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We consider a class of games between two competing players that take turns acting on the same many-body
quantum register. Each player can perform unitary operations on the register, and after each one of them acts on
the register the energy is measured. Player A aims to maximize the energy while player B to minimize it. This
class of zero-sum games has a clear second mover advantage if both players can entangle the same portion of the
register. We show, however, that if the first player can entangle a larger number of qubits than the second player
(which we refer to as having quantum edge), then the second mover advantage can be significantly reduced.
We study the game for different types of quantum edge of player A versus player B and for different sizes of
the register, in particular, scenarios in which absolutely maximally entangled states cannot be achieved. In this
case, we also study the effectiveness of using random unitaries. Last, we consider mixed initial preparations of
the register, in which case the player with a quantum edge can rely on strategies stemming from the theory of
ergotropy of quantum batteries.
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I. INTRODUCTION

Game theory is a very impactful branch of mathematics
with applications in economics, political sciences, computer
science, and so on. Within this theory, one studies the interac-
tion between, and choices of, different players which may be
involved in a cooperative or competitive game [1]. A natural
development of game theory is that of quantum game theory,
in which the rules of the game, and what players can do, are
prescripted within the limit of quantum physics and not just
classical physics [2–18]. For instance, it is possible to design
a high-payoff coherent quantum equilibrium in a prisoner
dilemma’s type of game [7], which would be significantly
affected by the presence of noise [8]. Experiments on quantum
games in which one player can perform quantum operations
have also been demonstrated [19].

Here we consider a competitive zero-sum game in which
players A and B are acting on a single many-body quantum
system and each is trying to obtain a different objective.
Importantly, because of the physics of the game considered
we deal with a turn-based, or sequential, game, where players
take turns to make their moves. This brings this study outside
of the typical realm of von Neumann’s theorem [20] in which
the action of the players are simultaneous. Instead, here, simi-
larly to Stackelberg games developed to study the evolution
of economic systems in which a firm moves first and it is
followed by its competitors [21], the outcome of the game can
be significantly affected by the order in which the players act.
For instance, the second player may know exactly what the
first player has done, hence the first player needs to strategize
knowing that the second player can do the best counteraction
to his or her first action. A simplified scenario is that of

duopoly, where only two players are in the game [22–24].
Depending on the details of the game, two possible scenarios
can emerge: a first mover advantage [25], which stems from
the fact that the first player significantly affects the system in
a way that limits what the second player can do, and a second
mover advantage [26] in which the second player can readily
counteract the first player’s move and change the situation in
his or her favor. The Stackelberg duopoly scenario has been
studied in quantum systems also, where it was shown the
ability to entangle states, the presence of noise and memory,
can affect the positional advantage [21,27–34].

We consider a game in which, for players with equal abil-
ities, the second mover has a significant advantage. However,
we show that if one player has the ability to entangle and oper-
ate on larger portions of the many-body quantum system, he or
she would have a significant advantage and may not lose even
if he or she is moving first, thus completely erasing the second
mover advantage. We refer to this ability to entangle and act
on larger portions of the system as the “quantum edge.” A
depiction of this scenario is represented in Fig. 1 where player
A can entangle five qubits, while player B can entangle at
most three. In this paper, we show in which scenario the first
player can play what we refer to as perfect defence, where the
second player can only obtain a draw despite moving second.
This is possible when the first player generates maximally
entangled states. We also show how close the first player can
be to the perfect defense when this cannot be implemented.
The scenario of a player preparing a state, and another trying
to scramble it, in which absolutely maximally entangled states
play a key role, also brings an interesting link to quantum
error correction [35,36]. Last, inspired by recent results on the
theory of quantum batteries and ergotropy [37,38], we show
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FIG. 1. Circuit representation of the sequential two-player one-
step game studied in this work. The register is initialized in a product
state as defined in Eq. (2) that is acted upon by both players with
unitaries in a sequential manner. Player A tries to maximize the
energy while B to minimize it. Then the measurement outcome of
the energy of Hamiltonian (1) assigns the win.

further strategies that the player with a quantum edge can
implement in the case of an initial preparation of the quantum
system or register in a mixed state.

The paper in structured in the following manner. In Sec. II
we introduce the game in detail and in Sec. IV we show how
the player with a quantum edge can build a winning strategy,
in different scenarios for different system sizes, dimension
of local Hilbert space, and different abilities to operate on
portions (or totality) of the system. In Sec. III we make a
comparison with a classical corresponding case, and then we
consider an initial preparation of the system in a mixed state
in Sec. V. In Sec. VI we draw our conclusions.

II. SETUP OF THE UNITARY QUANTUM GAME

The scenario we consider is that in which two players, Al-
ice (A) and Bob (B), can act on a single many-body quantum
state. For most of this work we consider this state to be pure
and initialized as a product state of N qubits. The purpose of
player A (B) is to maximize (minimize) the expectation value
of the energy which we define as 〈H〉 = 〈ψ |H |ψ〉 where

H = hz

N∑
n=1

σ z
n , (1)

which is simply the sum of local Pauli σ z
n operators on each

qubit n. In other words the payoff for player A is 〈H〉 while
it is −〈H〉 for player B. This choice of payoffs makes this a
zero-sum game.

Each player can only act once with a single unitary [39]
on the system, and the players take turns to make their move.
Both players know perfectly the initial state and what unitary
the other player has used to act on the system.

In this scenario if players A and B can apply the same type
of unitaries, then it is obvious that the player who acts second
will have a clear advantage. Suppose, for instance, that player
A acts first and player B second. For whichever unitary UA

player A executes, player B can operate with UBU †
A thus first

completely removing the effects of A’s unitary, and then acting
with the unitary UB which is suited to minimize 〈H〉. For this
reason, in games of this type one is inclined to speak of second
mover advantage. For clarity, in the following we will use the

notation 〈H〉AB when player A acts first and player B second
and 〈H〉BA in the opposite case.

In this work we consider the scenario in which player A
has a quantum edge. More precisely, player A can perform
unitaries on a number of qubits larger than B, for instance,
up to NA = N qubits, while player B can only act on, at
most, NB < N qubits at the same time. Hence, the operations
performed by player A can entangle more qubits than those
of B.

As an initial state we consider a pure product state such
that 〈H〉 = 0, for instance

|ψ0〉 = ⊗N
l=1

(|0〉l + |1〉l )√
2

. (2)

It should be noted, though, that the details of the initial pure
state are not important.

III. COMPARISON WITH THE CORRESPONDING
CLASSICAL GAME

To better gain an insight into the role of quantum effects,
we first consider a corresponding classical deterministic game
which, as we will see soon, is uneventful. In this correspond-
ing scenario we consider that both the preparation of the initial
state and the operation acting on the state are deterministic.
Hence, for this classical deterministic game the register will
only contain zeros or ones, and no superpositions of them.
Each player can only flip the spins or keep them as they
are. On each realization of the problem, the second player,
knowing the initial preparation of the register, and the actions
implemented by the first player, can readily figure out which
bits to flip to obtain the preferred configuration (in fact, the
second player can even do measurements and choose its move
accordingly). It results in the fact that the second player has a
clear second mover advantage which cannot be overcome by
the first player. Hence, the game for deterministic preparations
and operations becomes interesting when superposition and
entanglement between different parts become possible, i.e., in
the quantum regime.

Another major difference between the classical determin-
istic game and the quantum game is that in the classical case
the energy measured from the final state of the register is
deterministic while for the quantum case this is intrinsically
probabilistic; in the classical case, repeating the game nu-
merous times will not change the fact that the second player
will consistently obtain the best gain possible, while for the
quantum game, although the protocols are deterministic, for
a given realization of the problem there could be different
measured values, and the results based on 〈H〉AB should only
be understood on average.

At this point it is worth commenting further on a possi-
ble classical corresponding game. For probabilistic scenarios,
even classically, one could recover a number of the aspects
investigated in this work. For instance, one could prepare the
system in a probabilistic mixture of different configurations
with different number of spins up and spins down, and allow
the players to act with permutation operations over portions
of different size, as a parallel to the unitary which can provide
a quantum edge to one of the players. Further analysis on this
classical scenario would be subject of follow-up works.
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IV. PLAYER A’S PRINCIPLE FOR A WINNING STRATEGY
IN THE QUANTUM GAME

Here we are going to describe the main principle following
which player A, who has a quantum edge, can have a winning
strategy. Since player B wants to minimize the energy, player
A, when acting first, tries to maximize the minimum energy
that B can reach. In other words, player A is doing a max-
min computation typical of games between two players. We
exemplify it at first using the case of N = NA = 2 and NB = 1.
In this case player A can immediately neutralize player B by
transforming |ψ0〉 into, for instance, the maximally entangled
state

|ψA〉 = |00〉 + |11〉√
2

. (3)

Then player B, who is only able to apply unitaries on a single
qubit, is actually trying to minimize 〈H〉AB

〈H〉AB = tr(HUB|ψA〉〈ψA|U †
B )

=
∑

l

tr
(
σ z

l UB|ψA〉〈ψA|U †
B

)

=
∑

l

tr

(
σ z

l

Il

2

)
= 0, (4)

where Il is the identity matrix which results from the partial
trace of |ψA〉. It is thus impossible for B to change the ex-
pectation value of the energy for whichever unitary UB that B
may choose to apply. If A instead plays as the second player,
then she can always undo what B has done and thus maximize
〈H〉BA with a unitary UAU †

B . Player A has, then, a perfect
defensive strategy when it plays first which does not allow
player B to win, and a winning strategy when acting second.
Any other strategy would allow B to produce an energy lower
than 0, which would make player A lose.

The above strategy can be generalized to more qubits, al-
though with care. For now, we still consider N = NA > NB �
N/2. After player A has acted with a unitary UA, one can write

|ψA〉 =
min{dM ,dB}∑

i=1

√
λi|αi〉M |βi〉B, (5)

where dM = 2NA−NB and dB = 2NB .
The reduced density matrix over the NB qubits then is

ρB =
min{dM ,dB}∑

i

λi|βi〉B〈βi|B

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 . . . 0 . . . . . . . . . 0

0 λ2 . . . 0 . . . . . . . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . λmin{dM ,dB} . . . . . . . . . 0

0 0 . . . 0 0 . . . . . . 0

0 0 . . . 0 . . . 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 . . . . . . . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the number of nonzero λi is the Schmidt rank.

As player B acts with a unitary on NB qubits, he cannot
change the eigenvalues λi. This limits player B’s ability to
lower the energy. In fact, the best unitary operation that player
B can do is to turn that mixed state ρB into the passive state
ρP

B , i.e.,

ρP
B =

∑
m

λ̃m|Em〉〈Em|, (6)

where |Em〉 are the energy eigenstates of H in an increasing
value of the energy, while the λ̃m are a decreasing ordering
of the eigenvalues λi [37]. We remind the reader that a state
ρ is deemed passive for an Hamiltonian H iff tr(HUρU †) �
tr(Hρ) for any unitary U .

It is thus clear that player A’s best strategy is to limit as
much as possible the effects of any action that player B can do,
and this is achieved by trying to set the eigenvalues λi to be
equal or, in other words, to increase the entropy of the reduced
density matrix ρB. In particular, as we have seen for the two
qubits example, if player A performs an operation such that
ρB is proportional to the identity matrix, any operation UB that
player B will do is ineffective. In the following sections we
can see the scaling of the gains that player A can have when
playing against player B as a function of the system size and
of the relative quantum edge of player A versus player B.
Before continuing, though, we note that if player B cannot
even entangle N/2 qubits, then his actions cannot be better.

A. Player A with minimal advantage over B

It is natural to think that if player A and player B can
address a very similar number of qubits, than the advantage
of player A versus player B will be limited. In this section we
start to explore this aspect. The smallest advantage that player
A can have over player B is to be able to entangle just one
more qubit. In this case, hence, NA = N and NB = N − 1.
Since the case in which player A acts second is trivial, we
only consider the case in which player A acts first. In this case
player B can choose any NB qubits to operate a large unitary
UB, and then there will be a left-over qubit over which player
B will apply a single qubit unitary. Considering the state |ψA〉
prepared by player A, from the Schmidt decomposition it is
easy to see that there are at most two non-zero values of λi

and thus the best strategy for player A is to give to player B a
mixed state in which these two eigenvalues are identical, i.e.,

ρB =
2∑
i

1

2
|βi〉B〈βi|B

= 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 . . . 0

0 1 0 0 . . . 0

0 0 0 0 . . . 0

. . . . . . . . . . . . . . . . . .

0 0 0 0 . . . 0

0 0 0 0 . . . 0

0 0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

In this scenario for which NA = N = NB + 1, this is always
possible for player A by setting the register into a cat state.
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At this point, player B can only act on the two reduced den-
sity matrices, one over NB qubits and the other over a single
qubit. From the second one, player B cannot act meaningfully
with any unitary, as it is proportional to the identity matrix.
For the first one, instead, player B is dealing with a matrix with
rank 2 and two equal eigenvalues with value 1/2. Since with
unitary operations player B cannot change the eigenvalues of
the reduced density matrix, the minimum energy he can reach
is obtained considering the two lowest eigenvalues of energy
available, i.e., −NB and −NB + 2, respectively, for all the NB

spins pointing down, or all except for one. This results in a
value of 〈H〉 per qubit which is

〈H〉AB

N
= − 1

N

[
NB

2
+ 1

2
(NB − 2)

]
= −1 + 2

N
. (8)

It thus results that the larger N is, the least player A will
be able to affect player B and the more player B will be
able to minimize the energy of the Hamiltonian. We can see
that Eq. (8) is consistent with the result obtained for N = 2,
for which 〈H〉AB = 0, see Eq. (4). This, of course, provided
that player A can actually set B into the scenario described
in Eq. (7), but as we will see later, this may not always be
possible.

B. General number of qubits and absolutely
maximally entangled states

In this section we will consider the case NA = N . If the
difference in system sizes is N − NB = M, then the density
matrix ρB will have a number of identical and nonzero eigen-
values given by the minimum between 2NB and 2M whose sum
is one. If M � NB then player B could receive a completely
mixed state proportional to the identity matrix. For M < NB it
is possible to compute the average energy per qubit for player
B when he is the second to act, which is given by associating
the bottom 2M energy levels (which can be highly degenerate)
with an occupation 1/2M and results in

〈H〉AB

N
= − 1

N

min{2NB ,2M}∑
i=1

[
NB∑

k=0

(NB − 2k)
vi

2M

]
, (9)

with

vi =
[

k−1∑
l=0

CNB
l < i �

k∑
l=0

CNB
l

]
I

, (10)

where [·]I denotes the Iverson bracket that equals 1 when the
argument is true and 0 when it is false, and Cn

m = n!
(n−m)!m! [40]

is the number of different configurations of n spins with m
spins down.

The minimum energy that player B can produce is thus
represented in Fig. 2(a). Each line corresponds to a different
value of NB = 5, 10, 15, and 20. As NB increases the curve
converges towards a smooth function which has a discontinu-
ity in the derivative as it approaches M = NB.

For this to happen, however, player A would need to
be able to generate an absolutely maximally entangled state
(AME) for any number of qubits N , i.e., the reduced density
matrix of any subsystem of k qubit is the maximally mixed
state [41–44], where k � �N/2� and � · � refers to the floor
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FIG. 2. (a) Plot of 〈H〉AB/N in units of hz from Eq. (9) versus
M/NB for different values of NB assuming that player A can always
produce AMEs. The inset zooms in on the interval M/NB ∈ [0, 1].
(b) Similar to panel (a) except that here we consider the states with
maximal entanglement that A can produce and we plot the minimum
value of 〈H〉AB that player B can achieve considering all different
partitions of the qubits. Each curve corresponds to a different value
of N and we compute the energies for NB ∈ (1, N ). (c) Plot of player
B’s achievable minimum value of 〈H〉AB/N as a function of the total
number of qubits N when N = NA, for different sizes of system B,
NB. Each line starts from N = NB and goes until N = 8.

function [45]. In practice, we will focus on the equality k =
�N/2�, since if we can obtain the maximally mixed state on
�N/2� qubits, then any subsequent marginal density matrix
will also be maximally mixed. AME states for two and three
qubits are simply the classes of Bell and GHZ states, while
for four qubits, an AME state does not exist [46,47]. For five
and six qubits, AME states have been found in [43] by mini-
mizing the average purity of every bipartition i.e., 1

N TrB(ρ2),
while for N = 7 [48] and N � 8 [49], the frustration be-
tween different subsystems makes it impossible to reach the
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maximum entropy over all marginal density matrices [50].
Hence, for the qubits one can only produce AMEs for N =
2, 3, 5, 6. We note, however, that one can still find AMEs
states for any N by increasing the number of levels of each
subsystem, e.g., using qudits, where d indicates a number of
levels larger than 2 [51].

Still considering only qubit systems, we can numerically
search for the AME states or closest states to them, in order
to evaluate the minimum value of 〈H〉AB. Our results confirm
previous numerical searches [43,52,53]. Given a parametrized
ansatz for the wave function, we minimize the mean von
Neumann entropy over any subsystem K of k qubits, where
the von Neumann entropy and the reduced density matrix are
defined as

S(ρK ) = −tr[ρK logd (ρK )], (11)

where d is the size of each system, here 2 because we are
dealing with qubits, and

ρK = trK (|ψ〉〈ψ |). (12)

Here (K, K ) defines a bipartition of the N qubits, respectively,
with k and N − k qubits.

We then choose the loss function to be minimized as the
mean of the von Neumann entropy over all possible different
subsystems ρ i

K of size k

L = − 1

L

L∑
i=1

S
(
ρ i

K

)
, (13)

with L = N!
(N−k)!k! if N is odd and L = N!

2(N−k)!k! if it is even

since, in this case, the entropies over K and K are equal.
For the wave function, we use a symmetrical ansatz for four

qubits

|ψ〉 = a0(eiθ0 |0000〉 + eiθ1 |1111〉)

+ a1(eiθ2 |0001〉 + eiθ3 |0010〉 + eiθ4 |0100〉 + eiθ5 |1000〉
+ eiθ6 |0111〉 + eiθ7 |1011〉 + eiθ8 |1101〉 + eiθ9 |1110〉)

+ a2(eiθ10 |0011〉 + eiθ11 |0110〉 + eiθ12 |1100〉
+ eiθ13 |0101〉 + eiθ14 |1010〉 + eiθ15 |1001〉), (14)

where ai = 0, 1 and perform a minimization routine for each
of the seven combinations of a0, a1, a2. With this ansatz, we
are indeed able to retrieve the result of [46] which was proven
to be a local maximum of the von Neumann entropy-based
loss [54], on top of finding the AMEs for N = 2, 3, 5, 6. In
Fig. 2(b) we show 〈H〉AB/N versus M/NB for a number of
qubits up to N = 8 for player A, generating the state with
maximum average entanglement between different partitions,
which gives a more realistic realization of what was shown in
Fig. 2(a). In Fig. 2(c), for clearer insight, we show the data in
a different form with 〈H〉AB/N versus N for different values
of NB. Each line starts from N = NB and goes until N = 8.
For N such that there is an AME, then NB needs to be larger
than N/2 for 〈H〉AB/N to be negative. For N 	= 2, 3, 5, 6, it is
possible for different values of NB to have negative 〈H〉AB/N ,
although it may not reach −1.

FIG. 3. (a) Player A entangles qubits 1 to 3 and 4 to 5, while
player B entangles qubits 1 to 2 and 4 to 5. (b) Player A entangles
qubits 1 to 3 and 4 to 5, while player B entangles qubits 3 to 4 and 2
to 5. Common parameters: N = 5, NA = 3, NB = 2.

C. Player A cannot act on the whole system

Now we consider the setting where player A can entangle
only a subset of the N qubits, while still having an advan-
tage compared to player B, i.e., NB < NA < N . To gain an
insight, we first consider a system of N = 5 qubits, NA = 3
and NB = 2. We take the case that player A decides to entangle
qubits 1, 2, and 3 together and qubits 4 and 5 together. Then
player B can choose to act on different pairs of states. For
player B the best course of action is to act on the two qubits,
1 and 2, with a single unitary separately from qubits 4 and
5 with another unitary and then on qubit 3 as pictured in
Fig. 3(a). On qubits 4 and 5, player B can perfectly reverse
player A’s action, thus getting the minimum energy of −2
from this block. However, player B cannot completely alter
the state of qubits 1 to 3 because player A has turned them into
an AME. More specifically, qubit 3 will be in the completely
mixed state, while qubits 1 and 2, for player B, are in the
following diagonal state:

ρ1,2 = 1

2

⎛
⎜⎜⎝

1
1

0
0

⎞
⎟⎟⎠. (15)

Hence the minimum value of 〈H〉AB that player B can obtain
is 〈H〉AB/N = −3/5. This is a clear improvement for player B
compared to the case in which NA = 3 and NB = 2 as analyzed
before for NA = NB + 1, but with N = NA, which would give
〈H〉AB/N = −1/3, see the Appendix A for more details.

The value 〈H〉AB/N = −3/5 is also the best possible out-
come for player B when N = 5, NA = 3, and NB = 2. In fact,
player B could choose other pairs of qubit, e.g., qubits 3 and
4 and qubits 2 and 5, as depicted in Fig. 3(b), or equivalent
permutations, and their respective reduced density matrices
would be

ρ2,5 = ρ3,4 = 1
2 I2 ⊗ 1

2 I2 = 1
4 I4, (16)

which give 〈H〉AB = 0. From this simple example we learn
that, if NA < N , player B has further chances to reduce the
gap between 〈H〉AB and 〈H〉BA despite NA > NB.
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D. Using random unitaries

For larger registers, a strategy that player A could perform
is to generate a highly entangled state by applying random
unitaries drawn from the Haar distribution [44], i.e., the uni-
formly random distribution over the unitary group U (N ) of
matrices of size N × N . The average entropy will then grow
linearly with the number of qubits [44].

We consider the case of four qubits, which we, at first,
set in the zero state, and then we sample by applying a ran-
dom unitary from U (N ) and check the mean entropy over
the three possible two-qubit subsystems. Considering 1000
samples, we obtain a maximum for the expectation value of
the subsystem entropy of ≈1.64, and overall a mean value
≈1.33 with standard deviation σ ≈ 0.12. Note that the maxi-
mum entropy averaged over the two two-site subsystems for a
four-qubit state is ≈1.79 [46]. While it is not possible to reach
an AME, and it is also difficult to reach the largest possible
value, by sampling random unitaries one can produce two-site
reduced density matrix with an average of 1.33. This implies
that player B, acting second, cannot completely reverse what
player A has done and thus cannot reach the minimum pos-
sible value of 〈H〉AB. If player A and player B play the game
many times and equally alternate who plays first, on average
A will be able to win thanks to her quantum edge.

V. MIXED STATES AND MAXIMIZATION OF ERGOTROPY

Here we want to show that if player A has a quantum edge,
she can further improve on the extracted energy for mixed
systems with a local Hilbert space larger than two. To explain
this, it could be helpful to do a little detour. In the study of
quantum batteries, it has been shown in [38] that minimizing
the energy of a collection of identical systems can lead to
a single-system energy which is lower than what one would
obtain if he or she was to minimize the energy of each single
system individually. In particular, this is possible when the
energy distribution in each single system is not thermal. To be
more specific, if we consider a system given by

ρ =
∏

i

ρi, (17)

where ρi is a diagonal matrix, and now we apply the same
single-site unitary on each density matrix to maximize its
energy, we can obtain an expectation value of the energy per
particle which we refer to as 〈H〉s/N . If instead we can apply
a unitary on many sites, even if we just measure single-site,
local, energies, it is possible to obtain an expectation value of
the energy 〈H〉m such that

〈H〉m

N
>

〈H〉s

N
. (18)

For this to occur, the ρi should not be thermal. Hence we
cannot consider two-level systems, as their diagonal matrices
can always be considered as in a thermal state. We also want
to start from an initial state for which 〈H〉 = 0, i.e., unbi-
ased between player A and player B, and which can satisfy
Eq. (18). This gives further constraint on the relation between
the local occupations, together with the fact that they sum to
1. The minimum size of the local Hilbert space which then
allows this to happen is 5. We thus start from a product of local

density matrices as in Eq. (17) such that the local ones can be
written as

ρi =

⎛
⎜⎜⎜⎜⎝

p2

p1

p0

p1

p2

⎞
⎟⎟⎟⎟⎠. (19)

If the Hamiltonian of the system is

H =

⎛
⎜⎜⎜⎜⎝

E2

E1

0
−E1

−E2

⎞
⎟⎟⎟⎟⎠ (20)

with E2 > E1 > 0, then the maximum energy that one can
obtain from applying a unitary on a single site 〈H〉1 is, con-
sidering (without loss of generality) 0 < p2 < p1 < p0,

〈H〉1

hz
= p0E2 + p1E1 − p2(E1 + E2), (21)

which is the opposite of the energy of the completely passified
state [37], while the energy for the unit subsystem obtainable
from performing entangling operations is

〈H〉2

2hz
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E2 p2
0 + (E1 + 2E2)p0 p1 + (E2 − E1)p2

1

+2E1 p0 p2 − (
E1 + 3

2 E2
)
p1 p2 − (

E1 + 5
2

)
p2

2,

if p0 p2 � p2
1.

E2 p2
0 + (E1 + 2E2)p0 p1 + (E1

2 + E2
)
p0 p2

+E1
2 p2

1 − (
E1 + 3

2 E2
)
p1 p2 − (

E1 + 5
2

)
p2

2,

if p0 p2 > p2
1.

(22)

Indeed, for two five-level systems, the maximum expecta-
tion value of the energy per particle 〈H〉2 obtainable depends
on the exact numerical values of E1 and E2 and on whether
p0 p2 is larger or smaller than p2

1. To show a more concrete
example, we consider a scenario for which p0 = 0.5 and we
vary p2 between 0 and 0.12, while p1 is constrained by the
fact that the trace is 1. We also take E1 = 1 and E2 = 4 and
we plot, in Fig. 4, the energy per particle versus p2 when we
can do two site operations 〈H〉2/2 (continuous blue line) and
when we can only do single-site operations 〈H〉1 (dashed light
blue line). This shows that there are regions in the parameter
space in which one can get extra gain from doing entangling
operations on more than one system, even though considering
just single-site measurement operators.

What we discussed until now shows that player A has
the potential, when acting second, not only to maximize the
energy from each ρi, but to actually extract, by using unitaries
on two five-level systems, even more than what she would
get from acting only on one after undoing what player B has
first implemented on the systems. Hence, in principle, player
A may not even need to be able to apply a perfect defense
which gives player B a perfectly mixed state. In short, player
A would be able to obtain 〈H〉BA > 〈H〉AB even without doing
anything when acting first.
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FIG. 4. Energy per site in units of hz for a five-level system when
player A can do two-site operations (continuous blue line) and when
it can only do single-site operations (dashed light blue line). The
change in direction of the orange line represents the point from which
p0 p2 > p2

1.

Interestingly, player A can actually also implement a per-
fect defense for two five-level systems by preparing the state
|ψ+

l 〉 = 1√
l

∑l−1
i=0 |i〉A ⊗ |i〉B for l = 5. However, this does not

automatically imply that A can achieve a perfect defense from
an initially provided mixed state. To do this we prepare an
algorithm which maximizes the single-site entropy for two
five-level systems under the effect of unitaries acting on both
of them. The unitaries are parametrized as in Fig. 5 by con-
sidering a composition of four-level unitaries acting on the
25-level system which results from the two five-level systems.
To ensure the possibility to reach the maximum entropy, we
used a symmetrized version of the four-level unitaries such
that they act on the same two levels for each of the five-level
systems. For example, the unitary acts on levels 1 and 2 for
both systems. Then on levels 2 and 3, then 3 and 4, followed
by 4 and 5 and then back to 3 and 4 all the way back to
1 and 2. Furthermore, each four-level unitary is represented
by nine different parameters and not the total 15 of them.
This is because we consider each four-level unitary U4 with
generators Gab composed with symmetric operators on the
two system U = ∏

l exp(−i
∑

i, j α
l
i jGi j ) where αl

i j are real
numbers which parameterize the unitary. More precisely, we
consider the generators Gii = σi ⊗ σi for i = x, y, z and Gi j =
σi ⊗ σ j + σ j ⊗ σi for i 	= j and both i, j = x, y, z, or 0 for
the identity matrix. Note that the single generators σi act on

FIG. 5. Graphical depiction of the representation of the gen-
erators of the unitary transformation used to find the maximum
entanglement entropy reachable for the pair of mixed five-level
systems.

two levels of each system only, levels l and l + 1. In doing
so, we iteratively optimize the coefficients of the unitaries to
maximize the single-site entropy, and we find that the von
Neumann entropy converges to the value expected from the
infinite temperature state log5(5) = 1. It is thus possible for
player A to operate a perfect defense when playing with two
five-level systems, and when player A acts as the second
player, she can potentially get more energy than trivially ex-
pected if acting on each single system separately.

VI. CONCLUSION

We showed that in a competitive, turn-based, quantum
game between two players who can only apply unitaries on
the same many-body quantum register, the player who can
operate on more qubits can have a significant advantage. The
advantage is maximized in the case of AME states when one
player can entangle at least two times the number of qubits
than the other. Furthermore, the advantage can be more im-
portant when dealing with systems with more than two levels
as they can be turned into AME states for a larger number
of components. When dealing with mixed states, for systems
with more than two levels, the player with quantum edge can
further enhance their payoff in a similar way as discussed in
the field of quantum batteries [38]. For cases in which the
player with quantum edge cannot reach an AME, e.g. because
there are no AMEs for that system size, one defensive strategy
for the player with quantum edge is to use random unitaries
which asymptotically lead the system to approach an AME.
However, it will still be very important to have a significant
quantum edge, i.e., being able to operate coherently on more
sites than the other player.

The idea of many-body quantum games which we have
pursued in this work can be extended in various different
directions. Possible future work could consider the case in
which the two players submit a certain generator of unitary
dynamics to a referee who adds them up and uses the result
to generate the unitary evolution. This is a fundamentally
different framework, and even if the set of generators used
by the two players is very different, e.g., different size of
support, the game can end, on average, in a tie. Other future
works can study the case in which players A and B, while
acting on the same register, can only pick between different,
and limited, sets of unitaries. Another possibility is to study
the case in which players can also operate on the register
with dissipative channels. Closer inspection on similarities
and differences between classical and quantum setups could
be studied, both considering only doubly stochastic matri-
ces and dissipative scenarios. In this case the differences
between classical and quantum scenario can be significantly
reduced.

The connection between this game and quantum error cor-
rection, via the relevance of absolutely maximally entangled
states, can be further pursued as well. For instance, one can
consider a three-step game in which player A prepares a state,
player B can try to corrupt it, and then player A can try to
recover the initial state. In this case it would be very important
to set a meaningful limit to the type of operations that each
player can perform.
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APPENDIX: EXAMPLE FOR N = 3 AND NB = 2

Let us consider the example of N = 3 and NB = 2. We
write

|ψB〉 = U12 ⊗ U3|ψA〉,

where |ψA/B〉 is the wave function of the system after player
A or B acts on it. After player B applies his unitaries, the
expected value of H is

〈H〉AB = tr[I1 ⊗ Z2 + Z1 ⊗ I2, tr3(|ψB〉〈ψB|)]
+ tr[Z, tr12(|ψB〉〈ψB|)].

Note that

tr3(|ψB〉〈ψB|) = U12tr3(|ψA〉〈ψA|)U †
12,

and

tr12(|ψB〉〈ψB|) = U3tr12(|ψA〉〈ψA|)U †
3 ,

where

tr3(|ψA〉〈ψA|) =

⎡
⎢⎢⎣

λ1 0 0 0
0 λ2 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦, (A1)

and

tr12(|ψA〉〈ψA|) =
[
λ1 0
0 λ2

]
. (A2)

Without loss of generality, we consider 1 � λ1 � λ2 � 0.
Player A needs to figure out what is the worst-case scenario

for her, or equivalently, what is the best case scenario for
player B. From player B’s perspective, he needs to choose the
unitaries U12,U3 that minimize the energy, i.e., he needs to
solve the following optimization problem:

min
U12,U3

[tr((I1 ⊗ Z2 + Z1 ⊗ I2)U12tr3(|ψA〉〈ψA|)U †
12)

+ tr(Z3U3tr12(|ψA〉〈ψA|)U †
3 )].

Note that this optimization is separable with respect to
U12,U3, so player B needs to solve two separate problems
for U12 and U3, respectively. To do so, player B will make
the states passive for both the two-qubit system, and the one-
qubit. For these two cases, the energies are −2, 0 (degenerate)
and 2, while for the one qubit the energies are −1 and 1.
Hence the lowest energy obtainable for player B is −2λ1 for
the two-qubit portion, and −λ1 + λ2 for the one-qubit portion.
This gives

〈H〉AB = −3λ1 + λ2
(A3)= −4λ1 + 1,

where we use that λ1 + λ2 = 1. It is thus clear that the best
strategy for player A is to try to set λ1 as close as possible to
1/2, which results in 〈H〉AB = −1.

[1] S. Tadelis, Game Theory: An Introduction (Princeton University
Press, Princeton, NJ, 2007).

[2] D. A. Meyer, Phys. Rev. Lett. 82, 1052 (1999).
[3] J. Eisert, M. Wilkens, and M. Lewenstein, Phys. Rev. Lett. 83,

3077 (1999).
[4] L. Marinatto and T. Weber, Phys. Lett. A 272, 291 (2000).
[5] J. Eisert and M. Wilkens, J. Mod. Opt. 47, 2543 (2000).
[6] S. C. Benjamin and P. M. Hayden, Phys. Rev. Lett. 87, 069801

(2001).
[7] S. C. Benjamin and P. M. Hayden, Phys. Rev. A 64, 030301(R)

(2001).
[8] N. F. Johnson, Phys. Rev. A 63, 020302(R) (2001).
[9] R. Kay, N. F. Johnson, and S. C. Benjamin, J. Phys. A: Math.

Gen. 34, L547 (2001).
[10] D. Jiang-Feng, L. Hui, X. Xiao-Dong, Z. Xian-Yi, and H. Rong-

Dian, Chin. Phys. Lett. 19, 1221 (2002).
[11] A. P. Flitney and D. Abbott, Fluctuation Noise Lett. 02, R175

(2002).
[12] C. Marriott and J. Watrous, Comput. Complex. 14, 122

(2005).

[13] G. Gutoski and J. Watrous, in Proceedings of the Thirty-Ninth
Annual ACM Symposium on Theory of Computing, STOC ’07
(Association for Computing Machinery, New York, 2007),
pp. 565–574.
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