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Two important classes of quantum channels, namely, the Werner-Holevo and the Landau-Streater channels,
are known to be related only in three dimensions, i.e., when acting on qutrits. In this work, the definition of the
Landau-Streater channel is extended in such a way that it retains its equivalence to the Werner-Holevo channel in
all dimensions. This channel is then modified to be representable as a model of noise acting on qudits. We then
investigate properties of the resulting noisy channel and determine the conditions under which it cannot be the
result of a Markovian evolution. Furthermore, we investigate its different capacities for transmitting classical and
quantum information with or without entanglement. In particular, while the pure (or high-noise) Landau-Streater
or the Werner-Holevo channel is entanglement breaking and hence has zero capacity, by finding a lower bound
for the quantum capacity, we show that when the level of noise is lower than a critical value the quantum capacity
will be nonzero. Surprisingly, this value turns out to be approximately equal to 0.4 in all dimensions. Finally,
we show that, in even dimensions, this channel has a decomposition in terms of unitary operations. This is in
contrast with the three-dimensional, case where it has been proved that such a decomposition is impossible, even
in terms of other quantum maps.
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I. INTRODUCTION

High-dimensional quantum channels have a wide range
of practical applications across different areas of quantum
information science, offering advantages such as increased
information capacity [1–4], enhanced security [5,6], and
improved performance in quantum technologies [7]. There
have also been advances in concrete realization of high-
dimensional quantum systems in various physical systems.
Notable among these are the encoding of a d-level sys-
tem or qudit in the angular momentum of structured light
[8–11]. Apart from these practical considerations, there has
always been strong interest in extending the formalism of
quantum information beyond two-level systems or the so-
called qubits. It is important to explore the limitations and
powers of high-dimensional quantum states and quantum
channels. Notable among these are the generalized Pauli chan-
nels [12,13] and multilevel amplitude-damping channels [4].
Interesting examples of high-dimensional quantum channels
include the Werner-Holevo [14] channels and the Landau-
Streater channels [15]. The former is an example of an
entanglement-breaking channel which destroys all the entan-
glement in the input state, the study of which provides insight
into the capacities of other quantum channels in general. The
latter, while also being entanglement breaking. is an example
of an extreme point in the space of all quantum channels,
i.e., a channel which cannot be represented as the convex
combination of other channels. Moreover, it is an example of
a unital channel which cannot be represented as a mixture of
unitary operations, contrary to the qubit case, where this is
always possible [16].

For these and other reasons, particularly their symmetries,
these two types of channels have attracted a lot of atten-
tion in quantum information science. Various properties of

the Landau-Streater channel have been studied, for example,
in Refs. [16–18], and those of the Werner-Holevo channel
in Refs. [19–25]. Below we will remind the reader of their
definition.

The Landau-Streater (LS) channel: Let the dimension be
d = 2 j + 1, where j is an integer or half-integer, then the LS
channel for qudits (acting on density matrices belonging to a
d-dimensional Hilbert space) is defined as

� j (ρ) = 1

j( j + 1)
(JxρJx + JyρJy + JzρJz ), (1)

where Jx, Jy, and Jz are the spin- j representation of genera-
tors of rotations in three-dimensional space, commonly called
the so(3) algebra. These generators are Hermitian and sat-
isfy the algebra [Ja, Jb] = iεa,b,cJc. In a Hilbert space V =
Span{| j, m〉, m = − j, . . . , j}, they are represented as

Jz| j, m〉 = m| j, m〉
J±| j, m〉 =

√
j( j + 1) − m(m ± 1)| j, m ± 1〉, (2)

where J± = Jx ± iJy. This is the first example [15] of a unital
quantum channel which cannot be realized as a collection
of random unitary operations. More concretely, the map L j ,
while having the property L j (I ) = I , cannot be written as
L j (ρ) = ∑

i piUiρU †
i for any choice of unitary actions and

any choice of randomness. Moreover, this channel is an ex-
treme point in the space of quantum channels. This is an
intriguing result since it is well known that for qubits, any
unital map can be written as a random unitary channel [16].
This means that the LS channel cannot model an environ-
mental noise in any way and should be looked at solely as
a mathematical and abstract model. In other words, there is no
parameter which can be tuned to represent the level of noise
by which we can interpolate between the identity channel and
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the LS channel. For obvious reasons and for emphasizing
what will be defined in the sequel, we call this the SO(3)
Landau-Streater channel, or SO(3) LS channel for short.

The Werner-Holevo (WH) channel: On the same Hilbert
space as above, a WH channel [14] is defined as [21]

φ(ρ) := 1

d − 1
[trρ I − ρT ]. (3)

(Actually, here we are dealing with a specific channel among
the one-parameter family of Werner-Holevo channels.) This is
an example of a quantum channel with entanglement-breaking
property [26] and was used as a counterexample of the additiv-
ity of minimal output Rényi entropy [14,20,25]. This channel
has the covariance property under the SU(d ) group, that is,

φ(UρU †) = U ∗φ(ρ)U T , ∀ U ∈ U (d ), (4)

a property which facilitates many calculations relating to the
capacities of quantum channels.

A. Recent works

In view of the importance of the two channels, a natural
question arises concerning whether or not they are related in
any way. The answer is known to be positive for the so-called
qutrits, i.e., for three-level systems, when d = 3. Therefore,
when j = 1, it is known that the two channels are the same
[17,18,27], that is,

1
2 (JxρJx + JyρJy + JzρJz ) = 1

2 [trρ I − ρT )]. (5)

To show this equivalence, one of course needs to use a specific
representation of the spin-1 representation of so(3), namely,

Jx = −i

⎡
⎣0 0 0

0 0 1
0 −1 0

⎤
⎦,

Jy = −i

⎡
⎣0 0 −1

0 0 0
1 0 0

⎤
⎦,

Jz = −i

⎡
⎣ 0 1 0

−1 0 0
0 0 0

⎤
⎦, (6)

otherwise the equivalence is established up to unitary conjuga-
tion [17]. The equivalence of the two channels, however, stops
at this point, namely, in dimension three (i.e., for qutrits).

Note that the LS (or equivalently, the Werner-Holevo chan-
nel) cannot be used as models of noisy channels where the
parameter of noise can be tuned, i.e., to implement a low-noise
channel. In Ref. [27], it was shown that one can modify this
channel as follows:

�x(ρ) := (1 − x)ρ + x�1(ρ) 0 � x � 1, (7)

and this new channel can indeed act as a noisy Landau-
Streater or Werner-Holevo channel. Moreover, it was shown
that this channel allows a simple physical interpretation in the
form of random rotations, that is,

�x(ρ) =
∫

dndθP(n, θ )ein·Jθρe−in·Jθ , (8)

where x is related to the probability distribution P(n, θ ) [27].
It was then shown in Ref. [27] how various capacities of the
modified channel, being a rather feasible model of quantum
noise on qutrits [28–34], can be calculated or lower and up-
per bounded. Most interestingly, it was analytically shown in
Ref. [27] that the channel �x is antidegradable if the param-
eter x is greater than a critical value xc = 4

7 . This means that
the quantum capacity of this channel is exactly zero beyond
this critical value. If we regard x as the noise parameter, this
means that when the level of noise is higher than this xc = 4

7 ,
no quantum information can be sent through this channel in
any reliable way, no matter how and by how much redundancy
we encode or decode the quantum states.

Quite recently, this analysis was taken one step further,
when Lo et al. [35] studied the SO(3) Landau-Streater chan-
nel in arbitrary dimensions and its noisy version (i.e., for
higher-spin representation but of the three-dimensional rota-
tion group). They tackled the problem of degradability and
showed that in the low-noise regime, these channels are O(ε2)
degradable. We remind the reader that a channel � is degrad-
able [36,37] if it is related by another completely positive
trace-preserving (CPTP) map to its complement, namely, if
there is a CPTP map �, such that �c = � ◦ �. ε degradabil-
ity [38] means that this equality is valid only approximately,
that is, ‖�c − � ◦ �‖� = O(ε), where ‖ · ‖� is the diamond
norm. This result narrows down the value of quantum capac-
ity, which usually cannot be calculated exactly.

B. The present work

In this paper we proceed to do the following:
(i) As mentioned above, the identity of the Landau-Streater

and the Werner-Holevo channel stops at the spin-1 represen-
tation of the SO(3) group. By considering the higher-spin
representations of the rotation group, we are still in the realm
of the SO(3) Landau-Streater and there is no equivalence
with the Werner-Holevo channel. To make this connection,
we replace the SO(3) group with SO(d ), the group of rota-
tions in d-dimensional space, which is naturally shown to be
equivalent to the d-dimensional Werner-Holevo channel.

(ii) In the same way as in Ref. [27], we make a convex com-
bination of this channel with an identity channel to construct
a one-parameter family of channels in the form

�x (ρ) = (1 − x)ρ + x

d − 1
[tr(ρ) I − ρT ]. (9)

Thus, in any dimension d , we are dealing with a one-
parameter family of channels. We then study several prop-
erties of this channel. Namely, we (a) characterize the full
spectrum of the channel, which determines the range of the
parameter x, where this channel cannot be infinitesimally
divided and hence cannot be the result of a Markovian
evolution; (b) determine the one-parameter family of comple-
mentary channels �c

x in closed form; and (c) show that in even
dimensions, the Werner-Holevo or the Landau-Streater chan-
nel and its noisy extension has a mixed-unitary representation,
that is, we prove that in these dimensions, the channel can be
written as a convex combination of unitary operations. To the
best of our knowledge this is a property not known for the
Werner-Holevo channel,
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(iii) We calculate its classical one-shot capacity in the full
parameter range, and the entanglement-assisted capacity in
closed form. Furthermore, we determine a lower bound for the
quantum capacity and show that there is a critical value of x0,
below which the channel �x has definitely a nonzero quantum
capacity. The value of this critical parameter turns out to be
approximately equal to 0.4 in all dimensions. Above this value
of noise, we do not know if the capacity of the channel is zero
or not.

The structure of this paper roughly corresponds to points
(i)–(iii) discussed above. We end the paper with a discussion.

C. Remark on notation

Throughout the paper, we use the notation � for the stan-
dard Landau-Streater channel based on the group SO(3), �

for our definition of the SO(d ) Landau-Streater channel, and
E for an arbitrary channel.

II. DEFINITION OF THE SO(d )
LANDAU-STREATER CHANNELS

Let Rd denote the d-dimensional Cartesian space and let
Hd be a Hilbert space of dimension d with basis states
{|n〉, n = 1, . . . , d}. The space of linear operators on Hd is
denoted by L(Hd ) and the set of positive linear operators on
Hd by L+(Hd ). The density operators on this Hilbert space
are denoted by D(Hd ). The operators

Jmn = −i(|m〉〈n| − |n〉〈m|) (10)

are the generators of the Lie algebra SO(d ), the Lie algebra of
the group SO(d ), or rotations in Rd . Jmn generates rotations in
the m − n plane in Rd . The set of operators 	− := {Jmn, 1 �
m < n � d} is indeed closed under commutation relations

[Jkl , Jmn] = i{δlmJkn + δknJlm − δlnJkm + δkmJln}, (11)

showing that so(d ) is indeed a Lie algebra of dimension
d (d−1)

2 . Furthermore, one can also see that∑
m<n

J†
mnJmn = (d − 1) I. (12)

By taking Jmn to be the Kraus operators of a map, one can then
define a completely positive trace-preserving quantum map or
quantum channel which turns out to be

�(ρ) := 1

(d − 1)

∑
m<n

JmnρJ†
mn = 1

d − 1
[trρ I − ρT )]. (13)

To prove this, it is better to use the antisymmetry of the Kraus
operators Jmn = −Jnm and write

�(ρ) := 1

2(d − 1)

∑
m,n

JmnρJ†
mn

= 1

2(d − 1)

∑
m,n

(|m〉〈n| − |n〉〈m|)ρ(|n〉〈m| − |m〉〈n|)

= 1

(d − 1)

∑
m,n

(ρn,n|m〉〈m| − ρm,n|n〉〈m|)

= 1

d − 1
[trρ I − ρT )]. (14)

This is the generalization of the well-known SO(3) Landau-
Streater channel to arbitrary dimensions. We call it the SO(d )
Landau-Streater channel. Note that hereafter we use the
names Werner-Holevo (WH) channel and Landau-Streater
(LS) channels interchangeably.

The last equality shows that it is equivalent to the Werner-
Holevo channel, Eq. (3). While the Kraus operators belong to
the algebra of SO(d ), the resulting channel is covariant under
the full group of unitary matrices U (d ), that is,

�(UρU †) = U ∗φ−(ρ)U T U ∈ U (d ). (15)

This channel, while of great interest, is not yet appropriate to
model a noisy quantum channel, since there is no term which
interpolates this to the identity channel. We can now add such
a term and define a one-parameter channel as

�x (ρ) = (1 − x)ρ + x

d − 1
(tr(ρ) I − ρT ). (16)

We call this the noisy Landau-Streater or the noisy Werner-
Holevo channel. Note, however, that the addition of the
identity channel now leads to a reduction of the covariance
group from U (d ), the group of all d-dimensional unitaries, to
its subgroup O(d ), the group of all orthogonal matrices, for
which U = U ∗,

�x (UρU †) = U�x (ρ)U †, U = U ∗ ∈ O(d ). (17)

We are now prepared to study the spectrum of the channel φx .

III. SPECTRUM OF THE CHANNEL
AND ITS INFINITESIMAL DIVISIBILITY φx

It is an interesting question as to when a given quantum
channel is the result of a Markovian evolution or even when it
is infinitesimally divisible. When the Landau-Streater channel
is mixed with the identity channel to model an environmental
noise, this question becomes relevant for the resulting channel
�x. An interesting result of Ref. [39] gives an answer to
this question in the negative sense, that is, it states that if
the determinant of a channel is negative, then the channel
is not infinitesimally divisible. Therefore, we calculate the
determinant of the channel �x.

Consider the matrices Ei j = |i〉〈 j| and let

Xi j := Ei j + Eji i � j

Yi j := Ei j − Eji i < j

Zi := Eii − Ei+1,i+1. (18)

We first derive the spectrum of the channel φ−. It is a matter
of direct calculation to verify the following relations, where in
each case, g denotes the degeneracy of a given eigenvalue.

�x (Xi j ) =
[

1 − x
d

d − 1

]
Xi j g = d (d − 1)

2

�x (Yi j ) =
[

1 − x
d − 2

d − 1

]
Yi j g = d (d − 1)

2

�x (Zi ) =
[

1 − x
d

d − 1

]
Zi g = d − 1

�x (I ) = I g = 1. (19)
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Denoting these eigenvalues by λk , we find the determinant
of the channel

Det(�x ) :=
∏

k

λk =
[

1 − x
d

d − 1

] (d+2)(d−1)
2

[
1 − x

d − 2

d − 1

] d (d−1)
2

. (20)

The negativity of Det(�x ) depends on the dimension. From
(20), it is seen that depending on the dimension d , the channel
�x is not divisible if

1 < x
d

d − 1
, and

(d + 2)(d − 1)

2
is odd. (21)

That is, if

d − 1

d
< x, and d ∈ {3, 4, 7, 8, 11, 12, . . . }

= {3 + 4i, 4 + 4i, i = 1, 2, 3 . . . }. (22)

When the above condition holds, the channel is not the
result of a Markovian evolution.

IV. COMPLEMENTARY CHANNEL

The concept of the complement of a channel, which is
crucial in determining many of the properties of a quantum
channel, hinges on the well-known Stinespring dilation theo-
rem [40], which states that any quantum channel E : A −→ B
can be constructed as a unitary map U : A ⊗ E −→ B ⊗ E ′,
where E and E ′ are the environments of A and B, respectively.
More formally, we have

E (ρ) = trE ′ (UρU †), (23)

where U denotes an isometry mapping from A to B ⊗ E ′. In
this configuration, the complementary channel Ec : A −→ E ′
is defined by

Ec(ρ) = trB(UρU †), (24)

constituting a mapping from the input system to the output
environment. It is important to note that the complement of a
quantum channel is not unique, but there exists a connection
between them through isometries, as detailed in Ref. [41]. The
Kraus operators of the channel E and its complement Ec are
related as follows [42]:

E (ρ) =
∑

α

AαρA†
α

Ec(ρ) =
∑

i

RiρR†
i

(Ri )α, j = (Aα )i, j .

(25)

The last formula gives a very simple recipe for writing the
Kraus operators of the complementary channel easily. Put the

first rows of all the Kraus operators in consecutive rows of
a matrix and call it R1, put the second rows of all the Kraus
operators in consecutive rows of a matrix and call it R2, and
so on and so forth. To this end, we rewrite the channel �x as

�x(ρ) = (1 − x)ρ + x

2(d − 1)

∑
m,n

JmnρJ†
mn, (26)

where the summation is over all indices m and n. We then
write the Kraus operators of the channel in a specific double-
index notation, so we write these Kraus operators as

A0 = √
1 − x I, Am,n =

√
x

2(d − 1)
Jm,n . (27)

With the number of Kraus operators that we have used to
define the channel �x, �c

x
(ρ) will be a square matrix acting

on a space V of dimension d2 + 1. This space is partitioned
into V = V 0 ⊕ V , where they are respectively spanned by the
following normalized vectors:

{|0〉} ∪ {|m, n〉, m, n = 1, . . . , d}. (28)

The basis vectors of different subspaces are obviously or-
thogonal to each other, and within each subspace, they are
orthonormal. In general, we can calculate the matrix elements
of �c

x
(ρ) as follows. In view of (25), we have

[
�c

x
(ρ)

]
α,γ

=
∑
i, j

(Ri )α, jρ jk (R†
i )k,γ

=
∑
i, j

(Aα )i, jρ jk (A†
γ )k,i = tr(AαρA†

γ )

α, γ ∈ {0, mn}. (29)

With these conventions and with the explicit expression that
we have for Jmn, it is readily calculated that[

�c
x
(ρ)

]
0,0 = tr(ρ)(1 − x) (30)

[
�c

x
(ρ)

]
0,mn = i

√
x(1 − x)

2(d − 1)
(ρmn − ρnm) (31)

and [
�c

x
(ρ)

]
mn,pq = x

2(d − 1)
(δm,pρn,q − δn,pρmq

× −δm,qρnp + δn,qρmp). (32)

All this can be neatly arranged in a matrix form as follows,
where the blocks which from top to bottom and from left to
right are spanned by the basis vectors of V 0 and V , respec-
tively:

�c
x
(ρ) =

⎛
⎝ (1 − x)tr(ρ) i

√
x(1−x)
2(d−1) 〈ρ|(I ⊗ I − S)

−i
√

x(1−x)
2(d−1) (I ⊗ I − S)|ρ〉 x

2(d−1) (I − S)(I ⊗ ρ + ρ ⊗ I )

⎞
⎠, (33)
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where |ρ〉 = ∑
m,n ρmn|m, n〉 is the vectorized form of ρ and

S is the swap operator on V , e.g., S|m.n〉 = |n, m〉. One can
readily check that tr[�c

x
(ρ)] = 1. One can also see that the

off-block diagonal vanishes for any diagonal matrix ρ. The
reason is that the vectorized form of any diagonal matrix ρ =∑

i λi|i〉〈i| is given by |ρ〉 = ∑
i ρii|i, i〉, which is annihilated

by the operator (I ⊗ I − S).

V. THE QUESTION OF EXTREMALITY
AND MIXED-UNITARY REPRESENTATION

The SO(3) Landau-Streater channel, or equivalently,
the qutrit Werner-Holevo channel �WH (ρ) = 1

2 [tr(ρ)I − ρT ],
originally introduced in Ref. [15], is known to be an extreme
point in the space of quantum channels. That is, it cannot be
written as the convex combination of other CPT maps. One
can see this simply by noting the well-known theorem of Choi
[15], according to which a CPT map,

E (ρ) =
K∑

m=1

AmρA†
m,

is extremal if and only if the set {A†
mAn, m, n = 1, . . . , K} is

linearly independent. For the SO(3) channel, where the Kraus
operators belong to the set {Jx, Jy, Jz}, this is obviously true.
The question arises whether this is also the case for the SO(d )
channel. As we will show below, it turns out that for higher
groups SO(d ), this is no longer the case. Moreover, the SO(3)
channel has the property that while it is a unital, it cannot be
represented by a mixed-unitary channel, i.e., a channel whose
Kraus operators are unitary matrices. We will see that contrary
to this case, at least for the SO(2d ) case, the Landau-Streater
or the Werner-Holevo channel can be decomposed in terms of
unitary operations.

To prove nonextremality, it is enough to invoke the Choi
theorem [15] and note that when the nonordered pair of in-
dices are such that

{m, n} �= {p, q},
then JmnJpq = 0, and there are many such pairs when d � 4,
which makes these pairs linearly dependent. For example, in
d = 4, the pairs J12J34, J13J24, and J14J23 all vanish and are
hence linearly dependent.

A more interesting question is whether or not such a chan-
nel has a mixed-unitary representation, the answer to which
is positive, at least when d is even. In order not to clutter the
notation, we describe the basic idea by two simple examples,
namely, d = 4 and d = 6. The reasoning easily generalizes to
d = 2k.

A. A mixed-unitary representation for SO(4)
Landau-Streater channel

Let us construct a different set of Kraus operators for this
channel in the form

K±
1 = 1√

2
(J12 ± J34),

K±
2 = 1√

2
(J13 ± J24),

K±
3 = 1√

2
(J14 ± J23). (34)

It is easily seen that K±
i

†K±
i = 1

2 I4, ∀ i. This essential
property is a result of the multiplication relations between
Jmn with equal and distinct indices and the fact that the set
{1, 2, 3, 4} can be partitioned into three distinct sets of pairs
of indices,

{(1, 2), (3, 4)}, {(1, 3), (2, 4)}, {(1, 4), (2, 3)},
in such a way that in each partition every label appears only
once, and the three partitions exhaust all the possible pairs.
Such partitions exist in even dimensions and their construction
can be related to other interesting combinatorial problems in
graph theory, scheduling, and Latin squares. Note also that the
new set of Kraus operators is obtained from the original set by
the following transformation:⎛

⎜⎜⎜⎜⎜⎜⎜⎝

K+
1

K−
1

K+
2

K−
2

K+
3

K−
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

= �

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

J12

J34

J13

J24

J14

J23

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (35)

where � = H ⊕ H ⊕ H and H = 1√
2
(1 1
1 −1) is a unitary ma-

trix. This guarantees that the new Kraus operators define the
same quantum channel as the original one. Therefore, by
defining the unitary operators U ±

i := √
2K±

i , the SO(4) LS
channel can be written as

�(ρ) = 1

6

3∑
i=1

(U +
i ρU +

i
† + U −

i ρU −
i

†). (36)

This shows that the channel simply acts as a mixture of unitary
channels. This is also true for the channel �x, where one of the
unitary operators is the identity operator.

B. A mixed-unitary representation for SO(6)
Landau-Streater channel

There are now in total 15 Kraus operators for this channel
in the form Jmn, 1 � m < n � 6. We now consider the fol-
lowing partition of indices:

{(1, 2), (3, 6), (4, 5)}
{(1, 3), (2, 4), (5, 6)}
{(1, 4), (3, 5), (2, 6)} (37)

{(1, 5), (2, 3), (4, 6)}
{(1, 6), (2, 5), (3, 4)},

which have the nice property that in each set, each of the
labels appear only once, while all the partitions are mutually
exclusive and exhaust all the pair of labels. Corresponding
to each partition, say, the first one, one can construct three
unitary Kraus operators as follows:

K1 = 1√
3

[J12 + J36 + J45],

K2 = 1√
3

[J12 + ωJ36 + ω2J45],

K3 = 1√
3

[J12 + ω2J36 + ωJ45]. (38)
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FIG. 1. The algorithm for finding the distinct partitions of d points for d = even. A point is put at the center and a line connects it with a
point on the d − 1 polygon. The other pairs correspond to the lines perpendicular to this line. Here, two examples are shown for d = 8.

These operators satisfy K†
i Ki = 1

3 I, ∀i. In order to represent
the channel as a mixture of unitary channels, we construct new
Kraus operators out of the old ones in the same way as in (38)
for each of the partitions. Thus, we have in a compact form

K = �J, (39)

where K is a column vector which comprises all 15 new
unitary Kraus operators, J is a vector which comprises all the
original Kraus operators in suitable order, i.e., corresponding
to the consecutive partitions, like

J = (J12 J36 J45 J13 J24 J56 . . . . . . )T ,

and � = F ⊕ F ⊕ F ⊕ F ⊕ F , in which F =
1√
3
(
1 1 1
1 ω ω2

1 ω2 ω
) is the Fourier transform on Z3. In this

way and by defining Ui = √
3Ki, the SO(6) Landau-Streater

channel is written as a uniform mixture of unitary maps:

�(ρ) = 1

15

∑
i

UiρU †
i . (40)

The pattern displayed in these two examples repeats in higher-
dimensional channels provided that d is even. In such cases
there are d − 1 different and mutually exclusive partitions.
When d is even, this kind of partitioning corresponds to
coloring the nodes of a graph with d − 1 different colors in
such a way that each node is connected to d − 1 other nodes
with different colors. This problem is well known to have
an algorithmic solution as shown in Fig. 1. Each partition
I = {(m, n), . . . } contains d/2 pairs of indices, which allows
us to convert the Kraus operators {Jmn, . . . } (by a Fourier
transform) to d/2 unitary Kraus operators. In this way the total
number of d (d−1)

2 Kraus operators are converted to the same
number of unitary operators, describing the same quantum
channel. For odd d , the required partitions cannot be found
and it is not clear whether the channel can admit a mixed-
unitary representation.

VI. CAPACITIES

For a quantum channel, one can define many different ca-
pacities [43,44]. These are the ultimate rates at which classical
or quantum information can be transferred from a sender to
a receiver per use of the channel by using different kinds
of resources. There is a long route for converting these op-
erational definitions to concrete and closed formulas for the
capacities. Here, we do not start from the operational defi-
nition, for which the reader can refer to many good reviews
[43,45,46]; rather, we start from the closed formulas which
have been obtained for the calculation of capacity in each case
[36,47–49]. Even after having these closed formulas, it is in
general very difficult to find explicit values for the capacities
in terms of the parameters of the channel, and we have to
suffice with bounds on these capacities [50–52]. Besides su-
peradditivity [53], the important property whose presence (or
absence) simplifies (or not) the calculation of some of these
capacities, is the concavity of the relevant quantity which is to
be maximized. We will see this in the following subsections,
where we discuss different forms of capacities for the SO(d)
Landau-Streater channel.

A. One-shot classical capacity

This is the ultimate rate at which classical messages, when
encoded into quantum states, can be transmitted reliably over
a channel. It is given by [47]

C(E ) = lim
n−→∞

1

n
χ (E⊗n), (41)

where χ (E ) = maxpi,ρi χ{pi, E (ρi )} [45] and χ{pi, ρi} is the
Holevo quantity of the output ensemble of states {pi, ρi},
which is defined as

χ ({pi, (ρi )}) := S

(∑
i

piρi

)
−

∑
i

piS(ρi ). (42)

Here, S(ρ) = −Tr(ρ log2 ρ) is the von Neumann entropy
[54]. In general, χ is superadditive, meaning that nχ (E ) �
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χ (E⊗n), which makes the regularization in Eq. (41) necessary
for the calculation of the capacity [55]. This regularization
is almost impossible, so we suffice to calculate the one-shot
classical capacity, which is a lower bound for the full classical
capacity. It has been shown in Ref. [45] that one can only
maximize χ{pi, E (ρi )} over ensembles of pure input states.
As expected, the covariance properties of the channel play
a significant role in the analytical form of this capacity. Let
the minimum output entropy state be given by |ψ〉. Now that
we have lost the U (d ) covariance, we cannot transform this
state |ψ〉 into a given reference state of our choice. Instead,
we follow a different route and see how far we can proceed
by reducing the parameters of the state |ψ〉, by exploiting the
O(d ) covariance. Let |ψ〉 be of the form

|ψ〉 =

⎛
⎜⎜⎜⎜⎜⎝

ψ1

ψ2

ψ3

·
ψd

⎞
⎟⎟⎟⎟⎟⎠, (43)

where modulo global phase, all the parameters ψi are complex
numbers and subject to normalization. We first use a rotation,

generated by J12, to transform ψ2 −→ − sin θ ψ1 + cos θ ψ2
to remove the imaginary part of ψ2 and make it real, denoted
hereafter by r2. By successively using covariance gener-
ated by J13, J14, . . . , J1d , we make all the other coefficients
ψ3, ψ4, . . . , ψd real, making |ψ〉 of the form

|ψ〉 =

⎛
⎜⎜⎜⎜⎜⎝

ψ1

r2

r3

·
rd

⎞
⎟⎟⎟⎟⎟⎠ ri ∈ R. (44)

We are now ready to use rotations generated by
J23, J24, . . . , J2d to make all the parameters ri except r2
to vanish, casting the state |ψ〉 into the form⎛

⎜⎜⎜⎜⎝
ψ1

r2

0
·
0

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

cos θeiφ

sin θ

0
·
0

⎞
⎟⎟⎟⎟⎠. (45)

The output state will then be given by

�x (|ψ〉〈ψ |) = (1 − x)

(
cos2 θ cos θ sin θeiφ

cos θ sin θe−iφ sin2 θ

)
⊕ 0d−2

+
(

x

d − 1

)[(
1 0
0 1

)
⊕ Id−2 −

(
cos2 θ cos θ sin θe−iφ

cos θ sin θeiφ sin2 θ

)
⊕ 0d−2

]
. (46)

This means that the eigenvalues of this output state comprise the disjoint union of two sets, namely,

Spectrum of [�x (|ψ〉〈ψ |)] =
{

x

d − 1
, g = d − 2

}
∪ Spectrum of M, (47)

where as usual g = d − 2 denotes the multiplicity of the first eigenvalue and M is a two-dimensional matrix

M =
(

(1 − x) cos2 θ + x
d−1 sin2 θ −B cos θ sin θ

−B∗ cos θ sin θ (1 − x) sin2 θ + x
d−1 cos2 θ

)
. (48)

Here, B is equal to

B = (1 − x)eiφ + x

d − 1
e−iφ. (49)

In order to find the minimum output entropy state, we do not
need to explicitly find the eigenvalues of this matrix. It suffices
to note that the trace of this matrix, which is the sum of its
eigenvalues, is equal to

trM = λ1 + λ2 = 1 − x + x

d − 1
(50)

and is independent of the input state, while its determinant,
which is the product of its eigenvalues, is equal to

det(M ) = x(1 − x)

d − 1
[cos4 θ + sin4 θ − 2 cos2 θ sin2 θ cos 2φ].

(51)

Since λ1 + λ2 is independent of the input state, the entropy
is minimized if we minimize λ1λ2 or the determinant of M.
We can minimize det(M ) by setting φ = π

2 and θ = π
4 , which

leads to a vanishing det(M ). The minimum output entropy
state is now of the form

θ = π

4
−→ |ψ〉 = 1√

2

⎛
⎜⎜⎜⎜⎝

i
1
0
·
0

⎞
⎟⎟⎟⎟⎠. (52)

In view of (47), the complete set of eigenvalues of �x(|ψ〉〈ψ )
will now be given by

Spectrum of [�x (|ψ〉〈ψ |)]

=
{

x

d − 1
, g = d − 2

}
∪
{

0, 1 − x + x

d − 1

}
. (53)
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This leads to the following value for the classical one-shot
capacity:

C1(�x ) = log2 d + (d − 2)
x

d − 1
log2

(
x

d − 1

)

+
(

1 − x + x

d − 1

)
log2

(
1 − x + x

d − 1

)
.

(54)

This capacity interpolates between log2 d for the identity
channel �0 and log2 d − log2(d − 1) for the Werner-Holevo
channel �1. The value for the WH channel can be intuitively
understood if we note that any input state of the form |ψ〉 = |i〉
sent by Alice is received by Bob as 1

d−1 (I − |i〉〈i|). This leads
to the following conditional probabilities:

P(y = j|x = i) = 1

d − 1
(1 − δi j ).

With P(xi ) = 1
d , this leads to P(x = i, y = j) = 1

d (d−1) (1 −
δi j ) and P(y = j) = 1

d , leading to the following value for
mutual quantum information:

I (X : Y ) = log2 d + log2 d + 1

d (d − 1)

∑
i, j

(1 − δi j )

× log2

(
1 − δi j

d (d − 1)

)
= log2 d − log2(d − 1).

(55)

B. Entanglement-assisted classical capacity

Entanglement-assisted capacity is a measure of the maxi-
mum rate at which quantum information can be transmitted
through a noisy quantum channel when the sender and re-
ceiver are allowed to share an unlimited number of entangled
quantum states [56]. The entanglement-assisted classical ca-
pacity of a given channel � is determined by [57]

Cea(E ) = max
ρ

I (ρ,�), (56)

where

I (ρ, E ) := S(ρ) + S[E (ρ)] − S(ρ, E ). (57)

Here, S(ρ, E ) is the output entropy of the environment, re-
ferred to as the entropy exchange [48], and is represented
by the expression S(ρ, E ) = S[Ec(ρ)], where Ec is the com-
plementary channel [58]. According to proposition 9.3 in
Ref. [59], the maximum entanglement-assisted capacity of a
covariant channel is attained for an invariant state ρ. In the
special case where it is irreducibly covariant, the maximum is
attained on the maximally mixed state. Hence, for the channel
�x , we have

Cea(�x ) = S

(
I

d

)
+ S

[
�x

(
I

d

)]
− S

[
�c

x

(
I

d

)]
, (58)

which, given the unitality of the channel, leads to

Cea(�x ) = 2 log2 d − S

[
�c

x

(
I

d

)]
. (59)

From (33), we find

�c
x

(
I

d

)
=

(
(1 − x) 0T

0 x
d (d−1) (I ⊗ I − S)

)
. (60)

This matrix is of dimension (1 + d2) × (1 + d2). The lower
corner is the tensor product of d-dimensional square matrices.
With the notation |m, n〉 := |m〉 ⊗ |n〉 ∈ Hd2 , an eigenvector
of this matrix is given by (1

0) ∈ H1 ⊕ Hd2 , corresponding to

eigenvalue (1 − x). There are also d (d+1)
2 eigenvectors of the

form ( 0
|m, n〉 + |n, m〉) ∈ H1 ⊕ Hd2 with vanishing eigenvalues

and d (d−1)
2 eigenvectors of the form ( 0

|m, n〉 − |n, m〉) ∈ H1 ⊕ Hd2

with eigenvalues equal to 2x
d (d−1) . Hence, the entanglement-

assisted capacity is equal to

Cea(�x ) = 2 log2 d + (1 − x) log2(1 − x) + x log2
2x

d (d − 1)
.

(61)

This interpolates between 2 log2 d for the identity channel
�0 (as it should be) and 1 + log2 d − log2(d − 1) for the
pure Landau-Streater channel, which is one bit larger than the
one-shot classical capacity for the LS channel. When d = 2,
the Werner-Holevo or the Landau-Streater channel has only
one Kraus operator given by σy = (0 −i

i 0 ), meaning that the
channel acts in a unitary way. In this case the classical capacity
is equal to one bit and the entanglement-assisted capacity is
equal to two bits per use of the channel, which is what we
expect from the dense-coding protocol.

C. Bounds for the quantum capacity

This section is a modest attempt to find a lower bound for
the quantum capacity in the form of the one-shot quantum
capacity Q1(�x ). It can only serve as a starting point for more
detailed investigation of this problem.

Given a quantum channel E , the quantum capacity Q(E )
is the ultimate rate for transmitting quantum information
and preserving the entanglement between the channel’s in-
put and a reference quantum state over a quantum channel.
This quantity is described in terms of coherent information
[46,48,49,60]:

Q(E ) = lim
n→∞

1

n
J (E⊗n), (62)

where J (E ) = maxρ J (ρ, E ) and J (ρ, E ) := S[E (ρ)] −
S[Ec(ρ)]. It is known that J is superadditive, i.e.,
J (E1 ⊗ E2) � J (E1) + J (E2), rendering an exact calculation
of the quantum capacity extremely difficult and at the same
time providing a lower bound in the form Q(1)(�) � Q(E ),
where Q(1) := J (E ) is the single-shot capacity. However,
if the channel is degradable, then the additivity property
is restored Q(E ) = Q(1)(E ) [36], and the calculation of the
quantum capacity becomes a convex optimization problem.
Approximate degradability, as defined and investigated in
Ref. [38], can provide lower and upper bounds for the
quantum capacity. For the modified SO(3) Landau-Streater
channel, approximate degradability has been recently
investigated in Ref. [35]. For the so(d) Landau-Streater
channel, we do not address this problem and instead suffice
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to determine a lower bound for the quantum capacity in the
form of single-shot quantum capacity. We therefore start with

Q(1)(�x ) = MaxρJ (ρ,�x ) = Maxρ

{
S[�x (ρ)] − S

[
�c

x
(ρ)

]}
.

(63)

This shows that any state ρ not the one which maximizes the
coherent information will also provide a lower bound for the
quantum capacity, although it may not be a tight bound. We
stress that the lower bound that we find is by no means a
tight lower bound. It is just a starting point for more detailed
investigation of this problem. Let us restrict our search within
the real density matrices. Since both �x and �c

x
are covariant

under SO(d ) transformations, we can safely use such a trans-
formation to diagonalize ρ and put it in the form

ρ0 ≡ UρU † =

⎛
⎜⎜⎜⎜⎝

r1

r2

· · · · ·
· · · · ·

rd

⎞
⎟⎟⎟⎟⎠, (64)

where

d∑
i=1

ri = 1 (65)

The action of the channel �x on ρ0 is directly found from the
definition of the channel in (9). The result is a diagonal matrix
�x (ρ0) = Diag(λ1, λ2, . . . , λd ), so that

S[�x (ρ0)] = −
d∑

i=1

λi log2 λi, (66)

where

λi = (1 − x)ri + x

d − 1
(1 − ri ). (67)

We also have to find the spectrum of the matrix �c
x
(ρ0). When

we write the channel in the form (26), the complement channel
has d2 + 1 Kraus operators, and hence this square matrix is
of dimension d2 + 1 as given in (33). As argued after that
equation, when ρ is a diagonal matrix, the off-diagonal blocks
vanish and we are left with

�c
x
(ρ) =

(
(1 − x)tr(ρ) 0T

0 x
2(d−1) (I − S)(I ⊗ ρ + ρ ⊗ I )

)
.

(68)

The form (14) shows that for any diagonal matrix the off-
diagonal blocks vanish and we are left with

�c
x
(ρ) =

(
(1 − x)tr(ρ) 0T

0 x
2(d−1) D

)
, (69)

where

D = (I − S)(I ⊗ ρ + ρ ⊗ I )

= (I − S)
∑
i, j

∑
i, j

(ri + r j )|i, j〉〈i, j|

=
∑
i, j

(ri + r j )(|i, j〉 − | ji〉)〈i, j|

=
∑
i, j

(ri + r j )|ei j〉〈ei j | = 2
∑
i< j

(ri + r j )|ei j〉〈ei j |, (70)

where |ei j〉 := 1√
2
(|i, j〉 − | j, i〉). With diagonalization of D,

the full spectrum of �c
x(ρ) is determined. Combining all these,

one finds

J (ρ,�x ) = −
d∑

i=1

λi log2 λi + (1 − x) log2(1 − x)

+
∑
i< j

x(ri + r j )

d − 1
log2

x(ri + r j )

d − 1
, (71)

where λi is given in (67). One can obtain various lower bounds
by taking simple density matrices like

ρn = Diagonal

(
1

n
,

1

n
, . . . ,

1

n
, 0, 0, . . . 0

)
.

Insertion of this density matrix in the above formula leads to

J
(
ρn,�

d
x

) = −
[

(1 − x) + x
n − 1

d − 1

]
log2

(
1 − x

n
+ x(n − 1)

n(d − 1)

)

+
(

n − 1

d − 1

)
x log2

(
x

d − 1

)
+(1 − x) log2(1 − x)

− x log2(n) + x(n − 1)

d − 1
, (72)

where for clarity we have temporarily added a superscript
d to the notation of the channel. This function has several
interesting properties:

(a) When x = 0 and we are dealing with the identity
channel, it is evident that J (ρn,�

d
x=0) = log2 n, where its

maximum is achieved for the completely mixed state, i.e., for
n = d . This gives a lower bound of Q1(�d

0 ) = log2 d , which is
in fact equal to the quantum capacity of the identity channel.

(b) For a pure input state ρ1, we see that J[ρ1,�
d (x)] =

0, ∀ d and x. This does not give any useful lower bound for
the quantum capacity. However, for a maximally mixed state
ρd , we find from (72) that

J (ρd ,�x ) = (1 − x) log2 d (1 − x) + x

(
1 + log2

x

d − 1

)
,

(73)

which can be positive if the parameter x is less than a certain
critical value x0. This indicates that the channel �x<x0 will
have a positive quantum capacity. Numerical solution of

(1 − x) log2 d (1 − x) + x

(
1 + log2

x

d − 1

)
� 0

determines this critical value. Figure 2 show interestingly that
for all dimensions d , x0 ≈ 0.4. This is in accord with the
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FIG. 2. The shaded region shows the range of the parameter x in
which the channel �x has a positive quantum capacity. Interestingly,
the critical value is approximately equal to 0.4 for all dimensions.
Above this critical value, the coherent information is negative and
it is not known whether the channel �x>x0 has a nonzero quantum
capacity.

result of Ref. [27], where semidefinite programming was used
for the case of d = 3 [the modified so(3) Landau-Streater
channel].

VII. THE LANDAU-STREATER CHANNEL
FOR THE GROUP SU(d )

In this section, we briefly mention how the LS channel can
be generalized to the group U (d ). Let us replace the set 	− =
{Jm,n} with the set of operators 	+ := {Kmn, 1 � m, n � d},
where

Kmn = |m〉〈n| + |n〉〈m|, m < n, Kmm = 2|m〉〈m|. (74)

The set 	+ of dimension d (d+1)
2 is not closed under the

Lie-bracket and hence is not a Lie algebra anymore. How-
ever, the combined set 	 = 	− ∪ 	+ forms the Lie algebra
of the group U (d ) of d-dimensional unitary matrices. Note
that the dimension of 	, i.e., is equal to d2, which is equal
to the dimension of the group U (d ). One can show by direct
calculation that

1

2

∑
m,n

K†
mnKmn = (d + 1) I. (75)

Therefore, one can define another quantum channel as fol-
lows:

�+(ρ) := 1

2(d + 1)

∑
m,n

KmnρK†
mn = 1

d + 1
[trρ I + ρT )].

(76)

This is a new generalization of the Landau-Streater channel
which is equivalent to the Werner-Holevo channel �1,d (for
the notation see below). Even if the Kraus operators Kmn are
not generators of a Lie algebra anymore, the covariance under
U (d ) holds for both channels, that is,

�±(UρU †) = U ∗�±(ρ)U T U ∈ U (d ), (77)

where U (d ) is the group of unitary operators on Hd . We
can now make the following convex combination of these
channels to arrive at a one-parameter family of channels:

�η,d (ρ) = 1 − η

2
�−(ρ) + 1 + η

2
�+(ρ), (78)

which turns out to be equal to the one-parameter family of
Werner-Holevo channels in Eq. (3) [14]. The Kraus operators
are now the set of generators of the Lie algebra u(d ), namely,
the set {Jmn, Kmn}. Therefore, we call this the U(d) Landau-
Streater channel. One also modify this channel to represent a
two-parameter family of noisy su(d) LS channels by defining
a convex combination of the identity channel, �− and �+.

VIII. DISCUSSION

We have generalized and studied, in rather great detail,
the Landau-Streater channel which is pertaining to the spin- j
representation of the Lie algebra of the group SO(3) to the
fundamental representation of the groups SO(d ) and have
pointed out their equivalence to the Werner-Holevo channels.
We have studied the so-called noisy versions of these chan-
nels and have determined several properties of the resulting
one-parameter family of quantum channels, including their
spectrum, their region of infinitesimal divisibility, their com-
plement channels, and finally, their one-shot classical capacity
and their entanglement-assisted classical capacity. We have
also found a lower bound for the quantum capacity of this
modified channel and have shown that in all dimensions, when
the noise parameter is less than a critical value approximately
equal to 0.4, the channel has a nonzero quantum capacity.
While the pure SO(3) Landau-Streater channel is known to be
an extreme point in the space of channels, we have shown that
the pure SO(d ) channel is not extreme. Moreover, we have
found a mixed-unitary representation for it, when d is an even
number.

It would be an interesting problem if one could define and
study the Landau-Streater channel in a most general setting,
namely, any representation of any Lie algebra [61]. Certainly
these kinds of channels may not find concrete applications
in quantum information processing, but they are definitely of
great interest in the structural theory of quantum channels
and completely positive maps. As pointed out in Ref. [35],
“Understanding these channels is critical in shedding light
on the superadditivity effect in quantum channels operating
in low-noise regimes” as “the long-term goal is to extend
this desirable property to a wider spectrum of quantum chan-
nels beyond the aforementioned generalizations of the qubit
depolarizing channel, thereby enriching our understanding
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of the superadditivity effect in high-dimensional low-noise
scenarios.”

Even for the SO(d ) groups and the representation we have
used, our study can lead to many extensions. The immediate
one will be to study their approximate degradability along
the lines of the recent work [35]. Another one is to study a
two-parametric family of extensions of the Landau-Streater
channel for the group SU(d ). This will be the subject of a
future work.

ACKNOWLEDGMENTS

This research was supported in part by Iran National Sci-
ence Foundation, under Grant No. 4022322. I would like
to thank members of the QIS group in Sharif, especially
Shayan Roofeh for the algorithmic solution leading to Fig. 1
and Abolfazl Farmanian for their valuable comments. I also
thank Farzad Kianvash and Laleh Memarzadeh for valuable
discussions.

[1] N. Datta and M. B. Ruskai, Maximal output purity and capacity
for asymmetric unital qudit channels, J. Phys. A: Math. Gen.
38, 9785 (2005).

[2] G. Smith, Quantum channel capacities, arXiv:1007.2855.
[3] P. W. Shor, Capacities of quantum channels and how to find

them, Math. Program. 97, 311 (2003).
[4] S. Chessa and V. Giovannetti, Quantum capacity analysis of

multi-level amplitude damping channels, Commun. Phys. 4, 22
(2021).

[5] N. T. Islam, C. C. W. Lim, C. Cahall, J. Kim, and D. J. Gauthier,
Provably secure and high-rate quantum key distribution with
time-bin qudits, Sci. Adv. 3, e1701491 (2017).

[6] V. Karimipour, A. Bahraminasab, and S. Bagherinezhad, Quan-
tum key distribution ford-level systems with generalized Bell
states, Phys. Rev. A 65, 052331 (2002).

[7] Y. Wang, Z. Hu, B. C. Sanders, and S. Kais, Qudits and high-
dimensional quantum computing, Front. Phys. 8 (2020).

[8] H. Rubinsztein-Dunlop et al., Roadmap on structured light,
J. Opt. 19, 013001 (2017).

[9] X. Gao, Y. Zhang, A. D’Errico, A. Sit, K. Heshami, and E.
Karimi, Full spatial characterization of entangled structured
photons, Phys. Rev. Lett. 132, 063802 (2024).

[10] E. Karimi, L. Marrucci, C. de Lisio, and E. Santamato, Time-
division multiplexing of the orbital angular momentum of light,
Opt. Lett. 37, 127 (2012).

[11] D. Cozzolino, D. Bacco, B. Da Lio, K. Ingerslev, Y.
Ding, K. Dalgaard, P. Kristensen, M. Galili, K. Rottwitt, S.
Ramachandran, and L. K. Oxenløwe, Orbital angular mo-
mentum states enabling fiber-based high-dimensional quantum
communication, Phys. Rev. Appl. 11, 064058 (2019).

[12] K. Siudzińska, Classical capacity of generalized Pauli channels,
J. Phys. A: Math. Theor. 53, 445301 (2020).

[13] A. Fujiwara and H. Imai, Quantum parameter estimation of a
generalized Pauli channel, J. Phys. A: Math. Gen. 36, 8093
(2003).

[14] R. F. Werner and A. S. Holevo, Counterexample to an additivity
conjecture for output purity of quantum channels, J. Math. Phys.
43, 4353 (2002).

[15] L. J. Landau and R. F. Streater, On Birkhoff’s theorem for
doubly stochastic completely positive maps of matrix algebras,
Linear Algebra Appl. 193, 107 (1993).

[16] K. M. R. Audenaert and S. Scheel, On random unitary channels,
New J. Phys. 10, 023011 (2008).

[17] S. N. Filippov and K. V. Kuzhamuratova, Quantum informa-
tional properties of the Landau—Streater channel, J. Math.
Phys. 60, 042202 (2019).

[18] A. I. Pakhomchik, I. Feshchenko, A. Glatz, V. M. Vinokur, A. V.
Lebedev, S. N. Filippov, and G. B. Lesovik, Realization of

the Werner—Holevo and Landau—Streater quantum channels
for qutrits on quantum computers, J. Russ. Laser Res. 41, 40
(2020).

[19] M. Girard, D. Leung, J. Levick, C.-K. Li, V. Paulsen, Y. T.
Poon, and J. Watrous, On the mixed-unitary rank of quantum
channels, Commun. Math. Phys. 394, 919 (2022).

[20] N. Datta, A. S. Holevo, and Y. Suhov, Additivity for transpose
depolarizing channels, Int. J. Quantum Inf. 4, 85 (2006).

[21] T. P. W. Cope and S. Pirandola, Adaptive estimation and
discrimination of Holevo-Werner channels, Quantum Meas.
Quantum Metrol. 4, 44 (2017).

[22] T. P. W. Cope, K. Goodenough, and S. Pirandola, Converse
bounds for quantum and private communication over Holevo-
Werner channels, J. Phys. A: Math. Theor. 51, 494001 (2018).

[23] E. Chitambar, I. George, B. Doolittle, and M. Junge, The
communication value of a quantum channel, IEEE Trans. Inf.
Theory 69, 1660 (2023).

[24] M. M. Wolf and J. Eisert, Classical information capacity of a
class of quantum channels, New J. Phys. 7, 93 (2005).

[25] M. Fannes, B. Haegeman, M. Mosonyi, and D. Vanpeteghem,
Additivity of minimal entropy output for a class of covariant
channels, arXiv:quant-ph/0410195.

[26] M. Horodecki, P. W. Shor, and M. B. Ruskai, Entanglement
breaking channels, Rev. Math. Phys. 15, 629 (2003).

[27] S. Roofeh and V. Karimipour, Noisy Werner-Holevo channel
and its properties, Phys. Rev. A 109, 052620 (2024).

[28] C. M. Caves and G. J. Milburn, Qutrit entanglement, Opt.
Commun. 179, 439 (2000).

[29] D. Bruß and C. Macchiavello, Optimal eavesdropping in cryp-
tography with three-dimensional quantum states, Phys. Rev.
Lett. 88, 127901 (2002).

[30] G. Molina-Terriza, A. Vaziri, R. Ursin, and A. Zeilinger, Ex-
perimental quantum coin tossing, Phys. Rev. Lett. 94, 040501
(2005).
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