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Small interconnected quantum processors can collaborate to tackle quantum computational problems that
typically demand more capable devices. These linked processors, referred to as quantum nodes, can use shared
entangled states to execute nonlocal operations. As a consequence, understanding how to distribute entangled
states among nodes is essential for developing hardware and software. We analyze a protocol where entanglement
is continuously distributed among nodes that are physically arranged in a regular pattern: a chain, a honeycomb
lattice, a square grid, and a triangular lattice. These regular patterns allow for the modular expansion of
networks for large-scale distributed quantum computing. Within the distribution protocol, we investigate how
nodes can optimize the frequency of attempting entanglement swaps, trading off multiple entangled states
shared with neighboring nodes for fewer states shared with non-neighboring nodes. We evaluate the protocol’s
performance using the virtual neighborhood size—a metric indicating the number of other nodes with which
a given node shares entangled states. Employing numerical methods, we find that nodes must perform more
swaps to maximize the virtual neighborhood size when coherence times are short. In a chain network, the virtual
neighborhood size’s dependence on swap attempt frequency differs for each node based on its distance from the
end of the chain. Conversely, all nodes in the square grid exhibit a qualitatively similar dependence of the virtual

neighborhood size on the swap frequency.
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I. INTRODUCTION

A quantum network is a system of interconnected quan-
tum devices that extends beyond the capabilities of classical
networks [1]. Such devices, known as quantum nodes, can
be connected over long and short distances. Leveraging
quantum-mechanical effects like entanglement, these nodes
enable a variety of technologies. For instance, the quantum
internet aims to facilitate quantum communication between
any two points on Earth [2,3], allowing applications such as
quantum key distribution [4,5] and secure access to remote
quantum computers [6]. Over short distances, dense arrays of
closely connected nodes can cooperate to solve challenging
quantum computational problems by distributing the work-
load among them [7,8].

In a network of nodes connected over short distances,
we assume that we can design the topology, unlike in long-
distance networks whose topologies might have logistical
constraints such as the location of cities. Specifically, we
investigate network topologies where nodes form a regular
pattern, which constitutes a modular and scalable architecture.
In particular, we consider networks with a regular topology
where nodes are regularly spaced and connected over the same
physical distance, each having the same number of physical
neighbors d. The nodes can form a chain for d = 2, a hon-
eycomb lattice for d = 3, a square lattice for d = 4, and a
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triangular lattice for d = 6 (Fig. 1). These lattices regularly
tile the plane.

Such a modular network design offers a scalable approach
to, e.g., distributed quantum computing. In such a setting,
nodes can implement nonlocal operations using entangled
states shared with other nodes, allowing for universal quan-
tum computation [9-11]. Consequently, nodes can scale the
number of qubits available for computation by sharing such
bipartite states—entangled links—with many different nodes.
Additionally, since entangled links are consumed in nonlocal
operations, nodes require many links if they want to imple-
ment many nonlocal operations.

To distribute many links among many different nodes, we
consider a protocol for continuous distribution (CD) of en-
tanglement, where nodes continuously distribute links among
them [12]. Compared to on-demand protocols where nodes
explicitly request entanglement [13—15], CD protocols do not
involve a routing problem to establish links among the nodes
requesting them [12,13,16]. Solving routing problems can
be computationally demanding for large quantum networks.
Hence, in networks with many nodes, employing a CD pro-
tocol could be a suitable approach to distributing entangled
links at a high rate.

We investigate the performance of a CD protocol that
aims to distribute many entangled links among many dif-
ferent nodes in quantum networks with a regular topology,
employing the quantum network model of Ref. [12]. In such
networks, pairs of nodes are physical neighbors when they are
connected by physical channels such as optical fibers [17].

©2024 American Physical Society
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d=3

FIG. 1. Quantum networks with a regular topology. Regularly
spaced quantum nodes connected over identical physical channels
each have d physical neighbors and form a chain, a honeycomb
lattice, a square grid, and a triangular lattice, as exemplified by these
fragments of larger networks.

Nodes can store quantum information in the form of qubits,
and nodes can entangle these qubits to form entangled links.
We assume that nodes can share multiple links and that each
node has a “large-enough” number of quantum memories
with finite coherence times (see Sec. III A for details). We
assume that all nodes are identical and that they are connected
over identical physical channels (in particular, all neighboring
nodes are at the same physical distance). Moreover, each node
has the same number of physical neighbors in the resulting
networks. Other unit cells can tile the plane (see Fig. 2(a)
in Ref. [18]), although these generally involve nodes with
different numbers of physical neighbors or physical channels
with different lengths. Therefore, we restrict ourselves to the
regular patterns from Fig. 1. Last, we consider networks with
and without boundaries—finite and infinite networks.

To distribute useful entanglement among the networked
nodes, (i) physical neighbors can generate shared entangled
links in a heralded fashion [19], (ii) remote nodes can trans-
form two links shared with an intermediary node into a longer
link in an entanglement swap [20], and (iii) nodes can dis-
card links when their quality has decreased too much due to
decoherence and entanglement swaps [12,21,22]. Following
Ref. [12, Algorithm 1], we encapsulate these operations in a
simple CD protocol that discretizes time and prescribes the
nodes what to do in each time step. Within the protocol, the
nodes can adjust how frequently they attempt swaps to modify
the distribution of entangled links: If no swaps are performed,
then entanglement will only be shared among physical neigh-
bors; if swaps are often performed, then entanglement will
mostly be shared among physically distant nodes.

With the objective of distributing many entangled links
among many different nodes, we evaluate the performance
of the CD protocol using the performance metrics introduced
in Ref. [12]. At a specific time, the virtual neighborhood
size indicates the number of nodes any node shares entangled
links with, and the virtual node degree indicates how many
entangled links any node shares with other nodes. The virtual
neighborhood size and virtual node degree explicitly consider
the time dependence of entangled links as links can be created
and removed over time. For example, in a distributed quantum
computing setting, a large virtual neighborhood size means
that a node can perform nonlocal operations with many differ-
ent nodes, and a large virtual node degree means that a node
can implement many nonlocal operations. Other approaches
to analyzing entanglement distribution in quantum networks
include evaluating the time it takes to distribute end-to-end

entanglement among specific pairs of nodes [15,23-26]. How-
ever, such a metric is better suited to evaluate the performance
of on-demand protocols where the goal is to optimize the
time it takes to generate entanglement among a set of end
nodes. The virtual neighborhood size and virtual node degree
are more suitable for evaluating CD protocols, for example
capturing the goal of distributing many links among many
different nodes.

In this paper, we employ numerical methods to evaluate
the performance of a CD protocol distributing entanglement
in regular-topology quantum networks to maximize the virtual
neighborhood size and virtual node degree. Our main findings
offer design heuristics for CD protocols in quantum networks
with regular topologies:

(i) When coherence times are short, swaps must be per-
formed more frequently to maximize the virtual neighborhood
size. Intuitively, nodes must make good use of the links before
the links are cut off.

(i) The impact of network boundaries on the protocol’s
performance depends on the network topology. In a finite
chain, the dependence of the virtual neighborhood size on the
swap attempt frequency is different for each node depending
on the node’s distance to the edge of the chain. In contrast, for
networks with a square-lattice topology, the virtual neighbor-
hood size of all nodes behaves similarly as a function of the
swap frequency.

This paper is structured as follows. In Sec. II, we present
the quantum network model by discussing networks with a
regular topology and how nodes can distribute entanglement
in such networks. Furthermore, we adopt a simple CD pro-
tocol to facilitate entanglement distribution and define the
performance metrics. Subsequently, in Sec. III, we use these
metrics to evaluate the performance of the CD protocol in
quantum networks with a regular topology. Finally, in Sec. IV,
we reflect on the results and discuss potential future work.

II. QUANTUM NETWORK MODEL

We introduce our quantum network model in this section.
We first present the physical topologies of the networks we
have investigated. Then, we discuss how quantum nodes can
use entanglement generation, entanglement swaps, and the
removal of low-fidelity links to distribute useful entanglement
in regular networks. Accordingly, we adopt an entanglement
distribution protocol that the nodes use for distributing en-
tanglement among them. Finally, we discuss the performance
metrics that we have used to evaluate the performance of this
protocol.

We adopt the quantum network model of Ref. [12] (see
Fig. 2 for an illustration). In this model, nodes can generate,
process, and store quantum information in the form of qubits.
Such nodes can send quantum information to each other over
physical channels. Nodes connected via physical channels are
physical neighbors. Two nodes can share any number of en-
tangled qubits, where we refer to these shared bipartite states
as entangled links. Nodes can employ qubit platforms such
as nitrogen-vacancy centers in diamond [19,27] and trapped
ions [28,29] and be connected over physical channels such as
optical fibers [17] and free space [30,31].
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FIG. 2. Example quantum network. Nodes can share any num-
ber of entangled links, either directly generating entanglement
over physical channels or swapping entanglement to create longer-
distance links.

A. Network topology

We consider arrays of nodes connected over short distances
for large-scale quantum networks. In this scenario, we assume
that we are free to design the network topology (in con-
trast to long-distance networks for quantum communication
whose topologies might have logistical constraints such as the
location of cities or are utilizing existing optical fibers).
Hence, to modularly scale the network size, we investigate
network topologies where nodes form a regular pattern.

In particular, we consider quantum networks with a regular
topology where nodes are regularly spaced and connected over
identical physical channels such that each node has the same
number d of physical neighbors. We say that such a network
has a physical node degree d. The quantum nodes form a
chain for d =2, a honeycomb lattice for d = 3, a square
lattice for d = 4, and a triangular lattice for d = 6 (Fig. 1).
The honeycomb, square, and triangular lattices tile the plane
regularly.

We investigate infinite and finite quantum networks, that
is, networks without and with boundaries. The virtual neigh-
borhood size and virtual node degree of nodes in an infinite
network approximate, on average, those of nodes far from
the network boundaries in large-scale quantum networks (see
Sec. III B for details on how ‘“far”’). Furthermore, infinite net-
works provide a convenient platform for performance analysis
as each node behaves equivalently due to the network’s trans-
lational symmetries. We note that nodes on the boundary of
finite networks have fewer than d physical neighbors.

B. Network dynamics

To distribute useful entanglement, (i) physical neighbors
attempt to generate entanglement in a heralded fashion, (ii)
nodes swap entanglement to convert short-distance entangled
links into longer links, and (iii) nodes discard low-fidelity
entangled links that are of insufficient quality for their in-
tended purpose. We briefly discuss these three operations and
summarize the network model parameters in Table I (see
Appendix A for more details).

1. Generating entanglement

Two physical neighbors can attempt to generate a shared
entangled link in a heralded fashion [19]. The entanglement
generation attempt heralds success with a probability pge, and
fails to generate an entangled link with a probability 1 — pgeq.
To model quantum noise, we apply a depolarizing channel (a

TABLE I. Quantum network model parameters. The parameters
T, teuts Frew, M, and Fyy;, must satisfy (2).

Physical topology

d Physical node degree, number of physical neighbors

Hardware
Deen Probability of successfully heralding entanglement
Pswap Probability of successfully swapping entanglement
T Coherence time (exponential decay rate of fidelity)
Frew Entanglement generation fidelity

Software
teut Cutoff time
M Maximum swap distance
Fain Minimum required entangled link fidelity

Protocol
q Probability of attempting an entanglement swap

worst-case noise model) [32] to the Bell state |¢) = (|00) +
|11))/+/2. Then, nodes generate entangled links of the Werner
form [33]

4F 1

3 1 o) @" |+
where F = (¢ | p| ¢™) is the fidelity [34] of the generated
state p to the target state |¢T) and I, the four-dimensional
identity. We assume that all nodes generate entangled Werner
states with the same fidelity F = Fey .

_ il (1)
10_ 3 4

2. Swapping entanglement

Two nodes that are not connected by a physical channel can
create shared entangled links by swapping entanglement via
an intermediary node [20]. For example, suppose that nodes
A and B do not share a physical channel. However, nodes
A and B both share an entangled link with an intermediary
node I with fidelities F,, and Fj,. The intermediary node I can
do a Bell-state measurement on the qubits storing the links.
Then, using local operations and classical communication, the
nodes perform an entanglement swap. Specifically, the nodes
transform the initial two links into a new link between nodes A
and B with fidelity F,; < Fjy, Fy [15,35]. Nodes successfully
execute the swap with a probability pgy,p and fail to generate a
longer link with a probability 1 — pgyap (consuming the initial
links).

3. Discarding entanglement

To ensure that entangled links are of sufficient quality
for, e.g., distributed quantum computing applications, nodes
discard low-fidelity entangled links. We consider two fidelity-
decreasing processes.

Qubits interact with their environment, and the fidelity of
the links they store decreases over time—links decohere. We
assume that the link fidelity decays exponentially with time,
where we characterize the decay rate by an abstract coher-
ence time 7. To ensure that the fidelity of all entangled links
exceeds some threshold fidelity Fii,, nodes discard entangled
links that are stored longer than a cutoff time t.y [15,21,22]. In
particular, nodes monitor the age of the entangled links—the
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ALGORITHM 1. Example CD protocol.

Inputs: A quantum network with an arbitrary configuration of

entangled links. The network has a regular topology characterized

by the physical node degree d. The hardware is described by pgen,

Dswap» I and Fpey,, and we choose fcy, M and F, (see Table I for

details). Nodes can tune the swap attempt probability ¢ to improve

the protocol’s performance.

Ouptut: A quantum network with an updated configuration of

entangled links.

Algorithm:

1. Cutoff time: Nodes discard entangled links with ages equal to
the cutoff time ... Nodes first apply cutoffs to ensure they do
not use old links later in the protocol.

2. Entanglement generation: Physical neighbors attempt to
generate entangled links and successfully herald a link of
fidelity F., with a probability pyen.

3. Entanglement swapping: All nodes simultaneously perform
the following steps:

3.1 Nodes randomly choose a link from their memory.

3.2 Nodes choose a second link randomly from the set of links
stored in differently oriented qubits.

3.3 Nodes attempt to swap the two entangled links with a
probability g and succeed with a probability pgy., to create a
longer link. When nodes do not attempt to swap, the initial
links are not used in further attempts. When the swap fails,
nodes discard the initial links.

Nodes repeat steps 3.1-3.3 until no more swaps are possible.

Nodes are unaware of the swaps of other nodes.

4. Maximum swap distance: The nodes communicate which
swaps they have attempted. Then, nodes discard entangled
links that have been generated from more than M
short-distance links (generated between physical neighbors).

time elapsed since the creation of the link—and subsequently
discard links with an age equal to the cutoff time.

The entangled link fidelity generally decreases with the
number of swaps it has been involved in. Again, to ensure that
the fidelity of all entangled links exceeds some minimum fi-
delity Fuin, nodes discard entangled links that are the fusion of
more than M short-distance links (generated between physical
neighbors) [12]. We refer to M as the maximum swap distance.

Combining these requirements, nodes that generate en-
tangled links with a fidelity Fp.y and demand links with a
minimum fidelity Fj;, must satisfy the relation [15]

1
3 4Fpin — 1\
few < —T In = : )
4Fey — 1 3

C. Entanglement distribution protocol

To distribute entanglement among the nodes, we em-
ploy a simplified version of the CD protocol from Ref. [12,
Algorithm 1]. In our CD protocol (Algorithm 1), physical
neighbors generate entangled links in a heralded fashion,
non-neighboring nodes swap entanglement via intermediary
nodes, and nodes discard links when their fidelity has de-
creased too much.

In the CD protocol, nodes attempt entanglement swaps
with a probability g. This probability is the only protocol

parameter that nodes can “tune” to improve the performance
of the entanglement distribution process. During each itera-
tion of the CD protocol, nodes attempt swaps until no more
swaps are possible.

We assume that nodes distribute preshared entanglement,
so we omit the consumption of links in applications (in con-
trast to the CD protocol of Ref. [12, Algorithm 1]). The CD
protocol discretizes time and defines the operations that all
nodes perform simultaneously. The coherence time 7 and
cutoff time 7 are expressed in units of this discretized time.
Furthermore, we assume that each qubit can only generate en-
tanglement with a fixed neighboring node. Then, nodes label
the qubit orientation as the direction of the physical neighbor.
Nodes only swap entangled links from qubits with different
orientations to avoid “unnecessary” swaps. In a chain, for
example, a node only swaps pairs of links where one link is
stored in a left-oriented qubit and the other in a right-oriented
qubit. This prevents nodes from creating links between two
qubits in the same node (for example, preventing a node from
swapping two links with their left physical neighbor) or links
that could have been generated directly via a physical channel.
As all nodes implement the protocol simultaneously, there is
no time to communicate and coordinate more elaborate swap
strategies. Last, the protocol does not consider entanglement
distillation (it could be included by modifying the network
parameters; see Appendix A).

D. Performance metrics

We evaluate the performance of the CD protocol (Al-
gorithm 1) in quantum networks with regular topologies.
In applications such as distributed quantum computing, the
quantum nodes would likely benefit from (i) entangled links
with many different nodes to scale the number of qubits
available for computation and (ii) many entangled links with
other nodes to implement many nonlocal operations. With
these objectives, we employ performance metrics for quantum
networks as introduced by Ref. [12]:

Definition 1 ([12]). The virtual neighborhood of node i at
time ¢, V;(¢), is the set of nodes that share an entangled link
with node i at time ¢. Two nodes are virtual neighbors if they
share at least one entangled link. The virtual neighborhood
size is defined as v;(¢t) = |Vi(¢)|.

Definition 2 ([12]). The virtual node degree of node i at
time ¢, k;(t), is the number of entangled links connected to
node i at time ¢.

These performance metrics capture the objective of dis-
tributing many entangled links between many nodes, and
explicitly incorporate the time-dependent dynamics of quan-
tum networks. In a distributed quantum computing setting,
a large v;(¢) indicates that nodes share entangled links with
many different nodes (increasing the number of qubits avail-
able for computation), and a large k;(t) means that nodes can
implement many nonlocal operations.

The performance metrics are stochastic processes, i.e.,
(time) sequences of random variables. Considering this time
dependence, we investigate the steady-state expected value of
the performance metrics to learn more about the long-term
behavior of the network. When a quantum network is running
the CD protocol of Algorithm 1, Ref. [12] showed that there
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is a unique steady-state value for the expected virtual neigh-
borhood size,

v = tlim Elvi(#)], 3)

and the expected virtual node degree,

ki = tlim Elk;(1)]. “)

We employ discrete-time network simulations that implement
the CD protocol (Algorithm 1) to estimate v; and k;; see
Appendix B for details.

III. PERFORMANCE OF CD PROTOCOLS
IN REGULAR-TOPOLOGY NETWORKS

In this section, we evaluate the performance of CD pro-
tocols in quantum networks with regular topologies. Nodes
can optimize the performance of the entanglement distribution
protocol by varying the probability of attempting swaps, g. In
Sec. Il A, we investigate the influence of network parameters
(the coherence time and the entanglement generation fidelity)
on the protocol’s performance in infinite regular networks
(i.e., without boundaries). Then, in Sec. III B, we investigate
the influence of network boundaries on the virtual neighbor-
hood size of (finite) chains and square lattices.

A. Infinite networks

The behavior of nodes in infinite networks approximates
that of nodes far from the network boundaries in large-scale
quantum networks. Furthermore, infinite networks present
a convenient setting for performance analysis as all nodes
behave equivalently due to the network’s translational sym-
metries. We investigate the influence of varying network
parameters (the coherence time 7' and the entanglement gen-
eration fidelity Fpy ) on the performance metrics using infinite
networks.

We assume that nodes generate entanglement determin-
istically (pgen = 1). Although entanglement generation is
generally probabilistic, deterministic entanglement distribu-
tion protocols can guarantee the delivery of entangled states at
specified time intervals [36,37]. Deterministic entanglement
generation provides a convenient analysis platform as each
node generates the same number of entangled links. In Ap-
pendix A, we provide a study of the effect of pge, < 1 on the
protocol’s performance. For pgen = 1, % 4—11, we observe that
the optimal swap attempt probability ¢ scales approximately
linearly with pgep.

Furthermore, we assume that nodes execute swaps deter-
ministically (pswap = 1). Qubit platforms such as nitrogen-
vacancy centers in diamond [38] and trapped ions [39] can
realize Bell-state measurements that succeed deterministically
to facilitate the entanglement swaps. Deterministic swaps are
convenient for analysis as we do not have to consider failed
swaps. When swaps do fail, the virtual neighborhood size and
the virtual node degree decrease (see Appendix A).

Last, we assume that nodes have a “large-enough” num-
ber of memories. In particular, nodes can store all generated
entangled links until they discard them when the links age to
the cutoff time; that is, we assume that nodes have at least
d t.y qubits. In our numerical experiments, this corresponds to

vi 121 100 (a)

81 |/50

4_

T-=

O_I 1 1 1 1
Vi 10 -

8_

6_

4_

2_

O_

0 0.5 1
Swap probability g

FIG. 3. The optimal probability of attempting to swap g depends
on the coherence time 7' and entanglement generation fidelity Fpe,,.
Virtual neighborhood size v; of a node in an infinite square lattice
(d = 4) as a function of ¢ for (a) T = 10, 50, 100 time steps (cutoff
time f., = 2, 11, 22 time steps) and (b) Fyeyy = 0.6, 0.8, 1 (maximum
swap distance M = 1,2, 4); both colored from light to dark. For
longer T, links live longer before nodes discard them (longer #),
meaning that nodes store more links and can have more virtual neigh-
bors, increasing the maximum v;. When links live long, swapping
conservatively results in more virtual neighbors (lower optimal g).
A higher F, increases the maximum v; as links can be involved
in more swaps before nodes discard them (increased M). Then,
swapping more frequently results in more virtual neighbors (higher
optimal g). We consider (a) Fuw =0.9 (M =3) and (b) T =50
time steps (f., = 11 time steps). We assume that nodes generate
entanglement and execute swaps deterministically (Pgen, Pswap = 1)
and that nodes require a minimum link fidelity F;, = % Results
obtained with network simulations and Monte Carlo sampling with
N = 10* realizations per sample, presented with an error band of
+65/+/N (generally smaller than the line width), where s is the
sample standard deviation.

the order of 10-100 memories. Currently, experiments attain
memories of, e.g., 10 qubits in diamond nitrogen-vacancy
centers [40], which we expect to increase in the near future
to the values we use in our simulations.

Our network simulations implement the cutoff time 7., and
the maximum swap distance M. Then, to vary the coherence
time 7', we find a ., that satisfies condition (2); similarly, to
vary the entanglement generation fidelity F.y, we find an M
that satisfies (2). [llustratively, if the coherence time T is short,
then nodes discard links quickly (short #.¢) regardless of Fieyw
and M. Similarly, if F is too low, then swapping two links
results in a new link with fidelity " < Fy, i.€., nodes should
not attempt swaps (M = 1) regardless of T and 7.

Generally, as a function of increasing swap probability, the
virtual neighborhood size starts at v; = d (¢ = 0). Then v;
increases to a maximum before converging to zero as ¢ — 1
(Fig. 3 for a square-lattice network, d = 4). Forq =0, v; =d
as nodes only share entangled links with their physical neigh-
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bors (and discard them when the links reach the cutoff time
tour)- Then, as g increases, nodes attempt swaps and can share
links with non-neighboring nodes. However, as nodes attempt
more swaps (larger g), they also consume more links in swaps
and discard more links for being involved in too many swaps
(M). At first, nodes gain more new virtual neighbors as g
increases. Then, at some ¢, losing links (due to a combina-
tion of consuming them in swaps and removing low-fidelity
ones) balances out this gain in virtual neighbors; v; reaches
a maximum. As the swap probability g increases further,
consumption of links in swaps and low-fidelity link removal
outweigh the creation of new virtual neighbors, resulting in a
decreasing v;. Finally, as ¢ — 1, v; — 0 as nodes discard all
links for being involved in too many swaps.

We see that the swap probability ¢ that maximizes the
virtual neighborhood size v;, the optimal g, depends on the
coherence time 7 and the entanglement generation fidelity
Foew (Fig. 3). As T increases, entangled links live longer
before nodes cut them off (longer #.,). Consequently, nodes
store more entangled links and can share entangled links with
a larger set of nodes, resulting in an increased v;. Note that
v; is bounded by a function of the cutoff time 7., or the
maximum swap distance M (see Appendix B). For short T
and 7y, nodes quickly discard links for living too long. Then,
swapping frequently (relatively high g) increases v; during the
short lifetime of the links. In contrast, for relatively long 7 and
tout, the nodes benefit from swapping more conservatively as
nodes consume fewer links in swaps and discard fewer links
that have been swapped too many times. That is, the optimal
q decreases for longer 7.

As Few increases, entangled links can be involved in more
swaps before nodes discard them (larger M). Consequently,
nodes can attempt swaps more often (higher ¢) and share
entangled links with nodes that are further away, resulting in
an increased virtual neighborhood size v;. That is, the optimal
q increases with increasing Fp.y. However, increasing Fiew
results in diminishing gains of the virtual neighborhood size
v;. When there is “enough” time for links to exist (large T,
fcut), the maximum swap distance M limits v;. In that case,
v; approaches its upper bound, i.e., nodes share entanglement
with all nodes it can potentially share entanglement with. In
contrast, when links exist for a limited time, nodes likely do
not share entanglement with all nodes they potentially could.

As the physical node degree d increases, the maximum vir-
tual neighborhood size v; also increases (see Appendix C). In
particular, increasing d = 2 to d = 3 increases the maximum
value of v; by more than the ratio of node degrees (3/2). We
note that, for increasing swap distance M, the bound on v;
grows quicker in networks with d = 3 than those with d = 2
(see Appendix B). Increasing the physical node degree to
d = 4, 6 shows diminishing returns.

The virtual node degree k;, i.e., the total number of entan-
gled links connected to node i, decreases monotonically for
increasing swap probability ¢ for all physical node degrees d
and network parameters (see Appendix C). Nodes achieve a
maximum k; = d ., when not attempting swaps (¢ = 0) as
they only lose links due to cutoffs (¢, ). For ¢ > 0, nodes also
consume links in swaps or discard links for being involved in
too many swaps. For ¢ = 1, nodes discard all links for being
involved in too many swaps; hence, k; = 0.
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FIG. 4. In a chain, the dependence of the virtual neighborhood
size v; on the probability of attempting swaps ¢ is different for each
node depending on its distance to the edge; conversely, in a square
lattice, the dependence is qualitatively the same across all nodes.
For nodes near and far from the network boundary (colored from
light to dark), v; as a function of ¢ in a finite (a) chain (d = 2)
and (b) square lattice (d = 4). Edge nodes in a chain only have one
physical neighbor and cannot implement swaps. Other nodes can
implement swaps but may have a limited potential neighborhood and
an asymmetric number of links oriented in either direction, resulting
in fewer virtual neighbors. In a finite square lattice, all nodes can
implement swaps, and nodes with the same number of physical
neighbors have similar v;. We consider a coherence time 7 = 50
time steps (cutoff time 7., = 11 time steps) and an entanglement
generation fidelity Fe, = 0.9 (maximum swap distance M = 3).
We assume that nodes generate entanglement and execute swaps
deterministically (pgen, Pswap = 1) and that nodes require a minimum
link fidelity Fi, = % Results obtained with network simulations
and Monte Carlo sampling with N = 10* realizations per sample,
presented with an error band of +65/+/N (generally smaller than the
line width), where s is the sample standard deviation.

B. Finite networks

We see that the effect of network boundaries on the vir-
tual neighborhood size v; depends on the topology (Fig. 4).
Specifically, the behavior of v; depends on the node’s distance
to the edge of a chain, while, in a square lattice, v; behaves
qualitatively the same across all nodes.

In a finite chain, the virtual neighborhood size v; of nodes
with the same number of physical links to the center node
(nodes symmetric around the center) behaves equivalently.
Edge nodes only have one physical neighbor, meaning that
v; = 1 when nodes do not attempt swaps (¢ = 0). Further-
more, according to the CD Protocol (Algorithm 1), these edge
nodes cannot implement swaps and hence do not consume
entangled links in swaps (recall that nodes attempt swaps with
entangled links stored in qubits with different orientations,
one left-oriented and one right-oriented link in a chain). For
q > 0, v; of the edge node increases initially as other nodes in
the chain attempt swaps. Then, v; stabilizes for a wide range
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of swap probabilities before v; — 0 as ¢ — 1 because nodes
discard all links for being involved in too many swaps.

Nodes between the edge nodes—interior nodes—have vir-
tual neighborhood sizes v; that are qualitatively more similar
to that of nodes in an infinite chain. However, the edges
do have an influence. Specifically, compared to nodes in an
infinite chain, v; of interior nodes near the edge converges to
zero more slowly as ¢ — 1. We try to explain this behavior
with an example. First, note that interior nodes near the edge
have an asymmetric number of nodes that they can share
entanglement with to their left and right (recall that nodes in
a chain swap one left-oriented and one right-oriented link).
Now, suppose that all nodes decide to swap entanglement,
except for one node that is closer than M physical links to the
edge. In that case, this node discards one link that is involved
in too many swaps. The other link (oriented toward the nearby
edge) cannot have been involved in too many swaps and is
not discarded. Hence, at the end of the protocol step, the
node near the edge that did not attempt to swap entanglement
retains one link, i.e., v; # 0. Such a scenario is more likely to
happen for large g. This results in a larger v; of nodes near the
edge in a finite chain compared to v; of infinite chain nodes
as ¢ — 1. However, when g = 1, all nodes attempt swaps;
then nodes discard all links for being involved in too many
swaps (v; = 0). Last, nodes closer to the edge have fewer
nodes they can share entanglement with, resulting in a smaller
maximum v;.

Nodes that are M or more physical links away from the
chain edge (e.g., the center node in Fig. 4) do have a symmet-
ric number of potential virtual neighbors in both directions.
For these nodes, the virtual neighborhood size v; behaves
similarly as in the case of an infinite chain. Intuitively, such
nodes are far enough from the boundary to not experience
edge effects. Moreover, nodes that are precisely M physical
links away from the edge (the center node in Fig. 4) have a
higher virtual neighborhood size v; compared to nodes in an
infinite chain.

In a finite square lattice, the virtual neighborhood size v; of
nodes with the same physical node degree d; is quantitatively
similar (as boundary nodes in finite regular networks have
fewer physical neighbors than interior nodes, we refer to the
physical node degree of a specific node 7). Corner nodes have
two physical neighbors (d; = 2), side nodes (on the boundary
but not in the corner) have three (d; = 3), and interior nodes
(not on the boundary) have four (d; = 4). In contrast to the
finite chain, boundary nodes in a finite square lattice can im-
plement swaps, resulting in a qualitatively similar v; behavior
of all nodes. However, boundaries do have an influence in that
nodes have limited potential virtual neighborhoods when they
are closer to the boundary. For instance, side nodes closer
to a corner have a smaller v; than side nodes further away
from a corner. The maximum v; of corner nodes is approxi-
mately one-half of the maximum v; of the interior nodes, and
the maximum v; of the side nodes is about three-quarters of
the maximum v; of the interior nodes. Last, v; of the side
nodes does not converge to exactly zero as ¢ — 1 because
side nodes generate an uneven number (d; = 3) of entangled
links per time slot, meaning that there is a nonzero proba-
bility that the nodes do not involve each link in too many
swaps.

In both finite chains and square lattices, the virtual node
degree k; still monotonically decreases to zero as the swap
probability ¢ — 1 (see Appendix C). However, when nodes
do not attempt swaps (¢ = 0), boundary nodes have a smaller
virtual node degree, k; = d;t.y. In the finite chain, due to
the CD protocol (Algorithm 1), edge nodes do not consume
links in swaps because they cannot attempt swaps, meaning
that k; converges to zero slowly. Additionally, by the same
explanation as for the virtual neighborhood size v;, k; of nodes
near the edge decreases to zero slower than nodes in an infinite
chain.

IV. DISCUSSION

We have adopted a simple protocol for the CD of entan-
glement among networked nodes. The nodes can optimize the
probability of attempting entanglement swaps to improve the
performance of the CD protocol. Using numerical methods,
we have evaluated the protocol’s performance in networks
where nodes form a regular pattern. We have employed per-
formance metrics that explicitly consider the time dependence
of the entangled states. In particular, the virtual neighbor-
hood of any node is the set of nodes it shares entanglement
with, and the virtual node degree of any node is the num-
ber of entangled states it shares with other nodes. A large
virtual neighborhood size indicates that a node shares en-
tangled states with many different nodes, and, for instance,
by using entanglement as a means of nonlocal coupling,
many qubits are available for computation in distributed
quantum computing. In this setting, a sizable virtual node
degree indicates that a node can implement many nonlocal
operations.

We present our findings as heuristics for the design of CD
protocols in quantum networks with regular topologies. First,
we observe that the swap attempt probability that maximizes
the virtual neighborhood size depends on network parameters
like the coherence time and entanglement generation fidelity.
In particular, this optimal swap attempt probability decreases
for a longer coherence time and increases for a higher en-
tanglement generation fidelity. Second, the maximum virtual
neighborhood size increases with the number of physical
neighbors d per node—for example, going from a chain (d =
2) to a honeycomb lattice (d = 3) increases this maximum by
more than the ratio of physical neighbors per node (3/2). Ex-
panding the network to square-lattice (d = 4) and triangular-
lattice (d = 6) topologies shows diminishing returns. Last, we
see that the influence of network boundaries depends on the
network topology. In a chain of nodes, being on or near a net-
work boundary fundamentally alters the performance metrics.
In contrast, in a square lattice, the metrics behave qualitatively
the same across all nodes. Moreover, the performance metrics
of nodes in a finite chain only start approaching those of nodes
in an infinite chain when they are further from the boundary
than the maximum swap distance M.

We have limited our analysis to regular topologies in
one and two dimensions, but we could extend it to three-
dimensional regular networks, optimally filling rooms with
hypothetical future clusters of quantum computing nodes.
We have investigated the optimal swap attempt probability
while relating the cutoff time with the coherence time and

022429-7



TALSMA, INESTA, AND WEHNER

PHYSICAL REVIEW A 110, 022429 (2024)

the maximum swap distance with the entanglement generation
fidelity; given a setup with a specific coherence time and
entanglement generation fidelity, future research could simul-
taneously optimize over the swap probability, cutoff time, and
maximum swap distance to maximize the virtual neighbor-
hood size. Furthermore, our CD protocol delivers preshared
entangled links. That is, our analysis omitted the consumption
of entangled links associated with, for example, implementing
nonlocal operations in distributed quantum computing. Such
consumption could alter the optimal swap probability and
the maximum virtual neighborhood size. Future work could
implement link consumption like the analysis of a network
with a tree topology from Ref. [12].

Further analysis could involve more elaborate CD proto-
cols. For example, the protocol could pair entangled links used
in swaps more efficiently (instead of randomly) to increase
the virtual neighborhood size, potentially using information
about the topology of the network. We assumed that qubits
have a “large-enough” number of quantum memories; if that
assumption is not met, then it would be interesting to investi-
gate how a protocol could optimally utilize the limited number
of memories. Last, protocols could subject the performance
metrics to certain constraints. For instance, nodes could de-
mand some minimum virtual neighborhood size vy, to ensure
a minimum number of qubits available for computation or
demand a minimum virtual node degree ky;, to ensure that
nodes can implement a minimum number of nonlocal opera-
tions. Nodes could also require the ratio k;/v; to attain some
minimum value, resulting in a multiobjective optimization
problem (similar to meeting the quality-of-service require-
ments investigated by Ref. [12]).

The data and the code to generate, process, and plot the
data can be found in Ref. [41].
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APPENDIX A: QUANTUM NETWORK MODEL DETAILS

In this Appendix, we provide more details on the opera-
tions and associated parameters we consider in our quantum
network model as discussed in Sec. II and motivate the choices
of parameters used in Sec. III.

1. Generating entanglement

Two physical neighbors herald the successful generation of
entanglement [19] with a probability pgeen, and raise a failure

flag with a probability 1 — pge,. To model quantum noise, we
apply a depolarizing channel (a worst-case noise model) [32]
to the Bell state |¢T) = (]00) 4 |11))/+/2. As a result of the
depolarizing channel, the initial state |¢™) is unaffected with
some probability x. However, with a probability 1 — x, the
initial state depolarizes to the completely mixed state 14/4,
where 4 is the four-dimensional identity [32]. Consequently,
nodes generate entangled links of the Werner form [33]

4F —1 1
3 1) (o] +

—-F ..
0= 3 Iy, (1 revisited)

where F =F(p,|¢T) = (T |p|opT) = %x+ % is the fi-
delity [34] of the generated state p to the target state |¢T).

Generally, heralded entanglement generation attempts
succeed probabilistically, but protocols can guarantee the
generation of entangled links at specified intervals [36,37].
For example, experiments successfully generate entanglement
with a probability pee, & 5 X 107> between nitrogen-vacancy
(NV) centers in diamond [37,42]. Such a low probability of
generating entanglement would require many entanglement
generation attempts per heralded entangled link, resulting in
demanding simulation requirements compared to determin-
istic generation. However, protocols can perform batches of
these intrinsically probabilistic entanglement generation at-
tempts to provide deterministic entanglement generation at
prespecified times [36,37]. Such protocols can make a trade-
off between entanglement generation rates and entanglement
generation fidelity, for example, generating entangled links of
fidelity F' =~ 0.8 at a rate of 6 Hz or, prioritizing the number
of entangled links, achieving a generation rate of 39 Hz with
F = 0.6 [36]. Such a robust, deterministic entanglement gen-
eration protocol can be part of the link layer in a quantum
network stack [37,43].

Suppose that we generate entanglement with a low
probability p{gen and that the generated entangled link has
a coherence time 7. Like the entanglement generation
protocol discussed above, we use these entanglement gener-
ation attempts (with a low probability of success) to create a
protocol that generates entanglement with a higher probability
of success pgen Over a batch of many individual attempts.
Recall that the CD protocol (Algorithm 1) discretizes time in
units associated with the rate of the entanglement generation
protocol (pgen). That is, as we combine several entanglement
generation attempts (pl,), the entanglement generation pro-
tocol (pgen) takes longer and the unit of time increases in
the CD protocol. Accordingly, the coherence time 7 of the
entangled link associated with p,e, decreases in units of this
discretized time. If we design protocols with pgen, = 1, %, }1,
then we observe that the optimal swap attempt probability g
increases approximately linearly with p,., [Fig. 5(a)]. As the
discretized time step in the CD protocol depends on the time
it takes the entanglement generation protocol (pgen) to attempt
entanglement delivery between physical neighbors, we scale
the coherence time 7 (and cutoff time f.,) inversely propor-
tional t0 pgen, €.8., T (Pgen = 1) = 2T (Pgen = %). Then, for
the range of entanglement generation success probability that
we investigated (pgen = 1, %, %), we see that the optimal g for
Peen = 1 is approximately double that of the optimal g when
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FIG. 5. Probabilistic generation of entanglement shifts the op-
timal probability of attempting swaps ¢ while swaps with nonzero
probability of failure decrease the maximum virtual neighborhood
v;. [(a) and (b)] Virtual neighborhood size v; and [(c) and (d)] virtual
node degree k; as a function of ¢g. We vary [(a) and (c)] the proba-
bility of successfully generating entanglement p,., = 0.25,0.5,0.99
and [(b) and (d)] the probability of successfully executing swaps
Dswap = 0.5, 0.75, 1; both colored from light to dark. For the range
of pgeq investigated, we observe that the optimal g scales with pge,
(a). For example, the optimal ¢ when pge, = % is approximately
half of the optimal g when p,, = 1. The maximum k; remains
approximately the same but converges to zero more quickly for
lower pgen (c). When swaps succeed probabilistically (pswap < 1),
nodes waste links in failed swaps. This means that nodes store fewer
links, i.e., lower k; (d). Furthermore, nodes have fewer opportunities
to share links with remote nodes, resulting in a lower maximum
virtual neighborhood size v; as pgwap decreases (b). For probabilistic
entanglement generation, we scale the coherence time 7' (and cutoff
time f,) inversely proportion to pe, (I' = 50,50, 100, 200 time
steps, fo = 11, 11,22, 44 time steps for py, = 1,0.99, 0.5, 0.25).
For probabilistic swaps, we consider 7 = 50 time steps (foy = 11
time steps). For both cases, we consider an entanglement generation
fidelity Fiew = 0.9 (maximum swap distance M = 3) and a threshold
fidelity Fin = % Results obtained using network simulations and
Monte Carlo sampling with N = 10* realizations per sample, pre-
sented with an error band of +6s/+/N (generally smaller than the
line width), where s is the sample standard deviation.

Pgen = % and that the optimal g for peen = % is approximately
double that of the optimal ¢ when pge, = }1.

Last, we note that the proof that there exists a unique
steady-state value for the expected number of virtual neigh-
bors and the expected virtual degree of any node by Ref. [12]
is under the assumption that entanglement generation is prob-
abilistic (pgen < 1). However, in this paper, we generally
assume that pge, = 1 (deterministic) for a simplified analysis
of the results. Reference [12] expects that there exists a unique
steady state for pgen = 1; we elaborate on this expectation in
Appendix B. Additionally, we note that the results of the per-
formance metrics are almost indistinguishable for pge, = 0.99
and pgen = 1 [Figs. 5(a) and 5(c)].

FIG. 6. Entanglement swap. Physical neighbors can directly gen-
erate entangled links, while non-neighboring nodes can generate
links by swapping entanglement via an intermediary node.

2. Swapping entanglement

Two nodes not connected via a physical channel may create
an entangled link by swapping entanglement with an inter-
mediary node [20]. For example, suppose that two nodes A
and B do not share a physical channel but are both physical
neighbors of an intermediary node I. Nodes A and B can
directly herald entangled links (of the Werner form (1) with
fidelities F,, and F;,) with node I over these physical channels.
To implement the swap, the intermediary node performs a
Bell-state measurement on its entangled qubits. Then, using
local operations and classical communication, the three nodes
swap entanglement, transforming the initial links into an en-
tangled link between nodes A and B of the Werner form with
fidelity [15,35]

(1 - FAI)(] - FBI)
3

Swapping entanglement via an intermediary node is illustrated
in Fig. 6.

We assume that the nodes successfully swap entangle-
ment with a probability psw., and fail with a probability
1 — pswap- On failure, the initial links are destroyed and no
link is produced. Experimentally, the Bell-state measurements
that facilitate the entanglement swaps can be deterministic
(Pswap = 1, for example, in diamond NV centers [38,42]) or
probabilistic (generally poywap = % using linear optics [44], but
Dswap > % is possible using ancillary photons [45,46]). When
entanglement swaps succeed probabilistically, nodes can lose
entangled links in failed swaps. This means that nodes will
store fewer links (decreased k;) and hence will share links with
a smaller set of virtual neighbors, i.e., smaller v; [Figs. 5(b)
and 5(d)]. Last, we assume that links formed in a swap assume
the age of the oldest initial link (the time elapsed since the
creation of the link).

Fp = FyFy + < By, By (Al)

3. Discarding entanglement

Qubits interact with their environment and the fidelity of
the links they store decreases over time; we say that the links
decohere. We model this decoherence as the successive ap-
plication of a depolarizing channel, a worst-case noise model
[32]. Then, during a time interval At¢, the fidelity F(z) of a

Werner state (1) at time ¢ evolves according to [15]
F(t+At)y=14+[F@)— 1]e /T, (A2)

where T is an abstract coherence time that characterizes the
exponential decay rate of the fidelity.
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To ensure that the fidelity of all entangled links exceeds
some threshold fidelity Fi,, nodes discard entangled links
that are stored longer than a cutoff time t. [15,21,22]. Simi-
larly, nodes discard links that have been formed in the fusion
of more than M short-distance links (generated between phys-
ical neighbors)—i.e., discard links that exceed the maximum
swap distance M [12]. We recall that physical neighbors gen-
erate entangled links of the Werner form (1) with a fidelity
Fhew and that new links created in an entanglement swap as-
sume the age of the oldest initial link. Then, given an abstract
coherence time T that characterizes the exponential decay rate
of the fidelity, nodes must satisfy the relation [15]

1\ #
> . (2 revisited)

Suppose that the entangled link fidelity is not large enough
for its intended purpose, e.g., distributed quantum computing
applications. In that case, quantum nodes can use entangle-
ment distillation protocols to turn low-fidelity entangled links
into links of higher fidelity using local operations. The en-
tangled links that we consider—of the Werner form (1)—are
entangled for a fidelity F > % (x> %) [47]. Then bipartite
distillation protocols [48,49] can distill multiple initial entan-
gled links of fidelity F' > % to a new link of fidelity F’ > F.

In this way, nodes ensuring a minimum fidelity Fi,;, > % can
generate higher-fidelity links if their application requires so.
In general, we choose the lower bound Fi,;, = % to analyze
performance at the extreme of “useful” links (note that we
require Fpi, = % + € for a tiny € > 0; however, this € would
have an insignificant influence on calculating Inequality (2),
so we omit it for simplicity).

Although implementing such distillation is outside the
scope of this work, distillation can be incorporated into our
model. For example, at the entanglement generation level, we
could integrate distillation in the deterministic entanglement
generation protocol we discussed above. To account for the
time needed to implement the distillation, the unit of dis-
cretized time increases and, consequently, 7 and #.,; decrease
in terms of this discretized time. Additionally, we should
adjust pgen and Fey according to the results of the distillation
protocol. For existing links, we could integrate distillation
(as part of an application) in the CD protocol (Algorithm 1)
(see also the CD protocol of Ref. [12] and their discussion of
integrating distillation in Appendix A).

From the parameters related by Inequality (2), we adopt the
cutoff time 7., and the maximum swap distance M as simu-
lation parameters. If we want to investigate various coherence
times T, then we associate values of f., that satisfy Inequality
(2) and use those values in our simulations. Similarly, if we
want to vary the entanglement generation fidelity Fy, then
we associate values of M that satisfy Inequality (2). In addi-
tion to the remarks in Sec. II B, we require

3 AFpin — 1\ ¥
<1,
AFpey — 1 3

since the cutoff must be positive. If we assume Fi;, = % and
want some M > 1, then we see that there is some minimum
Fhew to satisfy Inequality (A3) regardless of the 7. Lower

3 (4Fmin —

feut g —T1In
4Few — 1 3

(A3)

ALGORITHM 2. Steady-state estimation.

Inputs:
(1) Xy (t): the sample mean of the stochastic process {X ()}
observed over N realizations at times t = to, t1, ..., ti_1;
(2) a, b: the minimum and maximum values of the stochastic
process {X (1)};
(3) w: size of the steady-state window.
Ouptut:
(1) Assesment of whether Xy (¢) has attained a steady state in
the time window W ={{ —w, ¢ —w+1,...,¢ —1}.
Algorithm:
1: Define the error &’ < 3(b — a)/\/ﬁ.
2: Define the steady-state window
W—{{—-—wl—w+1,...,£—1}.
3: Calculate the size of the interval of confidence
Ajj < 26" — | Xy(t;) — Xy (1)), Vi, j € W and i # j.
4: If the interval of confidence A;; < %s’, then abort (steady state
not found). Otherwise, declare success (steady state present in
the time window).

values of M result in lower required values of Fpey (assuming
constant Fi,;,) and vice versa, motivating our choice to relate
the values of F,., and M and those of 7" and 7.

Experimentally, multiqubit nodes that combine commu-
nication and memory qubits can reach coherence times in
the order of seconds [50]. In the CD protocol, we discretize
time in units associated with the generation rate of protocols
that guarantee the generation of entangled links at specified
intervals. As discussed above, such protocols currently deliver
(on the order of) tens of links per second. Accordingly, we
employ values of the coherence times 7 that may be feasible
in the near future, i.e., coherence times of tens to hundreds
of time steps. Using the entanglement generation fidelities
we discussed above, we retrieve reasonable values for the
maximum swap distance M via Inequality (2).

Last, we assume that quantum nodes have a “large-enough”
number of memories. When not attempting entanglement
swaps (¢ = 0), nodes can store all entangled links until they
discard the links when they age to the cutoff time. This trans-
lates into nodes storing at most d f.,, entangled links, where d
is the physical degree of the node. With the moderate values
of the cutoff time 7., we employ in this work, the number of
qubits required per node is relatively close to experimentally
achieved values [40].

APPENDIX B: DATA SAMPLING

In this Appendix, we present our data sampling technique
to obtain the performance metrics shown in this paper. In
particular, to estimate the expected virtual neighborhood size
v; (3) and the expected virtual node degree k; (4), we employ
discrete-time network simulations that implement the CD pro-
tocol (Algorithm 1). We simulate the networks for £ time steps
and verify (using Algorithm 2) that the performance metrics
attain their steady state at the end of the simulation during
a time window w, i.e., at times ¢ = fy_y,, ty—w41, .- -, te—1. If
the steady state is achieved, then we estimate the expected
virtual neighborhood size and expected virtual node degree by
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sampling the performance metrics at the final time step over
many (N = 10*) network simulations,

v = tlim Efvi(t)] ~ v y(te—1), (BD)
ki = tlim Elki(1)] ~ kin(te—1). (B2)

Here v; y(t,—1) and IE,-, ~(tg—1) are the virtual neighborhood size
and virtual node degree of node i at time #,_; averaged over a
sample with N realizations.

We now discuss the algorithm to find the steady-state ex-
pected value of a stochastic process given a sample of N
realizations as introduced by Ref. [12, Appendix D, Algo-
rithm 2]. Specifically, algorithm 2 determines whether the
sample mean of the stochastic process {X(¢)} over N real-
izations attains a steady state, which is an adaptation of the
steady-state algorithm of Ref. [12] to better to suit our needs.
Specifically, we only employ steps 1-4 of the steady-state al-
gorithm of Ref. [12] (further steps determined when the steady
state starts). Furthermore, compared to the error ¢ employed
by Ref. [12], we adjust the error & = 3¢ to ensure that the
algorithm declares that the steady state has been reached once
we are “close enough” to the steady-state value (see below for
more details).

We now adjust the results found by Ref. [12] to conform to
the choice of ¢’ in Algorithm 2. Let us consider a stochas-
tic process {X(¢)}. We assume that {X(¢)} has a constant,
steady-state mean, lim,_, o E[X (t)] = Xo, < 00, and a finite
variance, o (t)> < 00. Observing the stochastic process over N
realizations at times t = {to, t1,...ty_1},to <t < --- <top_q,
we denote the value taken in realization n as x,(t), where
a < x,(t) < b, with a,b € R. Then, we denote the sample
average at time ¢ over N realizations as

1 N—1
Xy = = 3 (0. (B3)
n=0

Now let us assume that {X ()} has attained a steady state
at some time t = t,. Then, considering X (¢;) for all i > «,
we follow Ref. [12] and use the central limit theorem and
the properties of a normal distribution (the probability that a
normally distributed random variable takes a value more than
six standard deviations from the mean value is approximately
2 x 1079), to conclude that

_ 6o(t) - 60 (1)
Pr I:E[X(t[)] € <XN(t) - W,XN(I) + JN >i|

>1-2x107~1. (B4)

Now, let us define an error ¢’ = 3(b — a)/+/N and consider
a confidence interval for the steady-state sample average of
X (),

IC; = (Xn(t) — &', Xn () + €). (BS)
Furthermore, we use that the standard deviation is bounded by
o(t) < (b—a)/2 such that &' = 3(b — a)//N > 60(t)/+/N.
Then it follows from probability (B4) that

Pr(E[X ()] € IC;] ~ 1. (B6)
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FIG. 7. Generally, the virtual neighborhood size v; and the vir-
tual node degree k; quickly converge to a steady state. Performance
metrics [(a), (c), (e), and (g)] v; and [(b), (d), (f), and (h)] k; as
a function of time in infinite [(a)—(d)] square-lattice networks and
[(e)—(f)] honeycomb-lattice networks. We vary [(a), (c), (e), (g)] the
cutoff time 7., = 10 time steps (coherence time 7" = 45 time steps)
and [(b), (d), (f), (h)] tcwe = 2 time steps (T = 9 time steps) as well as
the swap attempt probability ¢ = 1, 0.7, 0.4, 0.1 (colored from light
to dark). In networks with a square-lattice topology [(a)—(d)], the
performance metrics reach their steady after approximately 7., time
steps. The situation is similar for infinite honeycomb-lattice networks
[(e)—(h)], except that, when nodes attempt swaps often (large g), the
performance metrics show periodic oscillations, i.e., the metrics do
not attain a steady state. We consider an entanglement generation
fidelity Frew = 0.9 (maximum swap distance M = 3). We assume
that nodes generate entanglement and execute swaps deterministi-
cally (Pgen, Pswap = 1) and that nodes require a minimum link fidelity
Foin = % Results obtained using network simulations and Monte
Carlo sampling with N = 10* realizations per sample, presented with
an error band of +6s/+/N (generally smaller than the line width),
where s is the sample standard deviation.

Similarly, we consider the steady state X (#;) and X (¢;) for
all i, j > «, and follow Ref. [12, Equation D.9] to find that

1-2x107° 0.9973
PrlE[X ()] € IC;;] > 2 + > ~1 (B7)

022429-11



TALSMA, INESTA, AND WEHNER PHYSICAL REVIEW A 110, 022429 (2024)

Vi 161 @ [ (b)
12 | r B

8 - -

=
-
%)
iS)
1
©
1
=
1
S

99 - - - -
100

33

(’

L 1 1 1 | L 1 1 1 | L 1 1 1

0 0.5 1 0 0.5 1 0 0.5
Swap probability g

-
o
o
3
-

FIG. 8. The maximum virtual neighborhood size v; and virtual node degree k; increase with the physical node degree d. Performance
metrics [(a)—(d)] v; and [(e)-(h)] k; as a function of the swap attempt probability g. We vary the coherence time 7 = 10, 50, 100 time
steps (cutoff time 7., = 2, 11, 22 time steps; colored from light to dark) in infinite [(a) and (e)] chains (d = 2), [(b) and (f)] honeycomb
lattices (d = 3), [(c) and (g)] square lattices (d = 4) and [(d) and (h)] triangular lattices (d = 6). The bound on v; and, consequently, v;
itself increases more than the physical node degree ratio 3/2 when going from d = 2 to d = 3 (see Appendix B, Table II). The growth of
v; diminishes when the physical node degree increases further to d = 4 and d = 6. The number of links connected to node i, k;, decreases
monotonically from a maximum k; = d ., (¢ = 0; nodes only share entangled links with physical neighbors and generate entangled links
with all their d physical neighbors) to k; = 0 as ¢ = 1 (nodes discard all links as nodes involve all of them in too many swaps). We consider
an entanglement generation fidelity Fpe,, = 0.9 (maximum swap distance M = 3). We assume that nodes generate entanglement and execute
swaps deterministically (Pgen, Pswap = 1) and that nodes require a minimum link fidelity Fr, = % Results obtained using network simulations
and Monte Carlo sampling with N = 10* realizations per sample, presented with an error band of +6s/+/N (generally smaller than the line
width), where s is the sample standard deviation. We omit the performance metrics for d = 3, T = 10 time steps, and ¢ = 0.95,0.96, ..., 1
as those simulations did not attain a steady state; see the notes on the existence of a unique steady state in Appendix B.

for an interval of confidence ij chain networks, which we simulate for 6¢.,, time steps). Visual
_ _ , inspection (see Fig. 7) showed that the performance metrics
IG;; = (max(XN (), Xn(t))) — €, converged quickly to their steady states, with Algorithm 2

min(Xy (t;), Xy (¢ i)+ 8’). (BS) confirming that the performance metrics reached the steady
state.

As noted previously by Ref. [12], the overlaps between
intervals of confidence A;; may be too small in specific sce-
narios, meaning that Algorithm 2 aborts, even when a closer

Ay =2¢" — Ry (t:) — K (1), (B9) V'isual in§pection strongly indicates that the perfqrmance met-

rics attain some form of a steady state. For instance, the

We used that ¢’ = 3(b — a)/~/N > 60(t)/~/N and that the error is relatively small when the upper bound b is relatively
probability that a normally distributed random variable takes 10w, e.g., when the cutoff time 7cy is short, or the maximum
a value more than six respectively three standard deviations swap distance M is low. Then, using the original error ¢ =
from the mean is approximately 2 x 10~ and 0.0027. (b — a)/~/N, the performance metrics [sometimes v;(7), other

For infinite quantum networks with a regular topology with
a physical node degree d, the virtual neighborhood size v; and
the virtual node degree k; are bounded by a function of the TABLE II. Bounds on the virtual neighborhood size v; and the
cutoff time 7., and the maximum swap distance M (Table II) virtual node degree k; in infinite regular networks.

[51, see Appendix B for details]. We use these values as the
upper bound b in calculating the error ¢’. Note that, in finite v; k;
networks, the boundary nodes have fewer than d physical

This interval indicates the overlap in the intervals of confi-
dence for the steady-state sample averages of X (¢;) and X (¢;)
and has a size

neighbors such that also the upper bound b is smaller. We d=2 ) 2 min (IIC““M) 2o
also note that the performance metrics are bounded below by ~ 4 =3 3min (fou, ;M (M + 1)) 3o
a=0. d=4 4min (e, sMM + 1)) Aty

We execute each network simulation for 37, time steps d=6 6 min (few, MM + 1)) 6

and use a steady-state window w = f, (except for the finite
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FIG. 9. The maximum virtual neighborhood size v; and virtual node degree k; increase with the physical node degree d. Performance
metrics [(a)—(d)] v; and [(e)-(h)] &; as a function of the swap attempt probability g. We vary the entanglement generation fidelity F, =
0.6, 0.8, 1 (maximum swap distance M = 1, 2, 4; colored from light to dark) in infinite [(a) and (e)] chains (d = 2), [(b) and (f)] honeycomb
lattices (d = 3), [(c) and (g)] square lattices (d = 4), and [(d) and (h)] triangular lattices (d = 6). We consider a coherence time 7 = 50 time
steps (cutoff time #.,; = 11 time steps). We assume that nodes generate entanglement and execute swaps deterministically (Pgen, Pswap = 1) and
that nodes require a minimum link fidelity Fi,;, = % Results obtained using network simulations and Monte Carlo sampling with N = 10*

realizations per sample, presented with an error band of +6s/+/N (generally smaller than the line width), where s is the sample standard

deviation.

times k;(¢)] did not attain a steady state for some values of g
according to Algorithm 2. However, the resulting “unsteady-
state” values were strongly in line with expectations compared
to the steady-state values of nearby swap probabilities g. To
prevent Algorithm 2 from aborting in such a situation, we
redefine the error ¢’ = 3(b — a)/~/N = 3¢ (which is similar
to increasing the value of b as proposed by Ref. [12]).

We measure the error in the estimate of the expected
steady-state values using the standard error sy = s/+/N,
where s is the sample (N realizations) standard deviation.
The plots in this work show the data as X & 6sg, providing a
1 —2 x 107° & 100% interval of confidence. Even with such
a large confidence interval, most error bands are on the order
of or smaller than the plot line width.

1. Notes on the existence of a unique steady state

Reference [12] showed that there is a unique steady-state
value for the expected number of virtual neighbors v;
lim,_, o, E[v;(¢)] and expected virtual degree of any node k;
lim,_, oo E[k;(¢)] when a quantum network is running the CD
protocol of Algorithm 1. This proof is under the assump-
tion that entanglement generation is probabilistic, pgen < 1.
However, we generally assume pge, = 1 to simplify perfor-
mance analysis. We now elaborate on the assumption that the
unique steady state also exists when pgep = 1.

The proof of Ref. [12] uses that the steady state is unique
for an aperiodic, irreducible, positive recurrent Markov chain
[52, Theorem 9.3.6]. In particular, they use the ages of all
entangled links in the network to represent the state of the
network s and the set of all possible states S (both finite). Then

they show that the transition of a state s(z), t € N (discrete
time steps) does not depend on past information,

Pr(s(t + 1) =0 | 5(0), s(1), ..., s()]

=Prls¢t +1)=0|s)]. (B10)
Hence, the state of the network can be modeled as a Markov
chain. Then they show that this Markov chain is aperiodic,
irreducible, and positive recurrent using that, for pgen, < 1,
there is a nonzero probability of returning to the initial state
(no links). They conclude that the limit lim,_, o, Pr[s(t) = o],
Vo € S is unique and exists. Last, they express v; and k; as a
function of this limit to conclude that v; and k; also exist and
are unique.

From their simulations, Ref. [12] also expects a unique
steady state for peen = 1. However, they note that “the main
difficulty in proving its existence is that the Markov chain is
not always irreducible (the state with no links may not be
reachable from some other states since links are generated
at the maximum rate).” We observe almost indistinguishable
steady-state behavior when pge, = 0.99 compared to pgen = 1
[Fig. 5(a)]. Additionally, we observe that the performance
metrics appear to quickly converge to a steady state (Fig. 7).

We note that for regular networks and a nonzero probability
of nodes attempting entanglement swaps (¢ > 0), there is a
nonzero probability that all links are involved in too many
swaps and discarded. That is, the state of the network re-
turns to the initial state of no links (for ¢ = 0 and pgen =1,
the system deterministically reaches v; = d, k; = d t¢). For
example, starting from the initial (no links) state, regular net-
works with an even number of physical neighbors can pair
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FIG. 10. Independent of the choice of network parameters, the
optimal probability of attempting to swap ¢ depends on the coher-
ence time 7 and entanglement generation fidelity Fey. [(a) and (b)]
Virtual neighborhood size v; and [(c) and (d)] virtual node degree
k; of a node in an infinite square lattice (d = 4) as a function of
q. We vary [(a) and (c)] T = 25,100, 300 time steps (cutoff time
tewr = 3, 14, 42 time steps) and [(b) and (d)] Frew = 0.85,0.95, 0.99
(maximum swap distance M = 1, 2, 3); both colored from light to
dark. Similarly to Fig. 3 but for different network parameters, the
optimal g decreases with longer 7' and increases for higher F,,, and
k; decreases monotonically as g increases. Note that for long 7 and
decreasing ¢, the maximum v; seems to approach the bound on v;
(a). For a relatively short T = 75 (fy, = 6), the cutoff time quickly
limits v; for increasing Few (b). We consider [(a) and (¢)] Frew = 0.99
(M =2) and [(b) and (d)] T = 75 time steps (f,,y = 6 time steps).
We assume that nodes generate entanglement and execute swaps
probabilistically (pgen = 0.99, pgwap = 0.5) and that nodes require
a minimum link fidelity F,;, = 0.8. Results obtained using network
simulations and Monte Carlo sampling with N = 10* realizations per
sample, presented with an error band of +6s/+/N (generally smaller
than the line width), where s is the sample standard deviation.

the even number of generated links (pgen = 1) to involve each
link in too many swaps (resulting in v;, k; = 0 when g # 0).
However, in a network with a honeycomb topology (d = 3),
nodes generate three links in each time step, meaning that it
is more challenging to match all the links in a way where
all links are involved in too many swaps. This difficulty in
matching links results in nonzero performance metrics in a
honeycomb lattice as ¢ — 1 (Figs. 8 and 9; the performance
metrics converge to zero for the other topologies).

On closer inspection (Fig. 7), we see that the performance
metrics show periodic oscillations as ¢ = 1 in a honeycomb
lattice network (d = 3). To illustrate how this happens, as-
sume that nodes will always attempt swaps (¢ = 1) and that
the performance metrics start without links. Then, nodes gen-
erate three links at the first time step and generally swap two
links. This makes it challenging to involve each link in too
many swaps (M), not removing all links at this first time step.
Then, in the next time step, nodes again generate three links,
meaning some nodes now have four links that nodes can all
swap. At the end of this step, nodes have involved more links

in too many swaps, thus discarding them, resulting in lower
performance metrics. This oscillatory behavior diminishes af-
ter some time. For longer cutoff times 7., and simulation times
(recall that we simulate the networks for 37, time steps),
there is “enough” time for this periodicity to vanish [Figs. 7(e)
and 7(g)] and for Algorithm 2 to declare a steady state has
been attained. However, for short 7., the periodicity is still
strong after 3f., time steps and Algorithm 2 declares there
is no steady state [as is the case for ¢ = 0.95,0.96,...,1
in Figs. 8(b) and 8(f) with f.: = 2; we omit those values in
the plot for d = 3]. Additionally, the oscillatory behavior per-
sists longer when ., is small, diminishing for (significantly)
longer simulation times.

Last, we note that the proof by Ref. [12] assumes that the
state space of the network is finite. However, Theorem 9.3.6
[52] also applies to Markov chains with an infinite state space,
as is the case for infinite networks. The difficulty becomes
showing that the chain is positive recurrent, i.e., for a state to
have a finite mean return time (for finite-state space chains, it
is sufficient to be irreducible in order to be positive recurrent
[52, Theorem 9.3.5]).

APPENDIX C: EXTENDED NETWORK SIMULATIONS

In this Appendix, we provide additional data to the results
presented in Sec. III. In particular, we present both the virtual
neighborhood size v; and virtual node degree k; for all the infi-
nite regular topologies (d = 2, 3, 4, 6) for varying coherence
times 7 (Fig. 8) and for varying entanglement generation fi-
delity Fpew (Fig. 9). Additionally, we present the performance
metrics in an infinite square-lattice network for varying T and
Frew with different network parameters (Fig. 10). Last, we
present k; in addition to v; for finite chains and finite square
lattices (Fig. 11).

For increasing physical node degrees d, the maximum vir-
tual neighborhood size v; also increases (Figs. 8 and 9). For
example, increasing d = 2 to d = 3 increases the maximum
value of v; by more than the ratio of node degrees (3/2).
We note that, for increasing maximum swap distance M,
the bound on v; grows quicker in networks with d = 3 than
those with d = 2 (see Appendix B, Table II). For example,
increasing M = 1 — M = 2 (and assuming sufficiently large
fout such that v; is not bounded by the cutoff time), the bound
on v; increases from 2 — 4 when d = 2, and from 3 — 9
when d = 3. Increasing the physical node degree to d =4
and d = 6 still increases the maximum v;, but the increase
relative to the ratio of physical node degrees (compared to
d = 2) diminishes.

The performance metrics show the same qualitative be-
havior for different combinations of network parameters.
For example, using probabilistic entanglement generation
and execution of swaps (Pgen = 0.99, peywap = 0.5; in con-
trast to deterministic generation and execution we previously
assumed) and a higher minimum required fidelity (Fpi, =
0.8), (i) the virtual neighborhood size v; still increases with
longer coherence time 7 and better entanglement generation
fidelity Fpey, (ii) the optimal swap probability g—maximizing
vi—decreases for longer 7' and increases for higher Fi.y,, and
(iii) the virtual node degree k; decreases monotonically for

022429-14



CONTINUOUSLY DISTRIBUTING ENTANGLEMENT IN ...

PHYSICAL REVIEW A 110, 022429 (2024)

vi 5 () Edge v,
4l °®
sl o
@® Center
2 -
o
r o
0 - L 1 1 1 ] Edge
ki 22 (©) Edge ki
o
o
11+ @ Center
([
o
o+ Edge

0.5
Swap probability g

o
-

10 - (b) o o o
sl ° °
6 F
([ o o
4+
2r ([ o
0_I 1 1 1 | . . .
44 - d) o o o
o o
33+
22 | ([ o o
11+ ° PY
ok o o o

0.5
Swap probability g

o
-

FIG. 11. Similarly to the virtual neighborhood size v;, the behavior of the virtual node degree k; as a function of the swap attempt probability
q strongly depends on a node’s location in a finite chain but, in a finite square lattice, it behaves qualitatively the same for all nodes. Performance
metrics [(a) and (b)] v; and [(c) and (d)] &; as a function of g for nodes near and far from the network boundary (colored from light to dark) in a
finite [(a) and (c¢)] chain (d = 2) and [(b) and (d)] square lattice (d = 4). We consider a coherence time 7" = 50 time steps (cutoff time 7., = 11
time steps) and an entanglement generation fidelity F.,, = 0.9 (maximum swap distance M = 3). We assume that nodes generate entanglement
and execute swaps deterministically (Pgen, Pswap = 1) and that nodes require a minimum link fidelity Fy, = % Results obtained with network

simulations and Monte Carlo sampling with N = 10* realizations per sample, presented with an error band of £6s/+/N (generally smaller

than the line width), where s is the sample standard deviation.

increasing ¢, going from k; = dt.t (g =0)tok;=0(g = 1)
(Fig. 10; for more details on the influence of probabilistic
entanglement generation and swap execution on the behav-
ior of the performance metrics, see Appendix A, Fig. 5).
Additionally, we note that for long 7' (and associated long
fout), the maximum v; seems to approach the bound on v; as
nodes attempt very few swaps (low ¢). For a maximum swap
distance M = 2, v; is bounded by 4 min (fcu., M (M + 1)) =
4 x % x 2 x 3 =12 (Appendix B, Table II). Furthermore,
when T, t. are relatively short, increasing Fpe,, results in a
limited increase in the maximum v;.

Similarly to the virtual neighborhood size v;, the effect of
network boundaries on the virtual node degree k; depends
on the network topology (Fig. 11). For the same reasons as
explained in the main text for v;, the behavior of k; depends
on the node’s distance to the edge of a chain. In contrast,
the behavior of k; is qualitatively similar for all nodes in a
finite square-lattice network—decreasing monotonically from
ki =diteu (g =0)tok; =0(q = 1).

Last, for more data, we refer to the Jupyter Notebooks in
this project’s GitHub repository [41] and to the thesis [51] that
uses the same CD protocol.
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