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Entanglement subject to noise cannot be shielded against decaying. But, in case of many noisy channels, the
degradation can be partially prevented by using local unitary operations. We consider the effect of local noise
on shared quantum states and evaluate the amount of entanglement that can be preserved from deterioration.
The amount of saved entanglement not only depends on the strength of the channel but also on the type of the
channel, and in particular, it always vanishes for the depolarizing channel. The main motive of this work is to
analyze the reason behind this dependency of saved entanglement by inspecting properties of the corresponding
channels. In this context, we quantify and explore the biasnesses of channels towards the different states on
which they act. We postulate that all biasness measures must vanish for depolarizing and unitary channels, and
subsequently introduce a few measures of biasness. We also consider the entanglement capacities of channels.
We observe that the joint behavior of the biasness quantifiers and the entanglement capacity explains the nature
of saved entanglement. Furthermore, we find a pair of upper bounds on saved entanglement which are noticed to
imitate the graphical nature of the latter.
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I. INTRODUCTION

Entanglement [1–3] plays a crucial role in quantum infor-
mation science. It is used as a resource in many quantum
information tasks such as teleportation [4], quantum dense
coding [5], quantum computation [6], entanglement-based
quantum cryptography [7,8], and so on. But it is a very
delicate characteristic of shared quantum systems. Realistic
systems are subject to noise, and entanglement loss is typi-
cally unavoidable therein. Entanglement transformation, and
in particular its disappearance, in presence of different classes
of noise have been studied by various scientists [9–13]. Ex-
periments along this line are explored, e.g., Refs. [14–16].

Numerous theoretical [17–31] as well as experimental
[32–35] researches have been carried out on prevention or
reduction of entanglement loss or regeneration of entangle-
ment. In recent years, it has been realized that though local
unitaries cannot change entanglement of any state, its oper-
ation can restrain or delay entanglement degradation, even
when it is applied only on a single party. If a local unitary
is operated afore the system is exposed to noise, the effect
of the noise on the system may get reduced compared with
the case without the application of any unitary [36–39]. This
can be exemplified through analyzing multipartite graph states
in presence of the local dephasing channel [37], and bipartite
maximally entangled states after transforming through local
amplitude damping and local dephasing channels [39]. Since
local unitary operations are easy to implement, this method
of preservation of entanglement is conceivably an experimen-
tally friendly and low cost process [14,15].

Focusing on bipartite states, successful protection of en-
tanglement from local noise acting identically on the two
parties, through the help of local unitary operations, depends
on the type and strength of the channels. We name the amount
of entanglement that can be saved by applying the optimal
local unitary on a single party as “saved entanglement” (SE).

We observe that entanglement cannot be saved by using this
method in the case of SU(d )-covariant local channels, e.g.,
the local depolarizing channel, whereas it is possible to protect
a finite amount of entanglement in the presence of a local am-
plitude damping, bit flip, phase flip, or bit-phase flip channel.
We find that the saved entanglement is exactly the same for
local bit flip, phase flip, and bit-phase flip noise. In this work,
we try to explore the reason behind the disparate behavior of
saved entanglement for distinct channels.

Since local unitaries just rotate the states locally, if the
resulting state is more robust to a noise, the reason must be
the noise’s partiality towards a set of states having a particular
direction. This fact motivates us to investigate the property
of “biasness” of channels, which describes the channel’s bias
toward a bunch of states. We make several observations in
this direction, which lead us to state postulates that must be
satisfied by a quantifier of biasness of a quantum channel.
We subsequently introduce three such quantifiers. We also
consider the entanglement capacity of quantum channels. We
show that the nature of the SE can be explained by composing
the behaviors of biasness and entanglement capacity. In partic-
ular, by considering two-qubit states and some paradigmatic
noisy channels, viz. amplitude damping, bit flip (or phase flip
or bit-phase flip) acting locally and identically on both of the
qubits, we observe that at low noise strengths, SE monotoni-
cally increases with biasness of the local channel, whereas it
decreases monotonically with entanglement capacity at higher
noise strengths. Here, since unitaries can simply be inverted,
we consider unitary channels as noiseless channels, and de-
fine “strength of a channel” as the minimum distance of the
channel from unitary channels.

We also present two upper bounds on the saved entangle-
ment. These bounds are seen to mimic the nature of SE.

The rest of the paper is organized as follows: In Sec. II, we
briefly recapitulate definitions of some well-known quantities,
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which will be needed in the rest of the paper, such as SU(d )-
covariant channels, l1 norm, distance between two channels,
concurrence, etc. Saved entanglement and entanglement ca-
pacity are defined in Sec. III. To find our way towards defining
eligible measures of biasness, we make a few observations
about saved entanglement of channels in the same section.
Based on these observations, we define various appropriate
biasness quantifiers in Sec. IV. We determine two bounds on
the saved entanglement in Sec. V. Different well-known ex-
amples of noise are considered in Sec. VI, and their behavior
with respect to the biasness measures as well as entanglement
capacity and saved entanglement are obtained and discussed.
We present the concluding remarks in Sec. VII.

II. PREREQUISITES

In this section we briefly discuss some basic tools which
will be used later.

Quantum channels transform a state, ρ, acting on a Hilbert
space, H, to another state, ρ ′, acting on the same or different
Hilbert space, H′. Operation of a quantum channel can be de-
scribed using a completely positive trace-preserving (CPTP)
map, �, and the transformation can be denoted as � : ρ →
�(ρ). Corresponding to every CPTP map there exists a set of
Kraus operators, {Ki}i, satisfying

∑
i K†

i Ki = Id , such that the
transformation �(ρ) can be expressed as �(ρ) = ∑

i KiρK†
i

[40]. Here, Id is the identity operator on H.
Notations. In general, we denote density matrices, uni-

taries, and noisy channels acting on the Hilbert space, H, of
dimension d , by ρ, U , and �, respectively, unless specified
otherwise. Identity channels and the channels which transform
any state to a maximally mixed state is represented by �0

and �m, respectively. The set of rank-one states, density ma-
trices, unitary operators with determinant 1, and all matrices
acting on H are denoted as P (H), S (H), U (H), and M(H),
respectively. In case of composite Hilbert spaces, H ⊗ H,
of dimension d × d , we use the same notations but in bold
symbols, i.e., the density matrices, unitaries, and channels are
expressed as ρ, U , and �.

Definition 1. Covariant channels [41–46]. Let G be a com-
pact group. ∀ g ∈ G, g → Ug represents a continuous unitary
representation of G on H. A quantum channel � : H → H is
said to be covariant with respect to the representation if

�(UgXU †
g ) = Ug�(X )U †

g (1)

holds for all X ∈ M(H) and g ∈ G. In this work, we only
focus on SU(d )-covariant channels that are defined below.

Definition 2. SU(d )-covariant channels. Any quantum
channel � : H → H is said to be SU(d ) covariant if the
relation,

�(UXU †) = U�(X )U †, (2)

is true for all X ∈ M(H) and U ∈ U (H).
An example of SU(d )-covariant channels is the d-

dimensional depolarizing channel [47], �DC. �DC acts on a
state, ρ ∈ S (H), in the following way:

�DC(ρ) = (1 − p)ρ + p

d2 − 1
(dId − ρ), (3)

where p ∈ [0, 1] is a parameter which controls strength of
the channel. Let us prove this statement, for completeness.
Any single-qubit state can be represented as a point on or
within the Bloch sphere. A unitary operator acting on the
state just rotates the directed line (Bloch vector) joining the
point from the center of the sphere, whereas the depolarizing
channel shrinks the length of the vector keeping its direction
fixed. Hence, the action of the unitary and the channel com-
mutes with each other. Thus, a depolarizing channel acting on
single-qubit states is a valid example of a SU(2)-covariant
channel. For proof that depolarizing channels acting on ar-
bitrary dimensional states are also SU(d )-covariant channels,
see the Appendix. As the Choi states corresponding to SU(d )-
covariant channels are U ⊗ U ∗ invariant for all U ∈ U (H),
it has been seen in previous literature that the depolarizing
channel is the only SU(d )-covariant channel in qudit systems
[48,49]. Here U ∗ denotes complex conjugate of U . Therefore,
all the SU(d )-covariant channels (�CC) can be written as

�CC := (1 − p)ρ + p

d2 − 1
(dId − ρ), (4)

where p ∈ [0, 1].
Definition 3. Unitarily equivalent channels. We say a

pair of channels, � and �′, is unitarily equivalent if there
exist a fixed unitary, Ũ , such that �′(ρ) = ∑

i KiρK†
i =

Ũ
∑

j MjρM†
j Ũ

† = Ũ�(ρ)Ũ † for all ρ, where the set of
Kraus operators, {Mj} j and {Ki}i, describes action of the chan-
nels � and �′, respectively.

For example, bit flip, phase flip, and bit-phase flip channels
are unitarily equivalent to each other.

Definition 4. l1 norm of matrix. The l1 norm of a matrix A
having m rows and n columns is defined as

||A||1 := max
1� j�n

m∑
i=1

|ai j |, (5)

where ai j denotes the element of A situated at the intersection
of the ith row and the jth column of A.

Similarly, the l1-norm distance between two matrices of
equal order, say A and B, can be defined as

||A − B||1 := max
1� j�n

m∑
i=1

|ai j − bi j |, (6)

where {bi j}i j are elements of B.
Next, we are going to define a measure of distance

between two channels [50–52]. In this regard, let us first re-
capitulate the Choi–Jamiołkowski–Kraus–Sudarshan (CJKS)
isomorphism [53–56]. Consider a “reference” Hilbert space
H′, having the same dimension d as H. A maximally entan-
gled state acting on the composite Hilbert-space H ⊗ H′, can
be defined as |φ+〉 = 1√

d

∑
0�i<d |ii〉. Then according to the

CJKS isomorphism the map � → ρ� = Id ⊗ �(|φ+〉〈φ+|) is
bijective.

Definition 5. Distance between two channels [50]. A mea-
sure of the distance between two channels, � and �′, acting
on same dimensional states (say d), can be defined using the
CJKS isomorphism as

D(�‖�′) = Ds(ρ�‖ρ�′ ), (7)
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where Ds represents any measure of distance between two
states. For numerical calculations, we use the l1 norm as the
distance measure Ds.

Since a state affected by unitary channels can be easily
rectified by operating the inverse of the unitary, in this paper,
we do not consider unitary channels as noisy. In other words,
we consider unitary channels to have zero noise strength. By
being motivated from the definition of measure of ε non-
Markovianity presented in Ref. [50], we define the strength
of any arbitrary channel in the following manner:

Definition 6. Strength of a channel. We define the strength
of a channel, �, as its minimum distance from the set of
unitary channels, U , i.e.,

SC = min
U∈U (H)

D(�‖U ) = min
ρU

Ds(ρ�‖ρU ), (8)

where ρU and ρ� denote the Choi states corresponding to the
channels, U and �, respectively.

Definition 7. Entanglement capacity (EC). We define the
maximum amount of entanglement that survives after the ap-
plication of a local noisy channel, �, on an arbitrary state, ρ,
i.e.,

EC := max
ρ∈S(H⊗H)

E (�(ρ)), (9)

as entanglement capacity of the channel, �.
The value of EC depends on the strength SC of the chan-

nel. It is usually a decreasing function of SC because as SC
increases, the channel becomes more noisy and thus destroys
the entanglement more.

Certain cases allow for a straightforward determination of
the entanglement capacity (EC). For example, for the identity
channel, �0, the entanglement capacity is one, whereas, for
�m, the entanglement capacity is zero.

For numerical calculations, we use the l1 norm as the
distance measure Ds. Let us now move to a quantifier of
entanglement. Precisely, we consider concurrence, which is an
entanglement measure of bipartite quantum states of C2 ⊗ C2

[57–60]. The concurrence C of any two-qubit density operator,
say ρ2, is given by

C(ρ2) = max{0, λ1 − λ2 − λ3 − λ4}, (10)

where λ1, λ2, λ3, λ4 are the eigenvalues of

ω =
√√

ρ2ρ̃2
√

ρ2

in decreasing order, with ρ̃2 = (σ2 ⊗ σ2)ρ∗
2(σ2 ⊗ σ2). Here σ2

is a Pauli matrix.
For all the numerical calculations ahead, we use concur-

rence as the measure of entanglement.

III. OBSERVATIONS

It is known that the action of local unitaries on a bipartite
system cannot create or increase the entanglement content of
that system. On the other hand, the shared entanglement can
get reduced in presence of noise even if the noise acts on a
single part of that two-party system. Interestingly, it may be
possible to diminish the amount of reduction of entanglement
if certain local unitaries are applied to the shared state before
the action of the noise. However, if the shared state is pure

two-qubit, and the noise acts locally only on one party, then
such entanglement preservation using local unitaries is not
possible [61]. In this paper, we want to explore the behavior
of the amount of entanglement that can be secured from noise
degradation by applying local unitaries before the operation
of the noise, with respect to the properties of the noise. There-
fore, we restrict ourselves to local noise which equivalently
acts on both parties of bipartite system.

We first want to quantify the amount of entanglement that
can be protected from the claws of noise. In this regard, we
consider bipartite states ρ acting on a composite Hilbert space
H ⊗ H and use local unitaries of the type U = Id ⊗ U to
guard the entangled state from local noise, � = � ⊗ �.

Definition 8. Saved entanglement (SE). The maximum
amount of entanglement that can be saved by the help of local
unitaries of the form U (=Id ⊗ U ) from a noisy channel �

(=� ⊗ �) with a fixed noise strength can be defined as

SE := max
ρ∈S(H⊗H)

[ max
U∈U (H)

E (�(UρU†)) − E (�(ρ))], (11)

where E is any fixed measure of entanglement.
It is straightforward from the definition that SE is a prop-

erty of the local noise �, or, more precisely, of the individual
single-party noise, �. For a trivial unitary, i.e., for U =
Id , the quantity E (�(UρU†)) − E (�(ρ)) is zero for all ρ ∈
S (H ⊗ H). Since SE is defined as the maximum value of
this quantity, maximized over all unitaries (and states), it is
obvious that SE will always be greater than or equal to zero.

Although the mathematical definition of SE may look
complicated, in case of certain noise, it is relatively straight-
forward to determine the corresponding saved entanglement
(SE). Specifically, for both of the channels, �0 and �m, the
saved entanglement is zero.

To get a deeper understanding about saved entanglement of
noisy channels, let us discuss two theorems on SE.

Theorem 1. Saved entanglement is always zero for SU(d )-
covariant local channels.

Proof. Consider a bipartite system described by the com-
posite Hilbert space H ⊗ H of dimension d × d . Saved
entanglement of a local channel, � = � ⊗ �, is

SE = max
ρ∈S(H⊗H)

[ max
U∈U (H)

E (�(UρU†)) − E (�(ρ))],

where U = Id ⊗ U is the local unitary used to save the
entanglement. Let us assume that � is SU(d ) covari-
ant, i.e., �(UρU †) = U�(ρ)U †, for all ρ ∈ S (H). Then
we can replace � ⊗ �[(Id ⊗ U )ρ(Id ⊗ U †)] by Id ⊗ U [� ⊗
�(ρ)]Id ⊗ U †. Thus we have

SE = max
ρ∈S(H⊗H)

[ max
U∈U (H)

E (U�(ρ)U†) − E (�(ρ))]

= max
ρ∈S(H⊗H)

[E (�(ρ)) − E (�(ρ))] = 0.

Here we have used the fact that entanglement remains un-
changed under local unitary operations. �

Remark 1. Since depolarizing channel is a SU(d )-
covariant channel, SE is always zero for any local depolar-
izing channel, �DC ⊗ �DC.

Theorem 2. Unitarily equivalent channels have same
saved entanglement (SE). Proof. Suppose the channels �

and �′ are unitarily equivalent, i.e., for a fixed unitary,
say Ũ , �′(ρ) = Ũ�(ρ)Ũ † for all ρ. The SE of the channel
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FIG. 1. Saved entanglements for paradigmatic channels. We ex-
hibit the amounts of entanglement that can be protected, i.e., SEs,
on the vertical axis, as functions of noise strength p (horizontal
axis). The yellow and black points represent the values of SE for
amplitude damping, bit flip channels respectively. The horizontal
axis is dimensionless whereas the vertical axis is in ebits.

�′ is given by

SE
(
�′) := max

ρ∈S(H⊗H)
[ max
U∈U (H)

E (�′(UρU†)) − E (�′(ρ))]

= max
ρ∈S(H⊗H)

[ max
U∈U (H)

E (�(UρU†)) − E (�(ρ))]

= SE(�). (12)

The first equality reduces to the second equality because of the
fact that the entanglement of a bipartite state remains invariant
under the action of local unitary operations on the state. �

Using Theorem 2 we deduct that the SE is the same for
local bit flip, local phase flip, and local bit-phase flip channels
for any fixed noise strength.

Following the same path of mathematical logic as Theo-
rem III, it can be proved that the entanglement capacity of a
channel is also the same for unitarily equivalent channels.

Restricting ourselves to the composite Hilbert space of
dimension 2 ⊗ 2 and numerically optimizing over the set of
pure states only, we obtain the nature of saved entanglement
for some specific channels, such as local amplitude damping
and local bit flip channels. The operational form of all the
above-mentioned channels is illustrated in Sec. VI. In Fig. 1,
the behavior of SEs of amplitude damping and bit flip (which
is exactly equal to the same of phase flip, and bit-phase
flip channels) is exhibited as functions of the corresponding
strength of the channel, SC. For the amplitude damping chan-
nel, the range of SC is from zero to one, while the entire
range of SC for the bit flip channel is limited to 0.5. One
can notice from the figure that although the saved entangle-
ments are quantitatively distinct for different channels, they
have qualitative similarities. In particular, they monotonically
increase with noise strength up to a cutoff value after which
they start to decrease with SC. The value of the SE at the cutoff

depends on the form of the noise. Therefore, we can assert the
following two observations that are evident in the figure.

Observation 1. Local amplitude damping channel [39] has
nonzero SE for all noise strengths except for SC = 0 and
SC = 1.

Observation 2. The quantitative behavior of SE of the bit
flip channel is completely different from the same of the
amplitude damping channel for nonzero SC. We aim to in-
vestigate the specific channel properties that give rise to these
diverse characteristics of SE. Specifically, we try to examine if
the distinct nature of SE in different channels can be explained
through biasnesses and entanglement capacities of the corre-
sponding channels. In this regard, in the following section, we
introduce a few measures of biasness.

IV. MEASURES OF BIASNESS

When a channel affects individual states differently, we
say the channel is biased. Biasness of a channel can play
an important role in many quantum informational tasks. The
following are some of the examples of tasks where biasness
can be utilized:

(1) Teleportation. Perfect teleportation of an unknown
state, say from Alice to Bob, requires a maximally entangled
state shared between them. Even if Alice and Bob initially
share a maximally entangled state, the presence of noise can
lead to a reduction in the entanglement shared between them
over time. By investigating the bias of the noise, it is possible
to identify states that are less susceptible to the detrimental
effects of noise. Then, we can locally rotate the state accord-
ingly to transform it into a state that is more secure against
noise. This transformation to a more noise-resistant state en-
hances the likelihood of successful teleportation despite the
presence of noise. Due to the same reason, bias can also be
useful in entanglement-based cryptography.

(2) Quantum error correction. Several error-correcting
codes have been developed which can tolerate higher noise
rates, particularly when the noise exhibits bias. These codes
demonstrate promising performance in practical quantum er-
ror correction applications [62–67].

In this section, we discuss various methods of quantifying
the biasness. Although deterministic reversible channels are
biased, they are trivial in the sense that we can always invert
them and get back the original state. Therefore, in this paper,
we define the biasness of such channels as zero.

Any single-qubit system’s state can be represented by a
point on or inside the Bloch sphere. We know that the action
of the depolarizing channel, �DC, on the state will contract
the length of the distance between the point and the center
of the sphere. The amount of contraction does not depend
on the direction of the Bloch vector, that is the vector con-
necting the point from the center of the sphere. Thus, we can
say that the channel does not have any bias towards the direc-
tion of the Bloch vector. As, depolarizing channels are only
SU(d )-covariant channels, we can conclude that SU(d )-
covariant channels are unbiased channels. By unbiased
channels, we mean the channels whose action does not depend
on the direction of the initial state.
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From these analyses, we state an intuitively satisfactory
postulate for a function mapping noise channels to real
numbers to be an acceptable measure of biasness.

Postulate. The value of the measure of biasness should be
zero for all unitary and SU(d )-covariant channels.

We note that the identity channel is a particular exam-
ple of a depolarizing channel. In the following sections, we
construct three kinds of biasness measures of channels � or
�, all of which satisfy the above-mentioned property. Let us
mention here that while in this paper we be concerned with
exclusively utilizing the biasness measures for characterizing
and understanding saved entanglement, we believe that the
concept of biasness and the measures thereof will have a wider
applicability.

A. Distance from SU(d )-covariant channel

As discussed earlier, SU(d )-covariant channels are only
depolarizing channels and depolarizing channels do not have
any biasness towards any input state. This fact motivates us
to introduce the following measure of biasness: the minimum
distance of a channel from the set of unitarily equivalent
channels of SU(d )-covariant channel (DCC). To evaluate the
distance between two channels we use the measure defined in
the previous section, i.e., Eq. (7). Hence, the biasness DCC of
a channel � can be mathematically expressed as

DCC(�) := min
p,U∈U (H)

D(U�CCU †||�), (13)

where p is a parameter of the SU(d )-covariant channel [see
Eq. (4)].

DCC, from the definition itself, is zero for SU(d )-
covariant channels which implies that it will also be zero for
all depolarizing channels. Note that DCC will be same for
all unitarily equivalent channels if a unitary invariant distance
measure is considered as a measure of distance for the evalu-
ation of DCC. In our case, DCC are exactly same for bit flip,
phase flip, bit-phase flip channels for all considered strengths
of the channel, SC.

This measure of biasness can be more generalized by defin-
ing it as the “minimum distance from unbiased channels,”
�UC , which is given by

DUC(�) := min
�UC∈UC,U∈U (H)

D(U�UCU †||�),

where UC is the set of all unbiased channels. This generalized
measure, DUC, although geometrically more transparent, can
be computationally more complicated. Therefore, whenever
we numerically compute biasness of any channel we restrict
ourselves to DCC instead of determining DUC. We anticipate
that the results obtained will not qualitatively change if DUC
is evaluated in place of DCC.

In the next section, we show that the biasness measure,
DCC, of different channels, precisely, amplitude damping and
bit flip is correlated with the amount of entanglement saved
with the help of local unitaries.

B. Channel’s dependence on state

To examine how the transformation of a state, by a channel,
depends on the direction of the input state, we can define a

channel’s dependence on state (CDS). Let ρ and ρ⊥ be two
orthogonal pure qubit states. Then, the CDS of a channel, �,
is defined as

CDS(�) := max
ρ∈P (H)

[F (ρ, ρ⊥)] − min
ρ∈P (H)

[F (ρ, ρ⊥)], (14)

where F (ρ, ρ⊥) = maxU∈U (H)
1
2 [Tr(U †�(ρ)Uρ) +

Tr(U †�(ρ⊥)Uρ⊥)]. Since for the identity channel,
�(ρ) → ρ, it is straightforward that for the identity
channel, CDS = 0. For the SU(d )-covariant channel,
F (ρ, ρ⊥) = 2[1 − d

d+1 p], which is independent of ρ, for
a given dimension, which implies CDS(�DC) = 0 for all p.
One can easily check CDS is zero for every unitary channels.
Hence, CDS can be a contender for measuring biasness. It can
be easily seen that CDS is the same for all unitarily equivalent
channels.

C. Incovariance

Now, we discuss about the next quantifier of biasness,
incovariance (IC).

Since SU(d )-covariant local channels can never display a
nonzero saved entanglement for any noise strength, local in-
covariance of channels (IC) can be a reason for the exhibition
of nonzero saved entanglement and therefore can be another
quantifier of biasness. To make the measure zero for unitary
channels, we mathematically define IC in the following man-
ner:

IC(�) := 1

d2

∑
i, j

max
U2∈U (H)

min
U1∈U (H)

||U1�(U2|i〉〈 j|U2
†)U †

1

− U2U1�(|i〉〈 j|)U1
†U †

2 ||1. (15)

Here, although U1(2)|i〉〈 j|U †
1(2) are not states for i 
= j, we de-

fine the action of � on U1(2)|i〉〈 j|U †
1(2) as �(U1(2)|i〉〈 j|U †

1(2)) =∑
l KlU1(2)|i〉〈 j|U †

1(2)K
†
l where Kl are Kraus operators of �.

IC is zero for any SU(d )-covariant channel. Thus IC satisfies
the postulate for being an acceptable measure of biasness.
From the definition of IC, it can be easily proved that all uni-
tarily equivalent channels will have same IC for all strengths
of the channel. We analyze IC for different channels in the
succeeding section.

V. BOUNDS ON SAVED ENTANGLEMENT

In this part, we introduce two bounds on the saved entan-
glement. Let us consider a bipartite state ρ, and let the noise
acting on the state be �. Moreover, let us suppose that only
the second party applies the unitary operator to protect en-
tanglement. Therefore, the form of the applied local unitary is
U ≡ Id ⊗ U . Let Umax and ρmax be the unitary operator and the
bipartite pure state, respectively, for which the optimization in
Eq. (11) can be achieved. Then the saved entanglement of the
channel � is

SE := E (�(UmaxρmaxU
†
max)) − E (�(ρmax)), (16)

where Umax = Id ⊗ Umax. As discussed in Sec. III, the above
quantity is greater or equal to zero. Thus we have

E (�(UmaxρmaxU
†
max)) � E (�(ρmax)). (17)

The operator �(UmaxρmaxU
†
max) is a density matrix, and thus

can be decomposed in terms of two density matrices in the
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following way:

�(UmaxρmaxU
†
max) = p1(�(ρmax)) + p2ρ

′, (18)

where p1, p2 � 0 and p1 + p2 = 1. A trivial solution
of the above equation is p1 = 0, p2 = 1, and ρ′ =
�(UmaxρmaxU

†
max). But there can be multiple solutions.

Let us now restrict ourselves to the entanglement quanti-
fiers which satisfy the convexity property [68]. Concurrence
[57,58], relative entropy of entanglement [69–71], negativity
[72] are some examples of such quantifiers. Using the con-
vexity property and the expression given in Eq. (18), we can
write

E (�(UmaxρmaxU
†
max)) = E (p1[�(ρmax)] + p2ρ

′)

� p1E (�(ρmax)) + p2E (ρ′). (19)

Then an upper bound on the SE of channels can be determined
as

SE = E (�(UmaxρmaxU
†
max)) − E (�(ρmax))

� p1E (�(ρmax)) + p2E (ρ′) − E (�(ρmax))

� p2E (ρ′) − (1 − p1)E (�(ρmax))

� p2[E (ρ′) − E (�(ρmax))]. (20)

There may exist various decompositions of �(UmaxρmaxU
†
max)

of the form provided in Eq. (18). Each of these decomposition
may involve different p2 and/or ρ ′. Let us denote the set
of all p2 for each of which we can find a corresponding ρ ′
such that Eq. (18) is valid, as P . To obtain a tighter upper
bound for SE, we need to consider the minimum value of
right-hand side of (20) minimized over all valid decomposi-
tions expressed in Eq. (18). Therefore the best bound we can
find is

SE � min
p2∈P

[p2[E (ρ′) − E (�(ρmax))]] (21)

� min
p2∈P

[p2E (ρ′)]. (22)

It is important to keep in mind that ρ ′ depends on the decom-
position introduced in Eq. (18) and therefore it will change
with p2 ∈ P . From inequalities (17) and (19), we see that ρ′
cannot be separable, unless p1 is one.

There can be numerous pairs of {Umax, ρmax} for which the
optimization introduced in the definition of SE is achievable.
All of the pairs {Umax, ρmax} will satisfy both the inequalities
(21) and (22). Thus to get the tightest bound we have to
minimize the right-hand side of those inequalities over the
set of pairs {Umax, ρmax}. Thus we define the following two
quantities:

EB1 := min
Umax,ρmax,p2∈P

[p2E (ρ′) − p2E (�(ρmax))], (23)

= min
Umax,ρmax

Q1, (24)

EB2 := min
Umax,ρmax,p2∈P

p2E (ρ′), (25)

= min
Umax,ρmax

Q2, (26)

as the bounds on SE, where Q1 := minp2∈P [p2E (ρ′) −
p2E (�(ρmax))] and Q2 := minp2∈P [p2E (ρ′)].

FIG. 2. Graphical nature of entanglement capacity, biasness, and
saved entanglement. A schematic diagram is drawn to represent the
behavior of the three distinct functions, viz. EC, SE, and a quantifier
of biasness (vertical axis) with respect to noise strength (horizontal
axis) of applied local noise. The robustness of entanglement against
applied noise decreases with corresponding noise strength, whereas
biasness of that noise towards individual input states increases with
the strength. The amount of saved entanglement follows the nature
of biasness at lower noise strengths and entanglement capacity at
higher noise strengths. The quantities are qualitatively represented
using yellow dashed line (biasness), black dotted line (EC), and red
solid line (SE). SE and EC are in ebits, while other quantities are
dimensionless.

In case of the identity and other depolarizing channels,
the amount of saved entanglement is vanishing. Hence, in
those cases, we can choose Umax to be the identity matrix.
Therefore, the solution of Eq. (18) for which the bounds given
in inequality (21) and (22) are optimal is {p1, p2} = {1, 0}.
Thus we see that EB1 and EB2 are zero for depolarizing
channels.

These bounds, EB1 and EB2, hold for all channels, even
for those acting on systems with higher dimensions. It is still
unknown whether there is a direct relationship between the
bounds and the biasness measures.

VI. BIASNESS AND ENTANGLEMENT CAPACITY
AS AN ESCORT TO SAVED ENTANGLEMENT

In this section, we discuss how biasness and entanglement
capacity are correlated with the behavior of entanglement
saved against certain channels, viz. amplitude damping and
bit flip. As we have mentioned earlier, SE and EC are the
same for unitarily equivalent channels. One can easily check
that the measures of biasness, CDS and IC, are also the same
for them. For the DCC measure of biasness, the invariance is
present for all the channels considered. Hence bit flip, phase
flip, and bit-phase flip channels, being unitarily equivalent,
have exactly the same SE, EC, and biasness. Therefore we
not separately discuss phase flip and bit-phase flip channels.

To have an overall idea about the qualitative relation be-
tween SE, EC, and biasness of channels, in Fig. 2, we present
a schematic diagram of the behavior of the functions. The
saved entanglement, for all the considered noisy channels,
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shows a parabolic nature. It can be seen that the value of SE
initially increases with noise strength up to a certain cutoff
value. This can be explained through the nature of biasness
of the corresponding channel which also is a monotonically
increasing function of the same. Since biasness demonstrates
the dependence of the channel on the initial state, it indicates
that appropriately changing the initial state will alter the ef-
fect of the noise, resulting in less entanglement degradation.
Thus, more the biasness, more is the possibility of securing
entanglement. But after reaching the cutoff value, SE starts
decreasing with noise strength. The reason behind this dete-
rioration can be the effect of the intense noise on the initial
states, which in turn immensely affects the entanglement of
the states, making the states almost separable. That is, al-
though the channel’s impact on the states depends on the states
themselves, but the outputs have one thing in common: poor
entanglement. Thus the amount of saved entanglement, for
smaller values of noise strength, follows the behavior of bias-
ness, whereas for higher values of noise strength, it follows the
nature of entanglement capacity. To grasp the characteristics
in more detail, we discuss some exemplar noise models in the
following subsections.

In the following subsections, we consider two-qubit sys-
tems and apply local noise of the form � = � ⊗ �, where
� represents a typical noisy channel, for example, amplitude
damping channel, bit flip channel, etc. To protect the entangle-
ment, we consider local unitaries of the form I2 ⊗ U , where U
is a single qubit unitary. To determine SE, we optimize over
the set of pure states, P (H ⊗ H).

A. Amplitude damping channel

Let us first consider the amplitude damping channel, �AD.
The Kraus operators of the channel is given by

K0 =
(

1 0
0

√
1 − p

)
, K1 =

(
0

√
p

0 0

)
.

Thus the corresponding map can be described as

ρ → �AD(ρ) =
1∑

i=0

KiρK†
i .

The amount of entanglement that can be saved using local
unitaries, i.e., SE, and the biasness quantifiers of the channel,
viz. DCC, CDS, and IC, are determined using Eqs. (11),
(13), (14), and (15), respectively. We have used a numerical
nonlinear optimizer to optimize the functionals. In Fig. 3,
we plot SE using brown star points. It is the same curve
that is plotted in Fig. 1 using yellow circular points. It can
be seen that the value of SE increases with SC for smaller
values of SC and then for SC > 0.3 it starts decreasing. We
also plot the measures of biasness, i.e., DCC, CDS, IC, and
entanglement capacity, EC, in the same figure, i.e., Fig. 3.
We see that all biasness measures initially increase with SC
and after reaching a maximum value start to decrease with the
same whereas the entanglement capacity decreases with SC
in the entire range of SC. It is clearly visible that, for lower
values of SC, the nature of SE follows the behavior of biasness
and for higher values of SC, it follows EC.
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FIG. 3. Effect of local amplitude damping noise on bipartite pure
states and biasness of the channel. We plot SE (brown stars), EC
(violet squares), and the biasness measures, i.e., DCC (pink circles),
CDS (green crosses), and IC (yellow pentagons) on the vertical
axis against the corresponding noise strength, p, of applied local
amplitude damping channel, represented on the horizontal axis. The
bound on saved entanglement, upper bound on EB1 (black triangles)
which is numerically equal to the upper bound on EB2, is also plotted
on the same vertical axis. SE, EC, and the upper bound on EB1
are plotted using the dimension of ebits whereas other quantities are
dimensionless.

Next we use the expressions of Q1 and Q2 presented in
Eqs. (24) and (26), and instead of minimizing Q1 and Q2 over
all Umax and ρmax and determining the exact expressions of
EB1 and EB2 we find only three different pairs of {Umax,
ρmax} and minimize Q1 and Q2 over these three pairs to reduce
numerical complexity. Hence the final quantities found by
optimizing Q1 and Q2 over these three pairs provide upper
bounds on EB1 and EB2 respectively. We also plot these upper
bounds on EB1 and EB2 in the same figure. From the figure,
it is evident that the determined upper bounds on EB1 or EB2
alone can reflect the behavior of the saved entanglement for
all noise strengths.

Interestingly, numerically we have got the same values of
the right-hand sides of inequalities (21) and (22), for each SC.
Thus we can conclude that C(�(ρmax)) is zero for all SC of
the channel.

B. Bit flip channel

Next we move to the bit flip noise, �BF , in presence of
which, the eigenstates of the σ3 matrix (the Pauli matrix), that
are |0〉 and |1〉, get exchanged with each other, with a finite
probability p/2. This transformation can be mathematically
expressed as

ρ → �BF (ρ) =
1∑

i=0

KiρK†
i ,
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FIG. 4. Behavior of saved entanglement, entanglement capacity,
and measured biasnesses for the bit flip channel. All considerations
are the same as in Fig. 3 except the fact that here the noise under
discussion is bit flip.

where

K0 =
√

1 − p

(
1 0
0 1

)
, K1 = √

p

(
0 1
1 0

)
.

Figure 4 portrays the behavior of the same functionals,
as in Fig. 3 for the amplitude damping channel, viz. SE,
DCC, CDS, IC, and EC for the bit flip channel, against the
noise strength, SC. It is apparent from the figure that the
quantifiers of biasness (DCC, CDS, and IC) and the amount of
saved entanglement (SE) behave analogously within the range
0 � SC � 0.2, that is, all of them increase with SC. After
SC = 0.2, the values of the biasnesses continue to increase
whereas the corresponding value of SE starts to decrease
monotonically. Thus in this range, 0.2 � SC � 0.5, the nature
of SE and EC are alike. Hence we can argue that at first, SE
increases because of the presence of biasness in the channel
at low noise strength, and then its value starts to reduce at
higher values of SC, because of corresponding low EC of the
channel.

Instead of calculating EB1 and EB2 by minimizing over
overall Umax, ρmax, to reduce numerical complexity, we cal-
culate the upper bounds on EB1 and EB2 by determining
the expression needed to be minimized for only one pair of
{Umax, ρmax}.

We have calculated upper bounds on EB1 and EB2 for
the bit flip channel by determining Q1 and Q2 for one pair
of {Umax, ρmax}. We see that the upper bound on EB1 of the
bit flip channel again coincides with the upper bound on EB2
of the same channel for all considered values of the noise
strength, p. We draw the upper bounds on EB1 or EB2 for
different values of p in Fig. 4. We see that the upper bound
on EB1 or EB2 can describe the behavior of SE for all noise
strengths.
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FIG. 5. Behavior of saved entanglement (SE), entanglement ca-
pacity (EC), and a quantifier of biasness (DCC) for the random Pauli
channels. We plot SE, EC, and DCC for 103 randomly generated
Pauli channels along the vertical axis using, respectively, brown stars,
violet squares, and pink circles. The horizontal axis depicts the corre-
sponding strength, SC, of those randomly selected channels. SE and
EC are measured in ebits, whereas DCC and SC are dimensionless.

C. Random Pauli channels

Up to now, we have only provided examples of one-
parameter channels to show that the channels’ SE, EC, and
biasness do follow the behavior illustrated in the schematic
diagram, Fig. 2. Let us now investigate the nature of saved
entanglement for certain multiparameter channels, viz. the
Pauli channels. A Pauli channel, �PC, transforms any state ρ

into a new state �PC(ρ) in the following way:

�PC(ρ) =
3∑

i=0

Piσiρσi.

Here Pi are non-negative real numbers which satisfy∑3
i=0 Pi = 1, σ0 is the identity operator on the two-

dimensional complex Hilbert space, and σ1, σ2, and σ3 are
the Pauli matrices. By exploring Pauli channels, we try to
understand the qualitative relationship between saved entan-
glement, biasness, and entanglement capacity. In this regard,
we select 103 sets of {P0, P1, P2, P3} from the uniform distri-
bution, keeping the constraint

∑3
i=0 Pi = 1 satisfied, and find

the SC, SE, EC, and DCC of the corresponding 103 Pauli
channels. In Fig. 5, we plot SE, EC, and DCC with respect
to the strength of the randomly selected Pauli channels. As
one can clearly notice from the figure, the qualitative nature of
these channels’ SE also shows the same behavior as presented
in the schematic diagram, Fig. 2. In particular, biasness of
the channels increases with SC whereas the EC decreases
with SC. On the other hand, the SE has a parabolic nature,
which at first increases with SC and after a point starts to
decrease.

Although, for the random Pauli channels, we have depicted
the behavior of a particular type of biasness, i.e., DCC, we
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have verified that the behavior would not change significantly
if any other measures of biasness were considered.

VII. CONCLUSION

Although entanglement is an essential resource in many
quantum tasks including teleportation, dense coding, and
entanglement-based cryptography, it is a fragile characteristic
of shared quantum systems. Various unavoidable noise tend to
reduce entanglement of shared quantum systems. Preservation
of entanglement from such impact of noise is of significant
practical interest. It was observed that if certain local unitaries
are applied on the entangled state before the system’s interac-
tion with noise, the entanglement can be partially protected.
The amount of entanglement that can be saved in this way
depends on the nature of the noise, and as an extreme example,
the depolarizing channel’s effect cannot be bypassed or dimin-
ished by utilizing local unitaries. In this work, we have tried
to investigate the reason behind the partial protection provided
by local unitaries.

We explored the phenomenon through two physical char-
acteristics of quantum channels, viz. biasness, which we argue
as being able to explain the nature of saved entanglement
when the strength of the applied noise is low, and entangle-
ment capacity, which we argue as explaining the behavior of
saved entanglement for higher strengths of noise. We have

also obtained two upper bounds on the saved entanglement,
which we observed to represent the characteristics of the saved
entanglement in the full range of noise strength.
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APPENDIX

Lemma 1. The depolarizing channel is an SU(d )-covariant
channel.

Proof. For the depolarizing channel expressed in Eq. (3),

�DC(UρU †) = (1 − p)UρU † + p

d2 − 1
(dId − UρU †),

= (1 − p)UρU † + p

d2 − 1
(dUU † − UρU †),

= U

(
(1 − p)ρ + p

d2 − 1
(dId − ρ)

)
U †,

= U (�DC(ρ))U †.

This concludes the proof. �
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