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From the perspective of quantum information theory, the effect of Unruh radiation on a two-level accelerated
detector can be modeled as a quantum channel. In this work we employ the tools of channel-position finding
to locate Unruh channels. The signal-idler and idler-free protocols are explored to determine the position of the
target Unruh channel within a sequence of background channels. We derive the fidelity-based bounds for the
ultimate error probability of each strategy and obtain the conditions where the signal-idler protocol is superior to
the protocol involving idler-free states. It is found that the lower bound of the error probability for the signal-idler
scheme exhibits clear advantages in all cases, while the idler-free scheme can only be implemented when the
temperatures of the two channels are very close and the number of initial states is insufficient. Interestingly, it
is shown that the optimal detection protocol relies on the residual correlations shared between the emitted probe
state and the retained idler modes.
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I. INTRODUCTION

The Unruh effect [1–4] is one of the most monumental
achievements of quantum field theory in curved space-time.
It plays a crucial role in the understanding of vacuum fluc-
tuations and the nature of quantum thermal effects. It was
predicted that a uniformly accelerated observer will detect
a thermal bath by expressing the vacuum state in terms of
a different set of operator bases defined along the timelike
killing vector in their locally accelerated coordinate system
[5–9]. A variety of techniques have been employed to analyze
this phenomenon including the response of a two-level sys-
tem, referred to as an Unruh-DeWitt (UD) detector [10–13],
when it absorbs these thermal particles. Studying the Unruh
effect from the perspective of quantum information theory not
only could be helpful in understanding the Hawking effect
[14–16], but also provides an explanation for the genera-
tion and degradation of entanglement in curved space-time
[17–19]. The direct observation of the Unruh effect is con-
sidered as one of the key experimental goals of contemporary
physics [20–24]. However, a simple calculation shows that
an Unruh temperature of 1 K corresponds to an acceleration
of the order of approximately 1021 m/s2, which is extremely
challenging to obtain [23,24]. In this sense, the technical
obstacles to the detection of Unruh radiation lead to the indis-
tinguishability of the Unruh channel in a general relativistic
background.

On the other hand, quantum channels can model various
physical processes [25,26], so the discrimination of different
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quantum channels [27–30] is a fundamental task in quantum
information theory. The theory of channel-position finding
(CPF) has been effectively used to determine the target chan-
nel with varying transmittance or induced noise within a
range of background loss channels [28–30]. Recently, the
advantages of quantum entanglement have been demonstrated
in CPF, for example, the thermal loss channel [25] and the
amplitude damping channel [31,32]. In this paper we study the
task of determining the location of Unruh channels, in which
different accelerations would induce differentiated responses
in the detectors [10,11,13,33]. Using the UD detector model,
the task of identifying the channel temperature difference is
simplified to identifying the detector acceleration.

Here we focus on the problem of CPF under the constraint
that the sources considered are comprised of at most one
photon. Two protocols will be considered: the signal-idler
(SI) protocol and idler-free (IF) protocol. In fact, in the ap-
plications of quantum sensing, the assistance of idler modes
has been a crucial feature to achieve quantum enhanced per-
formance [34,35], but the IF channel identification schemes
have also received a great deal of attention because of their
ability to eliminate quantum memory [29,36]. We consider
two scenarios: (i) The temperature of the target channel is
zero and it is located within a series of reference channels and
(ii) the temperature difference between the target channel and
the reference channel is particularly small. These two scenar-
ios effectively encompass the potential background in which
the target channel may exist. We establish fidelity-based
bounds on the final error probability in the multiple-channel-
discrimination problem and identify the quantum dominance
involving various quantum sources. The main purpose of our
study is to find the optimal strategy for locating the Unruh
channels and the optimal operating conditions for different
strategies.
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This paper is organized as follows. Section II outlines
the Unruh channel-discrimination task. In Sec. III we calcu-
late the detection error probability of the SI protocol and IF
protocol for locating Unruh channels. Section IV compares
the advantage of detection error probabilities between the SI
protocol and the IF protocol. Section V presents a summary.
Throughout the paper, we adopt the conventions h̄ = G = c =
κB = 1.

II. UNRUH CHANNEL DISCRIMINATION TASK

A. Unruh channel

In this section we discuss the channel characterization of
the Unruh effect on an accelerating detector. We consider a
two-level semiclassical UD detector [10,11], where the detec-
tor follows a classical world line while its degrees of freedom
remain quantum. For a two-qubit system involving Alice and
Rob, the detectors carried by Alice remain static, while Rob’s
detector undergoes uniform acceleration a in the x direction
and its duration of motion is denoted by �. The world line of
Rob is described as

t (τ ) = a−1 sinh aτ , x(τ ) = a−1 cosh aτ ,

y(τ ) = z(τ ) = 0, (1)

where τ is the acceleration detector proper time.
The initial state of the total system (detector plus field) is

given by ∣∣�ARφ
−∞

〉 = ∣∣�AR
−∞

〉 ⊗ |0M〉, (2)

where |�AR
−∞〉 = α|0A〉|1R〉 + β|1A〉|0R〉 defines the initial

state shared by Alice’s (A) and Rob’s (R) detectors, with
|α|2 + |β|2 = 1. Here |0M〉 represents that the external scalar
field is in the Minkowski vacuum.

The total system Hamiltonian can be expressed as

H = HA + HR + HKG + HRφ

int , (3)

where HA = 	A†A, HR = 	R†R, 	 represents the detectors’
energy gap, and HKG represents the Hamiltonian for the free
Klein-Gordon field. The accelerated detector Rob is coupled
to a scalar field φ(x) through the interaction Hamiltonian [2]

HRφ

int (t ) = ε(t )
∫

�t

d3x
√−gφ(x)[ψ (x)R + ψ∗(x)R†], (4)

where g ≡ det(gab) and x represent the coordinates defined
on the Cauchy surface �t=const associated with some suitable
timelike isometry. The smooth compact support real-valued
function ε is introduced to ensure that the detector is active for
a finite proper time interval �. For the purposes of this analy-
sis, we consider the detector to be localized as given by the
Gaussian ψ (x) = (κ

√
2π )−3exp(−x2/2κ2), where variance

κ = const � 1 determines the width of the Gaussian state.
In the interaction picture, the final state |�ARφ

t 〉 describing
the total system in the first-order perturbation is given by∣∣�ARφ

t

〉 = [I + a†
RI(λ)R − aRI(λ̄)R†]

∣∣�ARφ
−∞

〉
, (5)

where |�ARφ
−∞ 〉 is the corresponding initial state, λ = −KE f ,

f ≡ ε(t )ψ (x)e−i	t , E is the difference between the advanced
and retarded Green’s functions, K is an operator that takes the

positive-frequency part of the solutions of the Klein-Gordon
equation with respect to the timelike isometry, and aRI(λ) and
a†

RI(λ) represent the annihilation and creation operators for the
λ mode, respectively. By inserting Eq. (2) into Eq. (5), we
obtain∣∣�ARφ

t

〉 = ∣∣�ARφ
−∞

〉 + α|0A〉|0R〉 ⊗ [a†
RI(λ)|0M〉] + β|1A〉|1R〉

⊗ [aRI(λ)|0M〉]. (6)

The Bogoliubov transformations between the Rindler opera-
tors and the operators annihilating the Minkowski vacuum can
be expressed as [10,11]

aRI(λ̄) = aM (F1	) + e−π	/aa†
M (F2	)

(1 − e−2π	/a)1/2
,

a†
RI(λ) = a†

M (F1	) + e−π	/aaM (F2	)

(1 − e−2π	/a)1/2
, (7)

where F1	 = λ+e−π	/aλ◦w
(1−e−2π	/a )1/2 , F2	 = λ◦w+e−π	/aλ

(1−e−2π	/a )1/2 , and w(t, x) =
(−t,−x) represents the wedge reflection isometry.

The reduced density matrix of the two-qubit state is ob-
tained by tracing out the degrees of freedom associated with
the scalar field

ρAR
t = ∥∥�

ARφ
t

∥∥−2
Trφ

∣∣�ARφ
t

〉〈
�

ARφ
t

∣∣

=

⎛
⎜⎜⎜⎝
C 0 0 0
0 |α|2A αβA 0
0 αβA |β|2A 0
0 0 0 B

⎞
⎟⎟⎟⎠, (8)

where

A = 1 − q

(1 − q) + ν2(|α|2 + |β|2q)
,

B = ν2|β|2q

(1 − q) + ν2(|α|2 + |β|2q)
,

C = ν2|α|2
(1 − q) + ν2(|α|2 + |β|2q)

, (9)

with the parametrized acceleration q ≡ e−2π	/a. The effective
coupling between the detector and the scalar field is ν2 ≡
‖λ‖2 = ε2	�

2π
e−	2κ2

[8,10,11,13], where 	−1 � � is neces-
sary for the validity of the above definition. In the present
work the coupling parameter is constrained to ν2 � 1 to
ensure the validity of the perturbative approach. Notably, q
is a monotonic function of the acceleration a, and q → 0
corresponds to zero acceleration and zero temperature. These
facts suggest that the Unruh effect can be interpreted as a
noisy quantum channel.

The dynamics of open quantum systems can be character-
ized as follows. The evolution from the initial state ρAR

−∞ to the
final state ρAR

t can alternatively be expressed as

ρAR
t = U (t )ρAR

−∞U †(t ), (10)

where U (t ) is the propagator of the joint system dynamics
from the initial time to the final time. The object of interest
is the subsystem R, whose state at any times t is governed
by the standard quantum-mechanical prescription through the
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FIG. 1. Our setup for the CPF protocol that provides a benchmark for the general quantum channel. We assume N boxes, consisting of
a target channel and N − 1 reference channels. Two different protocols for the CPF of the Unruh channel are employed: (a) the signal-idler
protocol of the CPF and (b) the idler-free protocol of the CPF for biphoton states.

following quantum dynamical process:

ρR
t = TrB

[
U (t )ρAR

−∞U †(t )
]
. (11)

The quantum dynamical process can be represented by the
quantum map Cρ defined as

Cρ =
∞∑
j

MR
j ρ0MR†

j , (12)

where ρ0 is an initial state and MR
j represents an operator

for different dynamical evolution processes. Based on the
preceding analysis and calculations, the Unruh channel with
operators MR

j acting on Rob can be characterized by the Choi
matrix

MR
1 =

(√
1 − q 0
0

√
1 − q

)
, MR

2 =
(

0 0
ν
√

q 0

)
,

MR
3 =

(
0 ν

0 0

)
. (13)

Accelerated quantum systems interacting with fields in-
evitably undergo the quantum dynamics of the Unruh
effect. This quantum process can be characterized by the
parametrized acceleration q and the effective coupling param-
eter ν. We consider the subsystem ρA

t , where MA represents an
identical operator because the detector of Alice remains static
and switched off. The operator form derivation of the channel
is independent of the form of the initial state.

B. Quantum channel discrimination

In this section we employ the tools of CPF involving N � 2
boxes to locate the target Unruh channel position. As shown
in Fig. 1, the boxes Ci (i = 1, 2, . . . , N) are modeled as Unruh
channels with different temperatures. The target channel CT
occupies one box with the parametrized acceleration qi, while
the other N − 1 boxes represent the reference channel CR with

the parametrized acceleration q j �=i. Identification of the target
Unruh channel is a symmetric hypothesis testing problem
where the task is to discriminate between N hypotheses given
by [37,38]

Hi : Ci = CT , C j �=i = CR. (14)

At the transmitter, the initial state ρ in is injected into each
of the boxes. Each channel is represented by an accelerated
detector which interacts with its surroundings [13], and this
detection process can be described as a quantum map for the
quantum state. The task of correctly identifying the target
channel in a series of reference channels may be reduced to
distinguishing the possible channel outputs [28–30]. The abil-
ity to do this accurately, with a low error probability, directly
relates to an ability to determine the correct result. Channel
patterns are probed using M  1 identical and independent

copies of some input probe state ρ in
⊗

M
. After M pattern

interactions, an optimized positive-operator-valued measure
is employed for the classification. The detection error prob-
ability pN,M

err (ρ) refers to the error probability of incorrectly
identifying the target channel from a series of reference chan-
nels, constituting a discriminant problem involving N boxes
and M identical transmissions of different types. Exact analyt-
ical forms of the error probability are challenging to compute
except for a few specific quantum states [38,39]. However, the
upper and lower bounds of the error probability are easier to
calculate, which are

pN,M
err (ρ) � pU

err =
∑
n′>n

√
pn′ pn[F (ρ, σ )]2M (15)

and

pN,M
err (ρ) � pL

err = 1
2

∑
n′>n

pn′ pn[F (ρ, σ )]4M, (16)
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where F (ρ, σ ) is the Bures fidelity [40,41]

F (ρ, σ ) := ‖√ρ
√

σ‖1 = tr
√√

ρσ
√

ρ. (17)

It is assumed that all slices may occur with equal probabil-
ity, so we get pn = 1

N for any N . Then we get the simplified
boundary

pU
err = (N − 1)[F (CT , CR)]2M, (18)

pL
err = N − 1

2N
[F (CT , CR)]4M . (19)

III. DETECTION ERROR PROBABILITIES

A. Signal-idler protocol

We first employ the SI strategy to locate the target Unruh
channels. This protocol has been proved effective in discrimi-
nating Gaussian lossy channels [25,26,30–32]. As depicted in
Fig. 1(a), an entanglement-based quantum source is given by
a tensor product over all the boxes (

⊗
N), where each signal

Si (black) box is entangled with an ancillary idler Ii (red). The
input state for each box is a maximally entangled state

|� in〉 = 1√
2

(|00〉 + |11〉). (20)

Only the signal probes the box, while the idler state is directly
sent to the receiver for combination with the output. The
associated quantum channel is expressed as

EN
i :=

⊗
j �=i

(CR j ⊗ II j ) ⊗ (CT i ⊗ IIi ). (21)

Upon the action of an Unruh channel only on the signal mode
while performing the identity on the reference idler mode, we
obtain the density operator of the output state

ρout = 1 − q

2
(|00〉〈00| + |00〉〈11| + |11〉〈00| + |11〉〈11|)

+ ν2

2
|01〉〈01| + qν2

2
|10〉〈10|. (22)

Computing the fidelity between two output states under differ-
ing Unruh channels with the parametrized acceleration q1 and
q2, which correspond to accelerations a1 and a2, respectively,

we obtain

F
(
ρout

q1
, ρout

q2

) = 1
4 [4(−1 + q1)(−1 + q2) + (1 + q1q2)ν4]

+ 1
4

[√−4(−2 + q1)q1 − (
1 + q2

1

)
ν4

×
√

−4(−2 + q2)q2 − (
1 + q2

2

)
ν4

]
. (23)

By inserting Eq. (23) into Eqs. (18) and (19), the error prob-
ability for the SI protocol is then lower and upper bounded
by

pN,M
err (ρ) � pSI,L

err = N − 1

2N

[
F

(
ρout

q1
, ρout

q2

)]4M
(24)

and

pN,M
err (ρ) � pSI,U

err = (N − 1)
[
F

(
ρout

q1
, ρout

q2

)]2M
, (25)

respectively.
B. Idler-free protocol

Now we consider the IF protocol without idler mode reser-
vation. In this case, the two-mode state ρ in serves as probes
into two adjacent boxes, with the modes labeled as signals S1

and S2, as illustrated in Fig. 1(b). While the optimal quantum
strategy for various scenarios, such as quantum illumination
[35,42,43], spectroscopy [44], and quantum readings [45],
often involves an entangled idler-assisted protocol, the storage
of the idler mode poses a challenging task. The character of
IF protocols lies in their ease of implementation and the ab-
sence of considerations for memory construction. Therefore,
investigating the IF strategy is valuable, as it will help us
understand whether quantum superiority can still be achieved
even without a quantum memory for storing the idler mode.

In the IF protocol setup, we take advantage of the complete
entanglement exhibited with the Bell state in the multichannel
array to achieve quantum advantage. For any CPF problem
consisting of N � 4 (even) individual channels, the global
quantum channel acting on the initial state is

EN/2
i :=

⊗
j �=i

(CR j ⊗ CR j ) ⊗ (CT i ⊗ CRi ). (26)

If both modes S1 and S2 pass through two Unruh channels
with the same parametrized acceleration q1, the final state at
the output is

ρout
q1,q1

= 1
2

⎛
⎜⎜⎜⎜⎝

Q2
1 + ν4 0 0 Q2

1

0 Q1ν
2 + Q1q1ν

2 0 0

0 0 Q1ν
2 + Q1q1ν

2 0

Q2
1 0 0 Q2

1 + q2
1ν

4

⎞
⎟⎟⎟⎟⎠, (27)

where Q1 = 1 − q1. If the two modes of the initial state ρ in pass through two Unruh channels with the parametrized accelerations
q1 and q2, the final state at the output takes the form

ρout
q2,q1

= 1
2

⎛
⎜⎜⎜⎜⎝

Q1Q2 + ν4 0 0 Q1Q2

0 Q1ν
2 + Q2q1ν

2 0 0

0 0 Q2ν
2 + Q1q2ν

2 0

Q1Q2 0 0 Q1Q2 + q1q2ν
4

⎞
⎟⎟⎟⎟⎠, (28)
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FIG. 2. Quantum channel-position-finding error probability PN,M
err with N = 4 versus the number of uses M for two types of protocols: a

Bell biphoton state in both a signal-idler (red) and an idler-free (black) setup. The detection error probability of the target channel with zero
acceleration is among reference channels with (a) q1 = 0.1 and (b) q1 = 0.5.

where Q2 = 1 − q2. The lower and upper bounds for the error
probabilities of the correct channel pair, calculated based on
the fidelity between the two output states mentioned, are [30]

p̃N,M
err (ρ) � p̃IF,L

err = N − 2

2N

[
F

(
ρout

q1,q1
, ρout

q2,q1

)]4M
(29)

and

p̃N,M
err (ρ) � p̃IF,U

err = N − 2

2

[
F

(
ρout

q1,q1
, ρout

q2,q1

)]2M
. (30)

The objective of the CPF task is to determine the loca-
tion of the target channel, rather than merely identifying the
pair containing it. In an IF protocol, the first stage involves
successfully identifying the correct pair and the second stage
entails engineering a secondary CPF protocol by combining
the correct pair with two additional reference channels. This
enables us to pinpoint the location of the target channel. To
maintain the energy constraint, we choose to divide the total
number of probes into two parts, generating M/2 probes for
each stage of the IF strategy in the CPF process.

Considering this two-stage approach, there are two ways in
which an overall error can occur. The first scenario involves
misidentifying the pair where the target channel is located in
the initial stage, resulting in a failure to accomplish the task
of locating the target channel. The second scenario involves
correctly identifying the pair in which the target channel is
located in the first stage, but in the second stage, there is an
incorrect identification of which of the two channels is the
target channel. Therefore, we can utilize the relevant lower
and upper bounds to derive the final error probability of the IF
scheme as follows:

pN,M/2
err (|ψ2〉〈ψ2|)

= p̃N,M/2
err (|ψ2〉〈ψ2|) + [

1 − p̃N,M/2
err (|ψ2〉〈ψ2|)

]
p̃4,M/2

err

× (|ψ2〉〈ψ2|). (31)

The pIF,U
err and pIF,L

err are obtained by combining Eqs. (29)–(31).

IV. QUANTUM ADVANTAGE
OF THE SIGNAL-IDLER STRATEGY

In the preceding section we utilized the two-energy level
detector as a thermometer model and the theory of CPF for
discriminating the Unruh temperature. As mentioned earlier,
to find the most effective method for detecting the Unruh
channel, we need to compare the upper and lower bounds
of error probabilities associated with different protocols. De-
noting the upper and lower bounds of the SI (IF) protocols
by pSI,U

err and pSI,L
err (pIF,U

err and pIF,L
err ), respectively, we define

the minimum guaranteed advantage (MGA) as the minimum
performance enhancement achieved by a SI strategy over the
IF one [41],

�pmin
err := pIF,L

err − pSI,U
err . (32)

If �pmin
err > 0, the advantage of the SI strategy is guaranteed.

One can also define the maximum potential advantage (MPA)
as follows:

�pmax
err := pIF,L

err − pSI,L
err . (33)

This represents the maximum potential improvement that
quantum strategies can provide when the derived lower bound
is fundamental.

If the target channel is a zero-acceleration channel within a
series of Unruh reference channels, the probe scheme perfor-
mance is illustrated in Fig. 2. It can be seen that for a given
M, the error probabilities of pSI,U

err and pSI,L
err are both lower

than pIF,L
err . This result shows that the error probabilities bound

in the SI protocol offer robust advantages, including both the
MGA and MPA, along with a scaling advantage in the error
exponent. Figures 2(a) and 2(b) show that this conclusion
remains valid regardless of whether the reference channel is
cryogenic or high temperature. We also find that the MGA
function, which guarantees the advantage of the SI, increases
as the number of copies of transmitted modes M increases.

If the single target channel is subjected to a nonzero
parametrized acceleration q2 = q1 + 0.01, the temperatures
of the target channel and the reference channel become
very close, which makes it difficult to distinguish. Figure 3
illustrates the detection error probabilities versus the number

022428-5



LIU, LIU, WEN, AND WANG PHYSICAL REVIEW A 110, 022428 (2024)

FIG. 3. Quantum channel-position-finding error probability PN,M
err with N = 4 versus the number of uses M for two types of protocols: a

Bell biphoton state in both a signal-idler (red) and an idler-free (black) setup. The detection error probability of the target channel with nonzero
parametrized acceleration (q2 = q1 + 0.01) is among reference channels with (a) q1 = 0.1 and (b) q1 = 0.5.

of modes M for the SI and IF protocols. When resolving
two Unruh temperature channels, the SI scheme requires a
larger number of copies M compared to the IF scheme, which
exhibits both the MPA and MGA. We can conclude that the
IF protocols for channel localization are only feasible with a
small number of copy probes, in which pSI,U

err is greater than
pIF,L

err . This demonstrates that a lower probability of detection
error can be achieved by increasing the number of copy states.
Comparing Figs. 3(a) and 3(b), we observe that both schemes
perform well in locating a range of cryogenic reference chan-
nels, given that high temperatures tend to attenuate the initial
quantum correlation.

Based on the analysis, we observe that the SI scheme
exhibits significant advantages in the CPF task of Unruh chan-
nels, particularly when employing a large number of copy
states. Upon performing the calculations, it becomes evident
that the residual quantum correlation of the final state in
the SI scheme surpasses that of the IF scheme, enhancing
its efficiency in distinguishing between different channels. In
other words, the similarity between the signal and idler states
reduces the error probability of the CPF task. However, it is
worth noting that the IF protocol eliminates the need for idler
assistance to achieve quantum advantages in some of the most
relevant discrimination scenarios, thereby relaxing practical
requirements for prominent quantum sensing applications.

V. CONCLUSION

This paper has presented performance comparisons among
various channel position schemes for the CPF problem, con-
sidering channels with different temperatures. Our detection
scheme is conducted under energy constraints, specifically
utilizing an average of only one photon per channel for de-
tection of the entire channel array. We consider the geometric
characterization of the Unruh channel, where each channel is
represented as an operator resulting from the interaction of an

UD with its environment. We investigate the task of determin-
ing the location of two or more given quantum channels by
exploring the SI and IF protocols. The objective is to pinpoint
the position of a target Unruh channel within a sequence of
reference channels.

In the task of locating between two Unruh channels, we
calculated the output fidelity of CPF to test multiple quan-
tum hypotheses. This provides upper and lower bounds on
the error probability, even in cases of small differences in
channel temperature and the number of probe states is in-
sufficient. When performing the task of distinguishing the
zero-temperature channel and the Unruh channel, we stressed
that the SI strategy outperforms the IF strategy, exhibiting
both MGA and MPA across entire value regions. When re-
solving the target channel and reference channel with very
close temperatures, the IF scheme is effective only in a
scenario with a very low number of copy probes. These find-
ings not only demonstrate that augmenting the number of
copy probes can exponentially enhance the efficiency of the
detection strategy, but also offer a theoretical framework for
laboratories to employ diverse detection protocols for detec-
tion tasks. We hope that our results will stimulate further
research on the discrimination of quantum operations. Our
main lesson is that the residual feeble quantum correlation
may offer an enormous performance advantage despite its
being used in an entanglement-breaking scenario.
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