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The no-masking theorem for quantum information proves that it is impossible to encode an arbitrary input
state into a larger bipartite entangled state such that the full information is stored in the correlation but the
individual subsystems have no information about the input state. Here, we ask the question: Is it possible to
mask an observable such that the information about the observable is available in the joint system, but individual
subsystems reveal nothing about the imprints of the observable? This generalizes the notion of masking to
observables. We show that a universal unitary that can mask an arbitrary observable in any dimension does
not exist. For a qubit system, we show that the masking operation for a given observable is locally unitarily
connected to the SWAP operation. This suggests a conservation law for information content of observables that
goes beyond the conservation laws under symmetry operations. Furthermore, we prove that the unconditional
no-bit commitment result follows from the no-masking theorem for observables. Our results can have important
applications in quantum information and quantum communication where we encode information not in states
but in observables.

DOI: 10.1103/PhysRevA.110.022423

I. INTRODUCTION

The linear and unitary nature of dynamical evolution in
quantum mechanics places several restrictions on the informa-
tion theoretic tasks that can be performed. These restrictions
have been formulated using several no-go theorems such
as no-cloning [1], no-broadcasting [2], no-deleting [3], no-
hiding [4], and no-masking [5] theorems. However, most
of these theorems are formulated so that the quantum in-
formation is encoded in the states. In quantum theory, the
states evolve according to the Schrödinger equation while the
observables evolve according to the Heisenberg equation of
motion. However, not much is known about what kind of lim-
itations are imposed on the manipulation of observables when
they evolve in time. It is, therefore, natural and fundamental
to ask whether we can formulate no-go theorems for observ-
ables. In Ref. [6] the no-cloning theorem was formulated for
information encoded in the statistics of observables.

The notion of masking of quantum information was in-
troduced in Ref. [5]. Traditionally, information is stored in
physical systems which may be classical or quantum. The
process of masking is to investigate an alternative way of
storing information where it is stored in the quantum correla-
tions among two or more systems, rather than in the systems
themselves. This allows one to make quantum information
inaccessible to everyone locally. The physical intuition of
masking is that given a distinguishable set of objects, we en-
code their information content in nonlocal correlations in such
a way that they become locally indistinguishable. In the case
of states, the masker maps a set of states to a set of entangled
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states whose marginal states are equal for all inputs. It was
proved in Ref. [5] that an arbitrary pure state of a qubit or qudit
cannot be masked in the quantum correlation of a bipartite
system. Subsequently, the notion of masking was discussed
in the multipartite scenario [7–11], for some restricted sets of
states [12–16], and also for non-Hermitian systems [17]. Ex-
perimental realization of the masking of quantum information
for some restricted sets of states was done in Refs. [18,19].
The notion of masking of quantum information by nonunitary
processes was discussed in Refs. [20–25]. Recently, the notion
of work masking was introduced in Ref. [26] where it was
shown that the work content of a state cannot be masked by
an energy preserving unitary.

In this paper, we explore if it is possible to mask an ar-
bitrary observable for a quantum system. Given a quantum
system it has some physical attributes such as the energy,
spin, angular momentum, and so on. Typically, we always
imagine that the physical property of a system is akin to the
system. What we would like to ask is whether the physi-
cal properties of a system can be made blind to the system
itself, i.e., under some general transformation we map the
observable to identity. When we represent an observable by
identity it has nothing in it. We define the notion of mask-
ing of observables and show that masking a set of arbitrary
observables is not possible in any dimension d . However, we
find that it is possible to mask a known observable in d = 2
by choosing an appropriate unitary. Surprisingly, this is not the
case in arbitrary d where we find some observables that cannot
be masked. Moreover, we find surprisingly that, for a qubit
system, the masked observable can be retrieved from the envi-
ronment itself by an observer who has knowledge of the global
evolution. This points to a fundamental notion of conservation
of physical observable beyond what is taught in textbooks. As
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an application of our results, we show that the impossibility of
unconditional bit commitment (see Refs. [27–34] and refer-
ences therein) can be understood as a necessary consequence
of the no-masking theorem for observables. Our results can
have deep impact and important applications in thermalization
of observables, information scrambling, as well as variety of
other areas in quantum information and quantum communica-
tion.

II. PRELIMINARIES

Let {λi} be the (d2 − 1) generators of SU(d ) with the
following properties: (i) λi = λ

†
i , (ii) Tr(λi ) = 0, and (iii)

Tr(λiλ j ) = 2δi j . We can construct these operators using the
following prescription, with {λi}d2−1

i=1 = {u jk, v jk,wl}:
u jk = | j〉〈k| + |k〉〈 j|, v jk = −i(| j〉〈k| − |k〉〈 j|),

wl = f (l )

(
l∑

m=1

|m〉〈m| − l|l + 1〉〈l + 1|
)

, (1)

where 1 � j < k � d , f (l ) =
√

2
l (l+1) , and 1 � l � d − 1.

Let Hd
X be the Hilbert space for a system X with dimension

d . A state ρ of the system X is a linear operator with the fol-
lowing properties: (i) Tr(ρ) = 1, (ii) ρ† = ρ, (iii) ρ � 0. Let
D(Hd

X ) denote the set of all states of the system X . Then the
generalized Bloch sphere representation of a state ρ ∈ D(Hd

X )
is given as [35,36]

ρ = 1

d
I + �ω · λ, (2)

where �ω ∈ Rd2−1 and is called the Bloch vector and λ is the
vector comprised of {λi}. Equation (2) satisfies the first two
properties of a state by construction. A necessary condition
for positivity of ρ is | �ω|2 � d−1

2d which is sufficient for d = 2.
However, in higher dimensions there exist additional condi-
tions on �ω to ensure the positivity of ρ [35].

In the Schrödinger picture, states evolve in time while
the observables are fixed. The evolution of a quantum state
in this picture is given by a linear, completely positive, and
trace-preserving map called quantum channel. Any quantum
channel E acting on a state ρ can be written as E (ρ) =∑

i EiρE†
i where {Ei} are the Kraus operators of the channel

such that
∑

i E†
i Ei = I [37,38]. In the Heisenberg picture,

however, the states are fixed while the observables evolve
in time by the adjoint of the channel E , i.e., E∗. The action
of E∗ on an observable O can be represented as E∗(O) =∑

i E†
i OEi. Note that E∗ is unital because E∗(I) = ∑

i E†
i Ei =

I. The expectation value of an observable calculated in these
two pictures is the same as Tr[E (ρ)O] = Tr[ρE∗(O)].

III. MASKING OF OBSERVABLES

Let us consider a d-dimensional system A and its en-
vironment E with Hilbert space HA ⊗ HE . Let OA be an
observable of the system A which is by definition a Hermitian
operator and can be parametrized as OA = a0I + �a · λ, where
a0 ∈ R, �a ∈ Rd2−1. Masking of an observable is defined such
that the information of the observable is hidden from A but is
known globally. By “information of observable” we mean the

degeneracy structure of the observable along with its eigen-
states which induces its corresponding measurement setup,
i.e., a positive operator valued measure (POVM). Since, this
remains unchanged under a transformation of the type O →
α(O − βI/d ). By taking α = 1/|�a| and β = Tr(O) we can
set a0 = 0 and |�a| = 1. Thus for the purpose of masking, we
consider observables of the form OA = â · λ. If an observable
is fully degenerate, i.e., proportional to identity, it contains
no information in the sense that no two states can be dis-
tinguished by measuring that observable. Since masking is a
physical process, it can be represented by a unitary U acting
on the joint system-environment state AE . We now formally
define masking of observables.

Definition 1. A unitary U acting on HA ⊗ HE is said to
mask information of an observable OA by mapping it to O′

AE
such that the locally evolved observable is fully degenerate

O′
A = E∗(OA) = I. (3)

Here, E∗ is the local channel acting on the system A, corre-
sponding to the unitary U .

The masking operation for states is defined in such a way
that the information about the initial state is hidden from both
the marginals of the evolved global state. However, in our
case the initial observable of the environment E is assumed
to be OE = I. Now let the local channel corresponding to the
masker U that acts on the environment be F∗. Since F∗ is
unital, the evolved observable of the environment is O′

E =
F∗(I) = I, which has no information about OA. Hence, the
above condition is automatically satisfied for the environment.
Therefore, to define masking of observables it is sufficient to
consider the local evolution of only the system observable.

Note that our definition of the masking of observables is
not Heisenberg equivalent to that for masking of states in the
Schrödinger picture. The masker for states is an isometry U
which maps a set {|ψk〉A} to {|φk〉AB} such that [5]

TrA(B)|φm〉〈φm| = TrA(B)|φn〉〈φn| ∀ m, n. (4)

The crucial difference here is that the information that is
masked in the case of states is encoded in the index k. How-
ever, the information that is masked in the case of observables
is contained in their degeneracy structure. Due to this fact,
masking can be defined for a single observable, but is only
possible for a set of states.

We can now rewrite the masking condition in terms of the
set of output states of E as follows. For OA to be maskable
Eq. (3) implies that ∀ ρ ∈ D(Hd

A) we have

1 = Tr[ρE∗(OA)]

= Tr[E (ρ)OA]

= Tr[�b · λ â · λ] (5)

⇒ â · �b = 1
2 ,

where â and �b are vectors in Rd2−1 and |â| = 1. The first
equality follows by averaging with respect to ρ on both sides
of Eq. (3). The second equality is the equivalence of the
Schrödinger and the Heisenberg picture. The third equality
and the rest follow by expanding the observable and the
state in the basis {I,λ} as OA = â · λ and E (ρ) = I/d + �b · λ

where â, �b ∈ Rd2−1 and simplifying thereafter. Equation (5)
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is the masking condition for observables in terms of the
set of output Bloch vectors, S = {�b : I/d + �b · λ = E (ρ), ρ ∈
D(Hd

A)} and is equivalent to Eq. (3). It says that an observable
OA can be masked if ∃ a set S of output Bloch vectors such
that ∀ �b ∈ S, Eq. (5) holds. We will use either Eq. (3) or Eq. (5)
as the masking condition for observables as per convenience.
Note that any given observable OA can be masked in d = 2
because we can always find a channel E such that �b satisfies
Eq. (5). Now a natural question arises: Does there exist a
universal masker that can mask all observables in d = 2? We
show that this is not possible in the following theorem.

Theorem 1. No masker can mask all observables in d = 2.
Proof. Let there exists a universal masker and E∗ be its

local channel mapping any observable OA to I. Since the
channel E∗ is linear, to map all observables of the form
OA = â · σ to I, it should be able to map the set {σ 1, σ 2, σ 3}
to I, where σ i is the ith Pauli matrix. Let us now assume
that OA = σ 3, i.e., â = (0, 0, 1), satisfies Eq. (3), then Eq. (5)
implies that b3 = 1/2. Since for E (ρ) to be positive, b2

1 +
b2

2 + b2
3 � b2

0 = 1/4, it then implies that b1 = b2 = 0, i.e.,
�b = (0, 0, 1/2) and E (ρ) = |0〉〈0| ∀ ρ. Therefore, any linear
combination of σ 1 and σ 2, say a1σ

1 + a2σ
2 cannot satisfy

Eq. (5). This proves that if σ 3 satisfies Eq. (3) for some
channel E∗, then σ 1 and σ 2 cannot do so for the same channel.
It implies that there does not exist a channel that can map
all observables OA to I. Therefore, there does not exist a
universal masker that can mask all observables in d = 2. �

Note that, in the case of state masking, it is always pos-
sible to mask a set of distinguishable states by mapping it
unitarily to a set of orthogonal entangled states. However, in
the case of observables for qubit systems it is impossible to
mask even an orthogonal set of observables as shown in the
above theorem. In terms of the set of output Bloch vectors
S, the above theorem can be rephrased as following: there
does not exist a convex subset S of the Bloch sphere such
that for each OA, Eq. (5) holds ∀ �b ∈ S. As discussed before
the masking operation hides the information of the observable
from the system by mapping it to identity. Since the initial
observable of the environment is chosen to be identity and
its local evolution is unital, the information of the system
observable remains inaccessible to the environment locally.
So, a natural question to ask is that where has this information
gone and how to retrieve it? We answer this question in the
following theorem.

Theorem 2. For an arbitrary qubit observable OA ∈ {n̂ · σ :
n̂ is a unit vector} under the masking operation, if the infor-
mation about OA is lost from A, then it can be retrieved from
the environment by an observer who can access the global
unitary of system and environment.

Proof. See Appendix. �
In physics, symmetry operations lead to conservation laws

for physical systems. For example, if G is the generator of
some symmetry operation and if the latter commutes with
the Hamiltonian, then the physical observable represented by
the operator G is conserved. However, since the unitary that
implements the masking process for an arbitrary observable
OA of the type n̂ · σ, does not commute with the observable
OA ⊗ IE (see Appendix for details), the above theorem sug-

gests a conservation law for observables beyond the usual
symmetry operation.

IV. MASKING IN ARBITRARY DIMENSIONS

We have seen that any known observable can be masked
in d = 2. We will now show that this is not true for arbitrary
dimension d . Consider the basis {λi}d2−1

i=1 = {u jk, v jk,wl} for
operators on Hd as defined in Eq. (1). Since u jk and v jk

are Hermitian operators with eigenvalues {±1, 0}, they can
always be masked by a constant channel. Consider a par-
ticular observable from this set u12 as an example. It can
be masked by a constant channel E which maps all states
ρ to the eigenstate |φ〉(say) with +1 eigenvalue. This is be-
cause Tr[E (ρ)u12] = 〈φ|u12|φ〉 = 1 ∀ρ ∈ D(Hd ). However,
{wl} are not maskable in general. Consider an observable
wl from this set. It can be masked if there exists a channel
E such that Tr[E (ρ)wl ] = 1 ∀ρ ∈ D(Hd ). The expectation
value of an operator in any state is upper bounded by its
maximum eigenvalue. However, the maximum eigenvalue of
wl ,

√
2

l (l+1) < 1 ∀ l � 2. Therefore, the expectation value of
wl in any state can never be 1 for l � 2. Hence the set {wl}
is not maskable for l � 2. Let us now define Md as the set
of all maskable observables in d dimensions. Then we can
ask whether there exists a universal unitary that can mask all
observables in Md . In Theorem 1 we showed that this is not
true for d = 2 which implies that a set of arbitrary observables
cannot be masked by a single unitary. We will now show that
this result holds for arbitrary dimension.

Theorem 3. A set of arbitrary observables cannot be
masked in any dimension d by a single unitary.

Proof. We will prove the nonexistence of a universal
masker for arbitrary d , using the masking condition (5) in
terms of the set of output Bloch vectors S. Let CS be the set
of observables that can be masked by a channel E with the
corresponding set of output Bloch vectors S. Let us assume
that E is the local channel of a universal masker, it is equiv-
alent to saying that there exists a set of output Bloch vectors
S such that CS = Md is the set of all maskable observables
on the Hilbert space Hd . If we now consider a set Sp = {�b}
where �b is some vector in S then it is obvious that CS ⊆ CSp .
Since CS = Md and Md is the set of all observables, there-
fore, CSp = Md . Let us now consider a different set Sq = {�b′}
where �b′ is another vector in the set S, then following similar
arguments as above we get CSq = Md . We will now show that
there exists at least one observable O = â · λ ∈ CSq such that
O /∈ CSp . The masking condition (5) gives

â · �b′ − 1
2 = 0. (6)

Now the observable O will also belong to CSp if it satisfies the
following equation:

â · �b − 1
2 = 0. (7)

Taking the difference of the above two equations, we get

â · (�b − �b′) = 0. (8)
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We can always pick a vector â ∈ Rd2−1 such that â · �b �= â · �b′.
Specifically, we can always choose â that satisfies Eq. (6) but
not Eq. (7). Therefore, O /∈ CSp which implies that CSp �= Md .
Since CS ⊆ CSp , therefore CS �= Md . Thus there does not exist
a universal masker that can mask all of the observables in the
set Md . This implies that a set of arbitrary observables cannot
be masked by a single unitary which completes the proof. �

Note that the physical motivation behind the masking op-
eration allows us to modify (3) in such a way that the masking
operation maps an observable to cI, c ∈ R. This will change
what observables can be masked and what cannot be masked.
However, this will not change the fact that a set of arbitrary
observables cannot be masked by a single unitary in any
dimension d which is our main physical result.

Now that we have seen that a single channel cannot mask
all observables in Md we can ask whether there exists a subset
of Md that can be masked by a given channel. We will call
such a set of observables as comaskable corresponding to a
given channel. From Theorem 1 and its preceding calcula-
tions, we can conclude that in d = 2 only one observable can
be masked by a given channel. This is because in this case,
|�b| � 1/2 and â · �b = 1/2 implies that |�b| = 1/2 and â||�b.
This fixes the direction of â and determines it uniquely. It im-
plies that the set of comaskable observables corresponding to
any channel in d = 2 contains a single observable. However,
in higher dimensions, |�b| can be greater than 1/2 because the
surface of the Bloch ball containing all of the pure states is
defined by |�b|2 = d−1

2d . This implies that â need not be parallel

to �b to satisfy the masking condition (5). So, at least in the
case of a constant channel whose set of output Bloch vectors
contains a single vector, i.e., S = {�b}, there will exist multiple
observables that satisfy the masking condition for the same �b.
Starting from â, we can find a comaskable observable â′ that
is infinitesimally close to â:

â′ = â + ε�v, (9)

where �v is orthogonal to the plane formed by the linear span
of {â, �b} and |ε| � 1. We can see that under this infinitesimal
transformation the dot product remains unchanged: â · �b =
â′ · �b = 1/2. We can then repeat the above process taking â′
as the starting vector to find more comaskable observables.

V. NO-BIT COMMITMENT

In the quantum bit commitment protocol, Alice commits
a bit to Bob, the value of which is revealed to him at a later
stage by Alice. The two key properties of any bit commitment
protocol are (i) Binding: In the revealing phase, Alice cannot
change the bit she committed to Bob, and (ii) Concealing:
Bob cannot identify the bit until she reveals it. The usual
protocol runs as follows. Alice encodes her bit 0 or 1 in the
state |�0

AB〉 or |�1
AB〉, respectively, and sends the subsystem B

to Bob. Then at a later time she reveals the bit value and sends
some information to Bob so that he can verify that Alice was
indeed committed to the bit that she later revealed. The (ii)
condition implies that the reduced state of B is independent
of the bit that Alice commits, i.e., ρ0

B = ρ1
B. This is equiva-

lent to the following condition Tr(OBρ0
B) = Tr(OBρ1

B) ∀OB,

i.e., Bob cannot distinguish between ρ0
B and ρ1

B by measur-
ing any observable OB. The (ii) condition also implies that
|�0

AB〉 = ∑
i

√
λi|a0

i 〉|bi〉 and |�1
AB〉 = ∑

i

√
λi|a1

i 〉|bi〉, where
ρ0

B = ρ1
B = ∑

i λi|bi〉〈bi|, i.e., the two global states are con-
nected by a local unitary on Alice’s system. This is the
key to cheating because Alice can change her committed bit
by applying a local unitary on her part of the system, thus
the (i) condition does not hold. Therefore, the unconditional
quantum bit commitment is impossible [28,29]. We will now
show that the impossibility of quantum bit commitment is a
necessary consequence of the no-masking of observables.

Theorem 4. The no-masking of observables implies the
unconditional no-bit commitment.

Proof. We prove this by showing that the possibility of
unconditional quantum bit commitment implies the existence
of a universal masker for all observables and then using its
contrapositive. We start with a conditional bit commitment
protocol which is (i) imperfectly concealing but (ii) perfectly
binding. (i) means that Bob can only measure a restricted set
Q of observables on his subsystem so that he cannot identify
the bit until Alice reveals it, i.e., Tr(ρ0

BOB) = Tr(ρ1
BOB) =

1 ∀OB ∈ Q. Condition (ii) implies that there exists |�0
AB〉 and

|�1
AB〉 such that (UA ⊗ IB)|�0

AB〉 �= |�1
AB〉 ∀UA so that Alice

cannot cheat once she has committed a bit to Bob. Now given
ρ0

B and ρ1
B we can always construct a channel E such that

∀ σ ∈ D(Hd
B),

E (σ ) =
∑
i=0,1

Tr(iσ )ρ i
B, (10)

where 0 = |0〉〈0| and 1 = I − 0 are the elements of a
POVM. The channel measures σ in the POVM {i} and
prepares ρ i

B for the ith outcome. The Kraus operators of E are
Ei j =

√
pi

j

∣∣ei
j

〉〈
i
∣∣, where ρ i

B = ∑
j pi

j

∣∣ei
j

〉〈
ei

j

∣∣ and 〈ei
j |k〉 �= δ jk .

Now averaging both sides of Eq. (10) with respect to OB we
get

Tr[E (σ )OB] = Tr
[{

Tr(0σ )ρ0
B + Tr(1σ )ρ1

B

}
OB

]
= Tr(0σ )Tr

(
ρ0

BOB
) + Tr(1σ )Tr

(
ρ1

BOB
)

= Tr
(
ρ0

BOB
)
. (11)

Thus, Tr[E (σ )OB] = 1 ∀OB ∈ Q and ∀ σ ∈ D(Hd
B). Using

the making condition (5) and the discussion in the preceding
section, we can conclude that Q is the set of comaskable
observables corresponding to the channel E . Therefore, for
the unconditional bit commitment protocol, Q is the set of
all observables. This implies that the channel E can mask
all observables which contradicts Theorem 3. Hence, the
no-masking of observables implies the unconditional no-bit
commitment. �

VI. CONCLUSION

We used the concept of degeneracy structure to define the
information content of observables. So a fully degenerate ob-
servable contains no information. Then we defined the notion
of masking of an observable which means that the information
of the observable is hidden from both the system and the
environment locally but is preserved globally. We show that
it is impossible to mask a set of arbitrary observables in any
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dimension, even though a known observable can always be
masked for a qubit system. This shows that physical attributes
such as the energy, spin, angular momentum, charge, and
so on, cannot be made blind to the system itself, where the
physical observable evolves under a general transformation
and gets mapped to identity. However, it remains to be seen
whether the approximate masking of a set of observables by a
single unitary is possible, where the observables are mapped
infinitesimally close to identity. Furthermore, for the case of
qubit we find that if the observable is mapped to identity,
then it simply gets swapped to the ancillary system up to
a local unitary. This shows that after the masking operation
the information of an observable can be retrieved from the
environment itself by an observer who has knowledge of the
global evolution which can be interpreted as conservation of
physical observable in composite systems. Thus, the physical
attributes of a quantum system can never be lost. If it is
lost from one subsystem, then it may be found in another
subsystem which is nothing but a conservation law beyond
symmetry transformations. An extension of this work would
be to see if the same result holds in d-dimensional systems
as well. We also introduced the notion of comaskable observ-
ables as a set of observables that can be masked by a given
channel. We provide a prescription to construct comaskable
observables in d > 2 for a constant channel. It would be
interesting to see if these sets can be fully characterized for
a given channel in arbitrary dimensions. As an application
of our result we prove that the famous no-bit commitment
is a necessary consequence of the no-masking theorem for
observables. These results can have deep impact on how we
manipulate observables and what kind of limitations may be
imposed on them. Finally, we believe that our results will
have important applications in thermalization of observables,
information scrambling as well as variety of other areas in
quantum information and quantum communication in future.

APPENDIX: PROOF OF THEOREM 2

Proof. Let us first consider the masking operation for
σ 3. There exists a channel E∗ such that E∗(σ 3) = I, i.e.,∑

i E†
i σ 3Ei = ∑

i |i〉〈i|. It can be easily seen that Ei = |0〉〈i|
for i = {0, 1} are the Kraus operators of the channel. We now
construct the unitary U that acts on the global observable
OAE = σ 3 ⊗ I and whose local channel E∗ maps σ 3 to iden-
tity. Since E∗ and E both correspond to the same unitary, we
work with E for simplicity. To construct the unitary U we will
first isometrically extend the channel E [38,39]. Any quantum
channel can be isometrically extended using its Kraus opera-
tors {Ei} as follows:

VA→AE ≡
∑

i

Ei ⊗ v|i〉E , (A1)

where v is a local isometry acting on the environment. Since,
the Kraus operators of the channel in our case are Ei = |0〉〈i|,
the isometric extension of E is given by

V =
∑

i

|0〉〈i| ⊗ v|i〉E . (A2)

Now we know that an isometry is part of a unitary on a larger
system. Therefore, to get this unitary we have to define its

action on the joint system and environment, i.e., AE state.
Using Eq. (A2) we see that the isometry V acts on the state
| j〉A of the system A as

V | j〉A = |0〉A ⊗ v| j〉E . (A3)

We now assume that the initial state of the environment is |0〉E

and then define the action of U in this case as

U (| j〉A ⊗ |0〉E ) = |0〉A ⊗ u0| j〉E , (A4)

where we used the local unitary freedom u0 in defining the
action of U . To fully specify the unitary we have to show how
it evolves the joint system-environment state when the initial
state of the environment is |1〉E . We choose the evolution in
such a way that the overall interaction is unitary

U (| j〉A ⊗ |1〉E ) = |1〉A ⊗ u1| j〉E , (A5)

where u1 is a unitary acting on the environment. We can now
write the full unitary using Eqs. (A4) and (A5) as follows:

U =
∑

i j

| j〉〈i| ⊗ u j |i〉〈 j|, (A6)

which acts as the swap operator for σ 3 ⊗ I.
Now consider an arbitrary observable OA = â · σ for some

unit vector â. Let us now fix a coordinate system (x̂, ŷ, ẑ).
There exists a proper rotation R such that â = Rẑ. This ro-
tation R corresponds to a unitary w acting on ẑ · σ = σ 3, so
OA can be written as

OA = w†σ 3w. (A7)

Then the masking condition implies that for some channel E ′∗

E ′∗(OA) =
∑

i

E ′†
i (w†σ 3w)E ′

i =
∑

i

E†
i σ 3Ei = I, (A8)

where Ei = wE ′
i are the Kraus operators of E∗. Therefore,

the Kraus operators of the channel E ′∗ are E ′
i = w†Ei. It can

be easily seen now that the unitary extension of the channel
E ′∗ is

U ′ = (w† ⊗ I)U . (A9)

We will now argue that the masker U ′ obtained above for OA is
unique up to a local unitary on the environment. The fact that
U ′ is unique for OA up to a local unitary on the environment
means that the channel E ′∗ that maps OA to I is unique for
OA. To see the uniqueness of E ′∗ consider its adjoint that acts
on states as follows:

E ′(ρ) =
∑

i

E ′
i ρE ′†

i =
∑

i

w†EiρE†
i w, (A10)

where Ei are the Kraus operators of any channel E whose
adjoint maps σ 3 to I, and are not assumed to be of the
form Ei = |0〉〈i|. Since we know from the proof of Theorem
1 that

∑
i EiρE†

i = E (ρ) = |0〉〈0| ∀ ρ. Therefore, E ′(ρ) =
w†|0〉〈0|w ∀ ρ, i.e., E ′ is a constant channel and hence is
unique. Therefore, its adjoint channel E ′∗ is also unique which
in turn implies that the masker U ′ for OA is unique up to a
local unitary on the environment.

Now the action of this masker on the joint system-
environment observable is

U ′†(OA ⊗ I)U ′ = I ⊗ σ 3 = I ⊗ wOAw†. (A11)
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The initial observable OA can be retrieved from the en-
vironment by the action of a local unitary w on it.
Note that knowing w alone is not sufficient to retrieve

the initial observable from the environment, we need to
know the global unitary U as well. This proves our
theorem. �
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