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Since both coherence and quantum correlations arise from the superposition principle and can be regarded
as resources in quantum information tasks, it is of significance to investigate the interplay between them from
different perspectives. In this work we focus on the basis-dependent correlations in a bipartite state defined by the
coherence difference between global state and local state relative to a local basis and characterize bipartite states
with vanishing basis-dependent correlations. Using the relative entropy of coherence, the structure of such states
has been determined by Yadin et al. [Phys. Rev. X 6, 041028 (2016)], which we call block-diagonal product
states here. The first result of this work is to demonstrate that the set of block-diagonal product states can also be
characterized by the property of possessing vanishing basis-dependent correlations using the coherence measure
based on skew information. As a by-product of this result, we describe the structure of quantum ensembles
saturating the convexity inequality in the resource theory of coherence using the coherence measure based on
skew information, which may be of independent interest. Next, we characterize the set of bipartite states with
vanishing basis-dependent correlations using the l1 norm of coherence, and show that the set of block-diagonal
product states is a subset of it. Furthermore, we provide an operational interpretation of block-diagonal product
states in an interference model. Finally, we compare the amount of basis-dependent correlations using the three
mentioned coherence measures through several examples such as Werner states, isotropic states, Bell-diagonal
states, and a family of classical-quantum states.
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I. INTRODUCTION

One of the most important issues in quantum information
theory is to characterize the valuable resources in quantum
information tasks that enable them to outperform their clas-
sical counterparts. Among these resources, coherence and
quantum correlations are two related ones, because they both
arise from the superposition principle, a fundamental feature
of quantum mechanics. Traditionally, coherence is relative to
a reference basis of the system Hilbert space. A quantum
state with vanishing off-diagonal elements in this basis is
called incoherent, while any other states are coherent relative
to the basis. With the development of quantum information
theory, the resource theory of coherence has been established
[1–5], several coherence measures have been proposed from
different perspectives [1,6–15], and the role of coherence has
been investigated in quantum algorithms [16–21], quantum
metrology [22–25], quantum phase transitions [26–30], and
quantum biology [31,32]. Moreover, the notion of coherence
relative to an orthonormal basis (von Neumann measurement)
has been extended to coherence relative to Lüders measure-
ments (projective measurements), to POVMs, and to quantum
channels, together with the resource theory of these general-
ized coherence [7,33–40].

*Contact author: sunyuan@njnu.edu.cn

Understanding correlations in composite quantum systems
has been a long-term issue since the establishment of quantum
theory [41–63]. Several types of correlations have been pro-
posed such as Bell nonlocality [42,43], steering [41,44,48,62],
entanglement [45,53], and quantum discord [46,47,54,58].
Recently, much effort has been made to connect coherence
with correlations [64–94]. Notice that the definitions of cor-
relations are basis-independent, while the notion of coherence
is basis-dependent. Most of the works relating coherence with
correlations are to get rid of the dependence on the basis for
coherence by optimization or taking minimum or maximum
over all bases and then to connect the basis-independent co-
herence with correlations. In contrast, Yadin et al. proposed
an alternative viewpoint of investigating the basis-dependent
correlations and linking the basis-dependent correlations with
the traditional coherence in Ref. [75].

In this work, we will follow the latter viewpoint to investi-
gate the basis-dependent correlations and aim to characterize
bipartite states with vanishing basis-dependent correlations.
To be precise, given a local reference basis for a bipartite
system, it is natural to consider the coherence of both global
state and local state relative to the local basis. In general,
the coherence of global state should be no less than the co-
herence of local state relative to the local basis due to the
correlations contained in the bipartite system. Because this
kind of correlations is relative to the specific local basis, we
call it basis-dependent correlations. Obviously, bipartite states
with nonvanishing basis-dependent correlations can provide
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more coherence resource relative to the local basis when
using global state instead of local state. A natural question
arises: What is the structure of such bipartite states? Or,
equivalently, what is the structure of bipartite states with van-
ishing basis-dependent correlations? In Ref. [75], Yadin et al.
characterized bipartite states with vanishing basis-dependent
correlations using the relative entropy of coherence. Here we
will use the coherence measure based on skew information
and the l1 norm of coherence to answer this question.

The rest of this work is arranged as follows. In Sec. II
we give some preliminaries including the resource the-
ory of coherence, the definitions of basis-independent and
basis-dependent discord, and the definition of block-diagonal
product states. The main results of this work are put in Sec. III.
After introducing the motivation of this work, we determine
an explicit structure of quantum ensembles saturating the con-
vexity inequality in the resource theory of coherence, and then
apply this result to prove that the set of block-diagonal prod-
uct states can be characterized by the property of possessing
vanishing basis-dependent correlations using the coherence
measure based on skew information. At the end of Sec. III, we
characterize bipartite states with vanishing basis-dependent
correlations using the l1 norm of coherence. We further pro-
vide an operational interpretation of block-diagonal product
states in an interference model in Sec. IV, and calculate the
basis-dependent correlations using three coherence measures
mentioned here for four example states in Sec. V. Finally, we
conclude with discussions in Sec. VI. The proofs for Proposi-
tions 1–4 are located in the Appendixes.

II. PRELIMINARIES

In this section, we give some preliminaries that we will
use later to present our main results, including the resource
theory of coherence, the definitions of three block coherence
measures, the definitions of basis-independent discord and
basis-dependent discord, and the definition of block-diagonal
product states.

A. Resource theory of coherence

The original coherence in quantum information theory
is relative to an orthonormal basis. Given a basis {| j〉 :
j = 1, 2, . . . , d} of d-dimensional Hilbert space H, any
quantum state ρ, mathematically described by a unit-trace
positive semidefinite operator on H, can be expressed as ρ =∑

j, j′ 〈 j|ρ| j′〉| j〉〈 j′| in this basis. If 〈i|ρ| j′〉 = 0 for any j �= j′,
then ρ is called incoherent. Otherwise, it is coherent and can
be regarded to have the resource of coherence relative to the
basis {| j〉} [1]. Throughout this work, we do not distinguish
between the basis {| j〉} and its corresponding von Neumann
measurement � = {| j〉〈 j|}. According to the resource theory
of coherence [1], a coherence measure C(ρ,�) of a quantum
state ρ relative to � should have the following properties:

(1) Faithfulness: C(ρ,�) � 0, and C(ρ,�) = 0 if and
only if ρ ∈ I, where I denotes the set of incoherent states.

(2) Monotonicity: C(ρ,�) � C(E (ρ),�) and C(ρ,�) �∑
k pkC(EkρE†

k /pk,�) for any incoherent operation E which
is defined as a quantum channel E (ρ) = ∑

k EkρE†
k with

the set of Kraus operators {Ek} satisfying
∑

k E†
k Ek = 1 and

EkIE†
k ⊂ I for each k. Here pk = trEkρE†

k , 1 is the identity
operator on H.

(3) Convexity: It holds that

C

( ∑
k

λkρk,�

)
�

∑
k

λkC(ρk,�), (1)

for any ensemble {(λk, ρk )} with ρk some quantum states on
H and {λk} a probability distribution.

The notion of coherence relative to a basis has been
generalized to a Lüders measurement which is a general-
ization of von Neumann measurement (i.e., rank-1 Lüders
measurement). For a Lüders measurement �L = {Pl : l =
1, 2, . . . , m} on H with Pl orthogonal projections satisfying∑m

l=1 Pl = 1 and m � d ,

�L(ρ) =
m∑

l=1

PlρPl .

If a quantum state ρ satisfies ρ = �L(ρ), then it is said to be
incoherent relative to �L. Otherwise, it has block coherence
[7,35–38,40]. When m = d , each Pl is rank-1 and �L is a von
Neumann measurement. Then the block coherence reduces to
the original coherence.

Among several commonly used block coherence measures,
we mainly focus on the relative entropy of coherence, the co-
herence measure based on skew information, and the l1 norm
of coherence. For a quantum state ρ and a Lüders measure-
ment �L = {Pl : l = 1, 2, . . . , m}, recall that the three block
coherence measures are defined as follows:

(1) The relative entropy of coherence [1,6,7,95]

Cr (ρ,�L) := S(�L(ρ)) − S(ρ), (2)

with S(ρ) := −trρ ln ρ being von Neumann entropy of a
quantum state ρ.

(2) The coherence measure based on skew information
[12,33,34]

I (ρ,�L) :=
∑

l

I (ρ, Pl ), (3)

where I (ρ, K ) := −tr[
√

ρ, K]2/2 is the Wigner-Yanase skew
information of ρ with respect to an observable K [96], [A, B]
denotes the commutator of A and B.

(3) The l1 norm of coherence [36]

Cl1 (ρ,�L) :=
∑
l �=l ′

‖PlρPl ′ ‖tr, (4)

where ‖A‖tr := tr
√

A†A denotes the trace norm of the operator
A.

Note that when m = d all the three block coherence mea-
sures reduce to the corresponding coherence measures relative
to a basis. In addition, we remark that the notion of coherence
relative to Lüders measurements has been further generalized
to POVMs [35–38] and quantum channels [33,34,39].

B. From basis-independent to basis-dependent discord

Considering a bipartite quantum state ρab on Ha ⊗ Hb, if
ρab is a product state, i.e., ρab = ρa ⊗ ρb with ρa = trbρ

ab

and ρb = traρ
ab, then there are no correlations in ρab and the
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two subsystems a and b are independent. Otherwise, there
exist correlations between a and b. Two of the most studied
types of correlations are entanglement and quantum discord.
In 1989 Werner introduced the mathematical definition of
entanglement: Any bipartite state that cannot be expressed as
a mixture of product states such as

∑
k pkρ

a
k ⊗ ρb

k is called
an entangled state, and otherwise it is separable [45]. Entan-
glement was often recognized as the only kind of quantum
correlations until the introduction of quantum discord in 2001
by Ollivier and Zurek [46] and by Henderson and Vedral [47],
independently. The original definition of quantum discord in
Ref. [46] is

δ(ρab) := min
�a

δ(ρab|�a) (5)

with

δ(ρab|�a) := I (ρab) − I (�a ⊗ 1b(ρab)). (6)

Here I (ρab) := S(ρa) + S(ρb) − S(ρab) denotes quantum mu-
tual information of ρab, the minimum is taken over all von
Neumann measurements �a = {�a

j = | j〉〈 j|} on Ha, and
�a ⊗ 1b = {�a

j ⊗ 1b} is a Lüders measurement on Ha ⊗ Hb

such that �a ⊗ 1b(ρab) = ∑
j (�

a
j ⊗ 1b)ρab(�a

j ⊗ 1b) with 1b

the identity operator on Hb. Obviously, δ(ρab) is independent
of the choice of the bases �a and thus is called the basis-
independent discord of ρab. In contrast, δ(ρab|�a) is called
the basis-dependent discord of ρab relative to �a in Ref. [75].

It is shown that [46,54]

δ(ρab) = 0 ⇔ ρab =
∑

μ

pμ|μ〉〈μ| ⊗ ρb
μ, (7)

for some orthonormal basis {|μ〉} of Ha and quantum states
{ρb

μ} on Hb with {pμ} a probability distribution. Such a bipar-
tite state is called a classical-quantum state [50,97,98]. Yadin
et al. proved that

δ(ρab|�a) = 0 ⇔ ρab =
∑

l

plρ
a
l ⊗ ρb

l , (8)

where all ρa
l are perfectly distinguishable by �a [75].

In the next subsection we will introduce an alternative
definition for bipartite states satisfying Eq. (8) and call them
block-diagonal product states relative to �a.

C. Block-diagonal product states

We follow the notations in the last subsection. Recall that
a Lüders measurement �a

L = {Pa
l : l = 1, 2, . . . , m} on Ha

with da = dimHa is called a coarse graining of �a if there
exists a partition {Il : l = 1, 2, . . . , m} of the index set I =
{1, 2, . . . , da} (i.e., Il ∩ Il ′ = ∅ for l �= l ′ and I = ∪m

l=1Il ) such
that Pa

l = ∑
j∈Il

�a
j for l = 1, 2, . . . , m. Correspondingly, Ha

is decomposed into a direct-sum form of subspaces, i.e., Ha =⊕
l Pa

l Ha where Pa
l Ha = span{| j〉 : j ∈ Il}. From now on, we

will denote by S(H) the set of quantum states on Hilbert
space H. With these preparations, we introduce the definition
of block-diagonal product states. Notice that states in this
definition are equivalent to the states in Eq. (8), and it is easy
to verify the equivalence.

Definition 1. A bipartite state ρab on Ha ⊗ Hb is called a
block-diagonal product state relative to a local von Neumann

measurement �a = {�a
j = | j〉〈 j| : j = 1, 2, . . . , da} on Ha if

it can be represented as

ρab =
m⊕

l=1

plρ
a
l ⊗ ρb

l (9)

for some coarse graining �a
L = {Pa

l = ∑
j∈Il

�a
j : l =

1, 2, . . . , m} of �a, where ρa
l ∈ S(Pa

l Ha), ρb
l ∈ S(Hb),

and {pl} is a probability distribution. In this case the reduced
states for subsystems a and b are

ρa =
m⊕

l=1

plρ
a
l , ρb =

m∑
l=1

plρ
b
l ,

respectively. We remark that in Eq. (8), we regard ρa
l as a state

on Ha, while in Eq. (9), we regard ρa
l as a state on Pa

l Ha. Due
to the isomorphism between the internal and external direct
sums, we do not distinguish between the sum and the direct
sum in ρab.

Let S�a be the set of block-diagonal product states relative
to �a,

S�a := {Block-diagonal product states relative to �a}. (10)

Two special types of block-diagonal product states relative to
�a are as follows: (1) Any product state ρa ⊗ ρb is a block-
diagonal product state relative to �a for m = 1. (2) Any state
represented as ρab = ∑

j p j | j〉〈 j| ⊗ ρb
j is a block-diagonal

product state relative to �a for m = da. Such a state is called
an incoherent-quantum state (relative to �a) in Ref. [76] and
is a special type of classical-quantum states. A simple exam-
ple for m �= 1, da as shown in [75] is

1
2 |+〉〈+| ⊗ |0〉〈0| + 1

2 |2〉〈2| ⊗ |1〉〈1|, (11)

which is a block-diagonal product state on C3 ⊗ C2 relative
to the local basis {|0〉, |1〉, |2〉} of C3. Here |+〉 = (|0〉 +
|1〉)/

√
2.

From the above observations, we know that the set of
product states is contained in S�a ,

{Product states} ⊂ S�a . (12)

Furthermore, substituting the spectral decompositions of
ρa

l = ∑
k ql,k|ψl,k〉〈ψl,k| into Eq. (9), we obtain that ρab =∑

l,k pl ql,k|ψl,k〉〈ψl,k| ⊗ ρb
l and {|ψl,k〉} constitutes an or-

thonormal basis of Ha. Thus, any block-diagonal product state
relative to �a is a classical-quantum state, which implies that

S�a ⊂ {Classical-quantum states}. (13)

On the converse, any classical-quantum state
∑

μ pμ|μ〉〈μ| ⊗
ρb

μ can be seen as a block-diagonal product state relative to
the local basis {|μ〉}. However, given a local basis, an arbi-
trary classical-quantum state might not be a block-diagonal
product state relative to the given local basis. For example,
given a local basis {|0〉, |1〉} of Ha, ρab = 1

2 |+〉〈+| ⊗ |0〉〈0| +
1
2 |−〉〈−| ⊗ |1〉〈1| with |±〉 = (|0〉 ± |1〉)/

√
2 is a classical-

quantum state but not a block-diagonal product state relative
to the given basis. In a word, the relation between S�a and the
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FIG. 1. Schematic illustration of the connections of block-
diagonal product states relative to a local basis �a with other
states: {Product states} ⊂ {Block-diagonal product states relative
to �a} ⊂ {Classical-quantum states} ⊂ {Separable states} ⊂
{Bipartite states}.

set of classical-quantum states can be shown as follows:⋃
�a

S�a = {Classical-quantum states}, (14)

where the union is taken over all von Neumann measurements
�a on Ha.

We illustrate the connections between the set of block-
diagonal product states relative to a specific local basis
�a with the sets of product states, separable states, and
classical-quantum states in Fig. 1. We remark that the set
of block-diagonal product states is not convex. For example,
considering a two-qubit system and a given local basis �a =
{|0〉〈0|, |1〉〈1|}, |+〉〈+| ⊗ |0〉〈0| and |−〉〈−| ⊗ |1〉〈1| are two
product states and thus belong to S�a . However, their mixture
ρab = 1

2 |+〉〈+| ⊗ |0〉〈0| + 1
2 |−〉〈−| ⊗ |1〉〈1| /∈ S�a .

III. CHARACTERIZING BIPARTITE STATES
WITH VANISHING BASIS-DEPENDENT CORRELATIONS

In this section, after introducing the notion of basis-
dependent correlations and reviewing the result of Yadin et al.
[75], we present our main results: (1) Determine the structure
of quantum ensembles saturating the convexity inequality in
the resource theory of coherence using the coherence measure
based on skew information (Proposition 1). (2) Prove that the
set of block-diagonal product states relative to a local basis
can be characterized by the property of possessing vanish-
ing basis-dependent correlations using the coherence measure
based on skew information (Proposition 2), and then gener-
alize the results to the cases when bilocal bases are given
(Proposition 3). (3) Characterize the set of bipartite states with
vanishing basis-dependent correlations when we use the l1
norm of coherence, and show that the set of block-diagonal
product states relative to a given local basis is a subset of it
(Proposition 4).

A. Basis-dependent correlations

Consider a bipartite state ρab on Ha ⊗ Hb with da =
dim Ha and a given local basis {| j〉 : j = 1, 2, . . . , da} of Ha

which corresponds to a von Neumann measurement �a :=

{�a
j = | j〉〈 j|} on Ha. Then �a naturally induces a Lüders

measurement �a ⊗ 1b := {�a
j ⊗ 1b} on Ha ⊗ Hb such that

�a ⊗ 1b(ρab) := ∑
j (�

a
j ⊗ 1b)ρab(�a

j ⊗ 1b).
Intuitively, the amount of the coherence in a bipartite state

ρab relative to �a ⊗ 1b should be no less than that in the
reduced state ρa relative to �a due to the existence of corre-
lations in ρab. Because of the dependence of such correlations
on �a, we call them basis-dependent correlations. Namely,
the basis-dependent correlations in ρab (relative to �a) is
defined as the coherence difference between the global state
ρab relative to �a ⊗ 1b and the local state ρa relative to �a.
For any block coherence measure C(ρ,�L) of ρ relative to
�L satisfying the following desirable property

C(ρab,�a ⊗ 1b) � C(ρa,�a), (15)

we can define a quantifier for basis-dependent correlations of
ρab relative to �a as

DC (ρab,�a) := C(ρab,�a ⊗ 1b) − C(ρa,�a). (16)

Here the subscript C of DC (ρab,�a) represents which co-
herence measure C(ρ,�L) is used. Actually, DC (ρab,�a) is
called the conditional coherence relative to �a in Ref. [99]
and the generalized partial correlated coherence in Ref. [91].

On the one hand, because there are no correlations in
a product state ρa ⊗ ρb, the coherence in ρa ⊗ ρb relative
to �a ⊗ 1b arises only from the coherence in ρa rela-
tive to �a, and thus there is no difference between them,
i.e., C(ρa ⊗ ρb,�a ⊗ 1b) = C(ρa,�a), which implies that
DC (ρa ⊗ ρb,�a) = 0.

On the other hand, any incoherent-quantum state relative to
�a (i.e., ρab = ∑

j p j | j〉〈 j| ⊗ ρb
j ) has no coherence relative to

�a ⊗ 1b because of the fact that ρab = �a ⊗ 1b(ρab) [7,35–
38,40]. In the meanwhile, its reduced state ρa = ∑

j p j | j〉〈 j|
has no coherence relative to �a either. Therefore, similar to
the case of product states, the amount of coherence in ρab =∑

j p j | j〉〈 j| ⊗ ρb
j relative to �a ⊗ 1b is also the same as that

of coherence in ρa = ∑
j p j | j〉〈 j| relative to �a in that both

of them vanish, i.e., C(ρab,�a ⊗ 1b) = C(ρa,�a) = 0. So,
even though there exist correlations in ρab = ∑

j p j | j〉〈 j| ⊗
ρb

j when ρab �= ρa ⊗ ρb, it has vanishing basis-dependent cor-
relations relative to �a, i.e., DC (ρab,�a) = 0.

Now, a natural question arises: Given a local basis, are
there any other types of bipartite states having an equal
amount of coherence in the global state and the local state
and thus possessing vanishing basis-dependent correlations
relative to the given local basis?

Yadin et al. have proven that when we choose the rel-
ative entropy of coherence as the coherence measure, the
answer is just the set of block-diagonal product states relative
to the given local basis, which includes product states and
incoherent-quantum states as two special cases [75]. To be
precise, using the relative entropy of coherence Cr (ρ,�L) de-
fined by Eq. (2), the quantifier of basis-dependent correlations
becomes

DCr (ρ
ab,�a) := Cr (ρ

ab,�a ⊗ 1b) − Cr (ρ
a,�a), (17)

where Cr (ρab,�a ⊗ 1b) = S(�a ⊗ 1b(ρab)) − S(ρab) and
Cr (ρa,�a) = S(�a(ρa)) − S(ρa). Actually, Herbut has
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demonstrated that [6]

Cr (ρ
ab,�a ⊗ 1b) − Cr (ρ

a,�a) = δ(ρab|�a), (18)

where δ(ρab|�a) is the basis-dependent discord of ρab rela-
tive to �a. Thus, combining Eqs. (17) and (18) implies that
basis-dependent discord δ(ρab|�a) is just the basis-dependent
correlations DCr (ρ

ab,�a) in terms of the relative entropy of
coherence. From Eq. (8), it follows that the set of block-
diagonal product states relative to �a can be characterized
by both the property of possessing vanishing basis-dependent
correlations relative to �a in terms of the relative entropy
of coherence and the property of possessing vanishing basis-
dependent discord relative to �a, which can be shown as
follows:

S�a = {ρab : DCr (ρ
ab,�a) = 0} (19)

= {ρab : δ(ρab|�a) = 0}. (20)

In this work we will prove the following two relations:

S�a ={ρab : DI (ρab,�a) = 0}, (21)

S�a ⊂{ρab : DCl1
(ρab,�a) = 0}. (22)

Equation (21) implies that the set of block-diagonal product
states relative to �a can also be characterized by the property
of possessing vanishing basis-dependent correlations relative
to �a in terms of the coherence measure defined by Eq. (3),
while Eq. (22) shows that to be a block-diagonal product state
relative to �a is a sufficient but not necessary condition for
having vanishing basis-dependent correlations relative to �a

in terms of the l1 norm of coherence defined by Eq. (4).
Here, in terms of the coherence measure defined by Eq. (3),

the coherence in ρa relative to �a is quantified by I (ρa,�a) =∑
j I (ρa,�a

j ), the coherence in ρab relative to �a ⊗ 1b is
quantified by I (ρab,�a ⊗ 1b) = ∑

j I (ρab,�a
j ⊗ 1b), and the

basis-dependent correlations relative to �a is quantified by

DI (ρab,�a) := I (ρab,�a ⊗ 1b) − I (ρa,�a). (23)

In terms of the coherence measure defined by Eq. (4), the
coherence in ρa relative to �a is quantified by Cl1 (ρa,�a) =∑

j �= j′ |〈 j|ρa| j′〉|, the coherence in ρab relative to �a ⊗ 1b

is quantified by Cl1 (ρab,�a ⊗ 1b) = ∑
j �= j′ ‖〈 j|ρab| j′〉‖tr , and

the basis-dependent correlations relative to �a is quantified by

DCl1
(ρab,�a) := Cl1 (ρab,�a ⊗ 1b) − Cl1 (ρa,�a). (24)

B. Basis-dependent correlations via the coherence measure
based on skew information

To establish Eq. (21), we need to prove the following
result, which provides an explicit structure for a quantum
ensemble {(λk, ρk )} saturating the convexity inequality (1) in
the resource theory of coherence when we use the coherence
measure defined by Eq. (3). Without loss of generality, we
assume that λk > 0 throughout this work.

Proposition 1. For a von Neumann measurement � =
{� j = | j〉〈 j| : j = 1, 2, . . . , d} on H with d = dim H, an

ensemble {(λk, ρk ) : k = 1, 2, . . . , n} on H satisfies

I

(
n∑

k=1

λkρk,�

)
=

n∑
k=1

λkI (ρk,�) (25)

if and only if each ρk can be represented as

ρk =
m⊕

l=1

pk,lσl , (26)

for some coarse graining �L = {Pl = ∑
j∈Il

� j : l =
1, 2, . . . , m} of �, where σl ∈ S(PlH) and for each
k, {pk,l : l = 1, 2, . . . , m} is a probability distribution.

See Appendix A for the proof.
Note that Lieb proved that the Wigner-Yanase skew in-

formation I (ρ, K ) of a quantum state ρ with respect to an
observable K satisfies the convexity property [100]

I

( ∑
k

λkρk, K

)
�

∑
k

λkI (ρk, K ). (27)

Even though it is hard to derive when the saturation of the
convexity inequality (27) happens in general, which may be
heavily dependent on the structure of the observable K , we
can characterize the structure of ensembles satisfying Eq. (25)
as shown in Eq. (26).

To gain an intuitive understanding of ensembles {(λk, ρk )}
satisfying Eq. (25), let us see an example. Considering a
qutrit system on C3 with a basis {|0〉, |1〉, |2〉}, it can be
directly verified that the ensemble {(1/3, ρ1), (2/3, ρ2)}
with ρ1 = 1/2|+〉〈+| + 1/2|2〉〈2|, ρ2 = 1/4|+〉〈+| +
3/4|2〉〈2| satisfies Eq. (25). The average state is
ρ = 1/3|+〉〈+| + 2/3|2〉〈2|, with P1 = |0〉〈0| + |1〉〈1|,
P2 = |2〉〈2|, σ1 = |+〉〈+|, σ2 = |2〉〈2|, p1,1 = p1,2 = 1/2,
p2,1 = 1/4, p2,2 = 3/4.

Now, using Proposition 1 we can prove Eq. (21) as shown
in the following result.

Proposition 2. For a local von Neumann measurement
�a = {� j = | j〉〈 j| : j = 1, 2, . . . , da} on Ha, a bipartite state
ρab on Ha ⊗ Hb satisfies

DI (ρab,�a) = 0 (28)

if and only if it is a block-diagonal product state relative to
�a, i.e., ρab ∈ S�a .

See Appendix B for the proof.
From Proposition 2 we know that block-diagonal product

states can be identified as bipartite states that have vanishing
basis-dependent correlations when we quantify the coherence
by the coherence measure based on skew information.

Next, we extend the result in Proposition 2 to the cases
when both local bases for Ha and Hb are given. Before do-
ing that, we generalize the notion of block-diagonal product
states relative to a unilocal basis to that relative to bilocal
bases, and elucidate the relationship between block-diagonal
product states relative to bilocal bases and classical-classical
states. Recall that a classical-classical state is defined as ρab =∑

μν pμν |μ〉〈μ| ⊗ |ν〉〈ν|, where {pμν} is a bivariate probabil-
ity distribution, and {|μ〉 : μ = 1, 2, . . . , da} and {|ν〉 : ν =
1, 2, . . . , db} are orthonormal bases of Ha and Hb, respec-
tively. Here dα = dim Hα for α = a, b.
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Definition 2. Given a von Neumann measurement �a =
{�a

j = | j〉〈 j| : j = 1, 2, . . . , da} on Ha and a von Neumann
measurement �b = {�b

k = |k〉〈k| : k = 1, 2, . . . , db} on Hb,
a bipartite state ρab on Ha ⊗ Hb is called a block-diagonal
product state relative to both �a and �b if it can be repre-
sented as

ρab =
m⊕

l=1

n⊕
s=1

pl,sρ
a
l ⊗ ρb

s , (29)

for some coarse grainings �a
L = {Pa

l = ∑
j∈Ia

l
�a

j : l =
1, 2, . . . , m} of �a and �b

L = {Pb
s = ∑

k∈Ib
s
�b

k : s =
1, 2, . . . , n} of �b, where ρa

l ∈ S(Pa
l Ha), ρb

s ∈ S(Pb
s Hb),

{pl,s} is a probability distribution, and {Ia
l } and {Ib

s } are some
partitions of Ia = {1, 2, . . . , da} and Ib = {1, 2, . . . , db},
respectively.

From the above definition and the spectral decompositions
for each ρa

l and ρb
s , we know that on the one hand product

states are block-diagonal product states relative to both �a

and �b, and on the other hand, any block-diagonal product
state relative to both �a and �b is a classical-classical state.
Thus, block-diagonal product states relative to both �a and
�b is an interpolation between product states and classical-
classical states, similar to the relation between block-diagonal
product states relative to �a and classical-quantum states.

The following proposition shows that block-diagonal prod-
uct states relative to both �a and �b can be identified as
bipartite states with vanishing basis-dependent correlations
relative to both �a and �b.

Proposition 3. Given von Neumann measurements �a on
Ha and �b on Hb, a bipartite state ρab on Ha ⊗ Hb satisfies

DI (ρab,�a) = DI (ρab,�b) = 0 (30)

if and only if it is a block-diagonal product state relative
to both �a and �b. Here DI (ρab,�b) := I (ρab, 1a ⊗ �b) −
I (ρb,�b) quantifies the basis-dependent correlations relative
to �b in terms of the coherence measure defined by Eq. (3)
with I (ρab, 1a ⊗ �b) = ∑

k I (ρab, 1a ⊗ �b
k ) and I (ρb,�b) =∑

k I (ρb,�b
k ).

See Appendix C for the proof.
We remark that a similar argument shows that the conclu-

sion in Proposition 3 also holds for the relative entropy of
coherence. That is, a bipartite state ρab satisfies

DCr (ρ
ab,�a) = DCr (ρ

ab,�b) = 0 (31)

if and only if it is a block-diagonal product state rela-
tive to both �a and �b. Here DCr (ρ

ab,�b) := Cr (ρab, 1a ⊗
�b) − Cr (ρb,�b) quantifies the basis-dependent correlations
relative to both �b in terms of the relative entropy of coher-
ence with Cr (ρab, 1a ⊗ �b) = S(1a ⊗ �b(ρab)) − S(ρab) and
Cr (ρb,�b) = S[�b(ρb)] − S(ρb).

C. Basis-dependent correlations via the l1 norm of coherence

In this subsection we provide an explicit structure for bipar-
tite states satisfying DCl1

(ρab,�a) = 0 and then demonstrate
Eq. (22), showing that the set of block-diagonal product states
relative to �a is a subset of such states.

Proposition 4. For a local von Neumann measurement
�a = {�a

j = | j〉〈 j| : j = 1, 2, . . . , da} on Ha, a bipartite

state ρab on Ha ⊗ Hb satisfies

DCl1
(ρab,�a) = 0 (32)

if and only if for j, j′ = 1, 2, . . . , da with j �= j′, each
〈 j|ρab| j′〉 satisfies

〈 j|ρab| j′〉 = eiϕ j j′ |〈 j|ρab| j′〉|
for some ϕ j j′ ∈ [0, 2π ). Here |A| :=

√
A†A denotes the abso-

lute value of operator A [101].
See Appendix D for the proof.
For a block-diagonal product state defined by Eq. (9), if

there exists an l such that j, j′ ∈ Il , then

〈 j|ρab| j′〉 = pl〈 j|ρa| j′〉ρb
l .

Otherwise, 〈 j|ρab| j′〉 = 0. This implies that the set of block-
diagonal product states relative to �a is contained in the set of
bipartite states satisfying DCl1

(ρab,�a) = 0. Yet the converse
is not true. We will give an example (i.e., Example 4 in
Sec. V) to show that there exist bipartite states that satisfy
DCl1

(ρab,�a) = 0 but do not belong to S�a .

IV. INTERPRETING BLOCK-DIAGONAL PRODUCT
STATES IN AN INTERFERENCE MODEL

Coherence is a fundamental resource in many quantum in-
formation tasks. Concerning a given local reference basis for a
bipartite quantum system, a bipartite state might provide more
coherence resources than the corresponding reduced state due
to correlations. It is natural to ask which bipartite states con-
tain correlations that contribute to an additional amount of
coherence resources, i.e., basis-dependent correlations. Using
the coherence measure defined by Eq. (3), Proposition 2 gives
a complete answer to this question: Only those states that are
not block-diagonal product states relative to the local basis can
offer additional coherence resources. In other words, the cor-
relations contained in block-diagonal product states relative to
the local basis cannot be exploited to improve the coherence
resources.

Now we give an interpretation of block-diagonal product
states in an interference model. Consider a bipartite system
described by Ha ⊗ Hb with da = dim Ha, for which only
party a passes through a da-path interference with a phase shift
in each interference path, as schematically depicted in Fig. 2.
The interference paths can be described by the von Neumann
measurement �a = {�a

j = | j〉〈 j| : j = 1, 2, . . . , da} on Ha

with each path undergoing a phase shift eiθ j , and then the
incorporation of the phase shifts {eiθ j : j = 1, 2, . . . , da} into
the paths may be described by the unitary operator Uθ =∑da

j=1 eiθ j �a
j on Ha with θ = (θ1, θ2, . . . , θda ) ∈ [0, 2π )da .

Let ρab and ρa be the bipartite state on Ha ⊗ Hb and the
reduced state on Ha after the beam splitter, respectively.
Then the final bipartite state and reduced state on Ha passing
through the da paths are ρab

θ = (Uθ ⊗ 1b)ρab(Uθ ⊗ 1b)† and
ρa

θ = Uθρ
aU †

θ
, respectively.

In Ref. [102], it was shown that using the coherence mea-
sure based on skew information, I (ρab,Uθ ⊗ 1b) and I (ρa,Uθ )
can be used to quantify the interference of ρab and ρa with re-
spect to �a ⊗ 1b and �a, respectively. However, they depend
on the phase shifts θ, which is consistent with the fact that
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FIG. 2. Schematic illustration of n-path interference performed
on subsystem a with phase shift eiθ j in path | j〉 where Uθ =∑da

j=1 eiθ j �a
j with θ = (θ1, θ2, . . . , θda ) ∈ [0, 2π )da .

the fringe visibility depends on the phase shifts. By taking
the average over θ, intrinsic quantifiers of interference for ρab

and ρa with respect to the paths �a were obtained, and it was
established that they coincide with the coherence of ρab and
ρa relative to �a ⊗ 1b and �a, respectively,

I (ρab,�a ⊗ 1b) =
∫

[0,2π )da

I (ρab,Uθ ⊗ 1b)dθ,

I (ρa,�a) =
∫

[0,2π )da

I (ρa,Uθ )dθ,

where dθ = dθ1dθ2 · · · dθda is the normalized uniform mea-
sure on [0, 2π )da . According to Proposition 2, block-diagonal
product states relative to �a satisfy I (ρab,�a ⊗ 1b) =
I (ρa,�a). In this sense, we get an interpretation of block-
diagonal product states as shown in the following result.

Proposition 5. In the interference model described by
Fig. 2, a bipartite state ρab satisfies that the degree of the
(average) interference of ρab with respect to the paths is equal
to that of ρa if and only if it is a block-diagonal product state
relative to �a.

Note that the Wigner-Yanase skew information I (ρ, K )
of ρ with respect to an observable K is a special kind of
generalized quantum Fisher information, and it is essentially
equivalent to quantum Fisher information F (ρ, K ) in terms of
the symmetric logarithm derivative in the sense that I (ρ, K ) �
F (ρ, K ) � 2I (ρ, K ) [103]. So, it is reasonable to conjecture
that if we replace the coherence measure based on skew infor-
mation with the coherence measure based on quantum Fisher
information in terms of the symmetric logarithm derivative,
the set of block-diagonal product states relative to a given
local basis still characterizes the structure of bipartite states
with vanishing basis-dependent correlations. In this context,
block-diagonal product states relative to a local basis have the
following metrological interpretation.

In the above model, ρab
θ (ρa

θ ) encodes the information
of the parameters θ = (θ1, θ2, . . . , θda ). In order to extract
the parameter information, one needs to perform quantum
measurements on the output states. If only local measure-
ments on Ha are allowed, the quantum Fisher information
F a

j of ρa
θ about the parameter θ j , which is shown to

coincide with the quantum Fisher information F (ρa,�a
j ) of

ρa with respect to the operator �a
j [104], i.e., F (ρa,�a

j ) =
F a

j , sets an upper bound to the optimal precision of quantum
parameter estimation [105–108]. Here F a

j is defined as F a
j =

tr(ρa
θ La

j (La
j )†)/4 with the symmetric logarithmic derivative La

j
determined by ∂θ j ρ

a
θ = (ρa

θ La
j + La

j ρ
a
θ )/2, and F (ρa,�a

j ) is
defined as F (ρa,�a

j ) = tr(ρaL̃a
j (L̃a

j )†)/4 with L̃a
j determined

by i[ρa,�a
j ] = (ρaL̃a

j + L̃a
j ρ

a)/2. Thus, the sum of quantum
Fisher information F a

j turns out to coincide with the coherence
measure based on quantum Fisher information in terms of the
symmetric logarithm derivative,

F (ρa,�a) =
∑

j

F
(
ρa,�a

j

) =
∑

j

F a
j . (33)

Furthermore, it was proven that the coherence F (ρa,�a)
of ρa relative to �a provides a lower bound to the to-
tal variance of unbiased estimation for the parameters θ =
(θ1, θ2, . . . , θda ) [104],

∑
j

Var
(
ρa

θ , θ̂
a
j

)
� d2

a

F (ρa,�a)
, (34)

with θ̂
a = (θ̂a

1 , θ̂a
2 , . . . , θ̂a

da
) being an unbiased estimator of

θ = (θ1, θ2, . . . , θda ) and Var(ρa
θ , θ̂

a
j ) being the variance of the

estimator θ̂a
j . However, if joint measurements on Ha ⊗ Hb are

allowed, then∑
j

Var
(
ρab

θ , θ̂ab
j

)
� d2

a

F (ρab,�a ⊗ 1b)
, (35)

where the notations are defined analogously. By the fact that
F (ρab,�a ⊗ 1b) � F (ρa,�a), we know that in general us-
ing joint measurements instead of local measurements can
improve the optimal estimation precision of the parameters
θ [109]. It is easy to verify that block-diagonal product states
relative to �a satisfy

F (ρab,�a ⊗ 1b) = F (ρa,�a), (36)

and thus cannot enhance the optimal estimation precision of
the parameters. Since both quantum Fisher information and
the Wigner-Yanase skew information are special instances of
metric-adjusted skew information with similar properties, it is
reasonable to expect that if ρab satisfies F (ρab,�a ⊗ 1b) =
F (ρa,�a), then ρab must be a block-diagonal product state
relative to �a. Actually, the conjecture is true for pure bipar-
tite states |ψab〉 on Ha ⊗ Hb in that for ρab = |ψab〉〈ψab|,

F (ρab,�a ⊗ 1b) = F (ρa,�a),

if and only if |ψab〉 is a product state, which is a block-
diagonal product state relative to �a.

If the conjecture is true in general, then the set of block-
diagonal product states relative to �a can be characterized by
the property of possessing no correlations contributing to the
enhancement of parameter estimation precision.

V. COMPARISON

To gain some concrete understanding of the three
quantifiers for basis-dependent correlations, DI (ρab,�a),
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DCr (ρ
ab,�a), and DCl1

(ρab,�a), we calculate them for the
Werner states, isotropic states, Bell-diagonal states, and a
family of classical-quantum states. Throughout this section,
ln(x) represents the natural logarithm of x, and we take
Ha = Hb = Cd and choose the computational basis {| j〉 :
j = 0, 1, . . . , d − 1} for Ha as the reference basis, which will
be denoted by �a as before. For brevity, we omit �a in the
notations DI (ρab,�a), DCr (ρ

ab,�a), and DCl1
(ρab,�a) here.

Example 1. Consider the Werner state on Cd ⊗ Cd

[45,110]

w = d − x

d3 − d
1 ⊗ 1 + dx − 1

d3 − d
F, x ∈ [−1, 1],

where 1 is the identity operator on Cd , and F is the
swap operator on Cd ⊗ Cd defined as F (|φ〉 ⊗ |ψ〉) = |ψ〉 ⊗
|φ〉, ∀ |φ〉, |ψ〉 ∈ Cd . It can be directly derived that

DI (w) = d − 1

2

√
1 − x2

(d2 − 1)
+ d − x

2(d + 1)
,

DCl1
(w) = |dx − 1|

d + 1
.

In Ref. [111] it was calculated that

DCr (w) = ln(d + 1) + 1 + x

2
ln

1 + x

2(d + 1)

+ 1 − x

2
ln

1 − x

2(d − 1)
− 1 + x

d + 1
ln

1 + x

2

− d − x

d + 1
ln

d − x

2(d − 1)
.

Example 2. Consider the isotropic state on Cd ⊗ Cd

[45,110]

τ = 1 − y

d2 − 1
1 ⊗ 1 + d2y − 1

d2 − 1
|�〉〈�|, y ∈ [0, 1],

where |�〉 := 1/
√

d
∑d−1

j=0 | j j〉 is the maximally entangled
state. It can be directly calculated that

DI (τ ) = d2y − 2y + 1

d (d + 1)
− 2

d

√
(d − 1)(1 − y)y

d + 1
,

DCl1
(τ ) = |d2y − 1|

d + 1
.

In Ref. [111] it was calculated that

DCr (τ ) = y ln y + 1 − y

d + 1
ln

1 − y

d2 − 1
− dy + 1

d + 1
ln

dy + 1

d (d + 1)
.

Example 3. Consider the Bell-diagonal state on C2 ⊗ C2

[52]

ρB = λ0|�−〉〈�−| + λ1|�−〉〈�−|
+ λ2|�+〉〈�+| + λ3|�+〉〈�+|,

where |�±〉 := (|00〉 ± |11〉)/
√

2, |�±〉 := (|01〉 ±
|10〉)/

√
2. Then the three quantifiers of basis-dependent

correlations relative to �a = {|0〉〈0|, |1〉〈1|} can be calculated

as follows:

DI (ρB) =1 − 1

4
(
√

λ0 +
√

λ1 +
√

λ2 +
√

λ3)2

− 1

4
(−

√
λ0 +

√
λ1 +

√
λ2 −

√
λ3)2,

DCr (ρB) = 1

4
((1 − c1 − c2 − c3) ln(1 − c1 − c2 − c3)

+ (1 − c1 + c2 + c3) ln(1 − c1 + c2 + c3)

+ (1 + c1 − c2 + c3) ln(1 + c1 − c2 + c3)

+ (1 + c1 + c2 − c3) ln(1 + c1 + c2 − c3))

− 1 − |c3|
2

ln(1 − |c3|) − 1 + |c3|
2

ln(1 + |c3|),
DCl1

(ρB) =|λ2 − λ1| + |λ3 − λ0|,
with c1 := −λ0 − λ1 + λ2 + λ3, c2 := −λ0 + λ1 − λ2 + λ3,

and c3 := −λ0 + λ1 + λ2 − λ3.

Example 4. Consider a family of classical-quantum states
on C2 ⊗ C2,

η =
(

1

2
+ s + t

)
|+〉〈+| ⊗ ρb

+ +
(

1

2
− s − t

)
|−〉〈−| ⊗ ρb

−,

where |±〉 = (|0〉 ± |1〉)/
√

2 and

ρb
± = 1 ± 4s

2 ± 4(s + t )
|0〉〈0| + 1 ± 4t

2 ± 4(s + t )
|1〉〈1|,

with −0.25 � s, t � 0.25. η has the following matrix repre-
sentation in the computational basis {|00〉, |01〉, |10〉, |11〉},

η =

⎛
⎜⎜⎝

1
4 0 s 0
0 1

4 0 t
s 0 1

4 0
0 t 0 1

4

⎞
⎟⎟⎠.

The three quantifiers of basis-dependent correlations relative
to �a = {|0〉〈0|, |1〉〈1|} can be calculated as follows:

DI (η) = 1

4
(2

√
1 − 4(s + t )2 −

√
1 − 16s2 −

√
1 − 16t2),

DCr (η) = ln 2+H

({
1

2
± (s + t )

})
−H

({
1

4
± s,

1

4
± t

})
,

DCl1
(η) = 2(|s| + |t | − |s + t |),

where H ({pi}) := −∑
i pi ln pi denotes the Shannon entropy

of the probability distribution {pi}.
We depict the graphs of DI (w), DCr (w) and DCl1

(w) versus
the parameter x ∈ [−1, 1] for d = 2 in Fig. 3(a), the graphs
of DI (τ ), DCr (τ ), and DCl1

(τ ) versus the parameter y ∈ [0, 1]
for d = 2 in Fig. 3(b), the graphs of DI (ρB), DCr (ρB), and
DCl1

(ρB) versus the parameter c3 ∈ [−1, 1] when c1 = c2 =
(1 − c3)/3 in Fig. 3(c), and the graphs of DI (η), DCr (η), and
DCl1

(η) versus the parameter s ∈ [−0.25, 0.25] when t = 0.25
in Fig. 3(d). From these graphs we can see that the behav-
iors of DI (ρab,�a), DCr (ρ

ab,�a), and DCl1
(ρab,�a) with the

varying parameters are similar in the four examples.
At last, we emphasize that as shown in Fig. 3(d), when t =

0.25, 0 � s < 0.25,

DI (η) > 0, DCr (η) > 0, DCl1
(η) = 0,
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FIG. 3. Graphs of DI (ρab) (red solid line), DCr (ρ
ab) (blue dashed

line), and DCl1
(ρab) (green dashed-dotted line) versus the parameter

x ∈ [−1, 1] for the Werner states w when d = 2 (a), the parameter
y ∈ [0, 1] for the isotropic states τ when d = 2 (b), the parameter
c3 ∈ [−1, 1] when c1 = c2 = (1 − c3)/3 for the Bell-diagonal states
ρB (c), and the parameter s ∈ [−0.25, 0.25] when t = 0.25 for the
classical-quantum states η (d).

which implies that in this case η is not a block-diagonal prod-
uct state relative to �a, i.e., η /∈ S�a , while DCl1

(ρab,�a) = 0.
Hence, the set of block-diagonal product states relative to �a

is strictly contained in the set {ρab : DCl1
(ρab,�a) = 0}.

VI. DISCUSSION

Given a local reference basis for a bipartite quantum sys-
tem, it is natural to consider the coherence of both the global
state and the local state relative to this basis. It is reasonable
to expect that the coherence of the global state should be at
least as much as that of the local state due to the correlations.
We regard the difference in coherence between the global state
and the local state as the basis-dependent correlations relative
to the local basis. These basis-dependent correlations are what
allow the coherence resource in the global state to exceed that
in the local state. From an information-theoretic standpoint,
a natural question is how to characterize and quantify these
basis-dependent correlations.

Using the relative entropy of coherence, Yadin et al. have
proven that only block-diagonal product states (relative to a
local basis) have vanishing basis-dependent correlations (rel-
ative to this basis) [75]. In this work, we have characterized
bipartite states with vanishing basis-dependent correlations
using the coherence measure based on skew information and
the l1 norm of coherence. To be precise, in terms of the co-
herence measure based on skew information, we have proven
that the set of block-diagonal product states relative to a given
local basis can also be characterized by the property of pos-
sessing vanishing basis-dependent correlations, while in terms
of the l1 norm of coherence, to be a block-diagonal product

state is a sufficient but not necessary condition for a bipartite
state to have vanishing basis-dependent correlations.

Block-diagonal product states relative to a given local
basis is an interpolation between product states and classical-
quantum states. They have three information-theoretic charac-
terizations: (1) They have vanishing basis-dependent discord.
(2) They have vanishing basis-dependent correlations via the
relative entropy of coherence. (3) They have vanishing basis-
dependent correlations via the coherence measure based on
skew information. Furthermore, they have an operational in-
terpretation in an interference model as described in Sec. IV.

We emphasize that block-diagonal product states depend
on the choice of local bases, distinguishing them from other
bipartite states such as product states, separable states, and
classical-quantum states, all of which are basis-independent.
It is desirable to explore the connections of block-diagonal
product states with reference frames [95], pointer states [46],
and the no-local-broadcasting theorem [98,112–114]. In addi-
tion, a natural question arises and deserves investigation: Can
states outside the set of block-diagonal states be customized
for specific tasks as resources that cannot be accomplished
using block-diagonal product states?

Finally, similar to the block-diagonal product states that
emerge from studying basis-dependent correlations relative
to a local basis (or, equivalently, a local von Neumann mea-
surement), much richer structures might be revealed when
analyzing correlations relative to a local Lüders measurement
or even a local quantum channel. This is worthy of further
investigation.
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APPENDIX A: PROOF OF PROPOSITION 1

For sufficiency, suppose an ensemble {(λk, ρk ) : k =
1, . . . , n} satisfies that

ρk =
m⊕

l=1

pk,lσl , k = 1, 2, . . . , n,

where {pk,l : l = 1, 2, . . . , m} is a probability distribution
for each k, σl ∈ S(PlH) and �L = {Pl = ∑

j∈Il
� j : l =

1, 2, . . . , m} is a coarse graining of �. From the property of
skew information [96], we have

I

( ∑
k

λkρk,�

)
= I

(⊕
l

(∑
k

λk pk,l

)
σl ,�

)

=
∑

l

( ∑
k

λk pk,l

) ∑
j∈Il

I (σl ,� j )

=
∑

k

λk

∑
l

pk,l

∑
j∈Il

I (σl ,� j )
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=
∑

k

λkI

( ⊕
l

pk,lσl ,�

)

=
∑

k

λkI (ρk,�),

from which the sufficiency follows.
For necessity, suppose an ensemble {(λk, ρk ) : k =

1, 2, . . . , n} satisfies Eq. (25). Let ρ := ∑n
k=1 λkρk . For each

j, by the convexity of I (ρ,� j ) in ρ [115], we have that

I
(
ρ,� j

)
� λ1I (ρ1,� j ) + (1 − λ1)I (ρ ′

2,� j )

�
∑

k

λkI (ρk,� j ), (A1)

where ρ ′
2 = ∑n

k=2 λkρk/(1 − λ1). From Eqs. (25) and (A1),
we have

I (ρ,� j ) = λ1I (ρ1,� j ) + (1 − λ1)I (ρ ′
2,� j ), (A2)

which together with I (ρ,� j ) = 〈 j|ρ| j〉 − 〈 j|√ρ| j〉2 implies
that

〈 j|√ρ| j〉2 = 〈 j|
√

λ1ρ1| j〉2 + 〈 j|
√

(1 − λ1)ρ ′
2| j〉2,

or, equivalently,

〈 j j|√ρ ⊗ √
ρ| j j〉

= 〈 j j|(λ1
√

ρ1 ⊗ √
ρ1 + (1 − λ1)

√
ρ ′

2 ⊗
√

ρ ′
2)| j j〉.

Let

F := √
ρ ⊗ √

ρ −
(
λ1

√
ρ1 ⊗ √

ρ1 + (1 − λ1)
√

ρ ′
2 ⊗

√
ρ ′

2

)
.

By Ando’s concavity theorem [116], we know that F � 0.
Therefore, for any j,

〈 j j|F | j j〉 = 0,

which implies that
√

F | j j〉 = 0 and thus F | j j〉 = 0, i.e.,
√

ρ| j〉 ⊗ √
ρ| j〉 = λ1

√
ρ1| j〉 ⊗ √

ρ1| j〉
+ (1 − λ1)

√
ρ ′

2| j〉 ⊗
√

ρ ′
2| j〉.

Since the symmetry rank of the left hand side is 1, by Lemma
5.1 of Ref. [117], we know that for some b1, j ,

√
ρ1| j〉 = b1, j

√
ρ| j〉,

and b1, j � 0 follows from the non-negativity of
√

ρ and
√

ρ1.
Similarly, for k > 1, there exists some bk, j � 0 such that

√
ρk| j〉 = bk, j

√
ρ| j〉.

Let

ρ =
m⊕

l=1

plσl

be the minimal direct-sum decomposition of ρ with re-
spect to � with pl = trPlρ, σl = PlρPl/pl , �L = {Pl =∑

j∈Il
� j : l = 1, 2, . . . , m} the corresponding coarse grain-

ing of �. Here a direct-sum decomposition of ρ with respect

to � means that there exists a coarse graining �L = {Pl =∑
j∈Il

� j : l = 1, 2, . . . , m} of � such that

ρ =
∑

l

PlρPl .

Furthermore, if the coarse graining �L is the most refined, we
call it the minimal direct-sum decomposition of ρ with respect
to �. Then, for i ∈ Il , j ∈ Il ′ , l �= l ′,

〈i|√ρk| j〉 = bk, j〈i|√ρ| j〉 = 0.

Thus, for each k,
√

ρk can be represented as

√
ρk =

m∑
l=1

Pl
√

ρkPl .

Next, we prove that Pl
√

ρkPl is equivalent to
√

σl up to a
constant. Consider the nontrivial case that Il contains at least
two elements. Let i, j ∈ Il , i �= j. If 〈i|√ρ| j〉 �= 0,

bk, j〈i|√ρ| j〉 = 〈i|√ρk| j〉 = 〈 j|√ρk|i〉 = bk,i〈 j|√ρ|i〉
implies bk,i = bk, j . If 〈i|√ρ| j〉 = 0, since ρ = ⊕

l plσl is the
minimal direct-sum decomposition of ρ with respect to �,
there exist i1, . . . , is ∈ Il such that

〈i|√ρ|i1〉〈i1|√ρ|i2〉 · · · 〈is|√ρ| j〉 �= 0.

So each item in the left hand side of the above equation is not
0, which implies that

bk,i = bk,i1 = · · · = bk,is = bk, j .

Therefore, for any i, j ∈ Il , bk,i = bk, j . Then, letting ck,l =
bk,i for i ∈ Il , we have

√
ρk =

m⊕
l=1

ck,l
√

σl ,

which implies that

ρk =
m⊕

l=1

pk,lσl , k = 1, . . . , n,

where {pk,l = (ck,l )2 : l = 1, 2, . . . , m} constitutes a proba-
bilistic distribution. This completes the proof of Proposition 1.

We remark that from the proof of necessity, it follows
that σl in Eq. (26) of Proposition 2 can be determined by
the minimal direct-sum decomposition of the average state
ρ = ∑

k λkρk with respect to �.

APPENDIX B: PROOF OF PROPOSITION 2

For sufficiency, for a local von Neumann measurement
�a = {�a

j = | j〉〈 j| : j = 1, 2, . . . , da}, let

ρab =
m⊕

l=1

plρ
a
l ⊗ ρb

l
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be a block-diagonal product state with respect to �a. Then

I (ρab,�a ⊗ 1b) − I (ρa,�a)

=
∑

j

tr

( ⊕
l

√
plρ

a
l �a

j

)2

−
∑

j

tr

( ⊕
l

√
plρ

a
l �a

j ⊗
√

ρb
l

)2

= 0,

which implies the sufficiency.
For necessity, suppose a bipartite state ρab satisfies

I (ρab,�a ⊗ 1b) − I (ρa,�a) = 0.

Following the method in Ref. [57], we expand
√

ρab as

√
ρab =

d2
b∑

k=1

Ak ⊗ Yk,

where Ak are observables on Ha and {Yk : k = 1, 2, . . . , d2
b }

constitutes an orthonormal basis for the Hilbert space of all
adjoint operators on db-dimensional Hilbert space Hb with the
Hilbert-Schmidt inner product 〈X |Y 〉 = tr(X †Y ) for operators
X and Y . Then

ρab =
∑
k,k′

AkAk′ ⊗ YkYk′ , ρa = trbρ
ab =

∑
k

A2
k .

Now let X be any observable on Ha, then

I (ρab, X ⊗ 1b) = −1

2
tr

[ ∑
k

Ak ⊗ Yk, X ⊗ 1b

]2

= −1

2

∑
k

tr[Ak, X ]2

= trρaX 2 −
∑

k

tr(AkXAkX )

and

I (ρa, X ) = trρaX 2 − tr

⎛
⎝√∑

k

A2
kX

√∑
k

A2
kX

⎞
⎠.

Hence for any j, I (ρab,�a
j ⊗ 1b) = I (ρa,�a

j ) implies that

tr

⎛
⎝√∑

k

A2
k�

a
j

√∑
k

A2
k�

a
j

⎞
⎠ =

∑
k

tr
(
Ak�

a
jAk�

a
j

)
. (B1)

Note that

tr

⎛
⎝√∑

k

A2
k�

a
j

√∑
k

A2
k�

a
j

⎞
⎠ �

∑
k

tr
(|Ak|�a

j |Ak|�a
j

)

�
∑

k

tr
(
Ak�

a
jAk�

a
j

)
. (B2)

The first inequality follows from Lieb’s concavity theorem
[115], and the second one can be directly obtained from
Jensen’s inequality [101].

From Eqs. (B1) and (B2), we get that

tr

⎛
⎝√∑

k

A2
k�

a
j

√∑
k

A2
k�

a
j

⎞
⎠ =

∑
k

tr
(|Ak|�a

j |Ak|�a
j

)
.

Let λk := trA2
k , then ρk = A2

k/λk for λk �= 0, and ρa =∑
k λkρk . By Proposition 1, we know that for each k,

A2
k =

⊕
l

λk pk,lσl , (B3)

where {pk,l} is a probability distribution and σl are determined
by the minimal direct-sum decomposition of ρa with respect
to �a denoted by

ρa =
⊕

l

plσl . (B4)

On the other hand, from Eqs. (B1) and (B2), we have for
each k,

tr
(|Ak|�a

j |Ak|�a
j

) = tr
(
Ak�

a
jAk�

a
j

)
.

Since each observable Ak can be decomposed as Ak = Ak,+ −
Ak,− with Ak,+ > 0 and Ak,− > 0, we can directly obtain

〈 j|Ak,+| j〉〈 j|Ak,−| j〉 = 0,

which implies that 〈 j|Ak,+| j〉 = 0 or 〈 j|Ak,−| j〉 = 0. Let I :=
{1, 2, . . . , da},

Ik,+ := { j : 〈 j|Ak,+| j〉 �= 0}, Ic
k,+ := I \ Ik,+

and

Pk,+ :=
∑
j∈Ik,+

�a
j , Pk,− :=

∑
j∈Ic

k,+

�a
j .

Then it can be directly verified that

A2
k = Pk,+A2

kPk,+ + Pk,−A2
kPk,−. (B5)

Substituting Eq. (B3) into Eq. (B5), we have⊕
l

λk pk,lσl =
⊕

l

λk pk,l (Pk,+σlPk,+ + Pk,−σlPk,−). (B6)

Since
⊕

l λk pk,lσl is the minimal direct-sum decomposition
of ρa with respect to �a, it holds that for each l such that
λk pk,l > 0,

σl = Pk,+σlPk,+ or σl = Pk,−σlPk,−.

Therefore, Ak can be written as

Ak =
⊕

l

ak,l
√

σl ,

where ak,l = √
λk pk,l if σl = Pk,+σlPk,+, and ak,l =

−√
λk pk,l if σl = Pk,−σlPk,−. Thus,√

ρab =
∑

k

⊕
l

ak,l
√

σl ⊗ Yk =
⊕

l

√
σl ⊗

∑
k

ak,lYk

and

ρab =
⊕

l

σl ⊗
( ∑

k

ak,lYk

)2

.
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Then from Eq. (B4) we have pl = tr(
∑

k ak,lYk )
2
. Let ρb

l :=
(
∑

k ak,lYk )
2
/pl and ρa

l := σl . Then ρab = ⊕
l plρ

a
l ⊗ ρb

l is
a block-diagonal product state relative to �a, and thus the
necessity is obtained.

APPENDIX C: PROOF OF PROPOSITION 3

For sufficiency, if ρab is a block-diagonal product state
relative to both �a and �b as described by Eq. (29), then

ρab =
m⊕

l=1

ρa
l ⊗

(
n⊕

s=1

pl,sρ
b
s

)
=

n⊕
s=1

(
m⊕

l=1

pl,sρ
a
l

)
⊗ ρb

s ,

which implies that ρab satisfies Eq. (30) from Proposition 2.
For necessity, suppose ρab satisfies Eq. (30), then from

Proposition 2, there exist a coarse graining �a
L = {Pa

l =∑
j∈Ia

l
�a

j : l = 1, 2, . . . , m} of �a = {�a
j = | j〉〈 j| : j =

1, 2, . . . , da} and a coarse graining �b
L = {Pb

s = ∑
k∈Ib

s
�b

k :

s = 1, 2, . . . , n} of �b = {�b
k = |k〉〈k| : k = 1, 2, . . . , db}

such that ρab can be represented as the following two forms:

ρab =
m⊕

l=1

plρ
a
l ⊗ σ b

l =
n⊕

s=1

qsγ
a
s ⊗ ρb

s , (C1)

where ρa
l ∈ S(Pa

l Ha), σ b
l ∈ S(Hb), γ a

s ∈ S(Ha), ρb
s ∈

S(Pb
s Hb), and {pl} and {qs} are two probability distributions.

Hence,

ρab =
m∑

l=1

n∑
s=1

(
Pa

l ⊗ Pb
s

)
ρab

(
Pa

l ⊗ Pb
s

)

=
n∑

s=1

m⊕
l=1

plρ
a
l ⊗ Pb

s σ b
l Pb

s

=
m∑

l=1

n⊕
s=1

qsP
a
l γ a

s Pa
l ⊗ ρb

s ,

which implies that for any l, s,

plρ
a
l ⊗ Pb

s σ b
l Pb

s = qsP
a
l γ a

s Pa
l ⊗ ρb

s .

Let pl,s = pl tr(Pb
s σ b

l ) = qstr(Pa
l γ a

s ), then

ρab =
m⊕

l=1

n⊕
s=1

pl,sρ
a
l ⊗ ρb

s ,

which completes the proof of the necessity.

APPENDIX D: PROOF OF PROPOSITION 4

We first expand ρab as

ρab =
∑
j, j′

| j〉〈 j′| ⊗ 〈 j|ρab| j′〉.

From the definition of the l1 norm of coherence Cl1 (ρ,�L ),
we have

Cl1 (ρab,�a ⊗ 1b)

=
∑
j �= j′

||�a
j ⊗ 1bρab�a

j′ ⊗ 1b||tr

=
∑
j �= j′

tr
√

�a
j ⊗ 1bρab�a

j′ ⊗ 1bρab�a
j ⊗ 1b

=
∑
j �= j′

tr
√

�a
j ⊗ 〈 j|ρab| j′〉〈 j′|ρab| j〉

=
∑
j �= j′

tr|〈 j|ρab| j′〉|

and

Cl1 (ρa,�a) =
∑
j �= j′

|〈 j|ρa| j′〉| =
∑
j �= j′

|tr〈 j|ρab| j′〉|.

Let Aj j′ := 〈 j|ρab| j′〉 for any j, j′, then

DCl1
(ρab,�a) = Cl1 (ρab,�a ⊗ 1b) − Cl1 (ρa,�a)

=
∑
j �= j′

(tr|〈 j|ρab| j′〉| − |tr〈 j|ρab| j′〉|)

=
∑
j �= j′

(tr|Aj j′ | − |trAj j′ |)

� 0.

By the polar decomposition Aj j′ = Uj j′ |Aj j′ | for some unitary
operators Uj j′ and the Cauchy-Schwarz inequality, we have

|trAj j′ | = |tr(Uj j′ |Aj j′ |)| = |tr(Uj j′ |Aj j′ |1/2|Aj j′ |1/2)|
� tr|Aj j′ |,

and the equality holds if and only if for some ϕ j j′ ∈ [0, 2π ),

Uj j′ |Aj j′ |1/2 = eiϕ j j′ |Aj j′ |1/2,

which is equivalent to

Uj j′ |Aj j′ | = eiϕ j j′ |Aj j′ |.
Thus, DCl1

(ρab,�a) = 0 if and only if for any j and j′,

〈 j|ρab| j′〉 = eiϕ j j′ |〈 j|ρab| j′〉|
with ϕ j j′ ∈ [0, 2π ). This completes the proof of Proposition 4.
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