Among the applications presented, only the
average QCBO seems to be amenable to a QAOA implemen-
tation. One may also argue that compared to evaluating logical
expressions as in gm(b), quadratic functions fm(b) exhibit
continuity, which may help VQEC in more accurately esti-
mating observables or optimizing over the landscape induced
by the VQC.

It is worth noting that VQC optimization could suffer from
the so-termed barren plateaus, where gradients vanish expo-
nentially fast in terms of the VQC size (number of qubits,
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number of gates, and/or circuit depth) [57]. Vanishing gra-
dients may cause gradient-type algorithms to stall. Although
such issues may not be easy to encounter in small-sized ex-
amples under which current VQCs are currently tested, they
could inhibit VQC’s adoption to larger real-world-sized prob-
lems. It should be stressed that barren plateaus are a challenge
for all VQC-based approaches, not VQEC alone. It is expected
that approaches for handling barren plateaus would carry over
to VQEC. For example, recent results show that judiciously
initializing VQC’s parameters could help in avoiding barren
plateaus [58,59]. By transforming VQC into a circuit without
fixed entangling gates, Ref. [59] proves there exist landscapes
of VQC parameters, where gradients have large magnitudes
regardless of the circuit depth. This result is examined on
the hardware efficient ansatz, which is prevalently used in
VQC studies due to its suitability for NISQ devices. Albeit
finding an initial large gradient does not ensure the algorithm
is free from barren plateaus during the training procedure,
numerical tests evince that such initialization strategies indeed
aid training VQC efficiently [58,59].

IV. PERFORMANCE ANALYSIS

This section analyzes the degradation in performance when
the optimization problems of Sec. III are solved in their quan-
tum variational form of (16) instead of the original form in
(24), which is an exponentially large LP over the probability
simplex. Collecting the linear inequality coefficient vectors
{fm}M

m=1 as columns of an N × M matrix F, the LP in (25)
can be written as

P∗ = min
p∈P

f�
0 p

s. to F�p � 0 : λ. (29)

Its dual function can be expressed as

D(λ) = min
p∈P

L(p; λ), (30)

where the related Lagrangian function is defined as

L(p; λ) := (f0 + Fλ)�p. (31)

The associated dual problem maximizes the dual function over
the dual variables as

D∗ = max
λ�0

D(λ). (32)

If the primal problem is feasible, strong duality holds and
yields that D∗ = P∗.

Let us next consider (29) in its variational quantum form,
where variable p is parameterized by θ. Rephrasing (16), the
parameterized primal problem reads as

P∗
θ = min

θ
f�
0 p(θ)

s. to F�p(θ) � 0 : λ. (33)

The corresponding dual function is

Dθ (λ) := min
θ

Lθ (θ; λ) (34)

with the related Lagrangian function defined as

Lθ (θ; λ) := (f0 + Fλ)�p(θ). (35)

The parameterized dual problem is expressed as

D∗
θ = max

λ�0
Dθ (λ). (36)

The original problem is convex, yet exponentially large.
The variational problem is over θ ∈ RP with P 
 N , yet non-
convex. Migrating from the former to the latter lurks two risks.
The first risk is that VQEC may not converge, or converge
to a local optimum or stationary point. Studying the conver-
gence of (stochastic) PD methods for nonconvex problems is
challenging, and is not addressed here. Given the success of
stochastic gradient-based methods for nonconvex problems in
deep learning, we only investigate the convergence issues of
VQEC numerically in Sec. V. The second risk is the possible
degradation in optimality, which constitutes the topic of this
section.

Although (33) is nonconvex, standard results from duality
theory assert that (36) is a convex problem and that weak dual-
ity holds so that D∗

θ � P∗
θ . The goal of the ensuing analysis is

dual: (1) Characterize the duality gap P∗
θ − D∗

θ . If the duality
gap of (33) is zero, the saddle point of the Lagrangian function
Lθ corresponds to optimal primal/dual solutions for the pa-
rameterized problem. Hence, aiming for a saddle point of the
Lagrangian is equivalent to seeking the optimal primal/dual
variables; and (2) compare D∗

θ with D∗. The parameterized
problem is apparently a restriction of the original problem,
which entails that P∗

θ � P∗. Because bounding the difference
P∗

θ − P∗ is challenging, we study the difference D∗
θ − D∗ in-

stead. The methods proposed in Sec. II to deal with (25) target
at optimizing Lθ anyway, which at optimality equals D∗

θ , that
is, D∗

θ = L∗
θ by definition of the latter.

Toward the first goal, consider two assumptions.
Assumption 1. Consider a VQC whose state |x(θ)〉 induces

the parameterized PMF vector p(θ). The set of PMF vectors
that can be produced by all admissible θ’s

Pθ := {p : p = p(θ) for someθ}
is a convex set.

Note that Pθ is a set over p ∈ RN , and more specifically
Pθ ⊆ P . It is not a set over θ.

Assumption 2. The parameterized primal problem in (33)
is strictly feasible, i.e., there exist θ and sθ > 0 for which
F�p(θ) = −sθ < 0.

Theorem 1. Under Assumptions 1 and 2, the parameter-
ized problem in (33) has zero duality gap, that is, D∗

θ = P∗
θ .

Theorem 1 provides two sufficient conditions under which
the parameterized problem features zero duality gap; the proof
of this theorem as well as all other claims can be found in the
Appendixes. Unfortunately, Assumption 1 may not hold for
practical VQCs. If it does hold, then not only D∗

θ = P∗
θ , but

also P∗
θ = P∗. To show this, the next lemma is needed.

Lemma 1. The variational PMF p(θ) induced by the two-
local VQC with full entanglement depicted in Fig. 2 can
capture all corner points of the probability simplex P . In
other words, for k = 0, . . . , N − 1, there exists a θk for which
p(θk ) = |k〉.

According to Lemma 1, the domain Pθ of p(θ) includes the
corners of P . If additionally, set Pθ is convex per Assumption
1, then Pθ = P since P is the convex hull of its corners. Con-
sequently, the variational problem is not a restriction anymore,
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FIG. 2. The two-local VQC operating on an n-qubit system. Top:

One layer of the two-local VQC consists of the parameterized block
W(θ1) followed by the full entanglement block Uent. Bottom: A d-
layered two-local VQC.

and P∗
θ = P∗. Because Assumption 1 is unlikely to be satisfied

by practical VQCs, we aim at characterizing the optimality
gap under a milder assumption on the VQC.

Assumption 3. For every p ∈ P , there exists a θ for which
‖p − p(θ)‖1 � ε for some ε > 0.

Assumption 3 assumes that the domain of p(θ) is suffi-
ciently dense so that any PMF vector can be approximated
under the l1 norm within accuracy ε. This assumption re-
sembles the universal approximation property established for
and widely used in deep neural networks; see, e.g., [60,
Sec. 6.4.1]. Although the observables defined over asymptot-
ically rich VQCs have been shown to be universal function
approximators [61], the argument may not be trivially extend-
able to the PMF setup, where a VQC aims to approximate an
N-long vector rather than a univariate function. Because ‖p −
p(θ)‖1 � ‖p‖1 + ‖p(θ)‖1 � 2 due to the triangle inequality
and PMF vectors lying on P , the accuracy is obviously upper
bounded by 2.

An additional assumption on a perturbed version of the
original primal LP of (29) will be also needed.

Assumption 4. Consider the linear program

P̃∗ = min
p∈P

f�
0 p

s. to F�p � −εL1 : λ, (37)

where ε has been defined under Assumption 3. Let us extend
F to an N × (M + 1) matrix F̄ by adding f0 as F̄’s first column
and define

L := max
i=1:N

M+1∑
j=1

|F̄i j |, (38)

where F̄i j is the (i, j) entry of F̄. The assumption is that (37) is
strictly feasible. In other words, there exist p̂ ∈ P and s0 > 0

satisfying

F�p̂ � −εL1 − s01. (39)

Using Assumption 2 and inspired by the proofing proce-
dure of [34], we next bound the degradation in performance
when surrogating the original exponentially large LP by its
variational form.

Theorem 2. Under Assumptions 2, 3, and 4, the optimal
dual value of the variational quantum problem satisfies

D∗ � D∗
θ � D∗ + εL max{1, ‖λ̃‖1}, (40)

where λ̃ is the vector of optimal Lagrange multipliers for the
perturbed primal problem in (37). The norm ‖λ̃‖1 is upper
bounded as

‖λ̃‖1 � f�
0 p̂ − P∗

s0
. (41)

Theorem 2 predicates that the optimality gap in the dual
domain D∗

θ − D∗ is affected by two factors: (1) the accuracy ε

within which the VQC can approximate PMF vectors; and (2)
the sensitivity of the primal LP to ε perturbations in the cost
and constraints.

Remark 2. Assumptions 2 and 4 presume that both the
original and the perturbed problems are strictly feasible. Such
a requirement automatically excludes problems with equal-
ity constraints. Variational problems with equality constraints
can be handled by Theorem 2 only if equality constraints
are relaxed to double-side inequality constraints. Despite this
limitation in performance analysis, the algorithms of Sec. II
remain directly applicable to equality-constrained variational
problems.

V. NUMERICAL TESTS

VQEC was numerically evaluated under three setups,
which are representative of the application examples pre-
sented in Sec. III.

S1) This setup solves the average QCBO of Sec. III B on
the constrained MaxCut problem. A weighted n = 14-vertex
graph was randomly generated. To include constraints, we
randomly sampled seven pairs of vertices and added connec-
tion specifications so the problem was feasible. The number
of qubits used is n = 14.

S2) This setup deals with the deterministic QCBO of (22)
using the formulation of Sec. III C, applied to the same in-
stance as in S1 using n = 14 qubits.

S3) This setup solves an LP over the probability simplex
like the one in (25) as described in Sec. III D. Given the
restrictions of quantum simulators, the problem dimension
was N = 256 with M = 3 constraints. Vectors {fm}3

m=0 were
stacked into a 256 × 4 matrix F, whose entries were randomly
generated from the standard normal distribution. The number
of qubits needed is n = 8.

All numerical tests were performed on quantum simulators
from IBM’s Qiskit [62]. Simulation scripts were written in
Python. The two-local VQC from Qiskit was used across tests.
As illustrated in Fig. 2, each layer of the VQC consists of
a parameterized block implemented via single-qubit RY (θp)
gates applied to each qubit and a full entanglement block
implemented via CZ gates between all pairs of qubits. The
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FIG. 3. Convergence of primal/dual variables for PD and PPD
methods over the number of primal/dual iterations under setup S1
using a quantum state simulator (no measurement noise). Top: Con-
vergence of dual variable λ. Because the constraint is active, the
optimal λ is nonzero. Bottom: Convergence of entries 5, 15, 25, 35
of the primal variable θ.

number of parameterized blocks of the VQC is referred to
as the circuit depth d . Clearly, the length P of θ relates to
the problem size n and the circuit depth d as P = dn. The
PPD/PD iterations were deemed to have converged when
‖θt − θt−1‖2/‖θt−1‖2 � ε for ε = 1 × 10−5. The initial pri-
mal vector θ0 was drawn uniformly within [0, 2π ] using a
fixed seed across tests, while λ0 = 0.

Regarding setup S1, we first compared the convergence
properties of VQEC. As noted in Sec. II, PPD updates with
decreasing step size converge to optimal solutions for convex
problems [37,38,49]. Given no analogous result for noncon-
vex problems, we investigated the convergence of VQEC
numerically. To eliminate stochasticity due to measurement
noise, the initial test utilized the statevector_simulator
quantum simulator from IBM’s Qiskit. The two-local VQC
used in this test has two full layers and an additional param-
eterized block yielding a depth of d = 3. In this case, the
test implements the exact PPD/PD methods rather than their
stochastic variants. Step sizes followed a time-decreasing rule
as μt

θ = 1.5/t , μt
λ = 0.1/(t + 15), while the additional ones

for PPD were set to νθ = νλ = 0.05.
For comparison, we also solved the original average QCBO

in (25) to optimality using the Gurobi solver under the
YALMIP environment [63,64]. The optimal cost and con-
straint function values were used as references to verify the
feasibility and optimality of the variational solutions found
by VQEC. Due to sign invariance, MaxCut solutions come
in pairs. The deterministic MaxCut problem has a unique
pair of solutions. Nonetheless, the average QCBO returns a
PMF vector with four nonzero entries. If we convert these
entries to indices of canonical vectors, two of these canonical
vectors are optimal and two are infeasible for the original
deterministic MaxCut with constraints. Hence, this particular
problem instance is nonideal as the average QCBO does not
solve the deterministic QCBO.

FIG. 4. Convergence of constraint function value F1(θt ) (top)
and relative cost error |(Pt

θ − P∗)/P∗| (bottom) for the PD and PPD
methods over the number of primal-dual iterations under setup S1
using a quantum state simulator (no measurement noise).

Figure 3 depicts the convergence of primal/dual variables
using PD and PPD (VQEC). The constraint is active (i.e.,
satisfied with equality) for this studied instance. Both PD
and PPD converged after roughly 500 iterations. However,
as shown in Fig. 3, the dual variable of PD converged to
0, whereas the one of PPD converged near 0.1. The VQC
parameters for the two methods converged to different values
too. Regardless of the converged θ, how did the trained VQCs
perform in terms of feasibility and optimality? Figure 4 de-
picts the convergence of constraint function F1(θt ) and relative
cost error |(Pt

θ − P∗)/P∗|, where P∗ is the optimal cost found
by Gurobi. Evidently, both the constraint function and the
cost error converged to zero using PPD, whereas the ones
obtained by PD have greatly deviated from zero. Although
PD found a feasible solution, that solution yielded suboptimal
cost. On the other hand, PPD found the optimal solution in
this case. This test evinces that the employed VQC is capable
of finding a p(θ) that coincides with the optimal solution of
(25), and also that PPD can converge to the saddle point of
the Lagrangian function of (35). It should be emphasized that
PPD is not guaranteed to converge to a global optimum of the
nonconvex variational problem in general. Nonetheless, given
the advantage demonstrated by the previous and similar tests,
all subsequent tests use the PPD (rather than the PD) method.

The previous test utilized statevector_simulator,
which is equivalent to measuring observables using an infinite
number of measurement shots S in (28). In practice, observ-
ables are measured using a finite S giving rise to stochastic
PPD updates. To assess the effect of using a finite number
of measurement shots, we ran PPD iterates under S1 with
S taking values in {1, 25, 50,∞}. The aer_simulator was
used for finite values of S. The circuit depth was set to d = 3.
Figure 5 shows the convergence of the constraint value, and
relative cost error of the proposed method compared to the
exact cost value solved by the Gurobi solver. For each fi-
nite S, PPD iterations were repeated eight times to account
for stochasticity. As can be seen from Fig. 5, the constraint
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FIG. 5. Convergence of constraint function value F1(θt ) (top) and
relative cost error |(Pt

θ − P∗)/P∗| (bottom) for PPD over the number
of primal-dual iterations under setup S1 using different values of
measurement shots S. For S ∈ {1, 25, 50}, PPD was repeated eight
times to account for the randomness in iterations. The plots display
confidence intervals within one standard deviation around the mean
per iteration.

values and cost errors given by S = 1 are highly variant and
away from zero. For increasing S, the constraint value and
cost error not only move closer to zero but also exhibit less
variance across iteration instantiations. Compared to the state
estimator (infinite S), PPD with S = 50 is competent to sam-
ple near-optimal solutions under S1. This test demonstrates
the improvement in convergence of VQEC for increasing S.
Nevertheless, the comparison across S may not be fair as a
PPD iteration with S = 50 requires running the VQC 50 times
more than a PPD iteration with S = 1. Recall also that each
PPD iteration requires (2P + 2)S measurement shots.

To study VQEC’s convergence over the total VQC runs,
Fig. 6 plots the convergence of the constraint value and rel-
ative cost error over the total number of measurement shots.
As highlighted in the two insets, for the first 10 000 shots, the
constraint value and cost error of the one-shot method moved
to the zero line faster than the ones of the 25-shot and 50-shot
methods did. Eventually, however, the constraint value and
the cost error of the one-shot method remained away from
zero, even after 86 000 shots. On the other hand, the 25- and
50-shot iterations approached zero. The solution generated
by the 50-shot method in particular is feasible and its cost
error is near-optimal after 100 000 measurement shots. Given
these observations, it may be meaningful to use S = 1 at early
iterations and deliberately increase S as time goes by, to save
the total number of measurement shots without compromising
optimality. This strategy was also suggested for standard VQE
without constraints in [46,65]. Since S = 50 attained a good
trade-off between optimality and total number of shots, it was
used for all subsequent tests.

Moving on to setup S2, the goal here is to solve a determin-
istic QCBO (constrained MaxCut) via VQEC. We do so using
the average QCBO and the deterministic QCBO, both solved
repeatedly eight times for different S. The circuit depth was
kept to d = 3. Step sizes of VQEC while solving the average

FIG. 6. Convergence of constraint function value F1(θt ) (top) and
relative cost error |(Pt

θ − P∗)/P∗| (bottom) for PPD over the total
number of measurement shots while solving setup S1 for different S.
For S ∈ {1, 25, 50}, PPD was repeated eight times. The plots display
confidence intervals within one standard deviation around the mean
per iteration.

QCBO were kept the same as in setup S1. For the determin-
istic QCBO, step sizes of primal/dual updates were selected
as μt

θ = 12/(t + 10) and μt
λ = 4/(t + 15), while two addi-

tional step sizes of perturbed updates were set to νθ = 1 and
νλ = 1.5. Recall that the two problems differ in how vectors
fm are computed. The question is whether the binary vectors b
drawn from the obtained p(θ) solve the original deterministic
QCBO. The constrained MaxCut has two optimal solutions.
We measure the probability of success by summing up the
two entries of p(θ) associated with the two optimal solutions.
For each S, we define as the final probability of success the
worst-case probability of success across the eight independent
runs. After training the VQC using S ∈ {1, 25, 50} to get θ,
the obtained p(θ) was read out using the statevector_
simulator. Table I reports these probabilities. For S = 1,
the probability of success of both problems is 0, which is
justifiable as the method has not converged. For S = 25 and
50, the variational deterministic QCBO achieved a very good
probability of success compared to the variational stochastic
QCBO. In other words, the former can serve as an excellent
heuristic to provide solutions to QCBOs with high probability.

For a more thorough evaluation of VQEC in solving the de-
terministic QCBO, we solved S2 over 10 different constrained
MaxCut instances. The optimal value of the Lagrangian func-
tion in (35) found by VQEC was compared to the exact one in

TABLE I. Worst-case probability of obtaining optimal solutions
when solving the original QCBO of (22) through the variational
average QCBO and the variational deterministic QCBO.

Variational problem Probability of success

S = 1 S = 25 S = 50

Average QCBO 0.0000 0.5240 0.5899
Deterministic QCBO 0.0000 0.9940 0.9704

022430-12



SOLVING CONSTRAINED OPTIMIZATION PROBLEMS VIA … PHYSICAL REVIEW A 110, 022430 (2024)

FIG. 7. Relative error of the Lagrangian function after conver-
gence while solving the deterministic QCBO for S = 50 over 10
constrained MaxCut instances. The step sizes of VQEC and the
simulator seed were fixed across instances.

(31) obtained by Gurobi. The number of measurement shots
was fixed to S = 50, and the circuit depth was set to d = 3.
Step sizes of VQEC were set as in the previous test. Figure 7
shows the relative error in the Lagrangian function value
|(L(θt ; λt ) − L∗)/L∗| over 10 different constrained MaxCut
instances, where L∗ is the exact value of the Lagrangian
function found by Gurobi. Although VQEC managed to find
optimal or near-optimal solutions for several instances, there
exist instances {4, 6, 8} with large relative errors.

As a sanity check, we repeated the following numerical
tests over instances of the constrained MaxCut problem. We
solved the related deterministic QCBO by Gurobi and found
the minimizer. We then initialized θ so that the VQC output
coincides with the minimizer. Such initialization can be per-
formed using the procedure described in the proof of Lemma
1 found in the Appendixes. We consequently ran PPD and
observed that VQEC did not drift away from the optimal θ.

To assess the effect of the circuit depth (dimension of θ)
on the performance of VQEC, we solved the variational de-
terministic QCBO under S2 using circuit depths d ∈ {2, 3, 4}.
The number of measurement shots was fixed to S = 50 and
each test was repeated eight times. Figure 8 illustrates the
convergence of the constraint value and the relative cost error
obtained by PPD for different values of d . Clearly, the con-
straint value and the cost error obtained with d = 2 deviate
substantially from the ideal zero lines. On the contrary, the
VQCs with d = 3 and d = 4 were able to solve the problem
to optimality by increasing the expressibility of the VQC.
This observation agrees with recent theoretical findings on
the expressibility of VQCs [61]. It is important to remark that
d = 4 seems to be an over-parameterization of the problem
and takes longer to converge. Similar observations were made
in [66]. It is also worth stressing that even for d = 4, the
total number of parameters P = dn = 56 is much smaller than
the size of the original primal LP, that is, N = 214 = 16 384.
This test signifies that low-depth VQCs might be suboptimal,
whereas deeper VQCs may take longer to converge.

Under setup S3, we evaluated VQEC in solving the large-
scale LP in (25). The step sizes of VQEC were set as

FIG. 8. Convergence of constraint function value F1(θt ) (top) and
relative cost error |(Pt

θ − P∗)/P∗| (bottom) for PPD over the number
of PPD iterations while solving setup S2 for S = 50 and varying val-
ues of circuit depths d . The plots display confidence intervals within
one standard deviation around the mean per iteration, computed over
eight runs.

μt
θ = μt

λ = 0.02 × 0.999t and νθ = νλ = 3. The number of
measurement shots S was set to 150, and the circuit depth d
was set to 3. The need to increase S for this setup might be
caused by the randomly generated values of {fm}M

m=0, which
did not correspond to quadratic functions anymore. VQEC
was run eight times with different values of the simulator seed.
The confidence intervals within one standard deviation around
the mean per iteration are displayed in Fig. 9. Dual variables
converged after 2000 iterations. While λ2 converged exactly
to 0 for all runs, λ1 and λ3 varied slightly for different runs.
Five randomly chosen entries of the primal variable are shown
in Fig. 10. All entries converged after 2000 iterations. While
entries θ1, θ5, and θ12 converged to roughly the same values

FIG. 9. Convergence of entries of the dual variable λ over the
number of primal/dual iterations under setup S3. The VQEC was
repeated eight times. The plots display confidence intervals within
one standard deviation around the mean per iteration, computed over
eight runs.
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FIG. 10. Convergence of entries 1, 5, 7, 12, 18 of the primal
variable θ over the number of primal/dual iterations under setup S3.
The VQEC was repeated eight times. The plots display confidence
intervals within one standard deviation around the mean per iteration,
computed over eight runs.

over eight runs, entries θ7 and θ18 varied quite significantly
for different runs. To validate the feasibility of the obtained
solution, the large-scale LP in (25) was also solved exactly
over the exponentially large vector p by Gurobi. Figure 11
compares the constraint values found by the proposed method
and the reference values by Gurobi. As shown in Fig. 11, the
solution obtained by VQEC satisfied all three constraints. The
relative cost error |(Pt

θ − P∗)/P∗| is shown in Fig. 12, where
P∗ is the exact cost value obtained by Gurobi. As illustrated in
Fig. 12, the relative cost error attained by VQEC converged to
around 10% after 2000 iterations. The variance of the relative
cost error over eight runs is very low after convergence. This
corroborates that VQEC can generate near-optimal solutions
for the large-scale LP in (25).

FIG. 11. Comparing the constraint values attained by the VQEC
and the reference values solved exactly by Gurobi under setup S3.
The VQEC was repeated eight times. The plots display confidence
intervals within one standard deviation around the mean per iteration,
computed over eight runs.

FIG. 12. Convergence of the relative cost error under setup S3.
The VQEC was repeated eight times. The plots display confidence
intervals within one standard deviation around the mean per iteration,
computed over eight runs.

The optimality gap observed in the previous test reveals
that the frequency spectrum of the employed VQC might not
be rich enough [61]. To expand the frequency spectrum, we
repeated each VQC parameter of the previous test three times
and investigated its effect on the performance of VQEC. Setup
S3 was solved over 10 different large-scale LP instances. The
circuit depth d and number of measurement shots S were kept
as in the previous test. The step sizes of primal/dual updates
were chosen as μt

θ = 0.05 × 0.999t , μt
λ = 0.002 × 0.999t ,

and νθ = νλ = 1. These step sizes and the simulator seed were
fixed across the ten instances. Figure 13 compares the relative
errors of the Lagrangian function of VQEC with L = 3 and
L = 1, where L is the number of repeated VQC. The method
was deemed to have converged after 500 iterations. As shown
in Fig. 13, for nine instances, VQEC with L = 3 performed
much better than the one with L1. Among those nine cases,
eight instances attained relative errors below 20%. This test
shows that repeating parameters enhances the performance of
VQEC.

FIG. 13. Relative error of the Lagrangian function after 500 it-
erations while solving setup S3 for S = 150 over ten large-scale LP
instances. The step sizes of VQEC and the simulator seed were fixed
across instances.
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VI. CONCLUSIONS

This work has developed, analyzed, and evaluated an al-
gorithm for handling optimization problems with constraints
using a variational quantum approach. The proposed VQEC
deals with constraints in the dual domain of the parameterized
variational quantum problem. Primal and dual variables are
iteratively updated on a classical computer via stochastic PPD
iterates. Compared to VQE and for problems with diagonal
observables, VQEC entails insignificant computational over-
head as the cost and constraint observables are measured
simultaneously. VQEC has been applied to diverse problems
defined over diagonal observables, including binary programs
with constraints, finding optimal stochastic policies to draw
binary vectors satisfying average and chance constraints,
learning probability mass functions, and solving large-scale
LPs over the probability simplex. The possible performance
degradation by solving a problem in its quantum variational
form vis-à-vis its original form has been characterized. Ex-
tensive numerical tests using IBM’s quantum simulator have
corroborated that (1) the PPD method performs remarkably
better than the PD method with only one additional measure-
ment shot per primal/dual iteration; (2) VQEC with finite
numbers of measurement shots can yield meaningful solu-
tions to QCBOs, stochastic QCBOs, and large-scale LPs over
the probability simplex; and (3) the solution quality and/or
convergence rate of VQEC can be affected by under/over-
parameterized VQCs.

In a nutshell, VQEC provides a principled solution to
the practically relevant task of incorporating constraints into
variational quantum approaches. It can thus patently expand
the application domain of NISQ computers. Capitalizing on
the promising results of this work, we are currently work-
ing toward several exciting research directions, such as (1)
Coping with nondiagonal observables is highly desirable as
it clearly broadens the applicability of VQEC from binary and
linear programs to conic programs, including quadratically
constrained quadratic programs (QCQPs) and semidefinite
programs (SDPs). Dealing with mixed-integer programs in-
volving binary and continuous variables is on current focus
too. (2) The VQCs considered thus far have been confined
to be parameterized solely by θ to produce state |x(θ)〉 =
S(θ) |0〉n. Nonetheless, in a quantum machine learning setting,
a VQC may also encode data (features) {zt }T

t=1 in the form
of a data-embedding mechanism as in U(θ; zt ) = S(θ)W(zt )
or other forms. Measuring the quantum state |x(θ; zt )〉 =
U(θ; zt ) |0〉n and applying VQEC to proper loss functions,
can tackle pertinent (un)supervised quantum machine learning
tasks. (3) In light of the performance analysis of Sec. IV, it is
vital to further investigate Assumption 3 on the accuracy with
which VQCs can approximate PMFs and other optimization
objects. (4) Extending our performance analysis to other opti-
mization classes and contrasting VQEC to stochastic classical
counterparts.
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APPENDIX A: PROOF OF THEOREM 1

To establish zero duality gap, it suffices to show that the
perturbation function associated with the parameterized pri-
mal problem is convex [67]. This perturbation function is
defined by modifying the right-hand side of the linear inequal-
ity constraints of (33) as

Pθ = min
θ

f�
0 p(θ)

s. to F�p(θ) � δ, (A1)

where δ > −sθ with sθ from Assumption 2. Consider two
points δ1 and δ2. Suppose solving (A1) for δ1 yields the min-
imizer θ1 generating p1 = p(θ1). Likewise, solving (A1) for
δ2 yields the minimizer θ2 generating p2 = p(θ2). Under As-
sumption 1, any vector pα = αp1 + (1 − α)p2 for α ∈ [0, 1]
belongs to the set Pθ of admissible PMF vectors. That means
that there exists a θα for which pα = p(θα ). Vector pα is
feasible for the perturbed problem if the latter is perturbed
by δα = αδ1 + (1 − α)δ2 because

F�pα = αF�p1 + (1 − α)F�p2 � αδ1 + (1 − α)δ2 = δα.

Since pα is feasible for the perturbed problem for δα , it pro-
vides an upper bound for the perturbation function Pθ (δα ) as

Pθ (δα ) � f�
0 pα = αf�

0 p1 + (1 − α)f�
0 p2

= αPθ (δ1) + (1 − α)Pθ (δ2).

This establishes that Pθ (δ) is a convex function of δ, which in
turn implies that the parameterized problem has zero duality
gap.

APPENDIX B: PROOF OF LEMMA 1

Consider first a single layer of the VQC shown in Fig. 2.
Suppose the input to this layer is |0〉n. The layer consists
of a parameterized block and an entanglement block. The
parameterized block applies gate

RY (2θp) = exp
(−iθpY

) =
[

cos(θp) − sin(θp)
sin(θp) cos(θp)

]

on qubit p for p = 1, . . . , n, where Y is the matrix repre-
senting the Pauli Y gate. If |ψ〉 denotes the state after the
parameterized block, its pth qubit is

|ψ〉p = RY (2θp) |0〉 = cos(θp) |0〉 + sin(θp) |1〉 , p = 1 : n.

The entanglement block includes controlled-Z (CZ) gates
between all pairs of qubits. Since the roles of the control and
target qubits are interchangeable for the CZ gate, we designate
control and target qubits as shown in Fig. 2 without loss of
generality. Let |φ〉 be the state after the entanglement block.
As |ψ〉1 is not subjected to any control gate, qubit 1 of |φ〉 is

|φ〉1 = |ψ〉1 = cos(θ1) |0〉 + sin(θ1) |1〉 . (B1)

By drawing θ1 from {0, π/2}, qubit |φ〉1 can take any value in
{|0〉 , |1〉}.

The entanglement block shown in Fig. 2 consists of (n − 1)
subblocks. The first subblock comprises (n − 1) CZ gates,
in which qubit 1 controls qubits 2 to n. The target qubits
after this subblock are denoted as |φ〉1

p for p = 2, . . . , n. The
second subblock comprises (n − 2) CZ gates, in which qubit
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2 controls qubits 3 to n. The target qubits after this subblock
are denoted as |φ〉2

p for p = 3, . . . , n. Subsequent subblocks
expand similarly up to subblock (n − 1).

Consider the output of the first subblock. If |φ〉1 = |0〉,
then |φ〉1

p = |ψ〉p = cos(θp) |0〉 + sin(θp) |1〉. If |φ〉1 = |1〉,
then |φ〉1

p = Z |ψ〉p = cos(θp) |0〉 − sin(θp) |1〉. Since |φ〉1 =
|0〉 implies sin(θ1) = 0, and |φ〉1 = |1〉 implies sin(θ1) = 1,
the output of the first subblock can be compactly expressed as

|φ〉1
p = cos(θp) |0〉 + (−1)sin(θ1 ) sin(θp) |1〉 , p = 2 : n.

Because qubit 2 is not controlled by any more qubits, its state
can be finalized here as

|φ〉2 = |φ〉1
2 = cos(θ2) |0〉 + (−1)sin(θ1 ) sin(θ2) |1〉 . (B2)

It is now easy to verify that if we want to set |φ〉2 = |0〉, we
can simply set θ2 = 0. Otherwise, that is, to set |φ〉2 = |1〉,
parameter θ2 is selected between {π/2, 3π/2} depending on
the value of θ1. Specifically, if θ1 = 0, set θ2 = π/2; and if
θ1 = π/2, set θ2 = 3π/2 to get the proper sign.

Consider now the second subblock, where CZ gates
are controlled by |φ〉2. If |φ〉2 = |0〉, then |φ〉2

p = |φ〉1
p =

cos(θp) |0〉 + (−1)sin(θ1 ) sin(θp) |1〉. If |φ〉2 = |1〉, then |φ〉2
p =

Z |φ〉1
p = cos(θp) |0〉 − (−1)sin(θ1 ) sin(θp) |1〉. The two cases

can be compactly expressed as

|φ〉2
p = cos(θp) |0〉 + (−1)sin(θ1 )+sin(θ2 ) sin(θp) |1〉

for p = 3 : n. This is because if |φ〉2 = |0〉, Eq. (B2) implies
that cos(θ2) = 1, and thus, sin(θ2) = 0 and (−1)sin(θ2 ) = 1.
Otherwise, that is, if |φ〉2 = |1〉, Eq. (B2) yields cos(θ2) = 0,
and thus, sin(θ2) = ±1 and (−1)sin(θ2 ) = −1. Because qubit 3
is not controlled by any more qubits, its state can be finalized
here as

|φ〉3 = |φ〉2
3 = cos(θ3) |0〉 + (−1)sin(θ1 )+sin(θ2 ) sin(θ3) |1〉 .

The previous argument carries along subsequent sub-
blocks. Therefore, qubit p of |φ〉 can be expressed as

|φ〉p = cos(θp) |0〉 + (−1)
∑p−1

i=1 sin(θi ) sin(θp) |1〉 (B3)

for p = 1 : n. The formula dictates how to set parameter θp so
that qubit p takes a particular binary value. The process transi-
tions from the first to the last qubit. For qubit p to be set to |0〉,
simply set θp = 0. For qubit p to be set to |1〉, select θp = π/2
if

∑p−1
i=1 sin(θi ) is even, or θp = 3π/2 if

∑p−1
i=1 sin(θi ) is odd.

This shows that state |φ〉 can span all canonical vectors in RN .
So far, we have considered a single layer of the VQC. If

there are d layers, we can set the parameters of layers 1 to
(d − 1) to zero, and then apply the established claim for the
single layer only to the last layer. Hence, when layer 1 is fed
with |0〉n, its output remains |0〉n and is fed as input to layer
2. The last layer is eventually fed with |0〉n, and can thus, be
treated as a single layer.

The previous analysis holds for the linear and circular en-
tanglements too. Consider again a single layer. For the linear
entanglement, CZ gates are implemented between successive
qubits. Accordingly, the first qubit of |ψ〉 again is not sub-
jected to any control gate, and so (B1) still applies. As each
qubit after the first one is controlled by its previous qubit, it is

easy to see that

|φ〉p = cos(θp) |0〉 + (−1)sin(θp−1 ) sin(θp) |1〉 (B4)

for p = 2 : n. Therefore, by properly sampling {θp}n
p=1 from

{0, π/2, 3π/2}, state |φ〉 can be made to take the value of any
canonical vector in RN .

Compared to the linear, the circular entanglement differs
only in the first qubit, which becomes |φ〉1 = cos(θ1) |0〉 +
(−1)sin(θn ) sin(θ1) |1〉. Albeit the recursion is different, each
qubit of |φ〉 can again evaluate to either |0〉 or |1〉. Specifically,
for qubit p to be selected to |0〉, we set θp = 0. For qubit p to
be selected to |1〉, we set θp = π/2 if its previous qubit is |0〉;
and θp = 3π/2, if its previous qubit is |1〉.

APPENDIX C: PROOF OF THEOREM 2

We commence with the lower bound on D∗
θ . If λ∗ and λ∗

θ

are the maximizers of the dual problems in (32) and (36),
respectively, we will prove that

D∗ = D(λ∗) � Dθ (λ∗) � Dθ (λ∗
θ ) = D∗

θ . (C1)

The equalities in (C1) hold obviously by definition. To show
the first inequality in (C1), note that the dual functions D(λ)
and Dθ (λ) are both defined as the result of the minimization
problems defined in (30) and (34). Because (34) is a restriction
of (30), it implies that D(λ) � Dθ (λ) for all λ � 0. Plugging
λ∗ in the previous inequality provides the first inequality in
(C1). The second inequality in (C1) holds simply because λ∗

θ

maximizes the dual function Dθ (λ) over all λ � 0.
We proceed with the upper bound on D∗

θ in (40). Upon
combining (34)–(36), we can express

D∗
θ = max

λ�0
min

θ
Lθ (θ; λ).

Let us extend λ to λ̄ by adding λ0 = 1 as λ̄’s first entry. Then,
function L(p; λ) can be compactly expressed as

L(p; λ) = (F̄λ̄)�p. (C2)

Analogously, Lθ (θ; λ) can be expressed as

Lθ (θ; λ) = (F̄λ̄)�p(θ). (C3)

Using (C2) and (C3), we can write

Lθ (θ; λ) = (F̄λ̄)�p + (F̄λ̄)�(p(θ) − p)

= L(p; λ) + (F̄λ̄)�(p(θ) − p)

� L(p; λ) + ‖F̄λ̄‖∞ · ‖p(θ) − p‖1, (C4)

where the inequality follows from Hölder’s inequality.
The �∞ norm in (C4) can be upper bounded using the

matrix inequality

‖F̄λ̄‖∞ � ‖F̄‖∞‖λ̄‖∞ = L‖λ̄‖∞ (C5)

with L defined in (38). Plugging (C5) into (C4) provides

Lθ (θ; λ) � L(p; λ) + L‖λ̄‖∞ · ‖p(θ) − p‖1.

The last inequality holds for all θ. If we minimize both sides
over θ, the direction of the inequality remains [68]:

min
θ

Lθ (θ; λ) � L(p; λ) + L‖λ̄‖∞ · min
θ

‖p(θ) − p‖1. (C6)
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The inequality in (C6) holds for all p ∈ P . Consider a
particular p ∈ P . By Assumption 3, there exists θ0 for which
‖p − p(θ0)‖1 � ε for this particular p. Parameter vector θ0

provides the upper bound

min
θ

‖p(θ) − p‖1 � ‖p(θ0) − p‖1 � ε. (C7)

The previous argument holds for all p ∈ P . Plugging (C7) into
(C6) yields

min
θ

Lθ (θ; λ) � L(p; λ) + εL‖λ̄‖∞. (C8)

Minimizing both sides of (C8) over p ∈ P provides

min
θ

Lθ (θ; λ) � min
p∈P

L(p; λ) + εL‖λ̄‖∞. (C9)

The last inequality in (C9) holds for all λ � 0. If we maximize
both sides over λ � 0, the direction of the inequality remains
and yields

D∗
θ = max

λ�0
min

θ
Lθ (θ; λ) � max

λ�0
min
p∈P

L(p; λ) + εL‖λ̄‖∞.

(C10)

Since λ̄ is extended from λ by λ0 = 1, it follows that ‖λ̄‖∞ =
‖λ‖∞ if ‖λ‖∞ � 1; and ‖λ̄‖∞ = 1, otherwise. For the latter
case, it is obvious that

D∗
θ � max

λ�0
min
p∈P

L(p; λ) + εL = D∗ + εL. (C11)

For the former case, the order of norms predicates that other-
wise, ‖λ̄‖∞ = ‖λ‖∞ and

D∗
θ � max

λ�0
min
p∈P

L(p; λ) + εL‖λ‖∞

� max
λ�0

min
p∈P

L(p; λ) + εL‖λ‖1. (C12)

The summand in the right-hand side of (C12) seems to
be related to P∗ = D∗ = maxλ�0 minp∈P L(p; λ). Unfortu-
nately, the maximization involves the additional term εL‖λ‖1.
Interestingly, this summand relates to the perturbed primal
problem introduced in (37). More specifically, the Lagrangian
function of (37) is defined as

L̃(p; λ) := (f0 + Fλ)�p + εL‖λ‖1 = L(p; λ) + εL‖λ‖1,

where we have used the property that λ�1 = ‖λ‖1 since
λ � 0. Under Assumption 4, the perturbed primal problem is
feasible, and thus, strong duality holds. Therefore, the optimal
cost of the perturbed problem in (37) equals

P̃∗ = max
λ�0

min
p∈P

L̃(p; λ) = max
λ�0

min
p∈P

L(p; λ) + εL‖λ‖1.

The summand on the right-hand side of (C12) coincides with
P̃∗. Because the original primal LP is convex, the optimal cost
of the perturbed problem is known to satisfy [30, Sec. 5.6.2]:

P∗ � P̃∗ − εL‖λ̃‖1,

where λ̃ is the vector of optimal Lagrange multipliers for (37).
The last inequality provides an upper bound on P̃∗. Plugging
this bound into (C12) gives

D∗
θ � P∗ + εL‖λ̃‖1 = D∗ + εL‖λ̃‖1. (C13)

Combining (C11) and (C13) proves the upper bound on D∗
θ

in (40).
To bound ‖λ̃‖1, a standard trick is adopted; see [69, Ex.

5.3.1] and [34]. Under Assumption 4, the perturbed primal
problem in (37) is strictly feasible. Multiplying both sides of
(39) by λ̃ � 0 and summing up gives

λ̃
�

F�p̂ � −εL‖λ̃‖1 − s0‖λ̃‖1. (C14)

Because problem (37) satisfies strong duality and p̂ ∈ P is
feasible for (37), it follows that

P̃∗ = min
p∈P

(f0 + Fλ̃)�p + εL‖λ̃‖1

� (f0 + Fλ̃)�p̂ + εL‖λ̃‖1

� f�
0 p̂ + λ̃

�
F�p̂ + εL‖λ̃‖1

� f�
0 p̂ − s0‖λ̃‖1,

where the last inequality stems from (C14).
Because the perturbed problem in (37) is a restriction of

the original primal LP in (29), we get that

P∗ � P̃∗ � f�
0 p̂ − s0‖λ̃‖1,

from which we obtain the bound in (41). This completes the
proof of Theorem 2.
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