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Dephasing due to electromagnetic interactions in spatial qubits
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Matter-wave interferometers with microparticles will enable the next generation of quantum sensors to probe
minute quantum phase information. Therefore, estimating the loss of coherence and the degree of entanglement
degradation for such interferometers is essential. In this paper, we provide a noise analysis in frequency-space
focusing on electromagnetic sources of dephasing. We assume that our matter-wave interferometer has a
residual charge or dipole which can interact with a neighboring particle in the ambience. We investigate the
dephasing due to the Coulomb, charge-induced dipole, charge-permanent dipole, and dipole-dipole interactions.
All these interactions constitute electromagnetically driven dephasing channels that can affect single or multiple
interferometers. As an example, we apply the obtained formulas to situations with two adjacent microparticles,
which can provide insight for the noise analysis in the quantum gravity-induced entanglement of masses (QGEM)
protocol and the C-NOT gate: we compute the dephasing due to a gas of environmental particles interacting via
dipole-dipole and charge-charge couplings, respectively. To obtain simple analytical dephasing formulas, we
employ uniform probability distributions for the impact parameter and for the angles characterizing the relative
orientation with respect to the interferometer and a Gaussian distribution for the velocities of the environmental
particles. In both cases, we show that the dephasing rate grows with the number density of particles present in
the vacuum chamber, as expected.

DOI: 10.1103/PhysRevA.110.022412

I. INTRODUCTION

One of the key features of quantum mechanics is the
matter-wave duality exhibited in interferometry with mas-
sive systems [1]. Matter-wave interferometry has played a
central role in many experimental breakthroughs in quantum
mechanics [2–4], and also illustrates the idea of the spatial
quantum superposition [5]. Matter-wave interferometry has
been used to detect the Earth’s gravitationally induced phase
in a series of seminal experiments with neutrons and atoms
[6–10]. Moreover, it has been suggested as a tool for sensing
gravitational waves [11], neutrinos [12], and as a probe for
physics beyond the standard model [13].

When two or more interferometers can be placed adjacent
to each other they can also test the quantum entanglement
feature [14–16]. Recently, it has been suggested that matter-
wave interferometry with microparticles will be sensitive
enough to probe the quantum gravity-induced entanglement
of masses (QGEM) [17,18], see also Ref. [19]. The entan-
glement between two adjacent matter-wave interferometers
will be observed if gravity is a quantum-mechanical entity.
In contrast, no entanglement will be generated if gravity is
inherently classical as formalized by the local operations and
classical communication (LOCC) theorem [17,20–22]. Such
entangled pairs also provide the basis for a quantum com-
puter as they form the CONTROLLED-NOT (CNOT) gate, or the
Mølmer-Sørensen gate in the context of an ion trap [23]. One
can go one step further and test the quantum light bending

interaction [24], the quantum version of the equivalence prin-
ciple [25,26], test for massive graviton [27], nonlocal aspects
of quantum gravity [28], and verify the quantum nature of
gravity in the process of measurement [29].

Given so many applications on the horizon of the next
generation of matter-wave interferometers, it is essential to
understand various causes of decoherence and dephasing.
Large spatial quantum superpositions [30–40] have to remain
coherent for the duration of the experiment to extract their
delicate experimental signature [41–50]. Here we focus on
electromagnetic sources of dephasing induced by ambient
particles located in the vicinity of the interferometric setup.

First, we consider a single matter-wave interferometer.
We investigate the acceleration noise caused by a single
particle passing by the interferometer and estimate how it will
dephase the matter-wave interferometer via electromagnetic
interactions. Then, we consider if two such entangled
interferometers were kept adjacent; the source of acceleration
noise will also contribute to entanglement degradation.
If the matter-wave interferometer consists of a neutral
microparticle, the dominant contribution to the acceleration
results from its dipole (either permanent or induced). If the
microparticle possesses any residual charge, such a charged
interferometer can interact with an ambient charged particle
or an ambient neutral particle possessing a dipole (either
permanent or induced). The common aspect of all these
interactions is that the moving particle will always create a
slight jitter in the paths of the interferometer introducing noise
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and thus dephasing. We analyze these cases systematically
and quantify each scenario’s resulting loss of coherence.

To analyze the electromagnetic acceleration noise and de-
phasing we employ the frequency space techniques, which
are commonly used to investigate Newtonian noise [51]. The
reason is that the Coulomb and Newtonian interactions are
long range and provide a 1/r potential, resulting in an infinite
total cross-section unless a cutoff for small scattering angles
is applied [52]. Since the computations of the decoherence
rate based on the scattering theory generally depend on the
total cross section, see Refs. [47,53], at least for long-range
interactions, we have to use an alternative methodology. In
this paper, we adapt the methodology based on the Feynman
path-integral approach following Storey and Cohen-Tannoudji
[54], which we have previously used to investigate noninertial
and gravity gradient noise [55,56], to the case of electromag-
netic interactions.

We begin the paper with a generic discussion on relative
acceleration noise (Sec. II), which we apply to electromag-
netic noise sources. We discuss the case of a charged and a
neutral interferometer (Sec. III). First, the interaction between
the charged interferometer and an external charge (Coulomb
interaction), and the interaction between the charged in-
terferometer and an induced or permanent external dipole
(charge-dipole interaction) (Sec. IV). Second, we analyze the
neutral interferometer particle with a permanent or induced
dipole that interacts with an external charge (dipole-charge
interaction) or with an external dipole (dipole-dipole interac-
tion) (Sec. V).

II. RELATIVE ACCELERATION NOISE

This section introduces the main tools for describing rel-
ative acceleration noise (RAN) in frequency space. We then
discuss how to compute the resulting dephasing from the asso-
ciated phase noise. In a nutshell, any movement of charges or
dipoles in the vicinity of the matter-wave interferometer will
cause a tiny jitter or acceleration noise, which we denote here
by anoise, EM, which will induce phase fluctuations and hence
dephasing. The subscript EM denotes electromagnetic-type
external interactions.

We assume that the spatial superposition state can be
created via the Stern-Gerlach (SG) setup, as it happens in
spin-embedded systems with a nitrogen vacancy (NV). We
can envisage a spin-magnetic-field interaction responsible for
creating the superposition, e.g., using an SG apparatus, similar
to what has been applied to the atomic case [33,35,36,57] and
charged case [58]. The other possibility will be to create a
spatial superposition in an ion trap [59–61]. In either case, the
matter-wave interferometer will be considered a spatial qubit,
where interactions with an environment can induce a relative
phase between the interferometer’s two arms (or the spatial
superposition states of the spatial qubit).

A. General noise analysis

The difference in the phase picked up between the two
arms of an interferometer is determined by the difference in
the actions of the two trajectories. Taking the superposition to
be along one dimension, e.g., in the x̂ direction, without any

loss of generality, it follows that the difference in phase-shift
is given by [54]

δφ = φR − φL

= 1

h̄

∫ t f

ti

LR[xR, ẋR] − LL[xL, ẋL]dt, (1)

where φi and Li are the phases and the Lagrangians for i =
L, R, the left and the right arm of the superposition, respec-
tively. Here, we consider a single interferometer; we consider
the case of adjacent interferometers later. The bounds of the
integral are equal to the time of splitting and recombination of
the two trajectories to complete a one-loop interferometer. The
time when the interferometer is in a spatial superposition is
given by τ = t f − ti, where f , i stands for the interferometer’s
final and initial time.

Here, we consider the nonrelativistic regime of a free-
falling test mass split into the superposition by an accelera-
tion, λ j , in the x̂ direction.1 The Lagrangian of the two arms
of the interferometer (with mass m) can be expressed as

Lj = 1
2 mv2

j − mλ j (t )x j − manoise,EM(t )x j . (2)

We wish to close the trajectories (recombine the spatial qubit
into a spin qubit) so that the wave functions of both trajectories
nearly overlap. If they do not, there will be a substantial loss
of visibility. If the spread of the wave packets is σ then one
would require |XL(t f ) − XR(t f )| � σ to achieve the required
visibility [63–65].

The noise we consider in the trajectories can be modeled by
the fluctuations in the phase, given by the last term in Eq. (2).
We assume that anoise,EM is independent of the force responsi-
ble for creating the superposition but that it is time-dependent
during τ = t f − ti. Hence, the fluctuation in the phase shift at
the leading order due to the EM interaction will be given by

δφ = m

h̄

∫ t f

ti

anoise,EM(t )(xR − xL )dt, (3)

here δφ(t ) will be treated as a statistical quantity. The measur-
able noise in any experiment is the statistical average of any
stochastic entity, which we denote by E[·]. The averaging can
be obtained over time using a single realization of the noise
for a time-varying ergodic noise. For example, the average of
a time-varying stochastic quantity δφ(t ) can be expressed as

E[δφ] = 1

T

∫ T

0
δφ(t )dt, (4)

where T is much larger than any timescale characterizing
the noise. For simplicity of the analysis, we assume that the
interferometric timescale is much shorter than the timescale
T , i.e., T � τ , where τ denotes the experimental time, τ =
t f − ti. Furthermore, we take T as the total time of the experi-
ment (comprising repeated runs of the experimental sequence,

1The acceleration of the two superposition states is due to the SG
setup in the context of NV centered microparticles [17,34,62]. In
the case of ions, the force exerted to create the superposition will
be due to the photon kicks [59,60]. We can also envisage creating
quantum superposition for the charged microspheres with the help of
SG setup, see Ref. [58].
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where the statistic is gathered). For concreteness, we set T =
b/v such that in the total experimental time, we sufficiently
capture the experimental signature of the external EM source
on the experimental statistics following Ref. [51].

While the average of the noise can often be assumed to
be zero, the autocorrelation of the acceleration noise mea-
sured at different times, E[anoise, EM(t1), anoise, EM(t2)], is often
nonzero. It is related to the power spectral density (PSD) of
the noise, denoted by Saa(ω). The definition of the PSD of the
noise anoise, EM is

Saa(ω) = lim
T →∞

|anoise, EM(ω)|2
T

, (5)

where anoise, EM(ω) is the Fourier transform of anoise, EM(t ) on
the time domain [0, T ]. According to the Wiener-Khinchin
theorem, the autocorrelation function of a random process is
given by the PSD of that process [66,67]:

E[anoise,EM(t1)anoise,EM(t2)] = 1

2π

∫ ∞

ωmin

Saa(ω)eiω(t1−t2 )dω,

(6)

where the minimum frequency ωmin = 2π/(t f − ti ) is the fre-
quency resolution in the experiment.2In particular, signals and
noises are sampled as a discrete finite data series, so the
frequency-domain analysis has to be based on the discrete
Fourier transform, which has such a frequency resolution [68].

Using the relation in Eq. (6) and the difference in phase-
shift form Eq. (3), the variance E[(δφ)2] can be written in the
Fourier space by

	n = E[(δφ)2] = 1

2π

(m

h̄

)2
∫ ∞

ωmin

dωSaa(ω)F (ω). (9)

where 	n in Eq. (9) is the variance in the noise,3 which is an
observable entity, and F (ω) is known as the transfer function
[55,56]. As shown below, 	n will be useful to estimate the
dephasing for the two spatial qubits, adding up to any other

2For a real-valued random process X (t ), the PSD is defined as

SX (ω) = lim
T →∞

1

T

∫ T
2

− T
2

∫ T
2

− T
2

E[X (t1)X (t2)]e−iω(t1−t2 )dt2dt1. (7)

Assuming that the PSD is stationary (i.e., its properties such as mean
and covariance do not change over time) and using the Wiener-
Khinchin theorem, we find from Eq. (7):

SX (ω) =
∫ ∞

−∞
E[X (t )X (t + τ )]e−iωτ dτ, (8)

where τ = t2 − t1, and the result does not depend on the chosen
value of t (e.g., we can set t = 0). Taking the Fourier transform gives
Eq. (6).

3Although the term noise often signifies unknown dynamics, here
we use it more loosely when referring to unwanted interactions
with environmental particles which we cannot measure directly. The
discussion is thus far generic and could span a number of different
models of the environment. In later sections we assume specific prob-
ability distributions characterizing the environmental particles (i.e.,
a dilute gas of particles), and then compute the resulting dephasing
after averaging over the distributions.

sources of decoherence caused by the external or internal
degrees of freedom. Note that the 	n is a dimensionless entity.

The transfer function is equal to the absolute value squared
of the Fourier transform of the difference in the trajectories:

F (ω) =
∣∣∣∣
∫ t f

ti

dt (xL − xR)eiωt

∣∣∣∣
2

=
∣∣∣∣− 1

ω2

∫ t f

ti

d2

dt2
(xL − xR)eiωt dt

∣∣∣∣
2

. (10)

In the second line, we find the dependency on the acceleration,
d2x/dt2, which, as we will see, can be related to particle
equations of motion, and follows from integration by parts
and the equality of both the position and velocity at the path’s
endpoints from the first line.

The dephasing formula in Eq. (9) is still generic and applies
to an arbitrary acceleration noise PSD Saa(ω) and transfer
function F (ω). In the next sections, we apply it to inves-
tigate specific cases of electromagnetic interactions, where
the environment is made of gas particles characterized by
probability distributions for the impact factor, velocities, and
the relative angles with respect to the interferometer. The
acceleration noise Saa(ω) could be either obtained from in-
dependent measurements characterizing the environment of
the experiment or by developing a microscopic modeling of
the environment. To obtain simple formulas we consider a
simple microscopic model of a dilute gas, where the parti-
cles move on straight lines, and the interaction among the
environmental particles is neglected. The transfer function
F (ω) is on the other hand determined by the interferometer
and the type of interaction. In the next section we specify
the form of F (ω) by assuming an idealized Stern-Gerlach
interferometer.

B. Example of Stern-Gerlach interferometer

The dephasing in Eq. (9) is dependent on the specific
trajectory of the two arms of the matter-wave interferom-
eter [via the transfer function F (ω)]. Here, we assume an
SG-type interferometer that is often proposed in the con-
text of entanglement-based quantum-gravity experiments, see
Refs. [17,21,37–39,69].

We specify the trajectory of two arms of the interferom-
eter; see Fig. 1. Here, we assume a symmetric path for the
interferometer as a prototype model. We consider a simplistic
scenario, assuming that the acceleration of the spin state j,
denoted λ j , is proportional to the gradient of the magnetic
field, given by

λ j = s j
gμB

m
|∇B|, (11)

where s j is the spin of the state, g is the Landé g factor
of the electron (g = 2), μB = 9 × 10−24 J T−1 is the Bohr-
magneton, m is the mass of the test-mass and |∇B| is the
magnitude of the gradient of the magnetic field. To create the
path in Fig. 1, one controls the spin so that the acceleration
of the right arms is positive from [0, ta] and [3ta + te, 4ta + te]
and negative from [ta, 2ta] and [2ta + te, 3ta + te], while it is
zero for the time range [2ta, 2ta + te]. For the left arm, the
spin and acceleration will be equal in magnitude but in the
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FIG. 1. Schematic illustration of the paths of the arms of the
interferometer (adapted from Refs. [55,56]). Based on this figure,
the transfer function in Eq. (12) can be calculated. For the left
arm, the acceleration is in the negative direction from [0, ta] and
[3ta + te, 4ta + te], in the positive direction from [ta, 2ta] and [2ta +
te, 3ta + te], while it is zero for the time range [2ta, 2ta + te]. Mean-
while, the acceleration is the opposite for the right arm.

opposite direction. We also assume x j (0) = 0 and ẋ j (0) = 0
for solving the equations of the motion for the trajectory, given
by ẍ j (t ) = λ j (t ). Microparticles can be electrically charged
by ultraviolet irradiation [70]. For a small number of charges
n, the Lorentz force acting on the microparticle ≈nevB/m
(with e being the unit of electric charge) is negligible due to its
large mass m, see Ref. [58]. With the help of the equations of
motion, the transfer function corresponding to the trajectory
illustrated in Fig. 1 can be computed:

F (ω) = 1

ω2

∣∣∣∣
∫ t f

ti

(λL − λR)eiωt dt

∣∣∣∣
2

=
∣∣∣∣ 2

ω2

∫ t f

ti

λse
iωt dt

∣∣∣∣
2

= 32λ2
s

ω6
sin4

(
taω

2

)
sin2

[ω
2

(2ta + te)
]
. (12)

Since how the superposition is created is immaterial, for the
calculation of the transfer function, it is convenient to define
the transfer function in terms of the maximal superposition
size created after two acceleration times, 
x = λt2

a :

F (ω) = 32(
x)2

ω6t4
a

sin4

(
taω

2

)
sin2

[ω
2

(2ta + te)
]
. (13)

By finding the PSD, Saa, due to different types of interaction
and combining it with the specifics of the trajectory encoded
in the transfer function in Eq. (13), we can find the noise via
Eq. (9).

III. ELECTROMAGNETIC-INDUCED
ACCELERATION NOISE

In this section, we investigate the situation of external par-
ticles interacting electromagnetically with our interferometer,
causing spurious accelerations. We envisage a situation of a
rarefied gas, where the external particles can be considered

FIG. 2. Illustration of the interferometer and the external particle
(i.e., the source of dephasing). The position of the closest approach
is (x0, y0, z0) corresponding to the impact parameter b (the center-
of-mass of the interferometer is used for the definition since we
assume 
x � b). The magnitude of the position vector is given
by |r| = [b2 + (vt2)]1/2, where the velocity is v = |v| = (vx, vy, vz ).
The projection angles are defined by cos(α) = x0/b and cos(β ) =
vx/v. The red arrows denote the dipole moments.

as independent sources of disturbance moving at constant
velocity. More refined models of the gaseous environment
(e.g., which would include interactions among environmental
particles, etc.) could be obtained by refining the model of
Saa(ω), which will be presented below.

We assume that the individual external particle is moving
with a constant velocity v and with an impact parameter b
for the matter-wave interferometer (see Fig. 2). The position
of the external particle concerning the matter-wave interfer-
ometer can be conveniently described by the vector r(t ) from
the interferometer center of mass to the external particle, with
length:

r(t ) =
√

b2 + (vt )2. (14)

The x component of this vector, from the properties of the
setup (see Fig. 2), is rx(t ) = x0 + vxt . The unit vector in the
x direction is denoted by r̂x, and x0 and vx are defined to be
the x components of the impact parameter b and velocity v,
respectively. We can thus introduce the projection angles:

cos (α) = x0/b, cos (β ) = vx/v. (15)

The acceleration PSD in the considered situation is thus
parametrized by four parameters:

Saa(ω) ≡ Saa(b, v, α, β; ω). (16)

As these parameters are unknown, we can treat them as ran-
dom variables characterized by their respective probability
distributions. The averaged acceleration noise PSD is given
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by

S̄aa(ω) = N
∫

db
∫

dv

∫
dα

∫
dβpb(b)pv(v)

× pα(α)pβ(β )Saa(b, v, α, β; ω), (17)

where N denotes the number of external particles in the ex-
perimental chamber, pb(b) is the distribution of the impact
factors, pv(v) is the velocity distribution, and pα(α) and
pβ(β ) are the distributions of the relative orientations. We
suppose that the probability distributions are given by4

pb(b) = 3b2

L3
, b ∈ [R, L], (18)

pv(v) =
[

mgas

2πkBTgas

] 3
2

4πv2e− mgasv2

2kBTgas , v ∈ [0,∞], (19)

pα(α) = 1

2π
, α ∈ [0, 2π ], (20)

pβ(β ) = 1

2π
, β ∈ [0, 2π ], (21)

where L denotes the size of the experimental chamber, R
is the radius of the test mass, mgas is the mass of the gas
particle, and Tgas is the temperature of the gas. The number
density of particles is thus nv = N/V . As the gas particles
are assumed noninteracting in our modeling (i.e., rarefied
gas), we have assumed the Maxwell–Boltzmann distribution
for the velocities. As we discuss in the following sections,
the Maxwell–Boltzmann distribution can be at low temper-
atures approximated by a narrow Gaussian distribution or
in first instance by a Dirac delta distribution. Using the
ideal-gas law we can then equivalently also investigate the
behavior of the dephasing as a function of the pressure p =
nkBTgas. The corresponding averaged dephasing factor 	̄n

can be computed using Eq. (9) by formally replacing Saa

with S̄aa(ω).
The moving external particles can cause a random acceler-

ation noise on the interferometer due to the EM interactions,
contributing to a phase fluctuation of the interferometer. In the
following, we first explore the behavior of the nonaveraged
acceleration PSD Saa(b, v, α, β; ω) and of the resulting de-
phasing factor 	n defined in Eq. (9). Such an analysis provides
an indication of the allowed parameter space of b, v, α, β

for the dephasing to remain contained (see Secs. IV–VI).
We then compute the averaged acceleration PSD S̄aa(ω) and
the corresponding averaged dephasing 	̄n using the prob-
ability distributions in Eqs. (18)–(21) for two applications
(Sec. VII).

We suppose the microparticle and the moving particle can
be modeled as either point charges or dipoles and consider two
cases for the interactions.

4The distribution of the velocity is taken to be Maxwell–
Boltzmann. The distributions for the projection angles and the impact
parameter are uniform. The integrations over the projection angles
are divided by the total angle 2π to get an average angle. The distri-
bution for the impact parameter is taken to be uniform in Cartesian
coordinates and rewritten in terms of spherical coordinates.

A. Charged interferometer

If the interferometer is charged, the microcrystal has an
overall charge. Then, there can be two EM interactions be-
tween the charged interferometer and the external particle:

(1) A charge-charge interaction between the external
charge, qext, and the charge of the interferometer, denoted here
by qint. The Coulomb potential gives this interaction:

Vcc(r) = 1

4πε0

qintqext

r
, (22)

where both systems are considered as point charges.
(2) A charge-dipole interaction between the charge of the

interferometer, qint, and the dipole of the external particle, dext.
This interaction is given by the potential, see Refs. [71,72],

Vcd(r) = qint

4πε0

dext · r̂
r2

. (23)

The external dipole can be either induced or permanent.

B. Neutral interferometer

If the interferometer is neutral, there can be two types of
EM interactions between the interferometer and the external
particle.

(1) A dipole-charge interaction between the dipole of the
interferometer, d int (which can be either permanent or induced
by the EM field of the external particle), and the charge of
the external particle, qext. This interaction is given by the
potential [71]

Vdc(r) = − qext

4πε0

dint · r̂
r2

, (24)

where the external particle is assumed to be a point charge.
(2) A dipole-dipole interaction, where the dipole of the

interferometer, d int, and the dipole of the external dipole, dext,
are assumed to be permanent. This interaction is given by the
potential [71,72]

Vdd(r) = 1

4πε0

[
dint · dext

r3
− 3(dint · r̂)(dext · r̂)

r3

]
, (25)

where r̂ is the unit vector pointing in the direction from the
interferometer center of mass to the external particle center of
mass.

C. Accelerations due to charged and neutral interactions

These interaction potentials will cause a random noise on
the interferometer anoise, EM, which will contribute a phase
fluctuation that can be detectable by sensing it if we were to
use the matter-wave interferometer as a quantum sensor, or
this acceleration noise will lead to dephasing the experimental
outcome in a QGEM-type experiment for instance. We now
give a brief outline of all the accelerations. For each of the in-
teractions discussed above, Eqs. (22)–(25), the corresponding
acceleration is found via F = ma, with F = −∂V/∂r, where
m is the mass of the interferometer.

acc = qintqext

4πmε0

r̂(t )

r2(t )
, (26)

acd = qint

2πmε0

dext · r̂(t )

r3(t )
r̂(t ), (27)
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adc = qext

2πmε0

dint · r̂(t )

r3(t )
r̂(t ), (28)

add = 3r̂
4πε0m

[
dext · d int

r4(t )
− 3

(dext · r̂)(d int · r̂)

r4(t )

]
. (29)

The vector r̂ is time-dependent and given by r̂(t ) = r(t )/r(t ),
with r(t ) = |r(t )| [as defined in Eq. (14)]. The dipole can be
either permanent or induced, which we distinguish with the
notation d(i) and d(p), respectively.

Since the interferometer is created in one dimension, e.g.,
x̂ direction in our case, the only relevant acceleration is in the
x̂ direction, and we are specifically interested in ax(t ). The
acceleration is found separately now for every interaction in
Eqs. (22)–(25), and some assumptions are made on the orien-
tation of the dipole vectors for simplification and to estimate
the upper bound on the dephasing.

The mean value of the noise can be assumed to be zero,
e.g.,

E[anoise, EM] = E[δφ] = 0. (30)

This is because the zero point, or the baseline of the phase,
can be calibrated using an axillary experiment, so the contri-
bution of the mean value of every noise will be considered in
the offset of the baseline in our current analysis. Therefore,
we here focus on finding the autocorrelation of the acceler-
ation noise at different times, E[anoise, EM(t1), anoise, EM(t2)],
see Eq. (6). Taking the Fourier transform to find ax(ω) on
the time domain [0, T ], we can use Eq. (5) to find the noise
PSD S(ω) = |ax(ω)|2/T . Combining the noise PSD with the
transfer function gives the dephasing using Eq. (9). The results
for the noise are given in Secs. IV and V, and the detailed
calculations are presented in Appendix A.

IV. DEPHASING OF A CHARGED INTERFEROMETER

If there is some charge on the interferometric particle, then
charge-charge interactions and charge-external dipole inter-
actions will generate acceleration noise in the system. We
consider the charge-charge interaction and the charge-dipole
interaction between the interferometer and the external parti-
cle, where we investigate separately the dipole of the external
particle to be permanent or induced.5

A. Dephasing due to internal charge
and external charge interaction

First of all, we assume the simplest case of a charged
matter-wave interferometer: the matter-wave interferometer
has a charge qint, which is interacting with ambient charge qext

that is moving with a constant velocity and has the closest
approach b from the interferometer’s center of mass. The

5These interactions depend on the relative sign of the charges and
dipoles (whether they are attractive or repulsive). In this section,
we do not specify the relative sign because we are interested in
finding the dephasing, and we note that this is proportional to the
acceleration squared. The dephasing is therefore independent of the
sign of the interaction potential.

acceleration due to the charge-charge interaction in the x̂
direction is given by

acc
x (t ) = qintqext

4πε0mb2

cos (α) + (vt/b) cos (β )

[1 + (vt/b)2]3/2
. (31)

Finding Saa from ax(ω) and putting it in Eq. (9) yields the
dephasing

	cc
n = q2

intq
2
ext(
x)2

π3h̄2ε2
0 T v4t4

a

∫ ∞

ωmin

ω−4 sin2
[ω

2
(2ta + te)

]

× sin4

(
taω

2

)[
cos2 (α)K2

1

(
bω

v

)

+ cos2 (β )K2
0

(
bω

v

)]
dω. (32)

with Kν is the modified Bessel function (see Appendix A). The
dephasing depends on the charges qint and qext, the size of the
spatial superposition and the time during which it is created,
the impact parameter, and the velocity of the external parti-
cle. Furthermore, the time T , the time over which the phase
fluctuations are averaged, and the minimum frequency ωmin

are determined by the experimental setup, impact parameter
b, and the velocity v of the external particle. The integral in
Eq. (32) is solved numerically, and the resulting dephasing
is plotted in Sec. VI [Fig. 3(a)] for a specific interferometer
scheme.

B. Dephasing due to internal charge
and external dipole interaction

This section will consider a charged interferometer particle
interacting with an external dipole. The dipole could arise
from any ambient gas particle inside the vacuum chamber.
We only consider the acceleration noise due to one such
external particle. The water vapor left in the vacuum chamber
consists of the water molecules that carry a permanent dipole
moment. Left-over air molecules in the vacuum chamber,
such as dinitrogen, carbon dioxide, argon and dioxygen, are
polarizable and could thus have an induced dipole moment
from the charge of the interferometer. The acceleration due
to the charge-dipole interaction is given in Eq. (27), and the
acceleration depends on whether the dipole is induced or
permanent.

1. Permanent external dipole

Suppose the external particle has a permanent dipole, such
as in the case of water vapor. In that case, the dipole moment
magnitude can be taken to be the experimentally determined
value, e.g., d (p)

ext = 6.19 × 10−30 Cm in the case of water vapor
(the superscript p standing for permanent) [73]. Taking the
worst-case scenario, we assume that, at the point of closest
approach b, the dipole vector of the external particle is aligned
with the vector r(t ).

Assuming that the particle moves very slowly, we max-
imize the acceleration by taking the dipole vector and the
vector r(t ) to align during the experimental time τ = t f − ti.
The acceleration in the x direction can be found to be

acd(p)
x (t ) = q|dext|

2πmb3ε0

cos (α) + (vt/b) cos (β )

[1 + (vt/b)2]2
. (33)
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FIG. 3. Dephasing as a function of the velocity of the external particle due to (a) the charge-charge interaction (cc), (b) the charge-
permanent dipole interaction [cd(p)] and (c) the charge-induced dipole interaction [cd(i)], for a different number of interferometer charges.
The expressions summarized in Table I are plotted, where the integral is solved numerically. Projection angles α = β = 0 and T = b/v. We
have taken 
x = 20 µm in all the plots. In panel (a) b = 100 µm and the external charge is that of an electron, in Fig. (b) b = 100 µm and the
external dipole moment dext is that of a water molecule, in Fig. (c) b = 30 µm and the external particle’s polarizability is that of the dinitrogen.
Panel (d) shows the different dephasing for a charged interferometer as a function of the impact parameter, for v = 1 µms−1, qint = e and the
interaction-specific parameters discussed above. This plot (d) shows that the interferometer could detect a qext = e charged particle moving
with a velocity v = 1 µms−1 in the vicinity of 10 µm. The Coulomb interaction provides the largest dephasing compared with the charge dipole
interactions. In all the plots we have ensured T ∼ b/v > τ ≈ 3 s.

Its Fourier transforms and the resulting PSD of the noise are
given in Appendix A. The dephasing is then given by Eq. (9),
and the full integral will be

	cd(p)
n = q2|dext|2(
x)2

2π2h̄2ε2
0 T v5bt4

a

∫ ∞

ωmin

ω−3 sin2
[ω

2
(2ta + te)

]

× sin4

(
taω

2

)[
cos2 (α)K2

3/2

(
bω

v

)

+ cos2 (β )K2
1/2

(
bω

v

)]
dω, (34)

where Kν is the modified Bessel function (see Appendix A).
The results of the integration with the parameters of a specific
interferometer setup are given in Sec. VI [Fig. 3(b)].

2. Induced external dipole

Left-over air molecules in the vacuum chamber have a
polarizability of αpol ≈ 10−40 A2 s4kg.6 If the dipole moment
in the external particle with polarizability is induced due to
the electric field E from the charged interferometer, then the
result is slightly different. The induced dipole by a charge qint

is given by

d (i)
ext = αpolE = αpol

qint

4πε0r2
r̂, (35)

6Generally this polarizability is expressed in CGS units, α′
pol =

1.5–2.5 Å3 [74,75], where 1 Å3 = 10−24 cm3 . Which is related to
the polarizability in SI units, A2 s4kg−1, via αpol = 4πε0α

′
pol The

particle polarizability is related to the average electric susceptibility
of a medium, ε, via the Clausius–Mossotti relation, see Eq. (39).
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where the superscript (i) stands for induced. The acceleration
in the x̂ direction thus becomes

acd(i)
x (t ) = q2

intαpol

8π2mb5ε2
0

cos (α) + (vt/b) cos (β )

[1 + (vt/b)2]2

1

r2(t )
,

= q2
intαpol

8π2mb5ε2
0

cos (α) + (vt/b) cos (β )

[1 + (vt/b)2]3
. (36)

Appendix A presents the Fourier transform and PSD. The
dephasing is then found to be

	cd(i)
n = q4α2

pol(
x)2

512π4h̄2ε4
0v

7b3T t4
a

∫ ∞

ωmin

dω
1

ω
sin4

(
taω

2

)

× sin2
[ω

2
(2ta + te)

][
cos2 (α)K2

5/2

(
bω

v

)

+ cos2 (β )K2
3/2

(
bω

v

)]
. (37)

Kν is the modified Bessel function (see Appendix A). Again,
this expression can be solved numerically to obtain the de-
phasing. The results of the integration with the parameters of
a specific interferometer setup are given in Sec. VI [Fig. 3(c)].

Equation (45) differs from the permanent dipole result in
Eq. (42) since the induced dipole is assumed to be caused by
the interferometer charge. As a result, Eq. (45) depends on
the interferometer charge and the polarizability of the external
particle, αpol. The magnitude of the induced dipole is distance-
dependent, resulting in a different v, b dependence of Eq. (45)
compared with the permanent dipole dephasing result.

V. DEPHASING OF A NEUTRAL INTERFEROMETER

In this section, we assume that the microparticles in the
interferometer have a dipole dint (either permanent or induced)
and that it is interacting with an external charged particle (of
charge qext) or external dipole (dext). We consider separately
the microcrystal’s permanent and induced dipole moments in
the presence of a charge.

Although the dephasing results obtained in this section are
generic, we apply them to the QGEM experiment where neu-
tral diamond-type crystals of mass ≈10−15 kg are considered.
We briefly discuss the two different dipoles of the microparti-
cle in this context.

(1) Permanent dipole: The microcrystal may have a per-
manent dipole due to the surface’s impurities or volume.
The dipole moment of silica-type material SiO2 was ex-
perimentally measured in Ref. [76], which showed that the
material exhibits no clear correlation between mass and
dipole moment. That being said, the microparticle spheres
of size 10, 15, and 20 µm had permanent dipoles varying
from ≈(1000–5000) e µm, ≈(200–8000) e µm, and ≈(8500 ±
1500) e µm (for simplicity we use e µm to express the dipole,
with e a single electric charge such that 1 e µm ≈ 1.6 ×
10−25 Cm). This shows at least an order of magnitude uncer-
tainty in the permanent dipole magnitude. The study showed
that this material’s permanent dipole moments exhibit a vol-
ume scaling, leaving the question of whether the permanent
dipole moment scales with the volume. For the test mass of
radius r = 0.5 µm (corresponding to ≈10−15 kg for a spher-
ical diamond test mass), we take the dipole moment to be

|d(p)
int | ≈ 0.1 e µm, thus assuming a volume scaling, and using

the experimental data in Ref. [76] as a benchmark.
(2) Induced dipole: The diamond-type crystal is a dielec-

tric material, and the crystal has a polarizability α (in SI units
A2 s4kg−1). In particular, in isotropic media, a local electric
field will produce a local dipole in each atom of the crystal’s
lattice [72]:

d (i)
int = NαpolE loc. (38)

The local polarizability (which we denote αpol) of the atoms
is related to the polarizability of the medium via the Classius-
Mossotti relation:

nαpol

3ε0
= εr − 1

εr + 2
, (39)

with n being the number density of atoms, n = 3N/4πR3 for
spherical masses (N is the number of atoms, R is the radius).
As a result, the dipole for a spherical diamond crystal due to
an external point charge qext is given by

d (i)
int = εr − 1

εr + 2

qextR3

r2
r̂, (40)

with εr being the relative permittivity of the medium.

A. Dephasing due to internal dipole and charge interaction

We now consider the dephasing due to an internal dipole
interacting with an external charge. The acceleration was
given in Eq. (28), the x component of which depends on
whether the dipole is permanent or induced.

1. Permanent dipole of a microparticle

Suppose the interferometer’s microparticle has a perma-
nent dipole moment, similar to that of silica-type material
[76]. In that case, the dipole moment magnitude can be the ex-
perimentally determined value, e.g., ≈e µm for microspheres,
assuming a volume scaling as discussed previously. Further-
more, if we assume complete control of the interferometer
particle, we can take the direction of the intrinsic dipole mo-
ment to be aligned with the ẑ axis. As detailed in Appendix A,
in this scenario the component of the acceleration in the x̂
direction is

ad(p)c
x (t ) = qext|dint|

2πmb3ε0

cos (α) + (vt/b) cos (β )

[1 + (vt/b)2]5/2

× [cos (θ0) + (vt/b) cos (γ )], (41)

where γ is the angle between the velocity vector and the ẑ
axis and θ0 is the angle between the vector b and the ẑ axis
(the angles γ , θ0 are similar to the projection angles α, β,
respectively, in Fig. 2 but γ , θ0 are projection angles on the ẑ
axis rather than on the x̂ axis; they are discussed in more detail
in Appendix A).

The Fourier transform a(ω) gives an expression for the
PSD, Saa(ω), and from these expressions we find the de-
phasing parameter, see Appendix A. Taking the worst-case
dephasing based on the angles α, β, γ , θ0 (see Appendix B,
where we optimize these angles to see the largest dephasing),
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FIG. 4. Dephasing due to (a) the permanent dipole-charge interaction [d(p)c], (b) the induced dipole-charge interaction [d(i)c], and (c) the
dipole-dipole interaction (dd) as a function of the velocity of the external particle. The expressions summarized in Table I are plotted, where
the integral is solved numerically. With projection angles α = β = γ = θ0 = π/4 for panel (a), α = β = 0 for panel (b), and α = θ0 = π/4,
β = 0 for panel (c), see Appendix B. We take 
x = 20 µm in all the cases. In panel (a) b = 100 µm, dint = 0.1 e µm, and qext = e. Different
lines for the noise timescale T are shown. There is not much noticeable difference in the dephasing rate due to different values of T = b/v. In
panel (b) b = 100 µm, dint is induced by the external charge qext = e (with εr = 5.7) and different lines for the interferometric particle’s radius
are plotted. In panel (c) dint = 0.1 e µm and the external particle is taken to be a water molecule, the dephasing is shown for different impact
parameters. In panel (d), we summarize the dephasing from neutral microparticles interactions as a function of the superposition width 
x,
for v = 10 µms−1, b = 100 µm, and the interaction-specific parameters discussed above for the charge and dipoles. The permanent dipole of a
matter wave interferometer interacting with an external charge gives the largest dephasing here. We have ensured that T = b/v > τ ≈ 3 s.

the dephasing is given as

	d(p)c
n = q2

ext|dint|2(
x)2

9π3ε2
0 h̄2v6T t4

a

∫ ∞

ωmin

1

ω2
sin4

(
taω

2

)

×
[

K2
2

(
bω

v

)
+
(

2 + b2ω2

v2

)
K2

1

(
bω

v

)

+ K2
0

(
bω

v

)
− 2

bω

v
K0

(
bω

v

)
K1

(
bω

v

)]

× sin2
[ω

2
(2ta + te)

]
dω, (42)

which can be solved numerically and where Kν is the mod-
ified Bessel function (see Appendix A). The results of the

integration with the parameters of a specific interferometer
setup are given in Sec. VI [Fig. 4(a)].

2. Induced dipole of a microparticle

If the dipole is induced by the electric field of an external
charge qext, its magnitude is given by [71,72]

d (i)
int = εr − 1

εr + 2

qextR3

r2(t )
r̂, (43)

with the relative permittivity εr ≈ 5.7 for diamond and R
being the radius of the spherical diamond [the superscript
(i) indicates the induced dipole]. The acceleration in the x̂
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TABLE I. Summary of the dephasing equations, the results were presented in (from top to bottom) Eqs. (32), (34), (37) for the charged
interferometer and Eqs. (42), (45), and (47) for the neutral interferometer. f (ω) denotes the sinusoidal part of the transfer function, i.e.,
f (ω) ≡ sin4( taω

2 ) sin2[ ω

2 (2ta + te)], α and β are the projection angles of the impact-parameter vector and velocity on the x̂ axis, respectively,
and θ0 and γ are the projection angles of the impact parameter vector and velocity on the ẑ axis, respectively. The scheme’s geometry is shown
in Fig. 2, and a detailed derivation is presented in Appendix A. Figures 3 and 4 show that the dephasing increases with increasing velocity and
decreasing impact parameter.

Interaction notation Dephasing expression

Charge – charge cc 	cc
n = q2

intq
2
ext (
x)2

π3 h̄2ε2
0 T v4t4

a

∫∞
ωmin

ω−4
[
cos2(α)K2

1

(
bω
v

)+ cos2(β )K2
0

(
bω
v

)]
f (ω)dω

Charge – permanent dipole cd(p) 	cd(p)
n = q2 |dext |2 (
x)2

2π2 h̄2ε2
0 T v5bt4

a

∫∞
ωmin

ω−3
[
cos2(α)K2

3/2

(
bω
v

)+ cos2(β )K2
1/2

(
bω
v

)]
f (ω)dω

Charge – induced dipole cd(i) 	cd(i)
n = q4α2

pol (
x)2

512π4 h̄2ε4
0 v7b3T t4

a

∫∞
ωmin

ω−1
[
cos2(α)K2

5/2

(
bω
v

)+ cos2(β )K2
3/2

(
bω
v

)]
f (ω)dω

Permanent dipole – charge d(p)c 	d(p)c
n = 4q2

ext|dint|2 (
x)2

9π3ε2
0 h̄2v6t4

a

∫∞
ωmin

ω−2
(

cos2(α)
[
K2

2

(
bω
v

)
cos2(θ0) + K2

1

(
bω
v

)
cos2(γ )

]
+ cos2(β )

{
K2

1

(
bω
v

)
cos2(θ0 ) + [

bω
v

K1

(
bω
v

)− K0

(
bω
v

)]2
cos2(γ )

})
f (ω)dω

Induced dipole – charge d(i)c 	d(i)c
n = [

εr−1
εr+2

]2 q4
extR

6(
x)2

32π2ε2
0 h̄2v7b3T t4

a

∫∞
ωmin

ω−1
[
cos2(α)K2

5/2

(
bω
v

)+ cos2(β )K2
3/2

(
bω
v

)]
f (ω)dω

Dipole – dipole dd 	dd
n = 4|dext|2 |d int|2 (
x)2 cos2 (θ0 )

π3 h̄2ε2
0 b2v6T t4

a

∫∞
ωmin

ω−2
[
cos2(α)K2

2

(
bω
v

)+ cos2(β )K2
1

(
bω
v

)]
f (ω)dω

direction then becomes

ad(i)c
x (t ) = εr − 1

εr + 2

q2
extR

3

2πε0mb5

cos (α) + (vt/b) cos (β )

[1 + (vt/b)2]3
. (44)

The dephasing parameter is derived in detail in Appendix A,
and is given by

	d(i)c
n =

(
εr − 1

εr + 2

)2 q4
extR

6(
x)2

32π2ε2
0 h̄2v7b3T t4

a

∫ ∞

ωmin

1

ω

×
[

cos2 (α)K2
5/2

(
bω

v

)
+ cos2 (β )K2

3/2

(
bω

v

)]

× sin4

(
taω

2

)
sin2

[ω
2

(2ta + te)
]
dω, (45)

and Kν is the modified Bessel function (see Appendix A).
Again, this expression can be solved numerically to obtain
the dephasing. The results of the integration with the param-
eters of a specific interferometer setup are given in Sec. VI
[Fig. 4(b)]. Equation (45) differs from the permanent dipole
result in Eq. (42) since the induced dipole is assumed to be
induced by the external charge. As a result, Eq. (45) depends
on the external charge and the relative permittivity and radius
of the interferometer. The magnitude of the induced dipole is
distance-dependent, resulting in a different v, b dependence
of Eq. (45) compared with the permanent dipole dephasing
result of Eq. (42).

B. Dephasing due to internal dipole and external dipole

The acceleration from the dipole-dipole interaction was
given in Eq. (29). For large r, we can see that the other
interactions dominate this interaction since it goes as 1/r4.
Sticking with the assumptions made in previous sections, that
dext aligns with the ẑ direction, and that for a short interaction
time τ , d int approximately aligns with r̂(t ), the acceleration in
the x̂ direction is

add
x (t ) = 6|dext||d int| cos (θ0)

4πε0mb4

cos (α) + (vt/b) cos (β )

[1 + (vt/b)2]5/2
. (46)

More details are given in Appendix A, where the Fourier
transform of the acceleration and the resulting PSD is given.
From the PSD and the transfer function, the dephasing is
found to be

	dd
n = 4|dext|2|d int|2(
x)2 cos2 (θ0)

π3h̄2ε2
0 b2v6T t4

a

∫ ∞

ωmin

1

ω2

×
[

cos2 (α)K2
2

(
bω

v

)
+ cos2 (β )K2

1

(
bω

v

)]

× sin4

(
taω

2

)
sin2

[ω
2

(2ta + te)
]
dω, (47)

see Appendix A for the detailed derivation. However, the
result is an approximation given the assumptions made on
this setup’s dipole moments and velocities. Reference [50]
provides a more general expression of the decoherence due
to dipole-dipole interactions for spatial interferometers. The
results of the integration with the parameters of a specific
interferometer setup are given in Sec. VI [Fig. 4(c)].

VI. DEPHASING RESULTS

The dephasings found in this paper are summarized in
Table I. The dephasing expressions are plotted in Figs. 3 and
4, which show that the dephasing increases for increasing
velocity and decreasing impact parameter. The dephasing ex-
pressions show a solid inverse velocity dependence, but there
is also a velocity dependence inside the integral part, which
has been solved numerically to obtain the figures. Therefore,
from the results in the table, it is tricky to draw any conclu-
sions about physics. First, we discuss the dephasing for the
charged microparticle, discussed in Secs. IV. They are plotted
in Fig. 3. Here, we specify the experimental parameters and
summarize the dipole moment orientation and evolution as-
sumptions. The dephasing that is plotted is given in Eqs. (32),
(34), and (37) corresponding to dephasing in a charged in-
terferometer. We also discuss the possibility of the charged
interferometer being an ideal quantum sensor to detect another
electromagnetically charged particle moving in the vicinity.
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The dephasing has been integrated in the frequency range
from ωmin = 2π/(t f − ti ) to ω = ∞. The experiment time is
set to be τ = t f − ti = 4ta + te (see Fig. 1). This frequency
cutoff is chosen due to the frequency resolution of the discrete
Fourier transform for the experimental setup. For the QGEM-
specific example, we take τ ≈ 1 s; for the CNOT gate, we take
τ ≈ 1 µs.

These parameters are chosen such that no acceleration jitter
can be averaged beyond the experimental time. We also opti-
mized the projection angles, see Figs. 7–9, and the discussion
in Appendix B. We have chosen the projection angles such
that they maximize the dephasing. This will enable us to gauge
the maximum acceleration noise the matter-wave interferom-
eter can tolerate due to EM interactions. Also, it will help us
do the total noise budget for the QGEM-type experiment [17]
and with the charged microparticles [13].

We have also plotted the dephasing given in Eqs. (42),
(45), and (47) relating to the neutral microparticle, which we
discuss below. While plotting this dephasing for the neutral
microparticle, we made the following additional assumptions
for the dipoles to obtain approximately the upper bounds on
the dephasing. (1) In Eq. (34), the external dipole is assumed
to align approximately with the vector r̂(t ) during the time of
the experiment τ . (2) In Eq. (42) the interferometer dipole is
assumed to align with the ẑ axis. (3) In Eq. (47) we assumed
both the above assumptions.

Other relevant parameters we have set are the maximum
superposition size of 
x = 20 µm and ta = 0.50 s and te =
1.00 s with total time τ = 3 s. Furthermore, we have taken the
timescale over which the noise is averaged, T ∼ b/v > 3 s.
We have also varied T in Fig. 4(a) for the neutral case for
illustration.

A. Dephasing of a charged microparticle

As it is clear from the plots for the case of a charged
microparticle interferometer, the dephasing depends on the
particle’s velocity v, and minimum impact parameter, which
we take to be b = 10–100 µm. For our analysis to be valid, the
ambient particle is expected to have a small velocity v � c
since we have excluded relativistic effects in the potentials. In
Fig. 3(a), the dephasing grows as the velocity increases for a
fixed b. The charge-charge case dominates the dephasing over
other cases. This can be seen from Fig. 3(d). The Coulomb
interaction is by far the most dominant source of dephasing for
the charged interferometer; see Figs. 3(a)–3(d). The charged
interferometer can be treated as an excellent quantum sensor,
sensing a charged ion moving with a velocity range of order
v ≈ O(10−1) m/s in the vicinity of b ≈ 1 m from the matter-
wave interferometer (outside the range shown in the plot).

The dephasing due to charge-dipole interaction is shown in
Figs. 3(b) and 3(c). Figure 3(b) shows the charged micropar-
ticle interacting with a molecule with a dipole interaction,
where the external dipole is intrinsic to the external particle,
for example, in a water molecule. The figure is plotted for
a permanent dipole moment |dext| ≈ 6.17 × 10−30 Cm of a
water molecule [73], with b = 100 µm. The dephasing is
plotted as a function of the velocity of the external water
molecule. For smaller velocities, the dephasing is small, but
as the velocity increases, the dephasing increases and it also

increases with the charge of the microparticle in the interfer-
ometer. We can see that the dephasing is small compared with
the dephasing due to the Coulomb interaction.

Figure 3(c) shows the dephasing due to the charged mi-
croparticle and a dipole interaction where the external dipole
is induced, for example, in the polarized air molecules. In
this figure, we have taken the polarizability of dinitrogen,
(1.710 Å3 = 1.903 A2 s4kg−1), which is most frequently
present air molecule, and impact parameter b = 30 µm.
Again, the dephasing is negligible.

We summarize our results in Fig. 3(d), which shows the de-
phasings due to charge-charge (cc), charge-permanent dipole
[cd(p)] and charge-induced dipole [cd(i)] as a function of the
impact parameter b for v = 1 µms−1. The plot shows how the
impact parameter b influences dephasing in a fixed velocity
scenario.

B. Dephasing of a neutral microparticle

In the case of a neutral interferometer, the results are
shown in Fig. 4. Figure 4(a) shows the dephasing due to the
interaction of an intrinsic dipole of a microparticle aligned
at the ẑ axis interacting with an external charge. We have
taken the external particle to have the charge of an electron.
Following the analysis in Appendix B, where we have chosen
the angles to maximize the dephasing, the projection angles
are considered α = β = π/2. Furthermore, as an example, we
take the impact parameter b = 100 µm. In this plot, we also
show different values of the T ∼ b/v parameter to show how
the dephasing behaves with varying interaction times. As the
velocity increases for a fixed impact parameter, the dephasing
increases. Nevertheless, the dephasing remains very small for
our analysis to be valid T = b/v > τ = 3 s.

Figure 4(b) shows the dephasing due to the interaction
between an external charge and the dipole it induces within
the diamond microsphere. We varied the mass of the micro-
diamond by changing the radius from R ≈ 1–0.01 µm, and
the dielectric constant of the diamond is taken to be εr = 5.7.
The figure is very similar to Fig. 4(a), but the dephasing is
significantly smaller (the plot is made for the impact parame-
ter, b = 100 µm). The dephasing would be further suppressed
for smaller radii of the interferometer particle. In this case,
the maximal projection angles were α = β = 0, which would
maximize the dephasing; see Appendix B.

The dephasing due to the dipole-dipole interaction is
given in Fig. 4(c). Again, the interferometer is assumed to
have a dipole aligned with the ẑ axis of magnitude |d int| ≈
0.1 e µm ≈ 1.6 × 10−26 Cm. The external dipole is assumed
to be that of water, |dext| ≈ 6.17 × 10−30 Cm. Following the
analysis in Appendix B the projection angles are taken to
be α = β = π/2, which gives the maximum dephasing, e.g.,
worst-case scenario, if vt/b < 1. Different lines are shown for
different impact parameters; one can see the dephasing is tiny.

It is worth pointing out that Ref. [50] also studied the
decoherence due to the dipole-dipole interactions in approx-
imately the same parameter space. Specifically, the paper
found the decoherence rate using the scattering model in the
Born-Markov approximation. A direct comparison may not be
valid, as the authors considered a quantum bath consisting of
particles modeled as plane waves inside a box. In contrast,
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this paper considers a single external particle with classical
trajectories. Still, comparing our analysis with the analysis
from Ref. [50] is interesting. As the underlying assumptions
are different, the predictions will, in general, differ, but a
comparison nonetheless showed that when the impact factor b
from this analysis matches the size of the particle R (and set-
ting the number density corresponding to one environmental
particle), the two predictions give the same order of magnitude
prediction as expected (i.e., we match the length scale charac-
terizing the distance between the system and environment to
the same value in the two models).

Finally, Fig. 4(d) gives an overview of the dephasings de-
scribed in Figs. 4(a)–4(c) as a function of the superposition
width, showing that a smaller superposition width reduces the
dephasing. The most dominant source of dephasing is from
the permanent dipole interacting with an external (electron)
charge for b = 100 µm and v = 10 µms−1, which ensures
T ∼ b/v > τ . The dephasing in all the cases is negligible.

VII. APPLICATIONS

We have discussed above the dephasing expressions for
the charged and the neutral interferometers due to external
charges and dipoles. We now discuss the applications for both
cases. The neutral interferometer is discussed in the context of
the QGEM proposal for testing the quantum nature of gravity
by witnessing the spin entanglement [17]. We also discuss the
charged interferometer in the context of an ion-based quantum
computer (where entanglement is due to the interaction of the
photon between the two ions in adjacent ion traps) and study
the dephasing due to the external charge and dipoles for a
setup similar to the QGEM case.

A. Protocol for quantum gravity-induced
entanglement of masses

In the context of the QGEM protocol, details on which can
be found here [17], we consider two neutral interferometers

that are set up in a way such their spatial superposition direc-
tions are parallel [41,42,77–79]. For illustration, the paths of
a single spatial interferometer are assumed to be as illustrated
in Fig. 1. The initial spin state of the interferometers is given
by

|ψ (0)〉 = 1
2 (|↑〉1 + |↓〉1) ⊗ (|↑〉2 + |↓〉2), (48)

which is a separable state (see Sec. II for a short discussion on
how the spin degrees of freedom are used to create spatial su-
perposition states and recombine the interferometric paths). A
quantum gravitational interaction between the two massive in-
terferometers will cause an entangling phase [17,21,22,24,26–
28,80–83].

To simplify the analysis, we take the dephasing to be the
same for both interferometers. Taking into account the de-
phasing of the two interferometers, the final wave function at
a time t = τ is described by

|ψ (τ )〉 = eiφe−iδφ

2
(eiδφ|↑〉1|↑〉2 + ei
φ |↑〉1|↓〉2

+ ei
φ |↓〉1|↑〉2 + e−iδφ |↓〉1|↓〉2), (49)

with

φ = τ

h̄

Gm2

d
, 
φ = τ

h̄

∫ τ

0

Gm2√
d2 + 
x2(t )

dt − φ, (50)

where δφ is the phase difference between the left and right arm
of the interferometer due to interaction with the environmental
particle, see Eq. (1).

The density matrix ρ is given by the final wave function,
ρ = |ψ〉〈ψ |. Averaging over the different runs of the experi-
ment, we find E[ρ]. Treating δφ as a statistical quantity with
E[δφ] = 0 as discussed in Sec. II, and E[(δφ)2] = 	n, see
Eq. (9), the averaged density matrix is given by7

E[ρ] = 1

4

⎛
⎜⎜⎜⎜⎝

1 e−	n/2−i
φ e−	n/2−i
φ e−2	n

e−	n/2+i
φ 1 1 e−	n/2+i
φ

e−	n/2+i
φ 1 1 e−	n/2+i
φ

e−2	n e−	n/2−i
φ e−	n/2−i
φ 1

⎞
⎟⎟⎟⎟⎠. (51)

	n is given by the results found in the previous sections for
the neutral microparticle. To witness the entanglement due
to the gravitational interaction, we use the positive partial
transpose (PPT) witness, which, in the case of two qubits,
provides a sufficient and necessary condition for entangle-
ment based on the Peres-Horodecki criterion [16,41,42]. The
PPT witness is defined as W = |λ−〉〈λ−|T2 , where |λ−〉 is
the eigenvector corresponding to the lowest eigenvalue, λ−,
of the partially transposed density matrix and the super-

7Here we have used that E[eiδφ] ≈ e−E[(δφ)2]/2, assuming δφ fol-
lows a Gaussian distribution with E[δφ] = 0 [84].

script T2 denotes the partial transpose over system 2. The
witness for two interferometers aligned in a parallel way,
corresponding to the wave function in Eq. (49), was found
to be [77]

W = 1
4 (1 ⊗ 1 − σx ⊗ σx + σz ⊗ σy + σy ⊗ σz ), (52)

with σx, σy, σz being the Pauli spin matrices. The expectation
value of the witness is given by [41,42,78]

〈W〉 = Tr(Wρ) = λ−. (53)

For the wave function in Eq. (49) the expectation value is
found to be

〈W〉 = 1
8 (1 − e−2	n ) − 1

2 sin (|
φ|)e−	n/2, (54)
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which reduces to the witness expectation value in Ref. [77]
if 	n = 0. The entanglement detection condition is 〈W〉 < 0.
There is no entanglement detection if 〈W〉 � 0. Performing
a short-time expansion of the witness, these inequalities can
approximate the maximum allowed value of the dephasing
rate:

2	n − |
φ|
2

< 0. (55)

In particular, if 	n > |
φ|/4, then 〈W〉 > 0 and there is no
entanglement. Hence, the total dephasing due to the EM in-
teraction must be 	n < |
φ|/4 to detect the gravity-induced
entanglement.

We now consider the induced dipole-charge and the
dipole-dipole dephasing [Eqs. (45) and (47), respectively].
To simplify the analysis, we consider the gas temperatures
to be small (T ≈ 0.1 mK) such that the Maxwell-Boltzmann
distribution in Eq. (19) can be approximated with a Dirac-
delta distribution around the velocity v̄ = √

2kBTgas/mgas,
with mgas = 4.8 × 10−26 kg corresponding to the typical mass
of an air molecule. We further simplify the analysis by consid-
ering only the dominant frequency mode ω = ωmin, allowing
for an approximation of the Bessel function (see the last three
rows of Table I). These approximations are detailed and mo-
tivated in Appendix C. Furthermore, the timescale T is taken
to be larger than the experimental time, T = 10τ , such that
Eq. (4) holds.

In the context of the QGEM experiment, we consider the
diamond to have a relative permittivity of εr = 5.1 [77,85],
and mass m = 10−15 kg. We further assume that the maximum
superposition size is 
x = 10 µm and that the total time is
τ = 1 s and the superposition is created following the scheme
in Fig. 1. The transfer function of the interferometer is given
Eq. (13), where the times te, ta are scaled-down compared with
previous figures such that the total experimental time is 1 s.
For the external particle, we have taken the same properties as
in Fig. 4(a)–4(d).

The dephasing from the dipole-dipole interaction for the
QGEM experiment is shown in Fig. 5, where we have assumed
an external dipole of magnitude |dext| = 6.17 × 10−30 Cm,
and the interferometer dipole is assumed to be |d int| =
10−7 e Cm. The figure shows the total dephasing as a function
of the number density of gas particles in a square box of
size L = 0.01 cm cooled to Tgas = 0.1 mK. The dephasing
in Fig. 5 considers multiple particles described by a dis-
tribution over velocities, impact parameters and projection
angles. Although remnant charges would cause a deleteri-
ous dephasing in the QGEM experiment, remnant dipoles
within the vacuum chamber for the number density shown in
Fig. 5 have a dephasing such that the entanglement remains
witnessable.

B. CNOT gate

In quantum computers, one often considers trapped
charged particles [59,60]. Here, we consider a CNOT gate
consisting of two trapped ions separated by a distance d . Their
initial wave function will be assumed to be prepared in a prod-
uct state consisting of individual spatial superpositions. The
entanglement between the two trapped ions will then build

FIG. 5. Dephasing for the QGEM microdiamond setup [77] as a
function of number density nv ∈ [108 m−3, 1014 m−3], in a square
box of size L = 0.01 m. We consider the diamond to have a per-
manent dipole of 0.1 e µm, and mass m = 10−15 kg. The external
gas particles are assumed to have a dipole similar to that of a wa-
ter molecule with the distributions given in Eqs. (18)–(21) and the
temperature Tgas = 0.1 mK. We further assume that the maximum
superposition size is 
x = 10 µm and that the total interferometric
time is τ = 1 s. The dephasing is from the dipole-dipole interaction,
see Fig. 4(c), now applied to the QGEM parameters and taking only
the dominant frequency mode ∝1/τ into account.

up due to the EM interaction mediated via photon, essentially
the Coulomb interaction. The final wave function of such an
entangled system will be given by Eq. (49), with an entangled
phase given by


φ = −τ

h̄

∫ τ

0

κeq1q2√
d2 + 
x2(t )

dt − φ, (56)

with φ = −τ

h̄

κeq1q2

d
, (57)

where κe = (4πε0)−1, and q1 and q2 are internal charges of
the ions in their respective traps.

In Fig. 6, we show the dephasing 	cc
n from the charge-

charge Coulomb interaction. We have assumed that an
external charge qext = 10e (which is not trapped) is flying
by the ion traps. We assume for simplicity that each trapped
ion has mass m ≈ 10−27 kg, charge qint = q1 = q2 = e and is
trapped in a trap of frequency ω = 105 Hz. For concreteness,
we can consider the size of the superposition size to be of
the same order of magnitude as the zero point motion 
x =√

h̄/2mω, which for our parameters gives 
x ≈ 0.18 µm.
The entanglement builds up swiftly due to the Coulomb in-
teraction, which is many orders of magnitude larger than the
gravitational interaction strength. The total experimental time
we require is τ = 1 µs for the entanglement phase to be order
unity assuming a trap separation d = 50 µm. For illustration,
we took a similar transfer function responsible for creating the
spatial superposition in Fig. 1.

The dephasing in Fig. 6 has been found for multiple gas
particles that have velocity, impact parameter and projection
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FIG. 6. Charge-charge dephasing for ions of mass m = 10−27 kg
and total charge qint = e interacting with an external particle
of charge qext = 10e as a function of the number density nv ∈
[104 m−3, 1010 m−3] in a square box of size L = 0.01 m. The ex-
perimental time is τ = 1 µs and the superposition size is assumed to
be 
x = 0.18 µm. The dephasing is approximated for temperatures
Tgas = 0.1 mK and bmin ≈ 10−7 m.

angles following the distributions in Eqs. (18)–(21). The
dephasing is approximated by imposing a minimal impact
parameter b ∈ [bmin, L] with bmin = 103R ≈ 10−7 m and
L = 0.01 m, such that a large-argument expansion can be
used to approximate the Bessel function. This approximation
is detailed in Appendix C. Figure 6 shows the dephasing as
a function of the number density such that the dephasing
is smaller than the entanglement phase. Note that the
simplifying assumptions for the CNOT gate are slightly
different compared with the QGEM experiment because
the two experimental setups have different experimental
parameters, we refer to Appendix C for more detail.

VIII. CONCLUSION

In this paper, we have adapted techniques from investigat-
ing noninertial and gravitational noise [51,55,56] to compute
the dephasing arising from the electromagnetic interactions.
We considered two distinct scenarios, one where the interfer-
ometer particle is charged and the other where the micron-size
particle is neutral. The main formulas are summarized in
Table I.

The charged interferometer can interact via Coulomb in-
teraction with an external charged particle. The external
particle’s velocity is assumed to be constant, and its accel-
eration on both arms of the interferometer causes a jitter,
which causes dephasing. The charged interferometer can also
interact with a constantly moving dipole. The ambient particle
can have a permanent dipole or an induced dipole. We consid-
ered both cases separately; see Figs. 3(a)–3(d). The largest
dephasing occurs due to the Coulomb interaction, which sets
the exclusion zone for an externally charged particle.

In the neutral case, we have again four possibilities; a
microparticle is typically considered a diamond in our case,
which has a dielectric property. The microdiamond can then
have a permanent and an induced dipole; hence, it can interact
with an external charge and an external dipolar particle, see
Figs. 4(a)–4(d). The external particle will impart a jitter in
the trajectories due to the relative accelerations of the arms
of the matter wave interferometer and, hence, will induce a
dephasing.

Suppose two neutral microparticles, each prepared in spa-
tial superpositions and kept in adjacent locations as in the
case of the QGEM experiment [17]. In that case, the relative
acceleration noise is present in both test masses. This will
cause a dephasing, as shown in Fig. 5, leading to entanglement
degradation. The approximate average dephasing was found
considering the probability distributions in Eqs. (18)–(21).
We found that it requires 	n < |
φ|/4, with 	n denoting the
dephasing and 2
φ the entanglement phase, to witness en-
tanglement in the QGEM setup (positive partial trace witness
[41,42,78]). In the QGEM-type experiment, the dephasing
from the external jitters due to the dipole-dipole interactions
is small enough for the parameter space considered in this
paper. At the same time, the dipole-charge interactions cause
too much jitter.

The relative acceleration noise can also affect the ion trap-
based spatial qubits, forming a CNOT gate. We observed that
our methodology could be successfully employed to charac-
terize the electromagnetic noise for such a setup. We found
that the average dephasing, considering the probability distri-
butions in Eqs. (18)–(21), increases as shown in Fig. 6. The
developed methodology could thus be used to estimate the
decoherence budget.

However, our analysis has also its limitations, which is
suggestive for a more refined modeling in future works. We
were able to obtain analytical results by assuming that the tra-
jectories of the external particles are approximately classical
and that the dynamics is nonrelativistic. We also supposed
that the ensemble of external particles is characterized by
flat distribution of angles, impact parameters, and a Gaussian
distribution in the velocities. While the modeling seem to
be plausible from the experimental perspective, the analysis
could be further refined with the help of numerical packages
as analytical calculations will likely become challenging.

In summary, we have provided a way of characterizing
electromagnetic sources of dephasing due to external particles
in the context of matter-wave interferometry. The developed
techniques can be applied in fundamental problems such as
witnessing the quantum nature of gravity in a laboratory, and
it could find applications for the design of future ion-based
quantum computers.
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APPENDIX A: ESTIMATION OF DEPHASING

This section shows the expressions for the Fourier trans-
form of the acceleration ax(ω) and the corresponding PSD for
the acceleration noise Saa(ω), from which the dephasing due
to the acceleration noise can be derived via

	n = 1

2π

m2

h̄2

∫ ∞

ωmin

Saa(ω)F (ω)dω, (A1)

with the transfer function F (ω) determined by the trajectory,
see Eq. (13). Since

a(ω) =
∫ ∞

−∞
a(t )e−iωt dt, (A2)

a(t ) = 1

2π

∫ ∞

−∞
a(ω)eiωt dω. (A3)

We rewrite the acceleration such that the Fourier transform
can easily be performed:

a(bω/v) = b

v

∫ ∞

−∞
a(vt/b)e−i(bω/v)(vt/b)d(vt/b). (A4)

The Fourier transform is of a function f (vt/b) as defined
below is given by

f (vt/b) = (vt/b)2n

[(vt/b)2 + c2]ν+1/2
,

f (bω/v) = (−1)ncν
√

π

2ν	(ν + 1/2)

∂2n(bω/v)νKν (cbω/v)

∂ (bω/v)2n , (A5)

with 	(x) the Euler-Gamma function8 and Kν the modified
Bessel function of the second kind with order ν. The above
Fourier transform holds only if Re(c) > 0 and Re(ν + 1/2) >

n. The modified Bessel functions have the property that

∂Kν (x)

∂x
= −1

2
[Kν−1(x) + Kν+1(x)],

Kν−1(x) = Kν+1(x) − 2ν

x
Kν (x). (A6)

The modified Bessel functions with half integers have the
analytic formula

K1/2(u) =
√

π

2u
e−u,

K3/2(u) =
√

π

2u

(
1 + 1

u

)
e−u,

K5/2(u) =
√

π

2u

(
1 + 3

u
+ 3

u2

)
e−u. (A7)

The integer-modified Bessel functions of the second kind do
not have an analytical formula but can be expressed in the

8With relevant values 	(3/2) = √
π/2, 	(2) = 1, 	(5/2) =

3
√

π/4, and 	(3) = 2.

integral form

K0(u) =
∫ ∞

0

cos (tu)√
1 + t2

dt,

K1(u) = 1

u

∫ ∞

0

cos (tu)

(1 + t2)3/2 dt,

K2(u) = 3

u2

∫ ∞

0

cos (tu)

(1 + t2)5/2 dt . (A8)

1. Charge-charge interaction

As presented in Eq. (31), the acceleration due to the charge-
charge interaction in the x̂ direction is

acc
x (t ) = qintqext

4πε0mb2

cos (α) + (vt/b) cos (β )

[1 + (vt/b)2]3/2
. (A9)

Transforming the acceleration acc
x (t ) into the frequency do-

main, we use Eq. (A5) (with c = 1, ν = 1, n = 0, 1/2) to
obtain

acc
x (ω) = qintqextω

4πε0mv2

[
cos (α)K1

(
bω

v

)
− i cos (β )K0

(
bω

v

)]
,

(A10)

where Kν (x) is a modified Bessel function, and we used its
properties in Eq. (A6). Note that after Fourier transform,
the units of ax(ω) are m/(s2 Hz), which is because ax(t ) =∫

ax(ω)eiωt dω has units of m/s2 and dω has units of Hz.
Substituting Eq. (A10) for the acceleration due to the

Coulomb interaction into Eq. (6) for the PSD results in the
desired PSD of the acceleration noise from the Coulomb in-
teraction:

Scc
aa(ω) = q2

intq
2
extω

2

16π2T m2v4ε2
0

[
cos2 (α)K2

1

(
bω

v

)

+ cos2 (β )K2
0

(
bω

v

)]
. (A11)

Note that the units of Saa(ω) = |ax(ω)|2/T are m2/(s4 Hz).
Using Eq. (A1) gives the dephasing in Eq. (32).

2. Charge-dipole interaction

a. Permanent dipole

As presented in Eq. (33), the acceleration due to the charge-
permanent dipole interaction in the x̂ direction is

acd(p)
x (t ) = q|dext|

2πmb3ε0

cos (α) + (vt/b) cos (β )

[1 + (vt/b)2]2
. (A12)

Transforming the acceleration acd(p)
x (t ) into the frequency do-

main, we use Eq. (A5) (with c = 1, ν = 3/2, n = 0, 1/2) to
obtain

acd(p)
x (ω) = q|dext|ω3/2

4πε0mv3/2b3/2

√
π

2

b

v

[
cos (α)K3/2

(
bω

v

)

− i cos (β )K1/2

(
bω

v

)]
, (A13)

where Kν (x) is a modified Bessel function, and we used its
properties in Eq. (A6).
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Now substituting this expression into the definition of the
PSD of the acceleration noise results in

Scd(p)
aa (ω) = q2|dext|2ω3

32πT m2v5bε2
0

×
[

cos2 (α)K2
3/2

(
bω

v

)
+ cos2 (β )K2

1/2

(
bω

v

)]
.

(A14)

The resulting dephasing is given in Eq. (34).

b. Induced dipole

As presented in Eq. (36), the acceleration due to the charge-
permanent dipole interaction in the x̂ direction is

acd(i)
x (t ) = q2

intαpol

8π2mb5ε2
0

cos (α) + (vt/b) cos (β )

[1 + (vt/b)2]3
.

Performing a Fourier transform given in Eq. (A5) (with c =
1, ν = 5/2, n = 0, 1/2) to find the acceleration in the fre-
quency domain gives

acd(i)
x (ω) = q2αpolω

5/2

64π2mb3/2v7/2ε2
0

√
π

2

×
[

cos (α)K5/2

(
bω

v

)
− i cos (β )K3/2

(
bω

v

)]
.

(A15)

Substituting this expression into the definition of the PSD of
the acceleration noise results in a slightly modified expression
compared with the permanent dipole case:

Scd(i)
aa (ω) = q4α2

polω
5

8192π3m2v7b3ε4
0T

× [
cos2 (α)K2

5/2(bω/v) + cos2 (β )K2
3/2(bω/v)

]
.

(A16)

The resulting dephasing is given in Eq. (37).

3. Dipole-charge interaction

a. Permanent dipole

As presented in Eq. (41) the acceleration in the x̂ direc-
tion due to the permanent dipole interacting with an external
charge is

ad(p)c
x (t ) = qext|dint|

2πmb3ε0

cos (α) + (vt/b) cos (β )

[1 + (vt/b)2]5/2

× [cos (θ0) + (vt/b) cos (γ )], (A17)

The second line comes from the resolution of the dot product
as

d int · r̂(t ) = |d int|bz + vzt

r(t )
(A18)

= |d int|cos (θ0) + (vt/b) cos (γ )√
1 + (vt/b)2

, (A19)

where we have assumed that the direction of the dipole vec-
tor of the interferometer is constant, i.e., d int is not time

dependent, and that it points in the ẑ direction. For example,
because the microdiamond sphere is magnetically trapped
[40] and its rotational degrees of freedom are cooled to near
its ground state [86], achieving good control of the system.

In the second line above, Eq. (A19) we have written the dot
product in terms of the angle θ0, which is the angle between
the ẑ axis and the vector b, and the angle γ which gives the ẑ
component of the velocity:

bz = b cos (θ0), vz = v cos (γ ). (A20)

The Fourier transform of the acceleration ad(p)c
x (t ) is found

from Eq. (A5) (with c = 1, ν = 2, n = 0, 1/2, 1) and gives

ad(p)c
x (ω) =

(
cos (α)

[
K2

(
bω

v

)
cos (θ0) − iK1

(
bω

v

)
cos (γ )

]

− i cos (β )

{
K1

(
bω

v

)
cos (θ0) − i

[
bω

v
K1

(
bω

v

)

− K0

(
bω

v

)]
cos (γ )

})
qext|dint|ω2

6πε0mv3
, (A21)

where we used Eqs. (A5) to find the Fourier transform and
Eqs. (A6) to simplify the expression.

Now substituting this expression into the Eq. (5) of the PSD
of the acceleration noise results in

Sd(p)c
aa (ω) = q2

ext|dint|2ω4

36π2ε2
0 m2v6T

(
cos2 (α)

[
K2

2

(
bω

v

)

× cos2 (θ0) + K2
1

(
bω

v

)
cos2 (γ )

]

+ cos2 (β )

{
K2

1

( ω

bv

)
cos2 (θ0)

+
[

bω

v
K1

(
bω

v

)
− K0

(
bω

v

)]2

cos2 (γ )

})
.

The resulting dephasing from Eq. (A1) and (13) is given by

	d(p)c
n = 4q2

ext|dint|2(
x)2

9π3ε2
0 h̄2v6t4

a

∫ ∞

ωmin

1

ω2
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+ K2
1

(
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+ cos2 (β )

{
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1

(
bω

v

)
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[
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(
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v

)

− K0

(
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)]2

cos2 (γ )

})
sin2

[ω
2

(2ta + te)
]
dω.

(A22)

Which has been presented in Eq. (42) in a simplified form.

b. Induced dipole

Equation (44) gave the acceleration in the x̂ direction for
the interaction between an external charge and the dipole it
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induces in the interferometer:

ad(i)c
x (t ) = εr − 1

εr + 2

q2
extR

3

2πε0mb5

cos (α) + (vt/b) cos (β )

[1 + (vt/b)2]3
. (A23)

Performing a Fourier transform to find the acceleration in
the frequency domain gives (from Eq. (A5) with c = 1, ν =
5/2, n = 0, 1/2):

ad(i)c
x (ω) = εr − 1

εr + 2

q2
extR

3ω5/2

16πmb5/2v5/2ε0

b

v

√
π

2

×
[

cos (α)K5/2

(
bω

v

)
− i cos (β )K3/2

(
bω

v

)]
.

(A24)

Substituting this expression into the PSD of the acceleration
noise results in a slightly modified expression compared with
the permanent dipole case:

Sd(i)c
aa =

(
εr − 1

εr + 2

)2 q4
extR

6ω5

512πε2
0 m2v7b3T

×
[

cos2 (α)K2
5/2

(
bω

v

)
+ cos2 (β )K2

3/2

(
bω

v

)]
,

(A25)

from which Eq. (45) is derived.

4. Dipole-dipole interaction

The acceleration due to dipole-dipole interactions is given
by [71]

add = 3r̂
4πε0m

[
dext · d int

r4(t )
− 3

(dext · r̂)(d int · r̂)

r4(t )

]
. (A26)

To resolve the dot products, we recall from previous sec-
tions the assumption we made:

(1) The external particle has low velocity, meaning that
dext · r̂ is approximately constant in time. Furthermore, in the
worst-case scenario, dext · r̂ = |dext|.

(2) The dipole of the interferometer particle is aligned
with the ẑ axis. Such that d int · r̂ is as in Eq. (A19). As-
suming that the external particle has small velocity, d int · r̂ ≈
|d int| cos(θ0).

From the orientation of the dipoles in these assumptions, it
follows that

(1) the angle between the interferometer and external
dipoles is θ0, such that d int · dext = |d int||dext| cos(θ0).

In this scenario, the acceleration in the x̂ direction becomes

add
x (t ) = − 6

4πε0m

|dext||d int| cos (θ0)

r4(t )

rx

r

= −6|dext||d int| cos (θ0)

4πε0mb4

cos (α) + (vt/b) cos (β )

[1 + (vt/b)2]5/2
,

as presented in Eq. (46). Using the Fourier transform in
Eq. (A5) and the properties given in Eq. (A6) gives:

add
x (ω) = 2|dext||d int| cos (θ0)

4πε0m

ω2

bv3

×
[

cos (α)K2

(
bω

v

)
− i cos (β )K1

(
bω

v

)]
,

(A27)

FIG. 7. For vt/b = 0.1 the absolute value of the acceleration
[Eq. (B1) with a = 3] as a function of the projection angles α, β ∈
[0, π ].

which gives the PSD of the acceleration noise:

Sdd
aa (ω) =|dext|2|d int|2 cos2 (θ0)

4π2ε2
0 m2T

ω4

b2v6

×
[

cos2 (α)K2
2

(
bω

v

)
+ cos2 (β )K2

1

(
bω

v

)]
.

(A28)

Together with the transfer function, this gives the dephasing
due to the dipole-dipole interaction, as given in Eq. (47).

APPENDIX B: PROJECTION ANGLES ANALYSIS

To maximize the dephasing, we take the initial conditions
as given by the projections angels α and β (respectively, b
and v in the x̂ direction) and in the case of an interferometer
dipole θ0 and γ (respectively, b and v in the ẑ direction), such
that the absolute value of the acceleration in the x̂ direction is
maximal.

By maximizing the acceleration, the noise is also max-
imized since the transfer function Saa(t ) ∝ a(t )2 and 	n ∝
Saa(ω)F (ω), where the transfer function F (ω) is independent
of the projection angles. Physically, it is clear that a larger
acceleration causes a larger dephasing.

1. Charged interferometer

For a charged interferometer, the relevant angles that
determine the movement of the external particle are α and
β; see Eq. (15). These angles are maximized to find an upper
bound on the dephasing. Figures 7–9 show the acceleration

a(t ) =
∣∣∣∣C cos (α) + (vt/b) cos (β )

[1 + (vt/b)2]a

∣∣∣∣ (B1)

as a function of the angles α and β. The magnitude of the
acceleration is not given since it depends on the constant
C, which is determined by the type of interaction (charged-
charged, charged-permanent dipole, or charged-induced
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FIG. 8. For vt/b = 1 the absolute value of the acceleration
[Eq. (B1) with a = 3] as a function of the projection angles
α, β ∈ [0, π ].

dipole). The value of a is also specified by the type of
interaction, a = 3/2, 2, 3, see Eqs. (31), (33), (36).

The figures show that, for vt > b by at least one order of
magnitude, the acceleration is maximized for β = 0, π , and α

arbitrarily. If vt < b by at least one order of magnitude, then
the plot rotates ninety degrees, and the maximum value of the
acceleration is given by α = 0, π , and β arbitrary. For vt ∼
b the maximization is given by α = β = 0 or α = β = π .
Figures 7–9 are approximately constant for a = 3/2, 2, 3.

Therefore, a simple way to choose the angles such that the
absolute acceleration from the interaction is maximized is to
choose α = β = 0 (or π ).9

2. Neutral interferometer

For a neutral interferometer there are the additional angles
γ and θ0 that give the projection in the ẑ axis, see Eq. (A20).10

They are relevant because the interferometer dipole has been
chosen to align with the ẑ axis.

Generically, we write the acceleration in the x̂ direction
from the dipole-charge and dipole-dipole interactions as

a(t ) =
∣∣∣∣C cos (α) + (vt/b) cos (β )

[1 + (vt/b)2]5/2

× [cos (θ0) + (vt/b) cos (γ )]

∣∣∣∣∣, (B2)

with C a constant defined by the interaction. The angles α and
θ0 are related in the sense that if α = 0, it means that b = x0,
and therefore θ0 = π/2 such that bz = 0. Similarly the angles

9Note that, for the external dipole in Sec. IV, we assume that the
particle has low velocity such that |r · d|(t ) ≈ |r · d|. So we have
already made the assumptions on the magnitude of the velocity.

10Note that, for the induced dipole-charge interaction, these angles
are not relevant, and the result for the projection angles for this
interaction is the same as discussed in the previous section for the
charged-interferometer case.

FIG. 9. For vt/b = 10 the absolute value of the acceleration
[Eq. (B1) with a = 3] as a function of the projection angles α, β ∈
[0, π ].

β and γ are related such that if β = 0, v = vx and thus γ =
π/2, such that vz = 0. Therefore, we define the dependency
as

cos (θ0) =
√

1 − cos2 (α), cos (γ ) =
√

1 − cos2 (β ).

(B3)

This follows from the Pythagorean theorem v2 = v2
x + v2

y +
v2

z , where we have set vy = 0 to maximize the acceleration.
The resulting plots that show the acceleration of Eq. (B2)

as a function of α, β for arbitrary C are shown in Figs. 10–
12. The figures are somewhat similar to Figs. 7–9, but one
can see the extra dependence on the projection angles. From
the figures, we can conclude that to maximize the accelera-
tion generically, one can take the projection angles α = β =
π/4, 3π/4, which means that θ0 = γ = π/4, 3π/4.

In the case of a dipole-dipole interaction, the assumption
that the particle has low velocity such that r(t ) · d is ap-
proximately constant in time removes the dependence on γ .

FIG. 10. For vt/b = 0.1 the absolute value of the acceleration
[Eq. (B2)] as a function of the projection angles α, β ∈ [0, π ].
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FIG. 11. For vt/b = 1 the absolute value of the acceleration
[Eq. (B2)] as a function of the projection angles α, β ∈ [0, π ].

The resulting plot looks very similar to Fig. 10 and shows
that the acceleration is maximal for α = π/4, β = 0 and for
α = 3π/4, β = π , see Fig. 13.

APPENDIX C: APPROXIMATIONS
OF THE AVERAGED DEPHASING

In Sec. VII, the averaged acceleration noise PSD of
Eq. (17) was used with the probability distributions over
the impact parameter and projection angles (chosen to be a
uniform distribution), and the velocity (determined to be a
Maxwell-Boltzmann distribution). For small temperatures, the
width of the Maxwell-Boltzmann distribution becomes small
and has most probable velocity v̄ = √

2kbTgas/mgas. We, there-
fore, consider the Maxwell-Boltzmann distribution to be a
Dirac-delta distribution at v = v̄, which holds approximately
for Tgas � 0.1 mK. Since there is an integration over v and b,
taking T = b/v as the characteristic timescale does not make
sense anymore, and instead we take T = 10τ such that the
timescale of the noise is larger than the interferometer time
and thus Eq. (4) holds. To simplify the calculation, we make

FIG. 12. For vt/b = 10 the absolute value of the acceleration
[Eq. (B2)] as a function of the projection angles α, β ∈ [0, π ].

FIG. 13. For vt/b = 0.1 the absolute value of the acceleration
for the dipole case [Eq. (B2) without the cos(γ ) term] as a function
of the projection angles α, β ∈ [0, π ].

further assumptions such that the Bessel functions can be
approximated. The modified Bessel functions of the second
kind arise from the Fourier transform of the acceleration,
see Appendix A and more concretely Eqs. (A25), (A28) for
the relevant acceleration PSDs used in the QGEM case and
Eq. (A11) for the PSD used in the CNOT case. These PSDs
are used in this section in Eq. (17) to find the averaged accel-
eration noise PSD given the distributions in Eqs. (18)–(21).
The Bessel functions that are contained in these PSDs can
be approximated with the expansion in Eqs. (C3) and (C6),
depending on the parameters of the experiment.

1. Approximations involved in the QGEM setup

We approximate the integration over ω to get the total
dephasing by substituting the dominant mode ω = ωmin. This
can be understood physically as considering the dephasing at
the longest experimental time. Mathematically, the transfer
function [see Eq. (13)] shows strong decay for increasing
ω, showing that the minimal value is dominant and that the
approximation is applicable due to the fast decline. For ω =
ωmin = 2π/τ = 2π Hz, the argument of the Bessel function
is [see Eqs. (45), (42), and (47)]

2πR√
2kbTgas/mgas

� bωmin

v̄
� 2πL√

2kbTgas/mgas
, (C1)

where mgas denotes the mass of air molecules and we set
Tgas = 10−4 K. For these parameters we can also approximate
the Maxwell-Boltzmann distribution as discussed in the main
text. For a spherical diamond of mass 10−15 kg (i.e., a radius
of ≈1 µm) and an experimental chamber of L = 0.01 m,
which are parameters applicable to the QGEM experiment,
the argument of the Bessel function is small in the limit which
we are considering in our computation:

bωmin/v̄ < 1 for b ∈ [R, L]. (C2)
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Therefore, we approximate the modified Bessel functions of
the second kind as follows:

Kn(u) ≈ 	(n)

2

(
2

u

)n

for 0 < |u| � √
n + 1 and n > 0.

(C3)

With the approximate Bessel function, we find the dephasing
of the dominant mode presented in Fig. 5 as a function of the
number density nv = N/V with V = L3.

2. Approximations involved in the CNOT setup

For ω = ωmin = 2π/τ = 2π × 10−6 Hz, the argument of
the Bessel function is given by

2πbmin√
2kbTgas/mgas

� bω

v̄
, (C4)

where mgas is the mass of air molecules, and Tgas = 10−4 K
such that the Maxwell-Boltzmann distribution can be approx-
imated as discussed in the main text. We find that the argument
of the Bessel function is large:

bω/v̄ > 1 for b ∈ [103R, L] and ω ∈ [ωmin,∞], (C5)

where we recall L = 0.01 m. To proceeded analytically, we
assume the minimal distance bmin = 103R ≈ 10−7 m, such
that the modified Bessel functions of the second kind can be
approximated via:

Kn(u) ≈ e−u

[( π

2u

)1/2
+ · · ·

]
for u → ∞. (C6)

With the approximate Bessel function, we find the dephasing
after integrating over ω. This was presented in Fig. 6 as a
function of the number density nv = N/V with V = L3.
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