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Stronger speed limit for observables: Tighter bound for the capacity of entanglement, the modular
Hamiltonian, and the charging of a quantum battery
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How fast an observable can evolve in time is answered by so-called observable speed limit. Here, we prove a
stronger version of the observable speed limit and show that the previously obtained bound is a special case of the
new bound. The stronger quantum speed limit for the state also follows from the stronger quantum speed limit
for observables (SQSLO). We apply this to prove a stronger bound for the entanglement rate using the notion
of capacity of entanglement (the quantum information theoretic counterpart of the heat capacity) and show that
it outperforms previous bounds. Furthermore, we apply the SQSLO for the rate of modular Hamiltonian and in
the context of interacting qubits in a quantum battery. These illustrative examples reveal that the speed limit for
the modular energy and the time required to charge the battery can be exactly predicted using the new bound.
This shows that for estimating the charging time of quantum battery SQSLO is actually tight, i.e., it saturates.
Our findings can have important applications in quantum thermodynamics, the complexity of operator growth,
predicting the time rate of quantum correlation growth, and quantum technology, in general.
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I. INTRODUCTION

Since the inception of scientific explorations, time has
remained a paramount and fundamental notion in the study
of physical systems. However, understanding time presents
a considerable challenge, as it is not an operator but rather
a parameter. New insights on the nature of time emerged
after the formulation of the geometric uncertainty relation
between energy fluctuation and time, imposing limitations on
the rate at which a quantum system evolves. This concept was
later formalized as the quantum speed limit (QSL), which
delineates the minimal time required for the evolution of a
quantum system. The Mandelstam and Tamm derived a time-
energy uncertainty relation that bounds the speed of evolution
in terms of the energy dispersion [1]. And some years later,
another speed limit was identified for quantum state evolution,
which incorporates the average energy in the ground state
of the Hamiltonian [2,3]. There exist few protocols involv-
ing quantum controls also that have been utilized to provide
optimal value and controls to reach the target state within
minimum time for entanglement production [4] and charging
of quantum batteries [5–7]. Our work in this paper though
strictly relates with QSL, which depends on the shortest path
connecting the initial and final states of a given quantum
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system, which depends on the fluctuation in the Hamiltonian
and thus provides crucial insights into the dynamics of quan-
tum processes.

During the nascent stages of research, the bounds of the
QSL were primarily established for the unitary dynamics of
pure states for quantum systems [1–3,8–28]. Subsequently, re-
searchers delved into investigating QSL within the framework
of unitary dynamics for mixed states [29–38]. The signifi-
cance of QSL extends beyond theoretical explorations as it
plays a pivotal role in the advancement of quantum technolo-
gies and devices, among other applications. Indeed, QSL finds
diverse applications, including but not limited to, quantum
computing [39], quantum thermodynamics [40,41], quantum
control theory [42,43], quantum metrology [44], and beyond.

Later, following the discovery of the stronger uncertainty
relation Ref. [45], a more robust QSL was unveiled [46],
which presented a tighter bound than the previously estab-
lished Mandelstam and Tamm (MT) and Margolus-Levitin
(ML) bounds. These advancements were made within the
Schrödinger picture, where the state vector evolves over time.
Subsequently, the exploration of QSL within the Heisenberg
picture where observables evolve in time rather than the state,
gathered interest.

Henceforth, leveraging the Robertson-Schrödinger uncer-
tainty for observables utilizing Mandelstam and Tamm (MT)
bound, a novel QSL bound was established, which is termed
as the quantum speed limit for observables (QSLO) [47].
This development prompted a natural inquiry: could we derive
another bound using the stronger uncertainty relation? This
question arises because the SQSL is already tighter than the
MT bound, and while the QSLO is approximately equally
as tight as the MT bound, there remains a need for a tighter
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bound for observables in the Heisenberg picture. Indeed, not
only have we derived this new stronger bound, but have shown
that it gives a significant improvement over QSLO while ex-
amining few prominent examples provided in this paper.

Entanglement is considered a very useful resource in
information-processing tasks. Hence over the years, how to
create and quantify entanglement has been a subject of major
exploration [48,49]. The creation of quantum entanglement
between two particles depends upon the choice of the initial
state and suitable nonlocal interaction between them, but the
designing of suitable interacting Hamiltonian is not always
easy, which renders the production of entanglement a non-
trivial task. Thus, for a given nonlocal Hamiltonian, what can
be the best way to utilize this Hamiltonian to create entan-
glement? One way to answer this query is by making use
of the capacity of entanglement that was originally proposed
to characterize topologically ordered states in the context of
Kitaev model [50]. For a given pure bipartite entangled state
ρAB, the capacity of entanglement is defined as the second
cumulant of the entanglement spectrum, i.e., associated with
the reduced density matrix, with {λi}′s, the eigenvalues of
the reduced density matrix of any one of the subsystem, the
capacity of entanglement CE is defined as the second cumulant
of this entanglement spectrum, i.e; CE =∑i λilog2

2λi − S2
EE,

where SEE = −∑i λilog2λi is the well-known entanglement
entropy. CE is similar in form to the heat capacity of thermal
systems and can be thought of as the variance of the dis-
tribution of − log2 λi with probability λi and hence contains
information about the width of the eigenvalue distribution of
reduced density matrix. It was shown in Ref. [51] that the
quantum speed limit for creating the entanglement depends
inversely on the fluctuation in the nonlocal Hamiltonian as
well as on the average of the square root of the capacity of
entanglement. It was, thus, inferred that the more the capacity
of entanglement, the shorter the time duration system may
take to produce the desired amount of entanglement.

Our first illustration involves readdressing the entangle-
ment rate, which was bounded by fluctuation in the nonlocal
Hamiltonian and the capacity of entanglement as defined in
Ref. [50]. It is to be seen whether we can achieve a tighter
bound for entanglement generation or degradation with the
stronger uncertainty relation. If so, what can be the physical
implication for the new expression, and under what choice
of parameters we can achieve a tighter bound for a greater
duration? Furthermore, a similar object was studied under the
Heisenberg picture and the subsequent bound was interpreted
in the form of the generation of modular energy, defined in the
present context as a mean of composite modular Hamiltonian.
Needless to say, the notion of capacity of entanglement has ap-
plications in diverse areas of physics ranging from condensed
matter systems [52] to conformal field theories [50,53], and
alike.

For the final example case, we analyze the ergotropy and
bound on the charging process of quantum batteries. The var-
ious traditional batteries we make use of such as lithium-ion,
alkaline, and lead-acid batteries operate based on electro-
chemical reactions involving the movement of electrons
between two electrodes through electrolytes. The performance
of these batteries depends on factors such as electrolyte com-
position, electrode materials, and overall design. The quantum

batteries (QBs) represent a new frontier, grounded in quantum
mechanical principles such as tunneling effects, entangle-
ment, qubit-based technologies, and more [54]. Theoretical
models propose that these batteries can leverage quantum
superposition and entanglement to store and recover energy,
offering enhanced efficiency compared to conventional batter-
ies [55–60]. However, despite their potential advantages, QBs
are still in the early stages of development due to technologi-
cal limitations. Numerous challenges, including issues related
to stability, scalability, and practical implementation, need to
be addressed for their widespread usage [61,62].

The QB model comprises two essential components: a
battery charger and a battery holder. However, energy loss
is also accounted for in the subsequent stages, achievable by
isolating the quantum system from the environment, treated
as a dissipationless subsystem. The effective coupling of the
battery holder with the battery charger is crucial for energy
acquisition. The focus of recent theoretical research has been
on exploring basic bipartite state models and other related
models in the realm of quantum batteries [63–81]. Theoret-
ical evidence already supports the notion that in a collective
charging scheme, QBs can demonstrate accelerated charging
leveraging quantum correlations [55,56,82]. Presently, diverse
models of QBs have been proposed, including quantum cavi-
ties, spin chains, the Sachdev-Ye-Kitaev model and quantum
oscillators [61,68,83–93]. However, experimental investiga-
tions are limited, with fewer models explored, such as the
cavity-assisted charging of an organic quantum battery [94].
In this paper, we take the example of entanglement-based
QBs under different charging regimes. It is examined whether
stronger quantum speed limit for observables (SQSLO) gives
any significant improvement over existing QSLO [47,95] for
charging time.

This paper is organized as follows. In Sec. II, we discuss
all the basic concepts utilized in this paper. Subsequently, in
Sec. III, we derive the SQSLO bound by employing a stronger
uncertainty relation and compare it with other previously es-
tablished bounds. In the next Sec. IV, we have given the SQSL
for states and demonstrated a better bound for entanglement
generation with capacity of entanglement. Following this, in
Sec. V, we present two applications of the QSLO bound for
the modular energy and charging time of the quantum battery.
Finally, in Sec. VI, we conclude our paper.

II. DEFINITIONS AND RELATIONS

Stronger uncertainty relation. Unlike classical systems,
where all observables can be measured with arbitrary accu-
racy, the same is not true for quantum systems. For a given
quantum state there are restrictions on the results of the
measurements of noncommuting observables. The uncertainty
relation captures such a restriction for two incompatible ob-
servables.

The Heisenberg-Robertson uncertainty relation provides
a lower bound by merely yielding the product of two
variances of observables based on their commutator. This
proves that it is impossible to prepare a quantum state for
which variances of two noncommuting observables can be
arbitrarily reduced simultaneously. In contrast, a stronger un-
certainty relation offers a more comprehensive approach by
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considering the sum of variances. This approach ensures that
the lower bound remains nontrivial, especially when dealing
with two observables that are incompatible within the state of
the system. Thus, it provides a more nuanced understanding
of uncertainty, particularly in cases where traditional relations
fall short. However, we will not be using the sum form of the
stronger uncertainty relation. One of the stronger uncertainty
relations in the product form as given in Ref. [45] has the form

�A�B � ± i

2

〈[A, B]〉(
1 − 1

2

∣∣〈�⊥| A
�A ∓ i B

�B |�〉∣∣2) , (1)

where A and B are two incompatible observables with �A =√
〈A2〉 − 〈A〉2, �B =

√
〈B2〉 − 〈B〉2, and the averages are de-

fined in the state |�〉 for the given quantum system. This
Eq. (1) can be reduced to the Heisenberg-Robertson uncer-
tainty relation when it minimizes the lower bound over |�⊥〉
and becomes an equality when it maximizes it. The above
relation is stronger than the standard Heisenberg-Robertson
uncertainty relation. We will be using this to prove our
stronger quantum speed limit for observables.

Capacity of entanglement. Let us consider a composite
system AB with pure state |�〉AB. The amount of entan-
glement between subsystems A and B can be quantified
via the entanglement entropy, which is defined as the von
Neumann entropy of the reduced density operator ρA =∑

n λn |ψn〉A 〈ψn| (or ρB), i.e.,

SEE = S(ρA) = − tr(ρA log2 ρA) = −
∑

n

λn log2 λn, (2)

which is invariant under local unitary transformations on ρA.
The von Neumann entropy vanishes when density operator ρA

is a pure state. For a completely mixed density operator, the
von Neumann entropy attains its maximum value of log2 dA,
where dA = dim(HA).

For any density operator ρA associated with quantum sys-
tem A, we can define a formal Hamiltonian KA, called the
modular Hamiltonian, with respect to which the density op-
erator ρA is a Gibbs-like state (with β = 1)

ρA = e−KA

Z
,

where Z = tr(e−KA ). Note that any density matrix can be writ-
ten in this form for some choice of Hermitian operator KA.
With slight adjustments in the above equation, the modular
Hamiltonian KA can be written as KA = − log2 ρA. In this case,
the entanglement entropy of the system is equivalent to the
thermodynamic entropy of a system described by Hamiltonian
KA (with β = 1). Writing in terms of modular Hamiltonian
KA = − log2 ρA, the entanglement entropy becomes the ex-
pectation value of the modular Hamiltonian

SEE = − tr(ρA log2 ρA) = tr(ρAKA) = 〈KA〉. (3)

The capacity of entanglement is another information-
theoretic quantity that has gained some interest in recent time
[96]. It is defined as the variance of the modular Hamiltonian
KA [50] in the state |�〉AB and can be expressed as

CE(ρA) = 〈�| (KA ⊗ IB)2 |�〉 − 〈�| (KA ⊗ IB) |�〉2

= tr[ρA(− log2 ρA)2] − [tr(−ρA log2 ρA)]2 (4)

= tr
[
ρAK2

A

]− [tr(ρAKA)]2

= 〈K2
A〉 − 〈KA〉2 = �K2

A . (5)

The capacity of entanglement has also been defined in terms
of variance of the relative surprisal between two density ma-
trices V (ρ||σ ):

V (ρ||σ ) = tr(ρ[log2(ρ) − log2(σ )]2) − D(ρ||σ )2. (6)

Here, if one of the density matrices becomes maximally mixed
(i.e., either ρ or σ becomes I/d), then the variance of the
relative surprisal becomes the capacity of entanglement. For
further details and properties of capacity of entanglement,
readers are advised to go through Ref. [97].

Extractable work from quantum batteries. Let the quantum
system representing the battery be of dimension d with the
corresponding Hilbert space H. We further pick a standard
basis for describing the system Hamiltonian

H =
d∑

j=1

h j | j〉〈 j| with h j+1 > h j, (7)

where the assumption is that the energy levels are nondegen-
erate.

To extract the energy from the battery, the time-dependent
fields that are used can be described as V (t ) = V †(t ) where
such fields are switched on for time interval 0 � t � τ . The
initial state of the battery is described by a density matrix ρ,
which is evolved from the Liouville equation

d

dt
ρ(t ) = −i[H + V (t ), ρ(t )], ρ(0) = ρ. (8)

The work extraction by this procedure is then

W = tr(ρH ) − tr[ρ(τ )H], (9)

where time-evolved state is given as ρ(τ ) = U (τ ) ρ U †(τ ).
Further, through a proper choice of V , any unitary U can

be obtained for U (τ ). Therefore the maximal amount of ex-
tractable work, called ergotropy, can be defined as

Wmax := tr(ρH ) − min tr(UρU †H ), (10)

where the minimum is taken over all unitary transformations
of H.

III. STRONGER QSL FOR OBSERVABLES (SQSLO)

Derivation of stronger quantum speed limit for observables

Let us consider a quantum system with a state vector
|�〉 ∈ HN . In the Heisenberg picture, we can imagine that the
operators representing the observables evolve in time, while
the vectors in the Hilbert space (quantum states) remain inde-
pendent of time. This is opposite to the Schrödinger picture,
where the observables are independent of time and the states
evolve in time. In the Heisenberg picture, each self-adjoint
operator evolves in time according to the operator-valued dif-
ferential equation.

As we are dealing with the Heisenberg picture, the ob-
servable O(t ) undergoes a unitary evolution as given by the

022425-3



SHRIMALI, PANDA, AND PATI PHYSICAL REVIEW A 110, 022425 (2024)

Heisenberg equation of motion

ih̄
dO(t )

dt
= [O(t ), H], (11)

where H is the Hamiltonian operator of the system, and where
[O, H] is the commutator. If O(t ) commutes with the Hamil-
tonian, then it remains constant in time. In this section, we
aim to derive a more stringent QSL bound for observables,
surpassing the previously obtained limit. This bound stems
from the stronger uncertainty relation, applicable to any two
incompatible observables A(t ) and B(t ) in the Heisenberg
picture. This is given by

�A(t ) �B(t ) [1 − R(t )] � ± i

2
〈�|[A(t ), B(t )]|�〉, (12)

where

R(t ) = 1

2

∣∣∣∣〈�⊥| A(t )

�A(t )
∓ i

B(t )

�B(t )
|�〉
∣∣∣∣
2

, (13)

�A(t ) =
√

〈A(t )2〉 − 〈A(t )〉2, �B(t ) =
√

〈B(t )2〉 − 〈B(t )〉2,
|�〉 is the state of the system in which averages are calculated
and |�⊥〉 is the orthogonal state to |�〉. We will prove that
the bound obtained from the above equation is tighter than the
existing bound TQSLO, which was derived by using Robertson
uncertainty relation.

Now, consider the desired observable, denoted as A =
O(t ), and an another operator, B = H . Using the stronger
uncertainty relation, we can obtain

�O(t ) �H (1 − R(t )) � h̄

2

∣∣∣∣d〈O(t )〉
dt

∣∣∣∣. (14)

From the above expression, we obtain the stronger quan-
tum speed limit for observable (SQSLO) as given by

T � T O
SQSL = h̄

2�H

∫ T

0

|d〈O(t )〉|
�O(t ) η(t )

, (15)

where η(t ) = (1 − R(t )), �O(t ) =
√

〈O(t )2〉 − 〈O(t )〉2 and
�H =

√
〈H2〉 − 〈H〉2. Here, the time T denotes the time we

consider for the evolution of quantum system. This SQSLO
can be written as

T O
SQSL = h̄

2�H

|〈O(T )〉 − 〈O(0)〉|
〈〈�O(t ) η(t )〉〉T

, (16)

where 〈〈�O(t ) η(t )〉〉T = 1
T

∫ T
0 �O(T ) η(t )dt , is the time

average of the quantity �O(t ) η(t ) [98].
Alternatively, through Eq. (14), we can rewrite SQSLO as

T � T O
SQSL = h̄ �(T )

2�H

∫ T

0

|d〈O(t )〉|
�O(t )

, (17)

where �(T ) = 1
1−R(t )

, with R(t ) = 1
T

∫ T
0 R(t ) dt .

Now, we can show that the previously derived bound of the
QSLO [47] follows from the stronger QSLO. This will ensure
that SQSLO is an improvement over QSLO. As evident from
Eq. (15), an additional factor of η(t ) = 1 − R(t ) is present in
SQSLO, with 0 � R(t ) � 1 ∀ t , we have η(t ) ∈ [0, 1]. This
results in the final expression

T � h̄

2�H

∫ T

0

|d〈O(t )〉|
�O(t )η(t )

� h̄

2�H

∫ T

0

|d〈O(t )〉|
�O(t )

. (18)

Therefore, we have

T � T O
SQSL � T O

QSL. (19)

This shows that indeed SQSLO is tighter than QSLO.

IV. STRONGER QSL FOR STATES AND ENTANGLEMENT
CAPACITY

In this section, we delve into the relationship between
SQSL for observables and SQSL concerning states. Notably,
SQSL for state emerges as a distinctive instance within the
broader framework of SQSL for observable, when we con-
sider the observable as the projector of the initial state. For
realizing that, let us consider a quantum system with an initial
state |�〉 =∑i ci|i〉. We continue with the observable taking
the form of a projector, i.e., O(0) = P. Consequently, the
probability of finding the system in state |i〉 at time t = 0
becomes |ci|2, upon performing measurement with projector
defined as P = |i〉〈i|. Now we wish to study the bound on
speed limit for the projector for the quantum system evolving
a state |i〉 unitarily in time. Using Eq. (17) in an alternative
way, we can express the quantum speed limit for the projector
as given by

T � h̄ �(T )

2�H

∫ T

0

|d〈P(t )〉|
�P(t )

, (20)

where P(t ) = U (t )P(0)U (t )† and 〈P(t )〉 = p(t ) is the prob-
ability of the quantum system in state |i〉 at some later
time t .

The above bound can be expressed as

T � h̄�(T )

�H
| arcsin[

√
p(T )] − arcsin[

√
p(0)]|, (21)

where �(T ) = 1
1−R(t )

, with R(t ) = 1
T

∫ T
0 R(t ) dt . Now if we

choose p(0) = 1, i.e., |�〉 = |i〉, then the above inequality
results in the following bound:

T � h̄�(T )

�H
arccos[

√
p(T )]. (22)

This is equivalent to the stronger speed limit for the state
obtained in Ref. [47]. As we know the Mandelstam and Tamm
bound is a special case of the stronger speed limit for the state,
we can say that the stronger speed limit for the state and MT
bound, both are special cases of the stronger quantum speed
limit for the observable. Thus, our result unifies the previous
known bounds on the observable and state. Next, we apply the
SQSL for state to provide stronger bound for the entanglement
rate using capacity of entanglement.

Improved bounds on rate of entanglement through capacity of
entanglement using SQSL for states

The dynamics of entanglement under two-qubit nonlocal
Hamiltonian has been addressed in Ref. [99]. Further, the
inquiry on capacity of entanglement for two-qubit nonlo-
cal Hamiltonian and its properties have been addressed in
Ref. [51]. It was discovered that the defined capacity of entan-
glement indeed played a role in giving parameter free bound to
quantum speed limit for creating entanglement. In this section,
we address the following question: Can we improve upon the
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quantum speed limit bound, using the stronger uncertainty
relation? As we will see, indeed one can get a tighter bound
in such case and it again bolsters the point that the capacity of
entanglement has a physical meaning in deciding how much
time a bipartite state takes in order to produce a certain amount
of entanglement.

Let us briefly discuss about the two-qubit system, for which
the nonlocal Hamiltonian can be expressed as (except for
trivial constants)

H = 
α · 
σ A ⊗ IB + IA ⊗ 
β · 
σ B +
3∑

i, j=1

γi jσ
A
i ⊗ σ B

j , (23)

where 
α, 
β are real vectors, γ is a real matrix and, IA and
IB are identity operator acting on HA and HB. The above
Hamiltonian can be rewritten in one of the two canonical
forms under the action of local unitaries acting on each qubits
[99,100]. This is given by

H± = μ1σ
A
1 ⊗ σ B

1 ± μ2σ
A
2 ⊗ σ B

2 + μ3σ
A
3 ⊗ σ B

3 , (24)

where μ1 � μ2 � μ3 � 0 are the singular values of matrix γ

[99]. Using the Schmidt decomposition, any two-qubit pure
state can be written as

|�〉AB = √
p |φ〉 |χ〉 +

√
1 − p |φ⊥〉 |χ⊥〉 . (25)

We can utilize the form of Hamiltonian in Eq. (24) and choose
H+ [i.e., assuming det(γ ) � 0] to evolve the state in Eq. (25)
without losing any generality [99]. To further showcase a
specific example, let us choose |φ〉 = |0〉 and |χ〉 = |0〉. Thus,
the state at time t = 0 takes the form

|�(0)〉AB = √
p |0〉 |0〉 +

√
1 − p |1〉 |1〉 . (26)

Under the action of the nonlocal Hamiltonian, the joint state
at time t can be written as (h̄ = 1)

|�(t )〉AB = e−iHt |�〉AB = α(t ) |0〉 |0〉 + β(t ) |1〉 |1〉 , (27)

where α(t ) = e−iμ3t [
√

p cos(θt ) − i
√

1 − p sin(θt )], β(t ) =
e−iμ3t [

√
1 − p cos(θt ) − i

√
p sin(θt )], and θ = (μ1 − μ2).

To evaluate the capacity of entanglement, we would require
the reduced density matrix of the two-qubit evolved state,
ρA(t ) = trB[ρAB(t )], which is given by

ρA(t ) = λ1(t ) |0〉 〈0| + λ2(t ) |1〉 〈1| , (28)

where λ1(t ) = |α(t )2| and λ2(t ) = |β(t )2|, thus read as

λ1(t ) = 1
2 [1 − (1 − 2p) cos (2θt )],

λ2(t ) = 1
2 [1 + (1 − 2p) cos (2θt )].

The capacity of entanglement at a later time t can be calcu-
lated from the variance of modular Hamiltonian KA defined as
KA = − log2 ρA. This is given by

CE(t ) = tr{ρA(t )[− log2 ρA(t )]2} − {tr[−ρA(t ) log2 ρA(t )]}2,

=
2∑

i=1

λi(t ) log2
2 λi(t ) −

(
−

2∑
i=1

λi(t ) log2 λi(t )

)2

.

(29)

FIG. 1. Surface plot for capacity of entanglement CE(p, t )
(darker orange surface plot) and entanglement entropy SEE(p, t )
(lighter blue surface plot) vs p and t taking θ = 1

Further for Eq. (27), one can evaluate the entanglement
entropy and capacity as:

CE(t ) = −1

2
Tanh−1[(2p − 1) cos(2θt )]2

× [−1 + 4p(p − 1) + (1 − 2p)2 cos(4θt )]

SEE = e−2itθ

4

[
[−1 − 2e2itθ + 2p + e4itθ (−1 + 2p)]

× log2

[
1 + (1 − 2p) cos(2tθ )

2

]

− [−1 + 2e2itθ + 2p + e4itθ (−1 + 2p)]

× log2

[
1 − (1 − 2p) cos(2tθ )

2

]]
(30)

for chosen parameters p and θ . The plot in Fig. 1 shows how
entanglement entropy and capacity of entanglement varies for
some chosen value of θ = 1, where capacity reduces to zero
for when the state is either separable or stationary [51,99].

Now, for evaluating bound on the rate of entanglement, we
use the stronger-uncertainty relation in the form of Eq. (12)
for the two noncommuting operators KAB = KA ⊗ I and HAB.
This leads to

1
2 |〈�(t )|[KA ⊗ I, HAB]|�(t )〉| � �KA �HAB [1 − R(t )].

(31)

Using Eq. (14) (for O = KA) in Eq. (31), we then obtain

h̄

2

∣∣∣∣d〈KA〉
dt

∣∣∣∣ � �KA �HAB [1 − R(t )]. (32)

Let �(t ) denote the rate of entanglement. Recall that the
average of the modular Hamiltonian is the entanglement en-
tropy SEE. In terms of the entanglement rate �(t ), the above
equation can be written as

|�(t )| � 2

h̄
�KA �HAB [1 − R(t )]. (33)
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Since the square of the standard deviation of modular Hamil-
tonian is the capacity of entanglement, so in terms of the
capacity of entanglement, we can write above bound as

|�(t )| � 2

h̄

√
CE(t ) �HAB [1 − R(t )]. (34)

We can interpret the above formula by noting that one can
define the speed of transportation of bipartite pure entangled
state on projective Hilbert space of the given system by the
expression 2

h̄�HAB. Further using the Fubini-Study metric for
two nearby states, one can define the infinitesimal distance
between two nearby states [2,8,101] as

dS2 = 4(1 − |〈�(t ) |�(t + dt)〉|2) = 4

h̄2 �H2
AB dt2. (35)

Therefore, the speed of transportation as measured by the
Fubini-Study metric is given by V = dS

dt = 2
h̄�HAB. Thus, the

entanglement rate is upper bounded by the speed of quantum
evolution [37] and the square root of the capacity of entan-
glement and correction factor due to stronger uncertainty, i.e.,
|�(t )| � √

CE(t ) V [1 − R(t )].
We know from Ref. [102] that for an ancilla unassisted

case, the entanglement rate is upper bounded by c‖H‖ log2 d ,
where d = min(dimHA, dimHB), c being a constant between
the value 1 and 2, and ‖H‖ is operator norm of Hamiltonian,
which corresponds to p = ∞ of the Schatten p norm of H ,
which is defined as ‖H‖p = [tr(

√
H†H )p]

1
p . Now, using the

fact that the maximum value of capacity of entanglement is
proportional to Smax(ρA)2 [50], where Smax(ρA) is maximum
value of von Neumann entropy of subsystem, which is upper
bounded by log2 dA, where dA is the dimension of Hilbert
space of subsystem A, and �H � ‖H‖, a similar bound on
the entanglement rate can be obtained from Eq. (34). Further
the factor [1 − R(t )] varies between 0 and 1 for given standard
choice of Eq. (27). Thus, the bound on the entanglement rate
given in Eq. (34) is significantly stronger than the previously
known bound and will be shown subsequently to be a im-
provement upon the bound found in Ref. [51].

This bound on entanglement rate can be used to provide
QSL, which decides how fast a quantum state evolves in time
from an initial state to a final state [103]. Since the original
bound was given by Mandelstam and Tamm, over the past
decade there have been active explorations on generalizing the
notion of QSL to mixed states [35,104] and on resources that
a quantum system might posses [105]. The notion of gener-
alized quantum speed limit has been explored in Ref. [106].
Further, the quantum speed limit for observables has been
defined and it was shown that the QSL for state evolution is
a special case of the QSL for observable [47]. For a quantum
system evolving under a given dynamics, there exists a fun-
damental limitation on the speed for entropy S(ρ), maximal
information I (ρ), and quantum coherence C(ρ) [107] as well
as on other quantum correlations such as entanglement, quan-
tum mutual information, and Bell-CHSH correlation [97].

Now, we are in the position to give a stronger uncertainty
based expression for QSL bound,∫ T

0

∣∣∣∣dSEE(t )

dt

∣∣∣∣dt �
∫ T

0

2

h̄

√
CE(t ) �H [1 − R(t )] dt . (36)

FIG. 2. Here we depict T E
QSLO (top line), T E

SQSLO (bottom curve)
vs T with p = 0.1 for θ = 1.0.

For the time-independent Hamiltonian, we obtain the fol-
lowing bound for the stronger quantum speed limit for
entanglement:

T � T E
SQSLO := h̄|SEE(T ) − SEE(0)|

2�H 1
T

∫ T
0

√
CE(t ) [1 − R(t )]dt

. (37)

It is thus clear that evolution speed for entanglement genera-
tion (or degradation) is a function of capacity of entanglement
CE and a correction factor due to stronger uncertainty relation.
Thus, we can say that CE with [1 − R(t )] together controls
how much time a system may take to produce a certain amount
of entanglement. Extending the analysis of the bound, we have
calculated R(t ) by using the above-prescribed expression. We
note that under certain choice of |ψ⊥〉 this corresponds to
the system evolving along the geodesic path [46]. The cor-
responding choice is as

|ψ⊥(t )〉 = O(t ) − 〈O(t )〉
�O(t )

|ψ (t )〉, (38)

and with this, the speed limit bound is the most optimized.
To examine the tightness of the given QSL bound for gen-

eration of entanglement by taking an example of the state as
given in Eq. (27) for which we have estimated both capacity
of entanglement CE and entanglement entropy SEE in Eq. (30).
Further with �H = |θ (1 − 2p)| and evaluating R(t ) as de-
fined in Eq. (13) making use of |�⊥(t )〉 through Eq. (38) we
plot for T E

SQSLO and T E
QSLO vs T ∈ [0, 1] in Fig. 2 where T E

QSLO
is given as [51]

T � T E
QSLO := h̄|SEE(T ) − SEE(0)|

2�H 1
T

∫ T
0

√
CE(t )dt

. (39)

We clearly see that the operator stronger quantum speed
limit T E

SQSLO, which is with the correction factor gives a signif-
icantly tighter bound than the other T E

QSLO. With the choice of
state and Hamiltonian with p = 0.1 and θ = 1.0, we indeed
show that the bound is tighter and achievable. Further, in
Fig. 3, we plot T E

SQSLO vs T for a fixed p but several θ values,
which shows that we get better bounds for lower values of θ
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FIG. 3. Speed limit plot for entanglement generation for varying
θ keeping p = 0.1 fixed where tight bound for longest time could be
achieved for lowest θ = 0.1 and shortest for largest θ = 1.0.

and each of this case, T E
SQSLO gives a tighter bound. In the

subsequent section, we demonstrate that one obtains better
bounds through SQSLO compared to QSLO by illustrating
through two important examples.

V. ILLUSTRATIONS AND EXAMPLES

A. Improved bounds on modular energy using SQSLO

In the previous section, we have explored the study of en-
tanglement generation using SQSL for state. Here, we would
like to investigate how the modular Hamiltonian itself changes
under unitary transformation in the Heisenberg picture. Con-
sider a two-qubit system with a similar generalized canonical
forms of nonlocal Hamiltonian H± as in Eq. (24). Further
our state in this case retains the form |�〉AB = |�(0)〉AB as in
Eq. (26). As such the state operator of the composite system
also retains its form as

ρAB = ρAB(0) = |�(0)〉AB 〈�(0)| . (40)

We again choose H+ form of canonical Hamiltonian to time
evolve the following composite modular Hamiltonian:

KAB ≡ KAB(0) = KA ⊗ IB, (41)

where KA ≡ KA(0) = − log2 ρA is the modular Hamiltonian
and ρA(0) = trB[ρAB(0)]. In the Heisenberg picture, the oper-
ator of the composite AB system evolves with unitary operator
U (t ) = e−iH+t

KAB(t ) = U †(t )KAB(0)U (t ). (42)

We interpret the quantity 〈KAB(t )〉 = tr(ρAB KAB(t )) as the
modular energy EM in the Heisenberg picture. Note that even
though 〈KAB(0)〉 = tr[ρA(0)KA(0)] represents entanglement at
t = 0, KAB(t ) does not represent entanglement at time t in the
Heisenberg picture.

Now, the variance of composite modular Hamiltonian CM
can be written as

CM(t ) = �KAB(t )2 = 〈K2
AB(t )〉 − 〈KAB(t )〉2. (43)

The generalized expression for the EM and CM can be evalu-
ated and expressed as

CM(t ) = 1

4
log2

(
− 1 + 1

p

)2

(4p(1 − p) cos(2θt )2

+ sin(2θt )2)

EM(t ) = − (1 − 2p) arctanh(1 − 2p) cos(2θt )

− 1

2
log2[p(1 − p)]. (44)

We begin by making use of stronger-uncertainty relation
for the case of in general noncommuting Hamiltonians KAB(t )
and HAB and derive SQSLO bound for modular energy. De-
noting |�〉AB = |�〉 for brevity, we have

1
2 |〈�|[KAB(t ), HAB]|�〉| � �KAB�HAB[1 − R(t )], (45)

which leads to

h̄

2

∣∣∣∣d〈KAB(t )〉
dt

∣∣∣∣ = h̄

2

∣∣∣∣dEM

dt

∣∣∣∣ � �KAB(t )�HAB[1 − R(t )]. (46)

As �KAB(t ) = √
CM (t ), from Eq. (43), we get∣∣∣∣dEM

dt

∣∣∣∣ � 2

h̄

√
CM (t )�HAB[1 − R(t )]. (47)

This is a bound on the rate of the modular energy in the
Heisenberg picture. This is clearly distinct from the earlier
case in the Schrödinger picture (as these two quantities are
different).

For the purpose of evaluating R(t ), we will need the op-
timized |�⊥〉 as prescribed in Eq. (38). It is important to
mention that though the state vector of the system |�〉 remains
time independent in the considered picture, yet |�⊥〉 carries
an explicit time dependence due to the prescription used in-
volving operators that are time evolving themselves. So at
each instant of time of the operator evaluation, it picks up a
different |�⊥〉 while only maintaining that it be perpendicular
to the taken choice of |�〉. It goes without saying that such
|�⊥〉 is not physically relevant to the system, as it plays
no role in the description of it at any point in time. The
general expression for this choice evaluates out as given in
Appendix A (A3). Now this leads us to the following SQSLO
bound as given by

T � T M
SQSLO := h̄

2 �HAB

∫ T

0

|dEM |√
CM (t ) [1 − R(t )]

. (48)

We get the equivalent T M
QSLO case from the Robertson-

Schrödinger uncertainty relation, which is akin to dropping
the correction factor from Eq. (48)

T � T M
QSLO := h̄

2 �HAB

∫ T

0

|dEM |√
CM (t )

. (49)

Now, with �HAB = |(1 − 2p) θ |, we plot SQSLO and QSLO
bounds in Fig. 4 for the case of p = 0.1 and θ = 1.0 for which
R(t ) is given in Eq. (A4). We observe that in the case of
Heisenberg picture, the QSLO bound, i.e., T M

QSLO turns out to
be a bit loose whereas the SQSLO bound, i.e., T M

SQSLO, which
is with the correction factor turns out to be saturated.
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FIG. 4. Here we depict T M
QSLO (bottom curve), T M

SQSLO (top satu-
rated line) vs T with p = 0.1 for θ = 1.0.

We further plot QSLO bound for four cases of p =
{0.1, 0.4} and θ = {0.5, 1.0} cases using expressions for re-
spective R(t ) from Eqs. (A4)–(A7), which is shown in Fig. 5.
We observe and can conclude from the figure upon plotting
with several example cases, that the T M

QSLO bound is not opti-
mal.

Upon plotting for T M
QSLO and T M

SQSLO bounds for varying
θ = {0.5, 1.0} and fixed p = 0.1 cases in Fig. 6. We observe
that the SQSLO bound turns out to be saturated for any choice
in parameters. This shows that the SQSLO for the rate of
modular Hamiltonian is tight and saturated.

B. Improved bounds on charging time of quantum batteries
through SQSLO

The models of quantum engines and refrigerators have
been of great interest lately as they help in simulating the-
oretical efforts to formulate fundamental thermodynamical
principles and bounds, which are valid on micro or nanoscale.
It has been found that these can differ from the standard

FIG. 5. Depiction of T M
QSLO for chosen values of p and θ . The

dotted line is the reference ideal (saturated) case.

FIG. 6. Depiction of T M
QSLO (curves) and T M

SQSLO (overlap with
reference saturation case) for fixed p = 0.1 and varying θ . We ob-
serve that T M

QSLO for θ = 0.5 takes lead over T M
QSLO for θ = 1.0 after

T = π/2.

ones and converge only in the limit of macroscopic systems
[108]. The amount of work that can be extracted from a small
quantum mechanical system that is used to temporarily store
energy and to transfer it from a production to a consumption
center is the main content of a quantum battery. It is not
coupled to external thermal baths in order to drive thermo-
dynamical engines, but rather its dynamics is controlled by
external time-dependent fields.

The battery comes with its initial state ρ and an inter-
nal Hamiltonian HB. The process of energy extraction then
follows when this system is reversibly evolved under some
fields that are turned on during time interval [0, T ]. The
maximal amount of work that can be extracted by such a
process has been explored in Ref. [54]. Subsequently, nu-
merous researchers have dedicated their efforts to furthering
the understanding and exploitation of nonclassical features of
quantum batteries such as in Ref. [82]. In many-body quantum
systems characterized by multiple degrees of freedom, the
presence of quantum batteries, capable of storing or releasing
energy, is ubiquitous. In this section, we aim to determine the
minimum achievable unitary charging time of the quantum
battery utilizing the discussed SQSLO bound.

Consider a scenario where a quantum battery, with energy
denoted by the Hamiltonian HB, interacts with an external
charging field represented by HC . Consequently, the total
energy of the system is determined by the combined Hamilto-
nian, expressed as follows:

HT = HB + HC . (50)

Now, the ergotropy is defined as the quantum system’s
capacity to extract energy via unitary operations from the
quantum battery [109], and is expressed as

E (t ) = 〈�(t )|HB|�(t )〉 − 〈�(0)|HB|�(0)〉, (51)

where |�(t )〉 and |�(0)〉 are the final and initial state of the
given quantum system.

While the aforementioned expression holds true in the
Schrödinger picture, we would now like to switch over to
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its study in the Heisenberg picture where the expression for
ergotropy takes the form

E (t ) = 〈�(0)|[HB(t ) − HB(0)]|�(0)〉, (52)

where HB(t ) = e
iHt
h̄ HB(0)e− iHt

h̄ and HB(0) = HB.
The rate of change of ergotropy of quantum battery during

the charging process can be obtained as

dE (t )

dt
= d

dt
〈�(0)|HB(t )|�(0)〉. (53)

Using our bound we can write SQSLO for the ergotropy as

T � h̄

2�HT

∫ T

0

|dE (t )|
�HB(t )[1 − R(t )]

, (54)

where R(t ) = 1
2 |〈�⊥| HB (t )

�HB (t ) ∓ i HT
�HT

|�〉|2 and T is the charg-
ing time period of the quantum battery.

This SQSLO for QBs can also be reexpressed as:

T QB
SQSLO = h̄T

2�HT

〈〈 |E (T ) − E (0)|
�HB(t )(1 − R(t ))

〉〉
T

, (55)

where 〈〈A(t )〉〉T = 1
T

∫ T
0 dt A(t ), is the time average of the

quantity A(t ).
Now that we have derived the quantum speed limit (QSL)

formula for quantum batteries (QB’s) in a general case, let us
take up a specific example where we apply our SQSLO bound
on QB’s. Our chosen example involves an entanglement-based
QB consisting of two qubit cells and two coupled two-level
systems. To charge the QB effectively, we must individually
couple each cell with local fields. Consequently, our total
Hamiltonian HT can be expressed as given in Ref. [82]

HT = HB + HC + Hint, (56)

where HB = h̄ω0
∑2

n=1 σ z
n being the battery Hamiltonian.

Here, ω0 is the identical Larmor frequency for both the qubits.
Let us label |↑〉 and |↓〉 as ground and excited states for a
single qubit. With this one can define the fully charged state of
the battery as |full〉 = |↑↑〉 with full energy Efull = 2h̄ω, and
empty one as |emp〉 = |↓↓〉 with low energy Eemp = −2h̄ω.
Hence, the maximum energy that can be stored in the battery
reads Emax = 4h̄ω.

We consider the driving Hamiltonian to be comprised
of two parts, having charging part HC = h̄�

∑2
n=1 σ x

n and
nearest-neighbor interaction part Hint = h̄J (σ x

1 σ x
2 + σ

y
1 σ

y
2 +

σ z
1σ z

2 ), where J is the strength of two-body interaction. The
most general state of two qubits then reads as

|�(0)〉 = μ |↑↑〉 + ν |↑↓〉 + η |↓↑〉 + δ |↓↓〉 . (57)

Let us consider the case for the most general two-qubit nonen-
tangled state with,

μ = sin(θ1) sin(θ2)ei(ϕ1+ϕ2 )

ν = sin(θ1) cos(θ2)eiϕ1

η = cos(θ1) sin(θ2)eiϕ2

δ = cos(θ1) cos(θ2), (58)

where θ1, θ2 ∈ [0, π ] and ϕ1, ϕ2 ∈ [0, 2π ]. For the purpose of
illustration, let us assume that at the beginning of the charg-
ing process, the battery is assumed to be empty, i.e., ρ(0) =

FIG. 7. Figure shows that the QSLO bound plots (curves) for
both parallel (J = 0) and collective (J �= 0) quantum battery scenar-
ios overlap. The dotted curve is the reference ideal case.

|emp〉 〈emp|, which is achieved when we put θ1 = θ2 = 0 in
Eq. (58).

The ergotropy Eq. (52) in this case under Heisenberg pic-
ture upon evaluation reads as

E (t ) = 4ω�2

ω2 + �2
sin(
√

ω2 + �2 t )2. (59)

We would like to study the bounds on the charging time for
mentioned scenario above. First we look at the QSLO bound
studied in previous section, with a similar form to Eq. (49) for
quantum batteries as

TQSLO = h̄

2�HT

∫ T

0

|dE (t )|
�HB(t )

, (60)

where �HT and �HB(t ) can be evaluated for chosen values of
parameters ω, �, and J in above bound.

With our general Hamiltonian for QB defined as above, let
us take a case of parallel charging when J = 0, rendering the
interaction Hamiltonian inactive. Similarly, we can determine
the QSLO for the case of collective charging when J �= 0
using Eq. (60). Upon plotting these two speed limit functions,
as depicted in Fig. 7, we observe that for the above two cases,
the QSLO bound overlaps. Over that, there is a clear deviation
from the reference ideal case, i.e., TQSLO = T . It thus leaves
the ground for improvement. This observation holds true for
both scenarios of the QB Hamiltonian, namely the parallel and
collective charging cases. Hence, we would like to compute
the bounds by applying the SQSLO bound to both the cases.

Next, we study the scenarios involving coupled and de-
coupled cases. When J = �, we say the system is coupled,
whereas for J �= �, it represents the decoupled scenario.
To compute the QSLO for both the coupled and decoupled
Hamiltonians, we follow a similar procedure as we did for
the parallel and collective QB cases. A novel aspect of our
approach is the application of the SQSLO in both the coupled
and decoupled Hamiltonians. The expression for the SQSLO
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FIG. 8. Figure depicts plots for both QSLO and SQSLO bounds
for both coupling (J = �) and decoupling (J �= �) quantum battery
scenarios. The QSLO bounds overlap with reference ideal (saturated)
case, whereas for QSLO curves, decoupling case takes the lead close
to after T = 0.8.

bound is given as

TSQSLO = h̄

2�HT

∫ T

0

|dE (t )|
�HB(t )[1 − R(t )]

, (61)

where for the coupled case (with J = � = 1 and ω = 2) we
obtain expression of R(t ) as

R(t ) = 1

2

⎛
⎜⎝
⎧⎪⎨
⎪⎩

2 − 2
√

10 cos(
√

5t )√
9+cos(2

√
5t )

sin(
√

5t ) < 0

2 + 2
√

10 cos(
√

5t )√
9+cos(2

√
5t )

True,

⎞
⎟⎠, (62)

where |�〉 and |�⊥〉 are given in Appendix B. For the purpose
of evaluating R(t ), we need the optimized |�⊥〉 as prescribed
in Eq. (38).

Again, for the decoupled case, i.e., J �= � (taking J =
1, � = 4, ω = 2) we evaluate the bound using the expres-
sion for bound in Eq. (61). The expression of R(t ) upon
evaluation comes as

R(t ) = 1

2

⎛
⎜⎝
⎧⎪⎨
⎪⎩

2 − 4 cos(2
√

2t )√
3+cos(4

√
2t )

sin(2
√

2t ) < 0

2 + 4 cos(2
√

2t )√
3+cos(4

√
2t )

True,

⎞
⎟⎠, (63)

where |�〉 and |�⊥〉 are given in Appendix B.
We have depicted both SQSLO curves for both the cou-

pling and decoupling cases. Surprisingly, in both scenarios,
the SQSLO plots exhibit remarkable accuracy as they overlap
while showing saturation, as can be seen in Fig. 8. As ex-
pected, QSLO does not yield optimally tight bounds for both
coupling and decoupling cases as shown in the same figure.
From these plots, we can conclude that SQSLO performs
remarkably well, accurately representing the speed limit be-
havior in QB systems for both coupling and decoupling cases.
This result is quite a significant improvement upon earlier
bounds and is the optimal bound. Next, we will apply SQSLO
in parallel and collective QB cases to further explore its be-
havior in those scenarios.

FIG. 9. Figure shows the long time behavior of TQSLO (bottom
unsaturated curve), TSQSLO (tight and saturated overlap with reference
ideal line).

Having computed the QSLO for both parallel (J = 0) and
collective charging (J �= 0) QB cases, we will now apply the
SQSLO bound in both these cases. This involves evaluation
of R(t ) for both scenarios. We have already given the expres-
sion for collective charging (J �= 0) case earlier. For parallel
charging (J = 0) case with � = 1, ω = 2; this reads as

R(t ) = 1

2

⎛
⎜⎝2 + 2

√
10
∣∣sin(

√
5t )
∣∣ cot(

√
5t )√

9 + cos(2
√

5t )

⎞
⎟⎠, (64)

where the involved |�〉 and |�⊥〉 in this case are given in
Appendix B.

From the previous expressions, we reiterate that it appears
that |�⊥〉 exhibits time dependence. However, according to
the Heisenberg picture, the state should not evolve, indicating
that we should not observe time dependence in the orthogonal
state. Fundamentally, we acknowledge the existence of multi-
ple choices for the orthogonal state of a given state. Therefore,
we have adopted the most widely accepted method to select
the orthogonal state to optimize our parameter R. In Eq. (38),
we notice that the observable O is involved in the formula, and
we employ its associated battery Hamiltonian HB(t ), which
evolves in the Heisenberg picture. Consequently, the time
dependence on |�⊥〉 state arises. Through this selection, we
achieve optimal value for the expression R.

Now, it is interesting to observe the behavior of SQSLO
over a longer duration. We have plotted SQSLO for an ex-
tended period of time, and we observe optimal results, as
illustrated in Fig. 9. Thus, one can affirm that for QB sce-
narios, SQSLO stands as the optimal choice—it represents
the best bound for calculating the charging time of quantum
batteries.

We have analyzed various quantum battery scenarios, in-
cluding parallel, collective, coupling, and decoupling cases,
and presented our findings for QSLO and SQSLO. It is evi-
dent that SQSLO consistently reveals the tightest bound for
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quantum speed limit. Consequently, we can assert that
SQSLO outperforms in predicting the charging time.

VI. CONCLUSION

In conclusion, we have addressed the fundamental question
of how fast an observable can evolve in time by invoking the
concept of the observable speed limit. Our study presents a
stronger version of this limit, demonstrating that previously
derived bounds are special cases of our new bound. We have
also shown that SQSLO can lead to stronger speed limit for
states. By applying SQSLO, we have investigated its efficacy
in evaluating the capacity of entanglement, akin to the heat
capacity in quantum information theory. Notably, we have
established a more robust bound for the entanglement rate,
surpassing previous limitations. Moreover, our exploration
extends to the realm of interacting qubits within quantum
batteries. By leveraging SQSLO, we have accurately pre-

dicted the time required to charge the battery, showcasing
the tightness of SQSLO in this context—it effectively satu-
rates when estimating the charging time of quantum batteries.
These findings hold significant implications across various
domains, including quantum thermodynamics, the complexity
of operator growth, prediction of quantum correlation growth
rates, and the broader landscape of quantum technology. Thus,
SQSLO emerges as a powerful tool with diverse applications,
paving the way for advancements in quantum science and
technology.
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APPENDIX A: SQSL BOUND FOR ENTANGLEMENT CAPACITY

SQSL bound for entanglement generation using the capacity of entanglement under Schrödinger picture requires the
functional form of R(t ) and |�⊥〉 as defined in Eq. (38)

R(t ) = |
√

−arctanh(α)2β/
√

2 + arctanh(α) Sign[(1 − 2p)θ ] [−2i
√

p(1 − p) cos(2θt ) − sin(2θt )]|2
|arctanh(α)2 β| , (A1)

where α = (2p − 1) cos(2θt ), β = −1 − 4p(1 − p) + (1 − 2p)2 cos(4θt ). Also,

|�⊥〉 =

⎛
⎜⎜⎜⎜⎜⎝

√
2e−itμ3 arctan [(−1+2p) cos (2tθ )](−1+(−1+2p) cos (2tθ ))(√p cos (tθ )−i

√
1−p sin (tθ ))√

− arctanh [(−1+2p) cos (2tθ )]2[−1+4(−1+p)p+(1−2p)2 cos (4tθ )]

0
0√

2e−itμ3 arctanh [(−1+2p) cos (2tθ )][1+(−1+2p) cos (2tθ )](
√

1−p cos (tθ )−i
√

p sin (tθ ))√
− arctanh [(−1+2p) cos (2tθ )]2[−1+4(−1+p)p+(1−2p)2 cos (4tθ )]

⎞
⎟⎟⎟⎟⎟⎠, (A2)

where θ = (μ1 − μ2).
Similarly, SQSLO bound for generation of modular energy using the composite modular Hamiltonian under the Heisenberg

picture requires the functional form of R(t ) and |�⊥〉 as defined in Eq. (38).

|�⊥〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

log2

(
−1+ 1

p

)
(−2(−1+p)

√
p cos (2 θ t )−i

√
1−p sin (2 θ t ))√

log2
2

(
−1+ 1

p

)
(−4(−1+p)p cos2 (2 θ t )+sin2 (2 θ t ))

0
0

log2

(
−1+ 1

p

)
(−2

√
(1−p)p cos (2 θ t )+i sin (2 θ t ))√

log2
2 (−1+ 1

p )(−4(−1+p)p cos2 (2 θ t )+sin2 (2 θ t ))
p

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A3)

For p = 0.1 and � = 1, R is given as:

R(t ) = 0.63|1.89 + cos(2t )(1.67i
√

0.68 − 0.32 cos(4t )) − 0.89 cos(4t ) + 2.78
√

0.68 − 0.32 cos(4t ) sin(2t )|2
[2.13 − cos(4t )]2

, (A4)

Again, for p = 0.1 and � = 0.5, R is given as:

R(t ) = −0.15| cos(t )2 + cos(t )(1.67i)
√

0.68 − 0.32 cos(2t )) + sin(t )(2.78
√

0.68 − 0.32 cos(2t ) + 2.78 sin(t ))|2
−1.18 + cos(2t ) − 0.12 cos(4t )

, (A5)

Again, for p = 0.4 and � = 1, R is given as:

R(t ) = 0.5

∣∣∣∣ 1

(−49 + cos(4t ))
(−49 + cos(4t ) − (48.99i)

√
0.98 − 0.02 cos(4t )[cos(2t ) − (2.04i) cos(t ) sin(t )])

∣∣∣∣
2

, (A6)
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At last, for p = 0.4 and � = 0.5, R is given as:

R(t ) = −11.76| cos(t )2 + cos(t )(−1.02i
√

0.98 − 0.02 cos(2t )) + sin(t )(1.04
√

0.98 − 0.02 cos(2t ) + 1.04 sin(t ))|2
−24.51 + cos(2t ) − 0.005 cos(4t )

. (A7)

APPENDIX B: RELATED TO QUANTUM BATTERY

There are three cases in which we have calculated the
SQSLO for QBs. For each case, we require the values of
|�〉, and |�⊥〉. We will define each of these components
individually.

Here, for all cases the initial state is

|�〉 = (0, 0, 0, 1)T , (B1)

For J = 1, ω = 2 and � = 1, the function R(t ) in Eq. (62),
|�⊥〉 is provided below:

|�⊥〉 =

⎛
⎜⎜⎜⎜⎜⎝

0
2−2 cos(2

√
5t )−i

√
5 sin(2

√
5t )

2|sin(
√

5t )|√9+cos(2
√

5t )
2−2 cos(2

√
5t )−i

√
5 sin(2

√
5t )

2|sin(
√

5t )|√9+cos(2
√

5t )

0

⎞
⎟⎟⎟⎟⎟⎠. (B2)

For J = 1, ω = 2 and � = 4, the function R(t ) in Eq. (63),
�⊥〉 is provided below:

|�⊥〉 =

⎛
⎜⎜⎜⎜⎜⎝

0
1−cos(4

√
5t )−t

√
5 sin(4

√
5t )

2|sin(2
√

5t )|√6+4 cos(4
√

5t )
1−cos(4

√
5t )−t=√

5 sin(4
√

5t )

2|sin(2
√

5t )|√6+4 cos(4
√

5t )

0

⎞
⎟⎟⎟⎟⎟⎠. (B3)

For J = 0, ω = 2 and � = 1, the functions R(t ) in Eq. (64),
|�⊥〉 is provided below:

|�⊥〉 =

⎛
⎜⎜⎜⎜⎜⎝

0
e−2i+√

5t (−2+√
5+4e2i+√

5t −(2+√
5)e4i

√
5t )

4|sin(
√

5 t )|√9+cos(2
√

5t )

e−2i+√
5t (−2+√

5+4e2i+√
5t −(2+√

5)e4+√
5t )

4|sin(
√

5 t )|√9+cos(2
√

5t )

0

⎞
⎟⎟⎟⎟⎟⎠. (B4)

[1] L. Mandelstam and I. G. Tamm, The uncertainty relation be-
tween energy and time in non-relativistic quantum mechanics,
J. Phys. (USSR) 9, 249 (1945).

[2] A. K. Pati, Relation between phases and distance in quantum
evolution, Phys. Lett. A 159, 105 (1991).

[3] N. Margolus and L. B. Levitin, The maximum speed of dy-
namical evolution, Physica D 120, 188 (1998).

[4] S. Bao, S. Kleer, R. Wang, and A. Rahmani, Optimal control
of superconducting gmon qubits using Pontryagin’s minimum
principle: Preparing a maximally entangled state with singular
bang-bang protocols, Phys. Rev. A 97, 062343 (2018).

[5] R. R. Rodríguez, B. Ahmadi, G. Suárez, P. Mazurek, S.
Barzanjeh, and P. Horodecki, Optimal quantum control of
charging quantum batteries, New J. Phys. 26, 043004 (2024).

[6] V. Evangelakos, E. Paspalakis, and D. Stefanatos, Minimum-
time generation of a uniform superposition in a qubit with only
transverse field control, Phys. Rev. A 108, 062425 (2023).

[7] F. Mazzoncini, V. Cavina, G. M. Andolina, P. A. Erdman, and
V. Giovannetti, Optimal control methods for quantum batter-
ies, Phys. Rev. A 107, 032218 (2023).

[8] J. Anandan and Y. Aharonov, Geometry of quantum evolution,
Phys. Rev. Lett. 65, 1697 (1990).

[9] L. B. Levitin and T. Toffoli, Fundamental limit on the rate of
quantum dynamics: The unified bound is tight, Phys. Rev. Lett.
103, 160502 (2009).

[10] E. A. Gislason, N. H. Sabelli, and J. W. Wood, New form of
the time-energy uncertainty relation, Phys. Rev. A 31, 2078
(1985).

[11] J. H. Eberly and L. P. S. Singh, Time operators, partial station-
arity, and the energy-time uncertainty relation, Phys. Rev. D 7,
359 (1973).

[12] M. Bauer and P. A. Mello, The time-energy uncertainty rela-
tion, Ann. Phys. (NY) 111, 38 (1978).

[13] K. Bhattacharyya, Quantum decay and the Mandelstam-
Tamm-energy inequality, J. Phys. A: Math. Gen. 16, 2993
(1983).

[14] C. Leubner and C. Kiener, Improvement of the Eberly-Singh
time-energy inequality by combination with the mandelstam-
tamm approach, Phys. Rev. A 31, 483 (1985).

[15] L. Vaidman, Minimum time for the evolution to an orthogonal
quantum state, Am. J. Phys. 60, 182 (1992).

[16] A. Uhlmann, An energy dispersion estimate, Phys. Lett. A
161, 329 (1992).

[17] J. B. Uffink, The rate of evolution of a quantum state, Am. J.
Phys. 61, 935 (1993).

[18] P. Pfeifer and J. Fröhlich, Generalized time-energy uncertainty
relations and bounds on lifetimes of resonances, Rev. Mod.
Phys. 67, 759 (1995).

[19] N. Horesh and A. Mann, Intelligent states for the Anandan
- Aharonov parameter-based uncertainty relation, J. Phys. A:
Math. Gen. 31, L609 (1998).

[20] A. K. Pati, Uncertainty relation of Anandan-Aharonov and
intelligent states, Phys. Lett. A 262, 296-301 (1999).

[21] J. Söderholm, G. Björk, T. Tsegaye, and A. Trifonov, States
that minimize the evolution time to become an orthogonal
state, Phys. Rev. A 59, 1788 (1999).

[22] M. Andrecut and M. K. Ali, The adiabatic analogue of the
Margolus-Levitin theorem, J. Phys. A: Math. Gen. 37, L157
(2004).

[23] J. E. Gray and A. Vogt, Mathematical analysis of the
Mandelstam-Tamm time-energy uncertainty principle, J.
Math. Phys. 46, 052108 (2005).
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