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Compression of metrological quantum information in the presence of noise
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In quantum metrology, information about unknown parameters θ = (θ1, . . . , θM ) is accessed by measuring
probe states ρ̂θ . In experimental settings where copies of ρ̂θ can be produced rapidly (e.g., in optics), the
information-extraction bottleneck can stem from high postprocessing costs or detector saturation. In these
regimes, it is desirable to compress the information encoded in ρ̂θ

⊗n into m < n copies of a postselected state:
ρ̂

ps
θ

⊗m. Remarkably, recent works have shown that, in the absence of noise, compression can be lossless, for
m/n arbitrarily small. Here, we fully characterize the family of filters that enable lossless compression. Further,
we study the effect of noise on quantum-metrological information amplification. Motivated by experiments,
we consider a popular family of filters, which we show is optimal for qubit probes. Further, we show that,
for the optimal filter in this family, compression is still lossless if noise acts after the filter. However, in the
presence of depolarizing noise before filtering, compression is lossy. In both cases, information extraction can
be implemented significantly better than simply discarding a constant fraction of the states, even in the presence
of strong noise.
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I. INTRODUCTION

Quantum metrology is a promising application of quantum
technologies. By using measurement probes made of quantum
states, quantum metrology exploits nonclassical effects, such
as entanglement and squeezing, to make high-resolution mea-
surements of physical parameters. Using quantum resources,
one can reduce errors in measurements compared to classical
strategies [1–11].

In metrology, one can improve signal-to-noise ratios by
preparing and measuring an increasing number of probes.
However, measurement devices often have limited sensitivity
and suffer from a dead time, i.e., the time needed to reset
a detector after triggering it. Moreover, each measurement
might generate large overheads in terms of postprocessing.
Even if probes are “cheap” to produce, they may be expensive
to measure.

These problems can be mitigated by compressing metro-
logical information into fewer states, using a strategy known
as postselection. Postselection is essentially the application
of a filter. As recently demonstrated in a quantum-optics ex-
periment [12], postselection of quantum probes can compress
information beyond classically achievable limits [13]. In par-
ticular, postselected quantum metrology can allow detectors
to operate at lower intensities while retaining the vast majority
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of the information encoded in the original high-intensity beam
of probe states. This can reduce saturation of sensitive compo-
nents, as well as alleviate computational costs associated with
postprocessing. The most common instance of postselected
metrology is weak-value amplification [14], which has found
many applications [15–25].

In recent papers [12,26] Jenne, Arvidsson-Shukur, and
Lupu-Gladstein (JAL) et al. introduced a postselection filter
that can compress information contained in ρ̂θ

⊗n into ρ̂
ps
θ

⊗m,
where m � n. Moreover, m/n can be made arbitrarily small
and the compression can happen without any loss of infor-
mation. These remarkable properties of the JAL filter rely on
the quantum metrology experiments’ being completely noise
free. However, noise in real experiments leads to natural limits
on compression [12]. Until now, there exists no thorough
investigation of the effect of noise on general multiparameter
postselected quantum metrology.

In this paper, we provide such an investigation. First, we
give a thorough review of the quantum-Fisher-information
matrix (QFIM), which quantifies a metrology protocol’s abil-
ity to estimate multiple parameters, and we also review
previous results in postselected metrology. Then, we find the
family of optimal postselection filters for noiseless multipa-
rameter quantum metrology and show that it contains the JAL
filter. Next, we analyze and quantify the effect of noise on
postselected metrology protocols.

We consider both photon loss and depolarizing noise,
applied either before or after the probes have been posts-
elected. Photon loss is an important factor that limits the
transmission of a photonic signal in optical fibers across
large distances. Depolarizing noise represents a ubiquitous
and well-understood model for noise in quantum systems.
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We show that photon loss, acting before or after postselec-
tion, leads to a decrease of information equal to the fraction
of lost photons. The optimal filter remains the same as in the
noiseless case.

For depolarizing noise, we consider two regimes: first
when postprocessing costs are dominant and one wishes to
maximize the information per measured probe and second
when detector saturation dominates and one wishes to max-
imize the rate of information arriving at the detector. We
analyze the performance of an experimentally motivated [12]
family of filters (including the JAL filter) in both of these
regimes. This family, we show, is optimal for qubit probes.
When noise acts after postselection, we find that the JAL
filter remains optimal in all dimensions. Then, we provide
an explicit example demonstrating that the JAL filter can be
suboptimal when noise acts before postselection. Finally, we
provide a filter that always outperforms the naive strategy of
discarding a constant fraction of states, even in the presence
of arbitrarily strong noise.

II. PRELIMINARIES

A. Local estimation theory

A typical quantum estimation problem consists of re-
covering the value of M continuous parameters θ :=
(θ1, θ2, . . . , θM ) encoded in a parametrized quantum state ρ̂θ .
We focus on the well-established field of local estimation
[27], where one considers small deviations in parameters, as
opposed to global estimation [28–30] where the entire param-
eter space is considered. A general scheme consists of the
following three steps [2].

(1) Prepare a parameter-independent probe state ρ̂0.
(2) Evolve the state with a parameter-dependent unitary

operation Û (θ):

ρ̂θ = Û (θ)ρ0Û (θ)†. (1)

(3) Extract information by means of a suitable mea-
surement. The most general measurement procedure is a
positive-operator valued measure (POVM) [1], described by
a collection {F̂k} of positive semidefinite operators (F̂k � 0)
that sum to unity (

∑
k F̂k = 1̂). One then observes outcome k

with probability:

p(k|θ) = Tr[F̂k ρ̂θ]. (2)

All the information about the parameters θ is then encapsu-
lated in the probability distribution p(k|θ).

The parameters are estimated through an estimator θ̂(k) :=
(θ̂1, θ̂2, . . . , θ̂M )—a map from the space of measurement out-
comes to the space of possible values of the parameters. If we
are in a limit of small deviations, we assume that the estimator
θ̂ is locally unbiased, that is,∑

k

[θ − θ̂(k)]p(k|θ) = 0,
∑

k

θ̂i(k)∂ j p(k|θ) = δi j, (3)

where i, j = 1, . . . , M and ∂ j := ∂
∂θ j

.

The accuracy of θ̂(k) is quantified by its covariance matrix,
given by

Cov(θ̂) :=
∑

k

[θ − θ̂(k)][θ − θ̂(k)]� p(k|θ). (4)

The covariance matrix obeys the Cramér-Rao bound
(CRB) [31,32]

Cov(θ̂) � I (θ)−1, (5)

where I (θ) is the Fisher information matrix (FIM):

I (θ)i, j :=
∑

k

p(k|θ)[∂ilnp(k|θ)][∂ j lnp(k|θ)]. (6)

In a quantum experiment, the choice of measurement in step
(3) affects the probabilities p(k|θ) and hence I (θ). The quan-
tum Fisher information matrix (QFIM) [33–35] is defined by

I (θ|ρ̂θ )i, j = Tr[�̂i ∂ j ρ̂θ], (7)

where �̂i is the symmetric logarithmic derivative, implicitly
defined by ∂iρ̂θ = 1

2 (�̂iρ̂θ + ρ̂θ�̂i ) [36]. The inverse QFIM
lower bounds the inverse classical Fisher information matrix:

I (θ)−1 � I (θ|ρ̂θ )−1, (8)

for any choice of measurement. In general, Eq. (8) is not
saturable. However, there is always a measurement that gets
within a factor of 2 of the QFIM in the asymptotic limit: see
Ref. [37] for details [38]. The QFIM can thus replace the
FIM in Eq. (5), leading to the quantum Cramér-Rao bound
(QCRB):

Cov(θ̂) � I (θ|ρ̂θ )−1. (9)

In practice, one receives N > 1 copies of the quantum state
ρ̂θ and thus has access to the state ρ̂⊗N

θ
. One finds that

I (θ|ρ̂⊗N
θ

) = N I (θ|ρ̂θ ), implying that

Cov(θ̂) � 1

N
I (θ|ρ̂θ )−1. (10)

Hence one can decrease the variance of the estimate by in-
creasing the number of measurements N or by designing a
setup that increases the quantum Fisher information I (θ|ρ̂θ ).

Finally, we consider the choice of ρ̂0 in step (1). Since
I (θ|ρ̂θ ) is convex [39], the maximum QFIM is always
achieved by using pure probe states [40,41].

B. Postselection

A common issue in quantum-metrology experiments is that
one can create states ρ̂θ faster than the best detectors can
measure them. Thus one must filter, or postselect, a fraction
of the states to arrive at the detector. Ideally, the filter should
be tuned such that it only lets through a small number of
postselected states, each carrying a large information content.
We now describe how postselected metrology protocols work.
(See Fig. 1 for a schematic overview.)

The encoded state ρ̂θ is measured with a two-outcome
POVM {F̂1 = F̂ , F̂2 = 1̂ − F̂ }. If the measurement yields out-
come F̂2, the state is discarded. If it yields outcome F̂ = F̂1,
the state is retained. In this way, F̂ acts as a filter, where we
postselect on passing the filter. The experiment outputs the
information-compressed states ρ̂

ps
θ

= |ψθ
ps〉〈ψθ

ps| with suc-
cess probability Pps

θ
, where

∣∣ψps
θ

〉 = K̂|ψθ〉√
Pps

θ

, Pps
θ

= Tr[F̂ ρ̂θ], (11)
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ρ0 Û(θ) ρ̂θ

F̂

1̂ − F̂

ρ̂ps
θ

FIG. 1. State ρ̂0 is evolved by the unitary Û (θ) into ρ̂θ . A postse-
lective measurement {F̂1 = F̂ , F̂2 = 1̂ − F̂ } destroys the state, unless
outcome F̂ happens. The output is the postselected state ρ̂

ps
θ . This

state is finally measured by a detector.

and K̂ is a Kraus operator of the generalized measurement
used to implement the POVM, i.e., F̂ = K̂†K̂ . One can check
that (see Ref. [26] for details)

I
(
θ|ρ̂ps

θ

)
i, j = 4Re

[
1

Pps
θ

〈∂iψθ|F̂ |∂ jψθ〉

− 1

(Pps
θ

)2
〈∂iψθ|F̂ |ψθ〉〈ψθ|F̂ |∂ jψθ〉

]
. (12)

References [12,26] introduce a filter F̂ that can arbitrarily
compress metrological information in the absence of noise: let
θ0 denote an initial estimate of the true parameters of interest
θ and let δ := θ − θ0. The JAL filter is

F̂ = (t2 − 1)ρ̂θ0 + 1̂, (13)

where t ∈ [0, 1]. Substituting the JAL filter in Eq. (12)
gives [26]

I
(
θ|ρ̂ps

θ

)
i, j = 1

t2
I (θ|ρ̂θ )i, j + O(|δ|2/t2), (14)

Pps
θ

= t2 + O(|δ|2/t2). (15)

Physically, the JAL filter transmits the expected state ρ̂θ0 with
probability t2 and always transmits any state orthogonal to
ρ̂θ0 . Hence information can be distilled by choosing a small
t2, so that only the states orthogonal to the expected state
are transmitted. The maximum information amplification is
unbounded in the limit t2 → 0, provided that |δ|2 � t2. The
JAL filter in Eq. (13) increases all of the entries of the QFIM
by a factor of 1/t2. Remarkably, this protocol is lossless in the
limit δ → 0:

Pps
θ
I
(
θ|ρ̂ps

θ

) = I (θ|ρ̂θ ) + O(|δ|2). (16)

III. OPTIMAL FILTER FOR NOISELESS POSTSELECTION

In this section, we characterize the most general optimal
filter for noiseless multiparameter quantum metrology. Then,
we show that the JAL filter is in the family of optimal filters;
it is the canonical choice.

Suppose that we have a process that produces a state
ρ̂

(2)
θ

from a state ρ̂
(1)
θ

with probability Pps
θ

, for example, by
postselection. The process is said to uniformly amplify the
information contained in ρ̂

(1)
θ

if, for all i and j, the ratio

Ai, j
(
ρ̂

(2)
θ

, ρ̂
(1)
θ

)
:=

I
(
θ|ρ̂ (2)

θ

)
i, j

I
(
θ|ρ̂ (1)

θ

)
i, j

(17)

is the same. In this case, we drop the i, j label in A and call
A(ρ̂(2)

θ
, ρ̂

(1)
θ

) the information amplification. Note by the data

processing inequality [42] that

Pps
θ
I
(
θ|ρ̂ (2)

θ

)
� I

(
θ|ρ̂ (1)

θ

)
(18)

and thus A(ρ̂(2)
θ

, ρ̂
(1)
θ

) � 1/Pps
θ

. Thus we also define the com-
pression efficiency (which appears in [43]),

η
(
Pps

θ
, ρ̂

(2)
θ

, ρ̂
(1)
θ

)
:= Pps

θ
A

(
ρ̂

(2)
θ

, ρ̂
(1)
θ

)
. (19)

The compression efficiency equals the ratio of the total ex-
pected information content before and after the process. If
η(Pθ, ρ̂

(2)
θ

, ρ̂
(1)
θ

) = 1, the process is said to be lossless; oth-
erwise, it is said to be lossy. For a chosen postselection
probability Pps

θ
, a filter F̂ is optimal if, in the limit as δ → 0,

postselection using F̂ is lossless. By the above, for a given
postselection probability Pps

θ
, the optimal filter gives the max-

imum possible information amplification.
Instead of insisting that information amplification be

uniform, one could measure amplification by minimizing
the scalar quantity: Tr[I (θ|ρ̂ (2)

θ
)
−1

W ] for some positive
semidefinite weight matrix W � 0. By Eq. (9), this gives
a lower bound on Tr[W Cov(θ̂)]. However, if amplifica-
tion is not uniform, then Eq. (18) implies I (θ|ρ̂ (2)

θ
)
−1

>

Pps
θ
I (θ|ρ̂ (1)

θ
)−1. Thus (as the Fisher information matrix is sym-

metric) there exists a vector u such that uTI (θ|ρ̂ (2)
θ

)
−1

u >

Pps
θ

uTI (θ|ρ̂ (1)
θ

)−1u. Taking W = uuT shows that uniform am-
plification is needed if optimal performance is required for any
choice of W .

Theorem. Suppose that one filters the state |ψθ〉 with
a two-outcome POVM {K̂†K̂, 1̂ − K̂†K̂}. Suppose further
that Ii,i(θ|ψθ ) 	= 0, for every i = 1, . . . , M (so that there
is information to compress). Let U = span{|ψθ〉, |∂iψθ〉 : i =
1, . . . , M} and 	̂u the orthogonal projection onto U [44].
Then, (1) the postselected Fisher information depends only
on F̂u := 	̂uK̂†K̂	̂u (and the state before the filter) and (2)
for a fixed postselection probability Pps

θ
, the POVM is optimal

iff F̂u = (Pps
θ

− 1)|ψθ〉〈ψθ| + 	̂u.

Proof. See Appendix A.
The simplest example of an optimal postselection filter is

the JAL filter:

F̂ = (t2 − 1)ρ̂θ + 1̂. (20)

Note that one does not need to know U to implement the JAL
filter, making it the canonical choice.

Finally, let us discuss intuitively what makes a filter op-
timal. Provided that δ is small, the states |ψθ0〉 contribute
vanishingly small information and should therefore be filtered
away. This is achieved by setting Pps

θ
→ 0, for θ ∼ θ0. In

this limit, all the information is carried by the states in the
subspace |ψθ0〉⊥. If the dimension of U satisfies dim U ≡ u <

d , we can locally find a basis in which only u dimensions
are parameter dependent, while d − u are parameter inde-
pendent. Therefore, the optimal postselection filter is unique
only within the u dimensional subspace. It can be arbitrary
outside of that subspace. Because the information is contained
only within the u-dimensional subspace, if the filter is to be
lossless, it should let through all the states orthogonal to |ψθ0〉.
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IV. NOISY POSTSELECTION

We now consider the effect of noise on postselected metrol-
ogy. In the following, we analyze two important models of
noise. One is photon loss and the other is depolarizing noise.

Photon loss can be modeled with the following channel:

L[ρ̂θ] := ρ̂ l
θ = T ρ̂θ + (1 − T ) ρ̂vac, (21)

i.e., with probability T we recover the original state and with
probability (1 − T ) the original state is destroyed, leaving the
vacuum state. Hence, if photon loss occurs after the postselec-
tion filter, the number of detected photons is simply reduced
by a factor of T . Therefore, the information available to the
experimenter also decreases by a factor of T .

Let us now consider the effect of photon loss before the
postselection filter. First, we note that the vacuum state does
not contribute to detector saturation. Further, the vacuum state
carries no information about θ. Hence ρ̂vac can be discarded
without any loss of information. Therefore, we choose our
filter such that K̂|vac〉 = 0. The postselection probability is

Pps
θ

= Tr[T K̂ ρ̂θK̂† + (1 − T ) K̂ ρ̂vacK̂†]

= Tr[T K̂ ρ̂θK̂†]

= T Tr[K̂ ρ̂θK̂†].

The postselected density matrix is

ρ̂
l, ps
θ

= 1

Pps
θ

[T K̂ ρ̂θK̂† + (1 − T ) K̂ ρ̂vacK̂†]

= K̂ ρ̂θK̂†

Tr[K̂ ρ̂θK̂†]
:= ρ̂

ps
θ

.

Hence the postselected state is the same as in the case of
no photon loss, but the postselection probability is decreased
by a factor of T . Therefore, the rate of information arriving
at the detector is also reduced by a factor of T . The optimal
filter is still contained in the family of optimal noiseless filters.
In particular, the filter’s amplification is still unbounded. The
filter is also lossless when compared to the noisy, prefiltered
state: η(Pps

θ
, ρ̂

l, ps
θ

, ρ̂ l
θ ) = 1.

Depolarizing noise is more complicated. The action of the
depolarizing channel D[·] on a state ρ̂θ can be written as

D[ρ̂θ] := ρ̂n
θ = (1 − ε)ρ̂θ + ε

d
1̂, (22)

where 0 � ε � 1 sets the strength of the noise. Below we con-
sider two scenarios: noise acting before or after postselection.
We thus consider the two states

ρ̂
ps, n
θ

= 1

(1 − ε)Pps
θ

+ ε

[
(1 − ε)K̂ ρ̂θK̂† + ε

d
1̂

]
, (23)

ρ̂
n, ps
θ

= 1

Pps
θ

[
(1 − ε)K̂ ρ̂θK̂† + ε

d
K̂K̂†

]
, (24)

in consecutive sections.

A. Noise after postselection

Let us first examine the case of noise acting after postselec-
tion, as depicted in Fig. 2. In Appendix C 1, we show that the
criterion for optimality is unchanged from the noiseless case.

ρ0 Û(θ) ρ̂θ

F̂

1̂ − F̂

ρ̂ps
θ D ρ̂ps, n

θ

FIG. 2. Depolarizing channel D is placed after the encoded
state ρ̂θ is filtered by the postselective measurement {F̂1 = F̂ , F̂2 =
1̂ − F̂ }.

Hence the JAL filter is optimal. We calculate the information
amplification for the JAL filter F̂ :

A(ρ̂ps, n
θ

, ρ̂n
θ ) = 1

t2
+ O(|δ|2), (25)

where t2 was defined in Eq. (13), and, in this case, is equal
to the probability of postselection, Pps

θ
. Therefore, when com-

paring an experiment with depolarizing noise acting after the
postselection to an experiment with the same noise but no
postselection, we see that the JAL filter leads to no additional
loss of information. In this case, postselection is still lossless
and the optimal noisy filter is unchanged from the noiseless
scenario.

B. Noise before postselection

We now consider a depolarizing channel acting before the
postselection filter (Fig. 3). In Appendix C 2, we calculate the
QFIM of ρ̂

n, ps
θ

for a family of filters that are closely related to
the optimal noiseless filters:

F̂ = (pθ − B)|ψθ〉〈ψθ| + B 	̂u + D 	̂n, (26)

where pθ, B, D ∈ [0, 1], 	̂u is the orthogonal projection onto
U , and 	̂n is the orthogonal projection onto U⊥. This ex-
perimentally motivated family [12] lends itself to analytical
analysis and incorporates the JAL filter. In Appendix D 1
we show that, for qubit sensors (u = d = 2), this family is
optimal.

Intuitively, we split the action of F̂ on the useful subspace
	̂u (containing the state |ψθ〉 and its derivatives) and the
orthogonal subspace 	̂n, which contains no information on
θ. While in the noiseless case any choice of D is still optimal,
in the noisy case, the 	̂n subspace only contains noisy probe
states. As explained later in this section, we therefore set
D = 0.

However, in Appendix D 2, we show that the aforemen-
tioned family of filters is not always optimal. We construct a
specific example where u = 2 and d = 3. In our example it is
advantageous to choose F̂ such that |ψθ〉 is not an eigenstate
of F̂ . Then, states corresponding to noise are mixed with states
corresponding to changes in θ.

ρ0 Û(θ) ρ̂θ D ρ̂n
θ

F̂

1̂ − F̂

ρ̂n, ps
θ

FIG. 3. Depolarizing channel D is placed before the encoded
state ρ̂θ is filtered by the postselective measurement {F̂1 = F̂ , F̂2 =
1̂ − F̂ }.
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1. Analysis of information amplification
and compression efficiency

In Appendix C 2 we calculate the information amplification
for the family of filters in Eq (26):

A
(
ρ̂

n,ps
θ

, ρ̂n
θ

) =

(
1 − ε + 2

ε

d

)
pθ

B(
1 − ε + ε

d

)
pθ

B
+ ε

d

[
(u − 1) + D

B
(d − u)

]

× 1(
1 − ε + ε

d

)
pθ

B
+ ε

d

. (27)

The compression efficiency is obtained by multiplying the
above equation by Pps

θ
:

η
(
Pps

θ
, ρ̂

n, ps
θ

, ρ̂n
θ

) =

(
1 − ε + 2

ε

d

)
pθ(

1 − ε + ε

d

)
pθ

B
+ ε

d

. (28)

The criteria for a filter to be optimal is decided by the
experimental setup. Below, we consider two possible exper-
imental regimes. First, suppose that postprocessing is the
limiting factor. In this case, one wants to receive the most in-
formation from the smallest number of probe measurements,
which corresponds to maximizing the information amplifica-
tion [Eq. (27)]. We work in the limit in which the quantum
experiment is cheap to run, so that the postselection proba-
bility can be made arbitrarily small; one simply repeats the
experiment as many times as is necessary to produce enough
successfully postselected states to reduce the error below a set
value.

Alternatively, suppose that detector saturation is the lim-
iting factor. In this case, one fixes a maximum postselection
probability Pmax. Ideally, one would set Pmax equal to the
ratio between the maximum-probe-measurement rate and the
maximum-probe-production rate. Then, one maximizes the
compression efficiency [Eq. (28)] such that the postselection
probability is no greater than Pmax. This maximizes the rate of
information arriving at the detector, while ensuring that it will
not saturate.

In the first case, A(ρ̂n,ps
θ

, ρ̂n
θ ) is maximized for D = 0. In

the second case, the compression efficiency is independent of
D. Setting D = 0 gives the lowest postselection probability,
which avoids detector saturation. Therefore, in both regimes
the best choice is D = 0. Denoting pθ/B = t2, Eq. (27)
becomes

A
(
ρ̂

n,ps
θ

, ρ̂n
θ

)

=

(
1 − ε + 2

ε

d

)
t2

[(
1 − ε + ε

d

)
t2 + ε

d
(u − 1)

][(
1 − ε + ε

d

)
t2 + ε

d

] ,

(29)

which is parametrized by t2. We now proceed to maximize
this expression.

2. Postprocessing is dominant

In the case where postprocessing carries the largest over-
head, we are interested in maximizing the information
amplification, given by Eq. (29). This expression attains a
maximum at

t2
pp =

√
u − 1 ε

d (1 − ε) + ε
. (30)

In Fig. 4(a), we plot A(ρ̂n,ps
θ

, ρ̂n
θ ) vs t2 for different values

of ε and d = u = 2 (noting that tpp < 1). We see that the
information amplification reaches a maximum at t = tpp. The
maximum of A increases and tpp moves towards zero as ε

decreases. Figure 4(b) shows the same plot, but for d = 10,
u = 5. In this case, the optimal tpp can be greater than 1.

Substituting t2
pp into Eq. (30), and taking the limit d → ∞,

with u ∼ d , the maximum information amplification simpli-
fies to 1/ε:

lim
d→∞

maxA
(
ρ̂

n,ps
θ

, ρ̂n
θ

) = 1

ε
. (31)

Any filter with t = tpp will achieve the maximum informa-
tion compression. Additionally, it is sensible to minimize the
(expected) required number of probes, which corresponds to
maximizing Pps

θ
for a fixed A(ρ̂n,ps

θ
, ρ̂n

θ ). Rewriting

Pps
θ

= B

[(
1 − ε + ε

d

)
t2
pp + ε

d
(u − 1)

]
, (32)

we see that maximizing Pps
θ

corresponds to setting B to its
maximum possible value. Thus we deduce the optimal form
of F̂ to mitigate postprocessing costs:

pθ = min
[
1, t2

pp

]
, B = min

[
1,

1

t2
pp

]
. (33)

In Fig. 4(c), we plot the maximum information amplification
(t = tpp) against ε at different values of d, u.

When compared to an experiment with the same level of
noise, our postselection filter can sometimes perform better
for stronger depolarizing noise. As noise reduces the total
available information, this does not mean that it would be
beneficial to artificially increase ε. In Fig. 4(d) we plot the
maximum information amplification Â(ρ̂n,ps

θ
, ρ̂θ ), this time

evaluated with respect to the noiseless state. As expected,
overall our scheme performs worse with increasing noise.

3. Detector saturation is dominant

Here, we want to maximize the compression efficiency
[Eq. (28)], subject to the constraint that the postselection prob-
ability Pps

θ
is no greater than Pmax ∈ [0, 1]. We calculate this

maximum in Appendix E. For notational brevity, we define

b =
(

1 − ε + ε

d

)
, c = ε

d
(u − 1). (34)

Mathematically, the optimal filter is most succinctly described
by the following five (counting min and max) cases.

(i) Pmax � b + c. Then the optimal filter has pθ = B = 1.
(ii) Pmax < b + c. Letting t2 = pθ/B, the optimal filter has

pθ = Pmax

b + c/t2
, B = Pmax

bt2 + c
. (35)
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FIG. 4. (a) Information amplification vs t2 for d = u = 2. (b) Â(ρ̂n,ps
θ , ρ̂n

θ ) vs t2 for d = 10 and u = 5. (c) Maximum Â(ρ̂n,ps
θ , ρ̂n

θ ) vs ε for
different values of d and u. Â(ρ̂n,ps

θ , ρ̂n
θ ) reaches a minimum at ε < 1, then increases to d/u at ε = 1. When compared to an experiment with

the same level of noise, our filter performs better for large noise. (d) Maximum A(ρ̂n,ps
θ , ρ̂θ ) vs ε for various values of d and u. Â(ρ̂n,ps

θ , ρ̂θ )
is monotonically decreasing with ε, reaching Â(ρ̂n,ps

θ , ρ̂θ ) = 0 at ε = 1. As expected, information amplification (with respect to a noiseless
experiment) decreases with stronger noise. (e) Dashed lines: compression efficiency for the naive classical filter F̂ = Pmax1̂, for d, u = 2. Solid
lines: compression efficiency for the optimal detector saturation filter. Our filter always performs better than the naive classical filter. As ε → 0
our filter can compress all of the available information into an arbitrarily small number of states. (f) Same as (e), but with d = 10 and u = 5.
Our filter compresses all the available information for Pmax > b + c. For Pmax < b + c, even as ε = 1, our filter performs better than the naive
classical filter, by a factor of d/u.
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There are two subcases depending on the value of tpp.
(1) tpp � 1. Then, the optimal filter has

t2 = max

[
t2
pp,

Pmax − c

b

]
. (36)

(2) tpp � 1. Then, the optimal filter has

t2 = min

[
t2
pp,

(
c

Pmax − b

)+]
, (37)

where a+ = a if a � 0 and a+ = ∞ if a < 0.
Physically, the optimal filter can fall into one of three

distinct categories depending on the size of Pmax. The three
categories arise from grouping the cases above into optimal
filters with common behaviors. To describe the categories, we
introduce P∗ as the largest value of Pmax for which the optimal
filter has t2 equal to t2

pp. We find the following three different
categories.

(i) b + c = 1 − ε + u ε/d � Pmax, whereupon pθ = B =
1. In this scenario, the filter simply blocks all states that can
only arise from noise and lets through all the states that carry
information about the parameters. This regime is lossless
(when compared to the information carried in ρ̂n

θ ).
(ii) P∗ � Pmax < b + c = 1 − ε + u ε/d . In this scenario,

the filter compresses information. Since compression with
noise is lossy, it does the smallest amount of compression
possible, i.e., such that Pps

θ
= Pmax. It does this by maximizing

the information amplification, which corresponds to setting t
as close as possible to tpp while still satisfying Pps

θ
= Pmax. In

this regime, the filter incurs some loss due to noise.
(iii) 0 � Pmax < P∗. When Pmax reaches P∗, it is no longer

advantageous to compress information. Instead, pθ/B = t2
pp

stays constant while Pps
θ

= Pmax, so that both pθ and B de-
crease. The optimal filter can be decomposed as a compressive
filter with t = tpp followed by a filter that is proportional to 1̂.
In this scenario, the filter compresses some of the information,
but is also forced to blindly discard a constant fraction of the
states.

We can compare our strategy with a naive classical strategy
that would blindly discard a constant fraction of the states:

F̂nav = Pmax 1̂. (38)

This filter gives a compression efficiency of Pmax. In Fig. 4(e),
we plot the compression efficiency against noise for different
values of Pmax, at d = u = 2. For small noise (ε → 0), our
postselection strategy can compress information into an arbi-
trarily small number of measurement probes, while preserving
all of the available information. As expected, this advantage
decreases and becomes vanishingly small as ε → 1. In this
limit, the performance of our filter reduces to that of the naive
classical strategy, which randomly keeps a fraction Pmax of
the input probes. In Fig. 4(f), we repeat the same calculation
for the cases d = 10 and u = 5. This time, if Pmax > b + c, it
is possible to preserve all of the available information, even
as ε → 1. For Pmax < b + c, the situation is similar to the
case d = u = 2, but our postselection strategy now always
performs better than the naive classical strategy.

V. CONCLUSION

In this paper we derived the family of optimal postselection
filters for noiseless multiparameter quantum metrology. In the

absence of noise, these filters are lossless: they compress in-
formation equally across all parameters, while decreasing the
postselection probability by the same factor. We showed that
the previously proposed JAL filter [26] is contained within our
family of optimal filters.

Noise in real experiments leads to natural limits on
compression of information. The quantum optics experiment
in Ref. [12] was affected by errors in t2, the filter transmission
probability, and the unitary operation Û (θ), which bounded
the maximum possible compression of information and
made the filtering procedure somewhat lossy. This motivated
our analysis of the effect of noise on postselected quantum
metrology.

We focused our noise analysis on the worst-case scenario
of depolarizing noise of strength ε. We considered situations
where this noise was applied either before or after the probes
have been postselected. When noise acts after the postselec-
tion, we found that the JAL filter remains optimal.

We also analyzed the JAL filter’s performance when noise
acts before the postselection. In this case, we considered two
regimes, whereby either postprocessing or detector satura-
tion is the main concern. To make the problem tractable,
we considered a subset of experimentally sensible filters
[Eq. (C17)]. To alleviate postprocessing costs, one wants to
receive the most information in the smallest number of probes,
which corresponds to maximizing the information amplifica-
tion [Eq. (27)]. To protect against detector saturation, we fixed
a maximum postselection probability Pmax and maximized the
compression efficiency [Eq. (28)]. We showed that the JAL
filter is not always optimal, but with slight modifications it
performs well in both the postprocessing and detector sat-
uration regimes. Thus, if one can estimate the strength of
noise in an experiment, one should implement a different filter
compared to the case of no noise.

We showed that for qubit sensors (u = d = 2) the family of
filters in Eq. (26) is optimal. However, for finite u, d 	= 2, we
show that this subset of filters is not always optimal. In fact,
it can sometimes be advantageous for states corresponding to
noise to be mixed with states corresponding to changes in θ.

With this work, we hope to extend the use cases of postse-
lected metrology to nonoptical systems.
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APPENDIX A: PROOF OF OPTIMAL NOISELESS FILTER

In this Appendix we prove the main Theorem from Sec. III.
From Eq. (12), we see that the QFIM only contains terms

that depend on F̂u and thus we deduce part 1 of the Theorem.
We now focus on the diagonal entries of the QFIM:

I j, j (θ|ρ̂ps
θ

). Taking the derivative of 〈ψθ|ψθ〉 ≡ 1, we see that

Re(〈∂ jψθ|ψθ〉) = 0. (A1)
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Thus we can write

|∂ jψθ〉 = ix j |ψθ〉 + α j |ψθ
⊥, j〉, (A2)

for x j ∈ R a real coefficient, α j ∈ C and some normalized
set of |ψ⊥, j〉, orthogonal to |ψθ〉 (note that they may not be
orthogonal to each other). We define

〈ψθ|F̂u|ψθ〉 = Pps
θ

∈ [0, 1], (A3)

〈ψθ
⊥, j |F̂u|ψθ

⊥, j〉 = Bj ∈ [0, 1], (A4)

〈ψθ|F̂u|ψθ
⊥, j〉 = Cj ∈ C. (A5)

Suppose that F̂u is optimal. Substituting these expressions into
Eq. (12), we find

I j, j (θ|ρ̂ps
θ

) = 4

Pps
θ

(
x2

j P
ps
θ

+ |α j |2Bj + ix j (α
∗
jC

∗
j − α jCj )

)

− 4

(Pps
θ

)2

∣∣ix jP
ps
θ

+ α jCj

∣∣2
, (A6)

= 4

[ |α j |2Bj

Pps
θ

− |α jCj |2
(Pps

θ
)2

]
. (A7)

Setting F̂u = 1̂, we have

I j, j (θ|ρ̂θ ) = 4|α j |2. (A8)

By assumption I j, j (θ|ρ̂θ ) 	= 0; therefore, it follows that

I j, j
(
θ|ρ̂ps

θ

)
I j, j (θ|ρ̂θ )

=
[

Bj

Pps
θ

− |Cj |2(
Pps

θ

)2

]
. (A9)

Note that optimality of F̂ is equivalent to A(ρ̂ps
θ

, ρ̂θ ) =
1/Pps

θ
. Thus Eq. (A9) implies that Bj = 1 and Cj = 0 (recall-

ing that Bj ∈ [0, 1], since 0 � F̂ � 1̂).
Now suppose that F̂ |ψ⊥, j

θ
〉 	= |ψ⊥, j

θ
〉 for some j. Since

Bj = 1 by above, this implies that there is some state |α〉

satisfying 〈ψ⊥, j
θ

|α〉 = 0 and a non-negative a > 0 such that

F̂
∣∣ψ⊥, j

θ

〉 = ∣∣ψ⊥, j
θ

〉 + a|α〉. (A10)

Letting |φ〉 = (1/a)|ψ⊥, j
θ

〉 + (1/2)|α〉, we calculate

〈φ|F̂ |φ〉 = 1

a

〈
ψ

⊥, j
θ

∣∣F̂(
1

a

∣∣ψ⊥, j
θ

〉 + 1

2
|α〉

)

+ 1

2
〈α|F̂

(
1

a

∣∣ψ⊥, j
θ

〉 + 1

2
|α〉

)
, (A11)

= 1

a2
+ 1 + 1

4
〈α|F̂ |α〉, (A12)

>
1

a2
+ 1

4
(A13)

= 〈φ| =〉〈φ|1̂|φ〉, (A14)

which contradicts F̂ � 1̂. We deduce that F̂ |ψ⊥, j
θ

〉 = |ψ⊥, j
θ

〉
for every j.

Therefore, an optimal F̂ must have

F̂u = (
Pps

θ
− 1

)|ψθ〉〈ψθ| + 	̂u. (A15)

It remains to check that such a filter is indeed optimal. Equa-
tion (A9) shows that it correctly amplifies diagonal terms of
the QFIM. Next we check the off-diagonal terms.

Using Eq. (12), we have that

I
(
θ|ρ̂ps

θ

)
i, j = 4Re

[
1

Pps
θ

〈∂iψθ|F̂u|∂ jψθ〉 (A16)

− 1(
Pps

θ

)2 〈∂iψθ|F̂u|ψθ〉〈ψθ|F̂u|∂ jψθ〉
]
.

Substituting Eq. (A2) for |∂ jψθ〉,
|∂ jψθ〉 = ix j |ψθ〉 + α j |ψθ

⊥, j〉, (A17)

one can calculate

I j,k
(
θ|ρ̂ps

θ

) = 4 Re

[
1

Pps
θ

〈∂ jψθ|F̂u|∂kψθ〉 − 1(
Pps

θ

)2 〈∂ jψθ|F̂u|ψθ〉〈ψθ|F̂u|∂kψθ〉
]
, (A18)

= 4

Pps
θ

Re[(−ix j〈ψθ| + α∗
j 〈ψθ

⊥, j |)F̂u(ixk|ψθ〉 + αk|ψθ
⊥,k〉)] − 4(

Pps
θ

)2 Re[(−ix j〈ψθ| + α j〈ψθ
⊥, j |)F̂u|ψθ〉

× 〈ψθ|F̂u(ixk|ψθ〉 + αk|ψθ
⊥,k〉)], (A19)

= 4

Pps
θ

Re
[
x jxkPps

θ
+ α∗

j αk〈ψθ
⊥, j |F |ψθ

⊥,k〉 − ix jαk〈ψθ|F |ψθ
⊥,k〉 + ixkα

∗
j 〈ψθ

⊥, j |F |ψθ〉
]

− 4(
Pps

θ

)2 Re
[
xkxk

(
Pps

θ

)2 − ix jαkPps
θ

〈ψθ|F |ψθ
⊥,k〉 + ixkα

∗
j P

ps
θ

〈ψθ
⊥, j |F |ψθ〉 + α∗

j αk〈ψθ
⊥, j |F |ψθ〉〈ψθ|F |ψθ

⊥,k〉],
(A20)

= 4

Pps
θ

Re

[
α∗

j αk〈ψθ
⊥, j |F |ψθ

⊥,k〉 − α∗
j αk

Pps
θ

〈ψθ
⊥, j |F |ψθ〉〈ψθ|F |ψθ

⊥,k〉
]
, (A21)

= 4 Re
(
α∗

j αk〈ψ⊥, j
θ

|ψ⊥,k
θ

〉)
Pps

θ

, (A22)

= I j,k (θ|ρ̂θ )

Pps
θ

. (A23)
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In line (A20), we used Eq. (A3) to write 〈ψθ|F̂u|ψθ〉 = Pps
θ

and
in line (A22) we used the fact that F̂ |ψ⊥, j

θ
〉 = |ψ⊥, j

θ
〉 for every

j and that 〈ψ⊥, j
θ

|ψθ〉 = 0. This completes the proof. �
It may be that U has a dimensionality less than d , the

dimensionality of the unitary U (θ). For example, this will
always happen if M + 1 < d , where M is the number of pa-
rameters. In general, U can have dimension u, with u � M + 1
and, if u < d , the optimal filter is not fully determined. In an
orthonormal basis, where |ψθ〉 is the first basis vector, and the
first u basis vectors span U , we have that a filter F̂ is optimal
if it takes the form

F̂ =

⎛
⎜⎜⎜⎜⎜⎜⎝

Pps
θ

0 . . . 0 ĉ†

0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

ĉ 0 . . . 0 D̂

⎞
⎟⎟⎟⎟⎟⎟⎠

, (A24)

where ĉ is a (complex) vector of length d − u and D̂ is a d − u
by d − u (complex) matrix such that 0̂ � F̂ � 1̂.

The simplest example of an optimal postselection filter
is for ĉ = 0 and D̂ = 1̂, in which case, setting Pps

θ
= t2, we

recover the JAL filter:

F̂ = (t2 − 1)ρ̂θ + 1̂. (A25)

Note that the JAL filter does not require knowledge of U .
So far, we have assumed that our filter is constructed based

on perfect knowledge of the parameters, i.e., our initial es-
timate θ0 is equal to the true value of the parameters θ. In
practice, however, one does not know θ exactly. Instead, one
has an estimate θ0 = θ − δ and implements a filter using θ0.
In Ref. [26], it was shown that if one implements the JAL filter
using θ0, then A(ρ̂ps

θ
, ρ̂θ ) and Pps

θ
are only perturbed at order

δ2—there is no order δ correction.
In Appendix B, we study the order δ2 correction when

using the JAL filter, deriving the upper bound

A
(
ρ̂

ps
θ

, ρ̂θ

)
� 1

t2

[
1 − 1 − t2

t2
δTI (θ|ρ̂θ ) δ

]
. (A26)

Equation (A26) provides a way to calculate the expected de-
crease in the information amplification to second order in δ. It
allows one to understand which parameters in δ are responsi-
ble for the largest loss of information. In the trivial case when
I (θ|ρ̂θ ) is diagonal, the parameters θi with the largest QFI will
also lead to the greatest loss.

APPENDIX B: INFORMATION AMPLIFICATION
SCALING FOR THE JAL FILTER

In this Appendix, we study the second-order corrections
to the information amplification when δ 	= 0. Consider the
perturbed JAL filter

F̂ = (t2 − 1)ρ̂θ0 + 1̂. (B1)

We expand Û (θ0) to second order in δ:

Û (θ0) = Û (θ) + [∂iÛ (θ)](θ0 − θ)i

+ 1
2

[
∂2

i, jÛ (θ)
]
(θ0 − θ)i(θ0 − θ) j . (B2)

The above equation can be written as

Û (θ0) = U (θ) + [∇θÛ (θ)]T (θ0 − θ)

+ 1
2 (θ0 − θ)T H (θ) (θ0 − θ), (B3)

where Ĥ (θ ) = ∂2
i, jU (θ) is the Hessian matrix. Hence

Û (θ0) = Û (θ) − iÛ (θ)d̂1 + i

2
Û (θ)d̂2 + O(δ3), (B4)

where d̂1 and d̂2 are defined as

d̂1 = −i Û †(θ)[∇θÛ (θ)]T δ, (B5)

d̂2 = −i Û †(θ) δT Ĥ (θ) δ. (B6)

We want to find d̂†
1 and d̂†

2 . Consider

U (θ0)U (θ0)† = 1̂. (B7)

Inserting the Taylor expansion, we find

1̂ =
[
Û (θ) − iÛ (θ)d̂1 + i

2
Û (θ)d̂2

]

×
[
Û (θ) − iÛ (θ)d̂1 + i

2
Û (θ)d̂2

]†

(B8)

= Û (θ)Û †(θ) + iÛ (θ)[d̂1 − d̂†
1 ]Û †(θ)

+ i

2
Û (θ)[d̂2 − d̂†

2 − 2 i d̂1d̂†
1 ]Û †(θ). (B9)

Looking at the term of order δ, we immediately see that d̂1 =
d̂†

1 . Instead, the second-order term gives

d̂†
2 = d̂2 − 2 i d̂1d̂†

1 . (B10)

Now, we can write ρ̂θ0 as

ρ̂θ0 = Û (θ0)ρ0Û (θ0)† (B11)

=
[
Û (θ) − iÛ (θ)d̂1 + i

2
Û (θ)d̂2

]
ρ0

×
[
Û (θ)† + id̂†

1Û (θ)† − i

2
d̂†

2Û (θ)†
]

(B12)

= Û (θ)
[
1 − id̂1 + i

2
d̂2

]
ρ0

[
1 + id̂1 − i

2
d̂2 − d̂2

1

]
Û (θ)†,

(B13)

= ρ̂θ + i[ρ̂θ, D̂1] − i

2
[ρ̂θ, D̂2] + D̂1ρ̂θD̂1

− ρ̂θD̂2
1 + O(δ3), (B14)

where we defined D̂1, D̂2:

D̂1 = U (θ)d̂1Û (θ)†, (B15)

D̂2 = U (θ)d̂2Û (θ)†. (B16)

We can now calculate the postselection probability Pps
θ

, cor-
rect to order δ2:

Pps
θ

= Tr[F̂ ρ̂θ], (B17)

= 〈ψθ|F̂ |ψθ〉, (B18)
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= 〈ψθ|
[
(t2 − 1)

(
ρ̂θ + i[ρ̂θ, D̂1] − i

2
[ρ̂θ, D̂2]

+ D̂1ρ̂θD̂1 − ρ̂θD̂2
1

)
+ 1̂

]
|ψθ〉, (B19)

= t2 − (1 − t2)[〈ψθ|(D̂1ρ̂θD̂1)|ψθ〉 − 〈ψθ|ρ̂θD̂2
1|ψθ〉],

(B20)

= t2 + (1 − t2)[〈ψθ|D̂2
1|ψθ〉 − |〈ψθ|D̂1|ψθ〉|2], (B21)

= t2 + (1 − t2)[〈ψ0|d̂2
1 |ψ0〉 − |〈ψ0|d̂1|ψ0〉|2], (B22)

= t2 + (1 − t2)
∑
i, j

δiδ j[〈∂iψθ|∂ jψθ〉

− 〈∂iψθ|ψθ〉〈ψθ|∂ jψθ〉], (B23)

= t2 + 1

4
(1 − t2)

∑
i, j

δiδ j I (θ|ρ̂θ )i, j, (B24)

= t2 + 1

4
(1 − t2) δT I (θ|ρ̂θ ) δ. (B25)

Hence we find

Pps
θ

= t2 + 1

4
(1 − t2) δT I (θ|ρ̂θ ) δ + O(δ3). (B26)

Since the QFIM is positive semidefinite, the term of order
O(|δ|2) is always positive. Therefore, for δ small, the posts-
election probability increases with increasing |δ|.

We can now find an upper bound on A(ρ̂ps
θ

, ρ̂θ ). From the
discussion in Ref. [26], we know that

I (θ|ρ̂ps
θ

) = 1

t2
[I (θ|ρ̂θ ) + ], (B27)

where  is a matrix of order O(|δ|2) which we wish to bound.
Because η(Pps

θ
, ρ̂

ps
θ

, ρ̂θ ) � 1, we can write

Pps
θ
I (θ|ρ̂ps

θ
) � I (θ|ρ̂θ ). (B28)

Substituting Eqs. (B26) and (B27) into Eq. (B28), we find[
t2 + 1

4
(1 − t2) δTI (θ|ρ̂θ ) δ

] 1

t2
[I (θ|ρ̂θ ) + ] � I (θ|ρ̂θ ),

(B29)

I (θ|ρ̂θ ) +  + 1 − t2

4t2
δTI (θ|ρ̂θ ) δ I (θ|ρ̂θ ) � I (θ|ρ̂θ ),

(B30)

⇒  � −1 − t2

4t2
[δTI (θ|ρ̂θ ) δ] I (θ|ρ̂θ ). (B31)

Therefore, we reach the important result

I (θ|ρ̂ps
θ

) � 1

t2
I (θ|ρ̂θ )

[
1 − 1 − t2

4t2
δTI (θ|ρ̂θ ) δ

]
+ O(δ3),

(B32)
which shows that any δ 	= 0 decreases the information
amplification.

APPENDIX C: NOISY QFIM CALCULATIONS

In this Appendix, we calculate the QFIM when noise acts
before or after filtering. To calculate the QFIM, we use the

explicit expression from Ref. [35]:

I (θ|ρ̂θ )i, j = 2
d∑

n,m=1
λn+λm>0

〈λn|∂ j ρ̂θ|λm〉〈λm|∂iρ̂θ|λn〉
λn + λm

. (C1)

1. Noise after postselection

We start by calculating the QFIM of ρ̂n
θ using Eq. (C1),

ignoring postselection for the moment. We calculate the
eigenvalues {λi} and eigenvectors {|λi〉} of ρ̂n

θ :

λ1 = (1 − ε) + ε

d
, λi = ε

d
for i 	= 1, (C2)

|λ1〉 = |ψθ〉, |λi〉 = ∣∣ψ⊥,i
θ

〉
for i 	= 1, (C3)

where we have defined an orthonormal eigenbasis
{|ψθ〉, |ψθ

⊥,2〉, . . . , |ψθ
⊥,d〉} and 1 � i � d .

Substituting ∂iρ̂
n
θ in Eq. (C1), where

∂iρ̂
n
θ = (1 − ε)(|∂iψθ〉〈ψθ| + |ψθ〉〈∂iψθ|), (C4)

we see that the term with n = m = 1 is zero, since
〈∂iψθ|ψθ〉 + 〈ψθ|∂iψθ〉 = ∂i(〈ψθ|ψθ〉) = ∂i(1) = 0. Similarly,
the terms with both n, m 	= 1 are also zero, since 〈ψθ|ψθ

⊥,n〉 =
0. The only nonzero terms are for n 	= 1 and m = 1 (or vice
versa), giving

I (θ|ρ̂n
θ )i, j (C5)

= 4(1 − ε)2
∑
n 	=1

Re[〈∂iψθ|λn〉〈λn|∂ jψθ〉]
λn + λ1

, (C6)

= 4(1 − ε)2 Re[〈∂iψθ|(1̂ − |λ1〉〈λ1|)|∂ jψθ〉]
λ2 + λ1

, (C7)

= 4(1 − ε)2

(1 − ε) + 2ε
d

Re[〈∂iψθ|∂ jψθ〉−〈∂iψθ|ψθ〉〈ψθ|∂ jψθ〉],

(C8)

= (1 − ε)2

(1 − ε) + 2ε
d

I (θ|ρ̂θ )i, j . (C9)

Since we have not assumed any particular form for the
pure state |ψθ〉, we can postselect it with a general two-
outcome POVM {F̂1 = F̂ , F̂2 = 1 − F̂ }. Blocking the states
corresponding to outcome F̂2 and letting through those cor-
responding to outcome F̂1 = F̂ , we find that the postselected
state is

|ψθ
ps〉 = K̂|ψθ〉√

Pps
θ

, where Pps
θ

= Tr [F̂ |ψθ〉〈ψθ|], (C10)

where F̂ = K̂†K̂ . Hence

I
(
θ|ρ̂ps, n

θ

) = (1 − ε)2

(1 − ε) + 2ε
d

I
(
θ|ρ̂ps

θ

)
. (C11)

At the same time, from the result in Eq. (C9),

I
(
θ|ρ̂n

θ

) = (1 − ε)2

(1 − ε) + 2ε
d

I (θ|ρ̂θ ). (C12)
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Taking the ratio of Eqs. (C11) and (C12), and using
I (θ|ρ̂ps

θ
) ≈ I (θ|ρ̂θ )/t2 + O(|δ|2), we find that

I
(
θ|ρ̂ps, n

θ

) = 1

t2
I
(
θ|ρ̂n

θ

) + O(|δ|2). (C13)

Hence all of the loss of information comes from noise and
filtering is still lossless.

2. Noise before postselection

When noise acts before postselection, the resulting noisy
postselected state is

ρ̂
n, ps
θ

= 1

Pps
θ

[
(1 − ε)K̂ ρ̂θK̂† + ε

d
K̂K̂†

]
, (C14)

where the normalization constant Pps
θ

is given by

Pps
θ

= (1 − ε) Tr[F̂ ρ̂θ] + ε

d
Tr[F̂ ]. (C15)

We consider filters of the form

F̂ = (pθ − B)|ψθ〉〈ψθ| + B 	̂u + D 	̂n, (C16)

where pθ, B, D ∈ [0, 1], 	̂u is the orthogonal projection onto
U , and 	̂n is the orthogonal projection onto U⊥. For suitable
bases, this filter is represented by the matrix

F̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎝pθ . . . 0

...
. . .

...

0 . . . B

⎞
⎟⎠ 0

0

⎛
⎜⎝D . . . 0

...
. . .

...

0 . . . D

⎞
⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C17)

We start by making the assumption that δ = 0, i.e., θ0 = θ.
In Appendix F, we then show that the result is unchanged for
small δ, up to a term of order O(|δ|2).

Before calculating the QFIM using Eq. (C1), we need to
find the eigenvalues and eigenvectors of ρ̂

n, ps
θ

. We first look at
the eigenvalues and eigenvectors of ρ̂

n, ps
θ

. Letting u = dim U ,
we can pick orthonormal bases {|ψθ〉, |ψθ

⊥,2〉, . . . , |ψθ
⊥,u〉} of

U and {|ψθ
⊥,u+1〉, . . . , |ψθ

⊥,d〉} of U⊥ that satisfy

F̂ |ψθ〉 = pθ|ψθ〉, (C18)

F̂ |ψθ
⊥,i〉 = B|ψθ

⊥,i〉 for 2 � i � u, (C19)

F̂ |ψθ
⊥,i〉 = D|ψθ

⊥,i〉 for u + 1 � i � d. (C20)

Now, we calculate the eigenvalue λ1 of the eigenstate |λ1〉 =
K̂|ψθ〉/√pθ:

ρ̂
n, ps
θ

|λ1〉 (C21)

= 1

Pps
θ

[
(1 − ε)K̂ ρ̂θK̂† + ε

d
K̂K̂†

]
K̂|ψθ〉√

pθ

, (C22)

= 1

Pps
θ

[
(1 − ε)K̂|ψθ〉〈ψθ|K̂† K̂|ψθ〉√

pθ

+ ε

d
K̂

F̂ |ψθ〉√
pθ

]
,

(C23)

=
(
1 − ε + ε

d

)
pθ

Pps
θ

K̂|ψθ〉√
pθ

= λ1|λ1〉. (C24)

Similarly, the eigenvalues λ2, . . . , λu of the eigenstates |λi〉 =
K̂|ψθ

⊥,i〉/√B, for 2 � i � u, are

ρ̂
n, ps
θ

|λi〉 (C25)

= 1

Pps
θ

[
(1 − ε)K̂ ρ̂θK̂† + ε

d
K̂K̂†

]
K̂|ψθ

⊥,i〉√
B

, (C26)

= ε

d Pps
θ

K̂
F̂ |ψθ

⊥,i〉√
B

, (C27)

= εB

d Pps
θ

K̂|ψθ
⊥,i〉√
B

= λi|λi〉. (C28)

Doing the same calculations for the eigenvalues λu+1, . . . , λd

of the eigenstates |λi〉 = K̂|ψθ
⊥,i〉/√D, we see that B in

Eq. (C28) is replaced by D. Therefore,

λ1 = (1 − ε + ε/d ) pθ

Pps
θ

, (C29)

λi = ε B

d Pps
θ

for 2 � i � u, (C30)

λi = ε D

d Pps
θ

for u + 1 � i � d. (C31)

Now that we have found the eigenvalues and eigenvectors of
ρ̂

n, ps
θ

, we can evaluate the QFIM using Eq. (C1). For simplic-
ity, in the following calculation set a = (1 − ε) and b = ε/d .
We need to calculate ∂iρ̂

n, ps
θ

:

∂iρ̂
n, ps
θ

= a

Pps
θ

K̂∂iρ̂θK̂† − a
∂i pθ(
Pps

θ

)2 [aK̂ ρ̂θK̂† + bK̂K̂†], (C32)

= a pθ

Pps
θ

(|∂iλ1〉〈λ1| + |λ1〉〈∂iλ1|)

+ a∂i pθ

Pps
θ

|λ1〉〈λ1| − a2 pθ

∂i pθ(
Pps

θ

)2 |λ1〉〈λ1|, (C33)

= a pθ

Pps
θ

∂iρ̂1 + ab
(∂i pθ )(
Pps

θ

)2 [pθ + B(u − 1) + D u⊥]ρ̂1,

(C34)

where we set u⊥ = d − u and introduced

ρ̂1 = |λ1〉〈λ1|. (C35)

In Eq. (C34) we also made use of the fact that

|∂iλ1〉 =

⎛
⎜⎝ K̂|∂iψθ〉√

pθ

− K̂|ψθ〉
2
√

p3
θ

∂i pθ

⎞
⎟⎠, (C36)

so that

|∂iλ1〉〈∂iλ1|λ1 + |λ1〉〈λ1|∂iλ1 = 1

pθ

K̂∂iρ̂θK̂† − ∂i pθ

pθ

|λ1〉〈λ1|.
(C37)

Consider a term of the form 〈λn|∂iρ̂θ|λm〉, as appearing in
Eq. (C1). If m = n or both m, n > 1, then 〈λn|∂iρ̂1|λm〉 = 0
(taking the derivative of 〈λ1| ≡〉1 implies that 〈λ1|∂iρ̂1|λ1〉 =
0). On the other hand, if m 	= n, then 〈λ1|ρ̂1|λ1〉 = 0. Further,
note that, because the terms of the form |∂iλ1〉 appearing in
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the QFIM are contained in the subspace U , the only nonzero
contribution comes from m, n � u. Thus Eq. (C1) breaks up
into two sums: one with n = 1 and m 	= 1 and one with
m = n = 1. The first of these sums is given by

4
a2 p2

θ(
Pps

θ

)2

u∑
n=2

Re

( 〈∂ jλ1|λn〉〈λn|∂iλ1〉
λn + λ1

)
, (C38)

= 4
a2 p2

θ

Pps
θ

Re(〈∂ jλ1|(1̂ − |λ1〉〈λ1|)|∂iλ1〉)

(a + b) pθ + bB
, (C39)

= 4
a2 p2

θ

Pps
θ

Re(〈∂ jλ1|∂iλ1〉 − 〈∂ jλ1|λ1〉〈λ1|∂iλ1〉)

(a + b) pθ + bB
, (C40)

= a2 p2
θ

Pps
θ

[(a + b) pθ + bB]
I
(
θ |ρ̂ps

θ

)
i, j . (C41)

The second term is m = n = 1:

2a2b2 (∂i pθ )(∂ j pθ )(
Pps

θ

)4 [pθ + B(u − 1) + D u⊥]2

× |〈λ1|ρ̂1|λ1〉|2
2λ1

, (C42)

= a2b2 (∂i pθ )(∂ j pθ )(
Pps

θ

)4

[pθ + B(u − 1) + D u⊥]2

λ1
,

(C43)

= a2b2 (∂i pθ )(∂ j pθ )

(a + b)
(
Pps

θ

)3
pθ

[pθ + B(u − 1)]2. (C44)

Adding the two terms together, we find

I (θ|ρ̂n, ps
θ

)i, j

= 1

Pps
θ

(1 − ε)2 p2
θ(

1 − ε + ε
d

)
pθ + ε

d B
I
(
θ|ρ̂ps

θ

)
i, j

+ ε

d

(1 − ε)2 (∂i pθ )(∂ j pθ )(
1 − ε + ε

d

) (
Pps

θ

)3
pθ

[pθ + B(u − 1) + D u⊥]2.

(C45)

Finally, note that

∂i pθ = (1 − ε)Tr[
(|∂iψθ〉〈∂iψθ|ψθ + |ψθ〉〈ψθ|∂iψθ

)
K̂†K̂],

(C46)

= (1 − ε)t2(〈ψθ|∂iψθ〉 + 〈∂iψθ|ψθ〉), (C47)

= (1 − ε)t2∂i(〈ψθ|ψθ〉) = 0, (C48)

and thus the second term in Eq. (C45) is zero. In general, for
δ 	= 0, pθ = t2 + O(δ2); hence (∂i pθ ) = O(δ) and the lowest-
order correction is of order δ2. Therefore, we can write

I (θ|ρ̂n, ps
θ

)i, j = 1

Pps
θ

(1 − ε)2 p2
θ(

1 − ε + ε
d

)
pθ + ε

d B
I
(
θ|ρ̂ps

θ

)
i, j .

(C49)

As in the noiseless case, the family of filters in Eq. (26) scale
the entries of the QFIM by the same factor.

APPENDIX D: FILTER OPTIMIZATION

In this Appendix, we treat noisy postselection explicitly,
for some small values of u and d . We fully optimize the
filter for u = d = 2 and then show that nondiagonal filters are
advantageous for u = 2, d = 3.

Since most of our states are non-normalized, it is first
useful to explicitly deal with normalization. Consider the case
of a single parameter:

ρ̂θ = ρ̂ ′
θ

Pps
θ

, (D1)

where Pps
θ = Tr(ρ̂ ′

θ ) normalizes the state (and in our case will
be the probability of passing the filter). We can then calculate

∂ρ̂θ = ∂ρ̂ ′
θ

Pps
θ

− ∂Pps
θ(

Pps
θ

)2 ρ̂θ . (D2)

Decomposing the symmetric logarithmic derivative �̂ as

�̂ = �̂′ − ∂Pps
θ

Pps
θ

1̂, (D3)

it is then easy to see that �̂′ satisfies the “reduced” equation

1

2
{�̂′, ρ̂ ′

θ } = ∂ρ̂ ′
θ . (D4)

We can calculate the quantum Fisher information:

I (θ |ρ̂θ ) = Tr(∂ρ̂θ �̂), (D5)

= Tr

[(
∂ρ̂ ′

θ

Pps
θ

− ∂Pps
θ

Pps
θ

ρ̂θ

)(
�̂′ − ∂Pps

θ

Pps
θ

1̂

)]
, (D6)

= 1

Pps
θ

[
I (θ |ρ̂ ′

θ ) − ∂Pps
θ

Pps
θ

Tr(ρ̂ ′
θ �̂

′)

− ∂Pps
θ

Pps
θ

Tr(∂ρ̂ ′
θ ) + (∂Pps

θ )2

Pps
θ

]
, (D7)

= 1

Pps
θ

[
I (θ |ρ̂ ′

θ ) − (Tr[∂ρ̂ ′
θ ])2

Pps
θ

]
. (D8)

1. Full filter optimization in d = u = 2 (qubit sensor)

We fix some point θ in the parameter space. For the mo-
ment, we consider variations of a single parameter and take
∂ = ∂1. We expand

|∂ψθ〉 = ix|ψθ〉 + α|ψ⊥〉, (D9)

where |ψθ〉, |ψ⊥〉 are an orthonormal basis of our Hilbert
space [45]. Choosing a filter corresponds to picking a 2 × 2
matrix (with respect to the aforementioned basis) K̂ such that

0 � K̂†K̂ � 1̂. (D10)

If one attempts to optimize directly over 2 × 2 matrices, con-
straint (D10) is highly nontrivial, so we first parametrize K̂ to
simplify (D10).

Suppose that we have some choice of filter K̂ ; we can
write it in its singular value decomposition K̂ = V̂ D̂Ŵ , where
D̂ is diagonal with non-negative real eigenvalues, Ŵ is an
SU(2) matrix, and V̂ is a U(2) matrix. Let K̂ ′ = V̂ † K̂ ; then the
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postselected state is changed by a unitary and thus the QFI and
postselection probabilities do not change. Therefore, K̂ ′ has
exactly the same performance as K̂ and it is sufficient to con-
sider filters of the form D̂Ŵ . Note that K̂†K̂ = Ŵ †D̂2Ŵ and
constraint (D10) is equivalent to 0 � D̂ � 1̂. Using the gen-
eral form of an SU(2) unitary, our filter is thus parametrized
by

D̂ =
(

a 0
0 b

)
, where 0 � a, b � 1, (D11)

Ŵ =
(

γ −β∗
β γ ∗

)
, where γ , β ∈ C, |γ |2 + |β|2 = 1,

(D12)

and K̂ = D̂Ŵ . The postselected state is then given by

ρ̂
n, ps
θ

=
(1 − ε)D̂Ŵ |ψθ 〉〈ψθ |Ŵ †D̂ + ε

2
D̂2

Pps
θ

:= ρ̂ ′
θ

Pps
θ

, (D13)

where Pps
θ

= Tr(ρ̂ ′
θ ) is the probability of postselection. One

can calculate

ρ̂ ′
θ = 1

2

(
a2ε + 2(1 − ε)|γ |2 2ab(1 − ε)γ β∗

2ab(1 − ε)γ ∗β b2ε + 2(1 − ε)|β|2
)

,

(D14)

∂ρ̂ ′
θ = (1 − ε)

×
(−a2(αγ ∗β∗ + α∗γ β ) ab[α∗γ 2 − α(β∗)2]

ab[α(γ ∗)2 − α∗β2] b2(αγ ∗β∗ + α∗γ β )

)
.

(D15)

We thus find

Pps
θ

= Tr(ρ̂ ′
θ ) = 1

2
[(a2 + b2)ε + 2(1 − ε)(a2|γ |2 + b2|β|2)].

(D16)
By finding the symmetric logarithmic derivative, we use
Eq. (D8) to calculate

I
(
θ|ρ̂n, ps

θ

) = 4a2b2(1 − ε)2|α|2(
Pps

θ

)2 . (D17)

Recall that we wish to maximize I (θ|ρ̂n, ps
θ

), while minimizing
Pps

θ
. Consider the optimal values of γ , β for fixed values of

a, b. Since γ , β only appear in Pps
θ

both of our goals are
achieved by minimizing Pps

θ
subject to |γ |2 + |β|2 = 1. This

is equivalent to minimizing

fa,b(γ ) = a2|γ |2 + b2(1 − |γ |2). (D18)

If a � b this is clearly minimized for |γ | = 0; otherwise, if
a < b it is clearly minimized for |γ | = 1. Let

�̂ =
(

0 1
−1 0

)
. (D19)

Then we can see that the best possible filter performance is
attained by a filter with

Ŵ =
{

1̂2, for a < b,

�̂, for a � b.
(D20)

If W = 1̂2, then K̂ (and hence F̂ ) are both diagonal. Other-
wise, note that �̂T K̂ is a diagonal filter with the same filter

performance. Hence in either case the best filter performance
is attained by a diagonal filter.

Now consider the full multiparameter QFIM. Since
d = 2, we can express any state as a linear combination of
{|ψθ〉, |ψ⊥〉} and thus the expansion in Eq. (D9) will hold for
any parameter derivative (for different values of x and α). The
optimum scaling for the diagonal terms of the QFIM is then
achieved by a diagonal filter (as seen above) and thus if this
filter also scales the off diagonal terms then it will be optimal.
Indeed in Appendix C 2 we show such a diagonal filter does
scale the off diagonal terms and thus the optimal filter in the
multiparameter case is also diagonal.

2. Nondiagonal filters are better in u = 2, d = 3

For notational brevity, we consider the case of a single pa-
rameter θ . We have some filter (with Kraus operator) K̂ , a pure
state |ψθ 〉, and a depolarizing noise rate ε. For brevity, we will
set ε = 1/2 so that it can be absorbed into the normalization
constant. We then find

ρ̂ ′
θ = K̂|ψθ 〉〈ψθ |K̂† + K̂K̂†/d. (D21)

Fixing some θ , then we can decompose

|∂ψθ 〉 = ix|ψθ 〉 + α|ψ⊥〉, (D22)

where |ψθ 〉, |ψ⊥〉 are orthonormal. Assume our Hilbert space
H is three dimensional, which is the minimal dimension such
that H is not spanned by |ψθ 〉, |ψ⊥〉. Thus we can find a third
normalized state |n〉 orthogonal to |ψθ 〉 and |ψ⊥〉. Consider
the representation of K̂ in this basis. Take the canonical choice
(t − 1)|ψθ 〉〈ψθ | + 	̂u from the noiseless case, with the addi-
tion of a single off-diagonal term b ∈ R

K̂ =
⎛
⎝t 0 b

0 1 0
0 0 0

⎞
⎠. (D23)

We can calculate

F̂ = K̂†K̂ =
⎛
⎝t2 0 tb

0 1 0
tb 0 b2

⎞
⎠. (D24)

Note F̂ has eigenvalues 0, 1, t2 + b2. Thus as long as 0 � b �√
1 − t2, we have 0 � F̂ � 1̂ as required. We then find

ρ̂ ′
θ =

⎛
⎝(4/3)t2 0 tb/3

0 1/3 0
tb/3 0 b2/3

⎞
⎠, ∂ρ̂ ′

θ =
⎛
⎝ 0 α∗t 0

αt 0 0
0 0 0

⎞
⎠.

(D25)

One can explicitly solve for �̂′:

�̂′ =
⎛
⎝ 0 �̂′∗

12 0
�̂′

21 0 �̂′∗
23

0 �̂′
32 0

⎞
⎠, (D26)

where

�̂′∗
12 = �̂′

21 = 6(1 + b2)tα

1 + b2 + (4 + 3b2)t2
, (D27)

�̂′∗
23 = �̂′

32 = − 6bt2α

1 + b2 + (4 + 3b2)t2
. (D28)
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We give quantum Fisher information of

I (θ |ρ̂ ′
θ ) = 12|α|2(1 + b2)t2

1 + b2 + (4 + 3b2)t2
, (D29)

= 12|α|2t2

1 + (
3 + 1

1+b2

)
t2

, (D30)

= Pps
θ
I (θ |ρ̂θ ), (D31)

using Eq. (D8) and noting ∂ρ̂ ′
θ is traceless. The information

rate is manifestly increasing in |b| and thus it is maximized by
setting b = √

1 − t2, i.e., maximal mixing.
We can compare this with the canonical choice in the

noiseless case: (t − 1)|ψθ 〉〈ψθ | + 1̂, which is diagonal in our
basis. Consider a slightly more general filter K̂ ′, which we
take to be diagonal:

K̂ ′ =
⎛
⎝t 0 0

0 1 0
0 0 r

⎞
⎠, (D32)

where r ∈ [0, 1] controls the probability of transmitting an |n〉
state (which can only come from noise).

In this case one can similarly calculate the information rate

Pps
θ
I (θ |ρ̂θ ) = 12|α|2t2

1 + 4t2
, (D33)

which is found to be independent of r. Comparing Eqs. (D29)
and (D33), we see that any nonzero value of b increases
the information rate. Thus mixing is beneficial and the op-
timal filter in the noiseless case is not optimal in the noisy
case.

APPENDIX E: OPTIMAL FILTER FOR DETECTOR
SATURATION

In this Appendix we find the optimal values of B and pθ

for when detector saturation is the limiting factor. We recall
from the main text [Eq. (28)] that we are attempting to solve
the following optimization problem:

maximize η(pθ, B) =

(
1 − ε + 2

ε

d

)
pθ(

1 − ε + ε

d

) pθ

B
+ ε

d

,

subject to 0 � pθ, B � 1,(
1 − ε + ε

d

)
pθ + ε

d
(u − 1)B � Pmax. (E1)

For notational brevity, we define x = pθ, y = B, b = (1 −
ε + ε

d ), c = ε
d (u − 1), and g = ε

d . In this notation, we see
that the optimization problem (E1) is equivalent to

maximize f (x, y) = (b + g)x

b
x

y
+ g

,

subject to 0 � x, y � 1,

bx + cy � Pmax. (E2)

We note that f (x, y) is a strictly increasing function of x
and y (for x, y � 0) and thus the optimum point will be on
the boundary of the feasible set. We deduce that if (1,1) is in

FIG. 5. Feasible region (shaded) of the optimization problem
(E2) as a subset of the unit square. The linear constraint intersects
the unit square at (1, y∗) and (x∗, 1).

the feasible set it will be the optimum point. This occurs iff
b + c � Pmax.

Hence we consider b + c > Pmax, in which case the fea-
sible set is the intersection of the unit square with a line of
negative gradient, as depicted in Fig. 5.

Since f is strictly increasing in the x and y directions, its
maximum will be obtained on the linear constraint, i.e., it will
satisfy bx + cy = Pmax. As before, we introduce t2 = x/y, so
that

x(t ) = Pmax

b + c/t2
, y(t ) = Pmax

bt2 + c
. (E3)

We note that f (x(t ), y(t )) = Pmax A(t ), where A(t ) is the in-
formation amplification given by Eq. (29):

A(t ) = (b + g)t2

(bt2 + c)(bt2 + g)
. (E4)

We thus wish to maximize A(t ) over the possible val-
ues of t . Let x∗ be the smallest value of x attained on the
line bx + cy = Pmax, while 0 � x, y � 1. If the line intersects
the unit square on the boundary y = 1, then x∗ > 0. Other-
wise, the line intersects the square on the boundary x = 0
and x∗ = 0. We define y∗ similarly. A graphical example is
given in Fig. 5. We thus see that the allowed range of t is
given by

x∗ � t2 � 1/y∗. (E5)

Since x∗, y∗ � 1, by definition t = 1 is always allowed.
We find that A(t ) → 0 as t → 0,∞ and A(t ) has a single

stationary point, which therefore must be a maximum. As
before, the maximum occurs at t = tpp, which can be bigger
or smaller than 1, depending on u, d , and ε. As A(t ) is
monotonic on the ranges [0, tpp], [tpp,∞) we see that A(t )
will be maximized by the point in the interval [

√
x∗,

√
1/y∗]

that is closest to tpp. Explicitly, there are two cases, depending
on whether tpp is bigger or smaller than 1.

(i) tpp � 1. We have

t2 = max
[
t2
pp, x∗

] = max

[
t2
pp,

Pmax − c

b

]
. (E6)
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t2pp

1
/
t
2p
p

FIG. 6. Path traced out by the optimum point as Pmax varies in
the cases tpp � 1 (red, upper line) and tpp � 1 (blue, lower line). For
a fixed value of Pmax the optimum value is given by the intersection
of the line bx + cy = Pmax and the path of the optimum point if such
an intersection exists; otherwise, it is given by (1,1).

(ii) tpp � 1. We have

t2 = min
[
t2
pp, 1/y∗

] = min

[
t2
pp,

(
c

Pmax − b

)+]
, (E7)

where a+ = a if a � 0 and a+ = ∞ if a < 0.
This solution is best described geometrically. Consider

starting Pmax at 1 and then decreasing it to zero. The maximum
point of f then traces out a path [x(Pmax), y(Pmax)]. If tpp � 1
this path moves along the boundary y = 1 until it reaches the
point (t2

pp, 1). At this point, it moves towards the origin, along
the line x/y = t2

pp. If tpp � 1 the behavior is mirrored, with
the optimum point now moving along the y axis to (1, 1/t2

pp)
before moving along the line x/y = t2

pp to the origin. The two
types of path are sketched in Fig. 6.

APPENDIX F: NOISY INFORMATION AMPLIFICATION
SCALING FOR THE JAL FILTER

In this Appendix we show that, in the case of noisy post-
selection, the information amplification for the JAL filter is
unchanged to first order in δ.

Referring back to the Taylor expansion in Appendix B, we
now keep only the terms to first order in δ:

ρ̂θ0 = ρ̂θ + i[ρ̂θ, D̂] + O(|δ|2), (F1)

where D̂ = −i[∇θÛ (θ)]TδU (θ)†. Up to a term of order δ2, the
filter F̂ can then be written as

F̂ = (t2 − 1)ρ̂θ0 + 1̂ = (t2 − 1)ρ̂θ + 1̂ + i[ρ̂θ, D̂](t2 − 1).
(F2)

Denote the unperturbed eigenvectors (when δ = 0) by |λ1〉 =
K̂|ψθ〉/t and |λn〉 = K̂|ψθ

⊥,n〉 (for 2 � n � d), with corre-
sponding eigenvalues

λ1 = t2

Pps
θ

(
1 − ε + ε

d

)
, λn = ε

dPps
θ

for n � 2. (F3)

We denote the true, perturbed eigenvectors and eigenvalues
by |λ′

n〉, λ′
n. In the following derivation, we will find the

leading order corrections in δ of the perturbed eigenvectors

and eigenvalues. Using these corrections, we will then cal-
culate the perturbed QFIM and show it is unchanged to
order δ.

Looking at the action of ρ̂
n,ps
θ

on |λ1〉 = K̂|ψθ〉/t , we see
that

ρ̂
n, ps
θ

|λ1〉 (F4)

= 1

Pps
θ

[
(1 − ε)K̂ ρ̂θK̂† + ε

d
F̂ †

]
K̂

|ψθ〉
t

, (F5)

= 1

Pps
θ

[
(1 − ε)

K̂|ψθ〉
t

〈ψθ|F̂ |ψθ〉 + ε

d

K̂|ψθ〉
t

〈ψθ|F̂ |ψθ〉

+ ε

d

∑
n

K̂|ψθ
⊥,n〉

t
〈ψθ

⊥,n|F̂ |ψθ〉
]
, (F6)

= 1

Pps
θ

[
(1 − ε)t2|λ1〉 + ε

d
t2|λ1〉

+ i
∑

n

ε

d t
(t2 − 1)〈ψθ

⊥,n|[ρ̂θ, D̂]|ψθ〉|λn〉
]
, (F7)

=
t2

(
1 − ε + ε

d

)
Pps

θ

|λ1〉 − i
ε(t2 − 1)

dt Pps
θ

×
∑

n

〈ψθ
⊥,n|D̂|ψθ〉|λn〉. (F8)

Carrying out the same calculation for |λn〉 = K̂|ψθ
⊥,n〉

ρ̂
n, ps
θ

|λn〉 (F9)

= 1

Pps
θ

[
(1 − ε)K̂ ρ̂θK̂† + ε

d
F̂ †

]
K̂|ψθ

⊥,n〉, (F10)

= 1

Pps
θ

[
(1 − ε)

K̂|ψθ〉
t

t〈ψθ|F̂ |ψθ
⊥,n〉

+ ε

d

∑
m

K̂|ψθ
⊥,m〉〈ψθ

⊥,m|F̂ |ψθ
⊥,n〉

+ ε

d

K̂|ψθ〉
t

t〈ψθ|F̂ |ψθ
⊥,n〉

]
, (F11)

= i
t
(

1 − ε + ε
d

)
(t2 − 1)

Pps
θ

〈ψθ|D̂|ψθ
⊥,n〉|λ1〉 + ε|λn〉

dPps
θ

.

(F12)

In the above calculations, we used the following identities:

〈ψθ|[ρ̂θ, D̂]|ψθ〉 = 〈ψθ|ρ̂θD̂ − D̂ρ̂θ|ψθ〉
= 〈ψθ|D̂|ψθ〉 − i〈ψθ|D̂|ψθ〉 = 0, (F13)

〈ψθ
⊥,n|[ρ̂θ, D]|ψθ〉 = 〈ψθ

⊥,n|ρ̂θD̂ − D̂ρ̂θ|ψθ〉
= −〈ψθ

⊥,n|D̂|ψθ〉, (F14)

〈ψθ
⊥,n|[ρ̂θ, D̂]|ψθ

⊥,m〉 = 〈ψθ
⊥,n|ρ̂θD̂ − D̂ρ̂θ|ψθ

⊥,m〉 = 0.

(F15)
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Therefore, ρ̂
n, ps
θ

can be written in the {|λ1〉, . . . , |λd〉} basis as

ρ̂
n, ps
θ

=

⎛
⎜⎜⎜⎜⎝

λ1 λ1,1̄ . . . λ1,1̄

λ1̄,1 λ1̄ . . . 0
...

...
. . .

...

λ1̄,1 0 . . . λ1̄

⎞
⎟⎟⎟⎟⎠, (F16)

where

λ1 = t2

Pps
θ

(
1 − ε + ε

d

)
, (F17)

λ1̄ = ε

dPps
θ

, (F18)

λ1,1̄ = i
t

Pps
θ

(
1 − ε + ε

d

)
(t2 − 1)〈ψθ|D̂|ψθ

⊥,n〉, (F19)

λ1̄,1 = −i
ε(t2 − 1)

dt Pps
θ

〈ψθ
⊥,n|D̂|ψθ〉. (F20)

By solving det(ρ̂n, ps
θ

− λ 1̂) = 0, we find the perturbed eigen-
values. This is equivalent to

[λ1 − λ] · [λ1̄ − λ]d−1 = λ1̄,1 λ1,1̄ [λ1̄ − λ]d−2(d − 1).
(F21)

Hence we have

[λ1̄ − λ]d−2{[λ1 − λ][λ1̄ − λ] − λ1̄,1 λ1,1̄ (d − 1)} = 0.

(F22)
Because λ1̄,1 λ1,1̄ is order δ2, it follows that the eigenvalues
are the same up to a term of order δ2, i.e., λ′

n = λn + O(δ2).
From the matrix form of ρ̂

n, ps
θ

, we see that the perturbed
eigenvectors will have corrections of order δ

|λ′
1〉 = |λ1〉 +

∑
n 	=1

α1,n|λn〉 + O(δ2), (F23)

|λ′
n〉 = |λn〉 + αn|λ1〉 + O(δ2) for n > 2, (F24)

where αi are terms of order δ.
We can now evaluate the first-order correction in δ of the

QFIM. We use the formula

2
a2 p2

θ(
Pps

θ

)2

∑
n,m

〈λ′
n|(∂iρ̂1)|λ′

m〉〈λ′
m|(∂ j ρ̂1)|λ′

n〉
λ′

n + λ′
m

, (F25)

where ρ̂1 = |λ1〉〈λ1| and λ′
n, |λ′

n〉 are now the perturbed eigen-
values and eigenvectors. To evaluate ρ̂

n, ps
θ

we used Eq. (C34)
and neglected the term proportional to ∂i pθ , because it is
second order in δ. We also used the fact that pθ = t2 + O(δ2).
Note that the eigenvalues λ′

n are unchanged to order δ. Let us
examine the following cases.

(i) n = m = 1: the first factor in the numerator is pro-
portional to

∑
l 	=1 α∗

1,l〈λl |∂iλ1〉 + ∑
l 	=1 α1,l〈∂iλ1|λl〉, which is

order δ. Indeed, notice that the first-order term cancels out:
〈λ1|∂iλ1〉 + 〈∂iλ1|λ1〉 = ∂i〈λ1|λ1〉 = 0. When multiplied by
the second factor (the j derivative), this gives a second-order
contribution in δ.

(ii) n, m 	= 1: the first term in the numerator is proportional
to α∗

m〈λn|∂iλ1〉 + αn〈∂iλ1|λm〉, which is first order in δ. Simi-
larly, the second term is also first order in δ. The contribution
from these terms is second order in δ.

(iii) n 	= 1, m = 1 (or vice versa): to leading order in δ, the
first factor in the numerator is given by

〈λn|∂iλ1〉 + α∗
n〈λ1|∂iλ1〉 + α∗

n〈∂iλ1|λ1〉
= 〈λn|∂iλ1〉, (F26)

where we used 〈λ1|∂iλ1〉 + 〈∂iλ1|λ1〉 = ∂i〈λ1|λ1〉 = 0. Sim-
ilarly, to order δ2, the second factor in the numerator is
〈∂ jλ1|λn〉. When this term is multiplied by the first term in
Eq. (F26), we recover the formula for the unperturbed QFIM
calculated in the main text, to order δ2.
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