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Quantum embedding is a fundamental prerequisite for applying quantum machine learning techniques to
classical data and has substantial impacts on performance outcomes. In this study, we present neural quantum
embedding (NQE), a method that efficiently optimizes quantum embedding beyond the limitations of positive
and trace-preserving maps by leveraging classical deep-learning techniques. NQE enhances the lower bound of
the empirical risk, leading to substantial improvements in classification performance. Moreover, NQE improves
robustness against noise. To validate the effectiveness of NQE, we conduct experiments on IBM quantum devices
for image data classification, resulting in a remarkable accuracy enhancement from 0.52 to 0.96. In addition,
numerical analyses highlight that NQE simultaneously improves the trainability and generalization performance
of quantum neural networks, as well as of the quantum kernel method.
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I. INTRODUCTION

Machine learning (ML) is ubiquitous in modern society,
owing to its capability to identify patterns from data. For
well-behaved data, simple learning algorithms such as linear
regression and support vector machines are often sufficient
to capture the underlying data distribution. In contrast, in-
tricate and high-dimensional data typically require advanced
learning algorithms, substantial computational power, and ex-
tensive training data. The overarching objective of machine
learning is to construct models that can effectively learn the
underlying distributions of complex real-world data. However,
achieving this objective presents a substantial challenge.

Recent advances in quantum computing (QC) have led
to the development of quantum machine learning (QML).
QML aims to efficiently process complex data distributions
by leveraging the computational benefits of quantum algo-
rithms [1–5]. One potential benefit of QC relevant to ML is its
ability to efficiently sample from certain probability distribu-
tions that are exponentially difficult for classical counterparts
[6–8], as validated in several experiments [9–11]. Quantum
sampling algorithms typically impose lower requirements on
physical implementations, making them an attractive path-
way for demonstrating the quantum advantage using noisy
intermediate-scale quantum (NISQ) devices [12]. One of the
primary rationales underpinning the potential of QML is as
follows: if a quantum computer can efficiently sample from
a computationally hard probability distribution, it is plausible
that quantum computers can efficiently learn from data drawn
from such distributions. This implies a potential quantum
advantage, especially for data distributions that are compu-
tationally infeasible for classical models but easily tractable
for quantum models.

*Contact author: dkd.park@yonsei.ac.kr

While quantum data are naturally suited for QML tasks [5],
most contemporary data-science challenges involve classical
data. Consequently, the exploration of the effectiveness of
QML algorithms in learning from classical data constitutes
a critical research focus. Notable examples of QML models
tailored for classical data include the quantum neural network
(QNN) and quantum kernel method (QKM), both of which are
specialized for supervised learning problems. QNN utilizes
a parameterized quantum circuit where the parameters are
optimized through the variational method [13–16]. In contrast,
QKM utilizes a quantum kernel function to effectively capture
the correlations within the data [17,18].

In QML tasks involving classical data, an essential ini-
tial step is quantum embedding, which maps classical data
into quantum states that a quantum computer can process.
Quantum embedding is of paramount importance because
it can significantly impact the performance of the learning
model, including aspects such as expressibility [19], gen-
eralization capability [20], and trainability [21]. Therefore,
selecting an appropriate quantum-embedding circuit is crucial
for the successful learning of the data with quantum models.
To achieve a quantum advantage in machine learning, pre-
vailing research emphasizes designing quantum-embedding
circuits that are computationally challenging to simulate clas-
sically [17,22]. In this work, we redirect attention to the
data separability of embedded quantum states, utilizing trace
distance, a tool in quantum information theory used to mea-
sure the distinguishability between quantum states [23,24],
as a figure of merit. Subsequent sections will show that
the choice of a quantum-embedding circuit inherently dic-
tates a lower bound of empirical risk, independent of any
succeeding trainable quantum circuits. Specifically, in the
context of binary classification employing a linear loss func-
tion, the empirical risk is bounded from below by the trace
distance between two ensembles of data-embedded quantum
states representing different classes. Therefore, opting for a

2469-9926/2024/110(2)/022411(17) 022411-1 ©2024 American Physical Society

https://orcid.org/0009-0004-0071-0907
https://orcid.org/0000-0002-0308-8701
https://orcid.org/0000-0002-3177-4143
https://ror.org/01wjejq96
https://ror.org/01wjejq96
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.110.022411&domain=pdf&date_stamp=2024-08-08
https://doi.org/10.1103/PhysRevA.110.022411


HUR, ARAUJO, AND PARK PHYSICAL REVIEW A 110, 022411 (2024)

quantum embedding that maximizes trace distance—and thus,
enhances distinguishability of states—facilitates improved
training performance. Furthermore, a larger trace distance
enhances resilience to noise, as the data-embedded quantum
states reside farther from the decision boundary.

Conventional quantum-embedding schemes are generally
data agnostic and do not guarantee high levels of data sepa-
rability for a given dataset. To achieve a large trace distance,
the use of trainable quantum embeddings is essential. Some
efforts have explored trainable quantum embeddings by em-
ploying parameterized quantum circuits in both QNN [25]
and QKM [26] frameworks. However, incorporating these
quantum circuits increases the quantum circuit depth and the
number of gates, making it less compatible with NISQ de-
vices. Furthermore, the inclusion of trainable quantum gates
during the quantum-embedding phase increases the model’s
susceptibility to barren plateaus [27], thereby adversely affect-
ing the efficient training.

Given these considerations, we present neural quantum
embedding (NQE), an efficient method that leverages the
power of classical neural networks to learn the optimal quan-
tum embedding for a given problem. NQE can enhance the
quantum data separability beyond the capabilities of quan-
tum channels, thereby extending the fundamental limits of
quantum supervised learning. Our approach avoids the critical
issues present in existing methods, such as the increased num-
ber of gates and quantum circuit depth and the exposure to the
risk of barren plateaus. Numerical simulations and experiment
with IBM quantum devices confirm the effectiveness of NQE
in enhancing QML performance in several key metrics in
machine learning. These improvements extend to training ac-
curacy, generalization capability, trainability, and robustness
against noise, surpassing the capabilities of existing quantum-
embedding methods.

II. RESULTS

A. Lower bound of empirical risk
in quantum binary classification

In supervised learning, the primary objective is to identify
a prediction function f that minimizes the true (expected) risk
R( f ) = E{l[ f (X ),Y ]} with respect to some loss function l ,
where X and Y are drawn from an unknown distribution D.
Given a collection of N sample data {(xi, yi )}, the goal of
learning algorithms is to find the optimal function f ∗ that
minimizes the empirical risk RN ( f ) = (1/N )

∑N
i=1 l[ f (xi), yi]

among a fixed function class F , i.e., f ∗ = arg min f ∈F RN ( f ).
Quantum supervised learning algorithms aim to efficiently
find prediction functions with improved performance by ex-
ploiting the computational power of the quantum device.

A QNN is a widely used method for quantum supervised
learning. In QNN, a classical input data x is first embedded
into a quantum state by applying a quantum-embedding cir-
cuit to an initial ground state, resulting in |x〉 = �(x)|0〉⊗n.
Next, a parameterized unitary operator, denoted as U (θ ), is
applied to transform the embedded quantum states, and the
state is measured with an observable O. The measurement
outcome serves as a prediction function for supervised learn-
ing algorithms, expressed as f (x; θ ) = 〈x|U †(θ )OU (θ )|x〉.

Subsequently, using gradient descent or one of its variants, we
search for the optimal parameter θ∗ that minimizes the empiri-
cal risk. For a binary classification task with input data x ∈ Rm

and its associated label y ∈ {−1, 1}, we can predict the label
of the new data xnew using the rule ynew = sign[ f (xnew; θ∗)].

Alternatively, we can consider this procedure as a quan-
tum state discrimination problem involving two parameterized
positive operator-valued measures (POVMs), denoted as
E±(θ ) = [I ± U †(θ )OU (θ )]/2. With these POVMs, the prob-
abilities of obtaining measurement outcomes ±1 given an
input data x are computed as P[E±(θ )|x] = 〈x|E±(θ )|x〉.
Subsequently, the decision rule for the new data is de-
termined as ynew = sign{P[E+(θ )|xnew] − P[E−(θ )|xnew]}. In
such a scenario, a natural loss function is the probability of
misclassification, which can be expressed as l[ f (x; θ ), y] =
P[E¬y(θ )|x]. Considering a dataset of N samples, S =
{x−

i ,−1}N−
i=1 ∪ {x+

i , 1}N+
i=1; the empirical risk becomes

Ls = 1

N

⎧⎨
⎩

N−∑
i=1

P[E+(θ )|x−
i ] +

N+∑
i=1

P[E−(θ )|x+
i ]

⎫⎬
⎭

� 1

2
− Dtr(p−ρ−, p+ρ+), (1)

where ρ± = ∑ |x±
i 〉〈x±

i |/N±, p± = N±/N , and Dtr(·, ·) de-
notes the trace distance [28]. It is important to note the
contractive property of the trace distance given by

Dtr[�(ρ0),�(ρ1)] � Dtr(ρ0, ρ1), (2)

for any positive and trace-preserving (PTP) map � [29].
Based on the above, we now emphasize two crucial points.

(i) The empirical risk is lower bounded by the trace dis-
tance between two data ensembles p−ρ− and p+ρ+. This
bound is completely determined by the initial quantum-
embedding circuit, regardless of the structure of the param-
eterized unitary gates U (θ ) applied afterwards.

(ii) The minimum loss is achieved when {E−(θ ), E+(θ )} is
a Helstrom measurement. Therefore, the training of a quantum
neural network can be viewed as a process of finding the
Helstrom measurement that optimally discriminates between
the two data ensembles.

Designing a quantum embedding that maximizes the trace
distance is of paramount importance since it minimizes the
lower bound of the empirical risk. This becomes especially
important in NISQ applications, as nonunitary quantum oper-
ations, such as noise, strictly reduce the trace distance between
two quantum states [23,24]. Therefore, there is a clear need for
a trainable, data-dependent embedding that can maximize the
trace distance.

Several works have proposed combining a set of pa-
rameterized quantum gates and a conventional quantum-
embedding circuit as a means to create a trainable unitary
embedding [25,26,30]. However, the use of parameterized
quantum gates comes with several drawbacks. First, it results
in an increase in the number of gates and the depth of the
quantum circuit. This not only increases computational costs
but also makes the quantum embedding more susceptible to
noise. Furthermore, the method is prone to encountering bar-
ren plateaus, which pose a fundamental obstacle to scalability
[21,27]. Second, the trainable unitary embedding is highly
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FIG. 1. Overview of the NQE training. The unitary transformation that maps xi to the quantum feature space is determined by the
output of a classical neural network denoted by g(xi, w), where w represents trainable parameters. The resulting quantum state is |xi(w)〉 =
V [g(xi,w)]|0〉⊗n. The goal of the training is to produce mapping functions that can separate the two classes of data into two orthogonal
subspaces. Efficient calculation of the fidelity between the two quantum states produced by the feature map is performed using a quantum
computer.

restricted in enhancing the maximum trace distance of em-
bedded quantum states (see Sec. II C 2). It is crucial to note
that none of the existing quantum embeddings can guarantee
the effective separation of two data ensembles in the Hilbert
space with a large distance.

B. Neural quantum embedding

Neural quantum embedding utilizes a classical neural net-
work to maximize the trace distance between two ensembles
Dtr(p−ρ−, p+ρ+). It can be expressed as �NQE : x → |x〉 =
V [g(x,w)]|0〉⊗n, where V is a general quantum-embedding
circuit and g : Rm × Rr → Rm′

is a classical neural network
that transforms the input data x using r trainable parameters.

By choosing m′ < m, we can bypass additional classi-
cal feature reduction methods, such as principal component
analysis (PCA) or autoencoders, typically employed prior to
quantum embedding due to the current limitations on the
number of reliably controllable qubits in quantum devices.
Ideally, the loss function should directly contain the trace
distance. However, calculating it is computationally expen-
sive, even with the quantum computer. Therefore, we used an
implicit loss function derived from a fidelity measure, which is
expressed as

lfid[(xi, yi ), (x j, y j )] = [|〈xi|x j〉|2 − 1
2 (1 + yiy j )

]2
. (3)

This fidelity loss can be efficiently computed using the SWAP

test [31] or directly measuring the state overlap (see Fig. 1).
The relationship between the state fidelity and the trace dis-
tance, as well as how minimizing lfid corresponds to enhancing
the trace distance, are detailed in Appendix C.

While NQE is not restricted by the choice of the quantum-
embedding circuit, we specifically focus on improving the ZZ
feature embedding [17]. The unitary operator corresponding

to this embedding is expressed as

V (φ(x)) =
{

exp

[
i
∑

i

φi(x)Zi + i
∑
i, j

φi, j (x)ZiZ j

]
H⊗n

}L

,

(4)

where L > 1. The use of this embedding is prevalent due to the
conjectured intractability of computing its kernel classically
when L > 1 [17]. It has been extensively explored in the field
of quantum machine learning, including theoretical investi-
gations [15,32,33] as well as practical applications in areas
such as drug discovery [34,35], high-energy physics [36,37],
and finance [38,39]. The most commonly used functions for
φ are φi(x) = xi and φi, j (x) = (π − xi )(π − x j )/2 [15,17],
but these choices are made without justifications. Although
Ref. [40] numerically illustrates that the choice of φ can
significantly impact the performance of QML algorithms, it
does not provide guidelines for selecting an appropriate φ for
the problem at hand. NQE effectively solves this limitation by
replacing mapping functions with a trainable classical neural
network.

While optimizing the ZZ feature embedding
through NQE requires the use of a quantum computer
due to the computational hardness of the loss function, there
are certain embeddings that can be optimized solely on a
classical computer. An instance of this is the amplitude
encoding [41–45], where the corresponding loss function
for NQE can be computed by taking the dot product of two
vectors.

C. Experimental results

1. NQE versus fixed unitary embedding

This section presents experimental results that demonstrate
the effectiveness of NQE in enhancing QML algorithms. To
this end, we employed a four-qubit quantum convolutional
neural network (QCNN) [13,46–49] for the task of classi-
fying images of 0 and 1 within the MNIST dataset [50], a
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FIG. 2. (a) Schematic representation of the quantum circuit used in the experiments. The green rectangle indicates the neural quantum
embedding (NQE), which transforms classical data xi into a quantum state |xi〉. The blue rectangles represent two-qubit parameterized quantum
gates of the quantum convolutional neural network (QCNN), designed for binary classification tasks. (b) Plot depicting the evolution of the
trace distance between two ensembles of quantum states embedded by the NQE models during training on the ibmq_toronto device, compared
to the trace distance from conventional quantum embedding without NQE. (c) Noiseless QCNN simulation results. (d) The results from QCNN
experiments conducted on IBM quantum devices. In (c) and (d), the blue solid, red dashed, and green dash-dotted lines represent the mean
training loss histories for conventional ZZ feature embedding, PCA-NQE, and NQE, respectively. The shaded regions in the figure represent
one standard deviation from the mean. These values are acquired from five repetitions of each QCNN training with random initialization of
parameters. The thicker versions of these lines indicate the theoretical lower bounds for each method.

well-established repository of handwritten digits. We con-
ducted experiments using both noiseless simulations and
quantum devices accessible through the IBM cloud service.
The experiment unfolds in three main phases: the application
of NQE, the training of the QCNN with and without NQE
models, and the assessment of classification accuracies for the
trained QCNN with and without NQE models.

We compared NQE against the conventionalZZ feature
embedding with the aforementioned function φi(x) = xi and
φi, j (x) = (π − xi )(π − x j )/2. Due to the limited number of
qubits that can be reliably manipulated in current quantum
devices, it is often necessary to reduce the number of features
in the original data before embedding it as a quantum state.
To address this issue, we tested two different NQE struc-
tures for incorporating dimensionality reduction. In the first
approach, which we refer to as PCA-NQE, we applied PCA
to reduce the number of features before passing them to the
neural network. In the second approach, which we simply re-
fer to as NQE, dimensionality reduction was directly handled
within the neural network by adjusting the number of input
and output nodes accordingly. For both PCA-NQE and NQE,
classical neural networks produce eight dimensional vectors,
which are then used as rotational angles for the four-qubit ZZ
feature embedding. These two methods differ in their input

requirements: PCA-NQE takes four-dimensional vectors as
input, requiring classical feature reduction, while NQE ac-
cepts the original 28 × 28 image data, bypassing the need
for additional classical preprocessing. Further details on the
structure of the ZZ feature embedding circuit and the classi-
cal neural networks used for NQE methods are provided in
Appendix A 1.

The goal of NQE training is to maximize the trace distance
between the two sets of data ensembles, thereby minimizing
the lower bound of the empirical risk. Figure 2(b) displays
the trace distance as a function of NQE training iterations,
acquired from ibmq_toronto. It is evident that both PCA-NQE
and NQE effectively separate the embedded data ensembles
and enhance the distinguishability of the quantum state rep-
resenting different classes, even in the presence of noise in
the real quantum hardware. After optimization, PCA-NQE
and NQE yield trace distances of 0.840 and 0.792, respec-
tively, which are significantly improved compared to the
conventional ZZ feature embedding with a distance of 0.273.
Consequently, the lower bound of the empirical risk is sig-
nificantly reduced to 0.08 and 0.104, respectively, from the
original value of 0.364.

The training of the QCNN circuit provides additional
evidence supporting the effectiveness of NQE in QML.
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Figure 2(c) presents the results of noiseless QCNN simula-
tions. In this figure, the blue solid, red dashed, and green
dash-dotted lines represent the mean training loss histories
for the conventional ZZ feature embedding, PCA-NQE, and
NQE, respectively. The thicker versions of these lines indi-
cate the theoretical lower bounds for each method. The mean
values are calculated from five repetitions of each QCNN
training with random initialization of parameters. The shaded
regions in the figure illustrate one standard deviation from
the mean. The empirical risks for all models converge to-
ward their respective theoretical minima, affirming that the
trained QCNN adequately approximates optimal Helstrom
measurements. Classification accuracies achieved on the test
dataset are shown in the table within the figure. NQE meth-
ods led to significant enhancements, as demonstrated by
reduced empirical risks and improved classification accura-
cies. Improvements in classification accuracies are expected
as NQE embeds the training data into a specific subspace
within the given Hilbert space such that the state distin-
guishability is maximized. The localization of embedded data
facilitates the use of ML models with reduced complexity,
thereby implying an enhancement in generalization capability.
Numerical results supporting this intuition are presented in
Secs. II D, II E, and Appendix F. Note that in some instances,
the training loss falls below the theoretical lower bound of
empirical risk. This occurs because the training loss is com-
puted from a randomly sampled minibatch of data in each
iteration.

Figure 2(d) presents the mean QCNN training loss histo-
ries obtained using IBM quantum devices. The mean values
are calculated from three independent trials on ibmq_jakarta,
ibmq_perth, and ibmq_toronto devices with random initializa-
tion of parameters. The shaded regions in the figure illustrate
one standard deviation from the mean. The presence of
noise and imperfections in the quantum devices prevent
the empirical risks from reaching their theoretical lower
bounds. Nonetheless, the training performance is significantly
improved by NQE. Notably, for both NQE methods, the
empirical risk rapidly approaches or even falls below the
theoretical limit of the conventional method. This result un-
derscores that even on the current noisy quantum devices,
our method can outperform the theoretical optimum of the
ZZ feature map without any additional quantum error miti-
gation. Moreover, a substantial improvement in classification
accuracy was recorded, reaching 96% (PCA-NQE) and 90%
(NQE), whereas the conventional method achieved only 52%.
These findings demonstrate that NQE enhances the noise
resilience of QML models, improving the utility of NISQ
devices. Comprehensive details of these experiments are pro-
vided in Appendix A 2.

2. NQE versus trainable unitary embedding

We also conduct numerical comparisons between NQE and
trainable unitary embedding to further investigate the advan-
tage of NQE. Trainable unitary embedding utilizes trainable
unitary Utra (θ ) to find the quantum embedding that separates
the data well. More specifically, one can implement a trainable
unitary embedding �(x; θ ) as

�(x; θ ) : |0〉⊗n → |x; θ〉 = Uemb(x)Utra (θ )|0〉⊗n. (5)

In this case, the data-embedded ensembles are expressed as

ρ±(θ ) = 1

N±
∑

i

Uemb(x±
i )Utra (θ )|0〉〈0|⊗nU †

tra (θ )U †
emb(x±

i )

= E±[|ψ (θ )〉〈ψ (θ )|], (6)

where |ψ (θ )〉 = Utra (θ )|0〉⊗n and E±(·) are quantum channels
that maps ρ → ∑

i K±
i ρK±†

i , with K±
i = Uemb(x±

i )/
√

N±.
Now the maximum trace distance between two data ensembles
is upper bounded by the diamond distance,

max
θ

Dtr[p+ρ+(θ ), p−ρ−(θ )]

= max
θ

‖p+E+[|ψ (θ )〉〈ψ (θ )|] − p−E−[|ψ (θ )〉〈ψ (θ )|]‖1

� D�(p+E+, p−E−). (7)

This presents a significant limitation since E± are entirely
predetermined by the choice of quantum-embedding circuit
Uemb(·), without any guarantee that the diamond distance will
be large. The trainable unitary Utra (θ ) does not contribute to
improving the upper bound of the maximum trace distance.

Alternatively, one may consider the data re-uploading tech-
nique in which the trainable unitary and quantum-embedding
circuit are repeatedly applied multiple times,

�(x; θ ) : |0〉⊗n → |x; θ〉 =
L∏

l=1

Uemb(x)Utra(θl )|0〉⊗n. (8)

However, Ref. [51] demonstrates that data–re-uploading
quantum embedding can be exactly transformed into a
form where all the trainable unitaries follow the quantum-
embedding circuits by introducing ancilla qubits. Upon such
transformation, the embedding can be expressed as

U ′
tra (θ)U ′

emb(x)|0〉⊗n+n′
, (9)

where θ = [θ1, . . . , θL] and n′ ∈ O[L log(L)]. Importantly,
the embedding circuit is independent of the parameters
of the trainable unitary gates. Consequently, the maximum
trace distance is once again determined by the choice of
quantum-embedding circuit, which, in turn, constrains the
data distinguishability. Furthermore, employing multiple lay-
ers of trainable unitary and quantum-embedding circuit
significantly increases the total circuit depth, making it not
only unsuitable for NISQ applications, but also susceptible to
the barren plateaus problem.

Figure 3 displays a comparison of the NQE and trainable
unitary embedding under noiseless and noisy environments
employing eight qubits. The PCA-NQE and NQE are imple-
mented with adjustments made in both PCA and the classical
neural network to accommodate the use of eight qubits (see
Appendix A 1). The QCNN circuits are trained utilizing either
trainable unitary embedding or NQE techniques. For the train-
able unitary embedding, we used the following parameterized
quantum circuit:

L∏
l=1

⎧⎨
⎩V [φ(x)] exp

⎛
⎝i

∑
i

θ l
i Yi + i

∑
i, j

θ l
i, jYiYj

⎞
⎠

⎫⎬
⎭|0〉⊗n. (10)

Here, V [φ(x)] is the ZZ feature map explained in Eq. (4) and
θ l

i (θ l
i, j ) are the trainable parameters of the embedding.
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FIG. 3. Comparative analysis between neural quantum embeddings and trainable unitary embeddings with one, two, and three trainable
layers. The numerical simulations were conducted under noiseless (left) and noisy (right) environments, utilizing MNIST (top) and Fashion-
MNIST (bottom) datasets. For noiseless simulations, we used 1000 iterations, a learning rate of 0.01 learning rate, and batches of 128 data
points per iteration. For noisy simulations, we used 200 iterations, a learning rate of 0.05, and batches of 15 data point per iteration. The
noisy model simulations utilized the IBM QISKIT FakeGuadalupe environment. The classification accuracies were evaluated using a sample
size of 2115 and 2000 data points for the MNIST and Fashion-MNIST datasets, respectively. The mean and one standard deviation from five
independent iterations are shown for the loss history.

Figures 3(a) and 3(c) depict the training loss history and
classification accuracies in a noiseless environment for the
MNIST ({0, 1}) and Fashion-MNIST ({T-shirt/Top, Trouser})
datasets [52], respectively. In this experiment, we explored
the impact of one, two, and three trainable unitary layers in
comparison to PCA-NQE and NQE. The results indicate that
the NQE methods achieve a notably lower training loss than
the trainable unitary embedding, suggesting superior efficacy
of NQE in improving data separability (by increasing the trace
distance). Additionally, the NQE methods resulted in higher
classification accuracies.

Figures 3(b) and 3(d) depict the training loss history
and classification accuracies in a noisy environment for the
MNIST and Fashion-MNIST datasets, respectively. A single-
layer trainable unitary embedding was evaluated against
PCA-NQE. The choice of a single layer was based on its
minimal circuit depth, rendering it less susceptible to noise
interference. The results indicate that NQE is more effective
in enhancing data separability under the presence of noise.
Additionally, PCA-NQE yields considerably higher classi-
fication accuracies. These advantages stem from the larger
initial trace distance and the reduced circuit depths associated
with PCA-NQE. We employed a noisy simulation using the
IBM FakeGuadalupe device. This simulator mimics the essen-
tial characteristics of the ibmq_guadalupe device, including
its basis gates, qubit connectivity, qubit relaxation (T1) and
rephrasing (T2) times, and readout error rates.

D. Effective dimension

As demonstrated thus far, NQE has proven to be an ef-
ficient method for reducing the lower bound of empirical
risk. While this advancement enhances the ability to learn
from data, another essential measure of successful machine
learning is the generalization performance, that is, the ability
to make accurate predictions on unseen data based on what
has been learned. The simulation and experimental results
presented in the previous section indicate an improvement in
prediction accuracy on test data with the implementation of
NQE. In this section, we provide additional evidence of im-
proved generalization performance by analyzing the effective
dimension (ED) [15,53,54] of a QML model constructed with
and without NQE. Intuitively, ED quantifies the number of
parameters that are active in the sense that they influence the
outcome of its statistical model.

To investigate this further, we focus on the local effective
dimension (LED) introduced in Ref. [54], as it takes into
account the data and learning algorithm dependencies and
is computationally more convenient. Importantly, the LED
exhibits a positive correlation with the generalization error,
allowing for straightforward interpretation of the results: a
smaller LED corresponds to a smaller generalization error,
and vice versa. Our numerical investigation employs a four-
qubit QNN (see Appendix A 3) and the results are presented
in Fig. 4. In the figure, the green solid and purple dashed

022411-6



NEURAL QUANTUM EMBEDDING: PUSHING THE LIMITS … PHYSICAL REVIEW A 110, 022411 (2024)

FIG. 4. The local effective dimension for the circuit with (solid
green) and without (dashed blue) NQE. These results are based on
10 sets of experiments, each on a distinct artificial dataset with 20
repetitions with random initialization of parameters. The reported
values represent the average across all 200 experiments.

lines represent the mean local effective dimension of the tested
QML model with and without NQE, respectively. The mean
values are computed from 200 trials, where each trial consists
of 10 artificial datasets and, for each dataset, the experiment
is repeated 20 times with random initialization of parame-
ters. The shaded areas in the figure represent one standard
deviation. The simulation results unequivocally demonstrate
that NQE consistently reduces the LED in all 200 instances
that are tested and across a wide range of training data sizes,
signifying an improvement in generalization performance.

The effective dimension can also be interpreted as a mea-
sure of the volume of the solution space that a specific model
class can encompass. A smaller effective dimension in a QML
model implies a reduced volume of the solution space. This
observation is particularly relevant as it suggests that models
with smaller effective dimensions are less prone to encounter-
ing barren plateaus [55]. Consequently, the simulation results
further indicate that NQE not only enhances generalization
performance, but also improves the trainability of the model.
Further evidence substantiating this improvement for both
QNN and QKM will be presented in a later section.

E. Generalization in quantum kernel method

Up to this point, the investigation of NQE has primarily
focused on its application within the context of quantum
neural networks. In this section, we extend the analysis to
demonstrate that NQE also enhances the performance of the
quantum kernel method. Given a quantum embedding, the
kernel function can be defined as

kQ(xi, x j ) = |〈xi|x j〉|2, (11)

which can be efficiently computed on a quantum computer.
The quantum kernel method refers to an approach that uses
the kernel matrix KQ, of which each entry is the kernel of the
corresponding data points, in a method like a classical support
vector machine [17,32]. The potential quantum advantage of

such approach is based on the hardness to compute certain
quantum kernel functions classically [17,18,56].

The quantum kernel method attempts to determine the
function f (x;W ) = Tr(W |x〉〈x|) to predict the true underlying
function h(x) for unseen data x. The optimal parameters W ∗
are obtained by minimizing the cost function,

W ∗ = arg min
W ∈C2n×2n

1

N

N∑
i=1

[ f (xi;W ) − h(xi )]
2 − λ||W ||2F, (12)

where || · ||F is the Frobenius norm. The second term is the
regularization term with a hyperparameter λ. The purpose of
including the regularization term is to reduce the generaliza-
tion error at the expense of the training error. Specifically,
considering the true error R(W ) = Ex| f (x;W ) − h(x)| and
the training error RN (W ) = ∑N

i=1 | f (xi;W ) − h(xi )|/N , the
generalization error is upper bounded as

|R(W ) − RN (W )| � O
(

||W ||F√
N

+
√

log(1/δ)

N

)
, (13)

with probability at least 1 − δ (see Ref. [32] Supplementary
Information, Sec. 4.C). The optimal W ∗ can be expressed
as W ∗ = ∑N

i=1

∑N
j=1 h(xi )(KQ + λI )−1

i, j |x j〉〈x j |. Here, the em-
ployment of NQE affects W ∗ as both KQ and |x j〉 vary with
the quantum embedding.

We performed empirical evaluations to assess the effec-
tiveness of NQE in reducing G = ||W ∗||F/

√
N and thereby

improving the upper bound of the generalization error. The
analysis proceeded in three steps: loading the dataset, com-
puting the quantum kernel matrix with and without NQE, and
calculating the generalization error bound with and without
NQE. The experiments tested both PCA-NQE and NQE, with
neural network parameters optimized on the ibmq_toronto
processor, as detailed in Appendix A 1. During the dataset
loading phase, binary datasets containing N = 1000 samples
from classes {0,1} were constructed from the MNIST dataset.
As outlined in Appendix A 1, both PCA-NQE and the con-
ventional quantum embedding without NQE were preceded
by PCA to reduce the number of features to four. In contrast,
the NQE utilized the original 28 × 28 image datasets. Subse-
quently, three quantum kernel matrices were constructed: one
without NQE, one with PCA-NQE, and one with NQE. The
(i, j)th entry of the quantum kernel corresponds to kQ(xi, x j ),
and the fidelity overlap between pairs of data-embedded
quantum states. This fidelity overlap was computed using
PENNYLANE [57] numerical simulation. Finally, for each of
the quantum kernel matrices, the corresponding upper bound
of the generalization error G =

√
||W ∗||2F/N was calculated.

Here, ||W ∗||2F can be expressed as ||W ∗||2F = ∑
i

∑
j[(K

Q +
λI )−1KQ(KQ + λI )−1]i, jyiy j .

The experimental procedure was repeated five times, each
time with different sets of 1000 samples of data. Figure 5
presents the mean and one standard deviation of the gener-
alization error bound G. These values were obtained under
the ZZ feature embedding, both with and without NQE, and
were examined across various regularization parameters λ.
The results clearly illustrate that NQE significantly decreases
the upper bound of the generalization error in quantum kernel
methods.
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FIG. 5. A comparative analysis of the generalization error bound
G with varying regularization weights λ. This plot illustrates the per-
formance enhancement—lower generalization error bound—when
employing NQE (green triangles) and PCA-NQE (red circles) over
conventional methods without NQE (blue squares) in quantum kernel
methods. PCA-NQE and NQE were optimized on the ibmq_toronto
quantum hardware. The error bound G was determined based on five
independent numerical simulations, presenting both the mean and
one standard deviation of G.

F. Expressibility and trainability

In both QNN and QKM, there exists a trade-off between
expressibility and trainability. In the QNN framework, highly
expressive quantum circuits often lead to barren plateaus,
characterized by exponentially vanishing gradients, which
severely hinders the trainability of the model [27,55]. In the
QKM framework, highly expressive embedding induces a
quantum kernel matrix whose elements exhibit an exponential
concentration [21]. Specifically, the concentration of quantum
kernel element KQ

i, j = kQ(xi, x j ) can be expressed by Cheby-
shev’s inequality,

Pr
[∣∣KQ

i, j − E
(
KQ

i, j

)∣∣ � δ
]

�
Var

(
KQ

i, j

)
δ2

, (14)

for any δ > 0. The quantum kernel element KQ
i, j arising from

highly expressive quantum embedding displays an exponen-
tial reduction in variance as the number of qubits increases.
Consequently, an exponentially large number of quantum cir-
cuit executions is necessary to accurately approximate the
quantum kernel matrix KQ. This poses a significant challenge
in the efficient implementation of QKM.

NQE addresses this challenge by constraining quantum
embedding to ensure large distinguishability. NQE strate-
gically limits the expressibility of the embedded quantum
states, thereby enhancing the trainability of QML mod-
els. This improvement is achieved by exploiting the prior
knowledge that a quantum embedding with large distin-
guishability can effectively approximate the true underlying
function.

Figure 6(a) illustrates how the expressibility varies as
we apply NQE models. Here, we investigated the Hilbert-
Schmidt norm of the deviation from unitary 2-design [55,58],
as a measure of expressibility. More specifically, the deviation

FIG. 6. (a) A comparative analysis of expressibility with and
without NQE models. The deviation from the unitary 2-design is
depicted, where a smaller deviation indicates higher expressibility.
The deviation is derived from 12 665 (2115) MNIST training (test)
data results. (b) A comparative analysis of the variance of quantum
kernel elements with and without NQE models. The variance was
computed from the off-diagonal elements of the quantum kernel
matrix KQ, constructed from 1000 samples of MNIST datasets. The
mean and one standard deviation from five independent iterations are
shown. For both (a) and (b), NQE models are optimized using the
ibmq_toronto quantum device.

is given as

A =
∫

Haar
(|ψ〉〈ψ |)⊗2dψ −

∫
E

(|φ〉〈φ|)⊗2dφ, (15)

where the first integral is taken over the Haar measure,
and the second integral is taken over the ensemble of data-
embedded quantum states, E . We then define the deviation
norm, ε =

√
Tr(A†A), where a small ε indicates a highly

expressive quantum embedding, and vice versa. In this ex-
periment, we employed NQE and PCA-NQE, which had
been previously optimized with ibmq_toronto hardware, as
detailed in Sec. II C 1. The value of ε was numerically com-
puted for ensembles of training and test datasets of classes
{0,1} from MNIST data, utilizing 12 665 instances for train-
ing data and 2115 instances for test data. We observe that
for both training and test data, both NQE methods lead
to reduction in the expressibility, consequently enhancing
trainability.

Figure 6(b) demonstrates how the variance of the quantum
kernel elements varies as we apply NQE models. To determine
the variance, we initially computed quantum kernel matrix
KQ using PCA-NQE, NQE, and quantum embedding without
NQE, following the procedures outlined in Sec. II E. The
variance was calculated using the off-diagonal elements of
KQ. These experiments were repeated five times, each with
different 1000 samples of data. The figure displays the mean
and one standard deviation calculated from these results. A
significant increase in the variance of quantum kernel ele-
ments is observed with the use of NQE models, implying that
the quantum kernel matrix KQ can be reliably approximated
with fewer quantum circuit executions when NQE models are
implemented. These results underscore the effectiveness of
NQE in enhancing the trainability of QML models within both
the QNN and QKM frameworks.
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III. CONCLUSIONS AND DISCUSSION

In this study, we investigated the crucial role of quantum
embedding, an essential step in applying quantum machine
learning to classical data. In particular, we highlighted how
quantum data separability, namely, the distinguishability of
quantum states representing different classes, determines the
lower bound of training error and affects the noise resilience
of quantum supervised learning algorithms. Motivated by
these results, we introduced neural quantum embedding
(NQE), which utilizes the power of classical neural net-
work and deep learning to enhance data separability in the
quantum feature space, thereby pushing the limits of quan-
tum supervised learning. Integrating classical neural networks
with parameterized quantum circuits to construct ML mod-
els has been explored in various studies, as referenced in
[48,59–62]. However, there remains ambiguity regarding why
and how classical neural networks should be incorporated,
aside from addressing the limited size of quantum circuits
executable on NISQ computers or naively attempting to ex-
tend the success of deep learning to the domain of QML.
Additionally, determining the optimal strategy for interfac-
ing classical and quantum neural networks, particularly for
transferring information from classical to quantum systems,
remains an important open problem. This work bridges these
gaps by linking quantum supervised learning with the theory
of quantum state discrimination, and contributes to developing
an effective approach for applying QML to classical data.
Quantum supervised learning for data classification can be
understood as a process of learning the optimal POVM for
minimizing error in discriminating density matrices represent-
ing data samples across different classes. In this regard, the
parameterized quantum circuit solely plays the role of identi-
fying the optimal measurement, whereas the optimal training
performance is dictated by how the data are encoded as the
quantum state. This optimal performance cannot be improved
by any PTP map (e.g., quantum channels). However, classical
neural networks can be utilized to learn the feature map from
data samples, maximizing the distinguishability of states in
the quantum feature space beyond the limits of the PTP maps
for the given dataset. A quantum computer is also essential in
this task because the objective function of the classical neural
network is based on the fidelity of quantum states, which is
conjectured to be hard to compute classically for the quantum
feature maps of interest. In this respect, NQE differs from
existing classical-quantum neural networks in that it trains
a classical neural network with an objective function com-
puted by a quantum computer specifically to maximize the
separability of quantum data, which is the optimal embedding
strategy for classification tasks.

NQE is versatile in the sense that it can be integrated into
all existing quantum data-embedding methods, such as am-
plitude encoding, angle encoding, and Hamiltonian encoding.
The training performance achieved by NQE is guaranteed to
be at least as good as those that do not use it and rely on a fixed
embedding function. This is because if the fixed embedding
function happens to be the optimal one for the given data,
NQE will learn to use it. Experimental results on IBM quan-
tum hardware demonstrate that NQE significantly enhances
quantum data separability, as quantified by increased trace

distance between two ensembles of quantum states. Utilizing
NQE led to a significant reduction in training loss and an im-
provement in accuracy and noise resilience in the MNIST data
classification tasks. Notably, the experimental results achieved
by NQE-enabled QML models outperformed the theoretical
optimal of the conventional ZZ feature embedding that does
not employ NQE.

Furthermore, we conducted numerical comparisons be-
tween NQE and three trainable unitary embedding circuits
using both MNIST and Fashion-MNIST datasets. This study
encompassed both noiseless and noisy simulations. The re-
sults demonstrate that NQE outperforms trainable unitary
embeddings in terms of both training and classification ac-
curacies across all scenarios.

A significant portion of current research in QML focuses
on the trade-off between the expressibility and trainability
of variational circuits within quantum neural networks. For
a QML model to be effective, it must possess a high de-
gree of expressibility, which ensures that it can approximate
the desired solution with considerable accuracy. Concur-
rently, the model should be trainable, enabling optimization
via a gradient descent algorithm or its variants. However,
expressibility and trainability present a trade-off: high ex-
pressibility typically leads to reduced trainability [21,27,55].
This trade-off constitutes a significant challenge in advanc-
ing QML. To address this challenge, a strategic approach
is to utilize problem-specific prior knowledge. For example,
Refs. [63,64] deliberately construct variational circuits with
limited expressibility, yet ensures the inclusion of the desired
solution, by harnessing data symmetry. However, such method
is not universally applicable to general datasets that do not
present any symmetry or group structure. NQE offers an ef-
fective solution to this challenge by optimizing the quantum
data-embedding process. As elucidated in Sec. II, a good
approximation of the true underlying function can only be
achieved with quantum embeddings that ensure high distin-
guishability of the data. By using this prior knowledge, NQE
constrains the quantum embedding to those that allow large
distinguishability between quantum states that represent the
data. Consequently, the embedded quantum states from NQE
are less expressive, resulting in an improvement in trainability.

The ultimate goal of machine learning is to construct a
model that not only accurately classifies the training data
(optimization), but also generalizes well to unseen data. In
conventional machine learning, a trade-off typically exists
between optimization and generalization [65]. However, our
experimental results indicate that the incorporation of NQE
markedly enhances both optimization and generalization met-
rics. This improvement is evidenced by reduced training error,
reduced test error, diminished local effective dimension, and
a reduced generalization upper bound in the quantum kernel
method. Consequently, NQE presents a robust methodology
for optimizing learning performance, while preserving strong
generalization capabilities.

Appendixes D and E present additional experimental find-
ings. The former exhibits noiseless and noisy simulation
outcomes on the Fashion-MNIST dataset, illustrating the ad-
vantages of NQE with an alternative dataset. The latter delves
into 8- and 12-qubit noiseless simulation results obtained from
MNIST datasets. These results demonstrate that the benefits
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of NQE persist even for larger quantum systems. Overall,
the supplementary findings consistently affirm that NQE sur-
passes traditional quantum data-embedding methods.

Further research is necessary to explore the impact of the
type or architecture of neural networks on the performance
of NQE and its optimization for specific types of target data.
For instance, investigating the applicability of recurrent neural
networks (RNNs) for handling sequential data and convolu-
tional neural networks (CNNs) for image data remains an
interesting avenue for future work. The incorporation of struc-
ture learning introduced in Ref. [66] with NQE is noteworthy
as it can further improve the embedding. However, one must
consider the trade-off between performance and the compu-
tational overhead introduced by the structure learning. As an
alternative to NQE, enhancing quantum data separability can
be achieved by implementing a probabilistic non-TP embed-
ding [67]. Comparing this approach with NQE or exploring
their combination for potential enhancements represents a
valuable direction for future investigation.

The data and software that support the findings of this study
can be found in the following repository of Ref. [68] .
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APPENDIX A: EXPERIMENTAL DETAILS

1. NQE structures and training

The PCA-NQE method employs the principal component
analysis (PCA) to extract n features from the original data,
where n is the number of qubits used for data embedding.
These features are then passed to a fully connected neural
network with two hidden layers. In the case of four-qubit
experiments, each hidden layer contains 12 nodes, whereas
in the eight-qubit cases, each hidden layer contains 24 nodes.
The neural network has 2n output nodes, corresponding to
2n numerical values used as quantum gate parameters for
the embedding. The rectified linear unit (ReLU) function
serves as the nonlinear activation. In contrast, NQE (without
PCA) utilizes a two-dimensional (2D) convolutional neural
networks (CNN) which takes original data as an input. After
each convolutional layer, we used 2D max pooling to reduce
the dimension of the data. The dimension of the nodes in each
layer is 28 × 28, 14 × 14, 7 × 7, and 2n, respectively.

The classical neural networks of the NQE models
are optimized by minimizing the implicit loss function
lfid[(xi, yi ), (x j, y j )] given in Eq. (3), where i and j are the in-
dices of the randomly selected training data. For the four-qubit
real device experiments, the NQE models were trained for

FIG. 7. Quantum circuit used for evaluating the local effective
dimension. The feature map, denoted by V [g(xi, w)], acts on the
initial state |0〉⊗4 to encode the input vector xi. Subsequently, a
parameterized unitary transformation U (θ ) is applied to evolve the
state, with the parameters θ chosen to minimize a specific loss
function.

50 iterations using the stochastic gradient descent with a learn-
ing rate of 0.1 and a batch size of 10. The loss function was
evaluated on ibmq_toronto with the selection of four qubits
based on the highest CNOTfidelities. For the ZZ feature embed-
ding circuits, we configured the total number of layers (L) to
1 and applied two qubit gates only on the nearest-neighboring
qubits to avoid an excessive number of CNOTgates.

2. Classification with QCNN

In the noiseless simulation setting, we utilized QCNN cir-
cuits featuring a general SU(4) convolutional ansatz (refer to
Fig. 2(i) in Ref. [47]). The optimization of circuit parameters
was performed over 1000 iterations using the Nesterov mo-
mentum algorithm with a learning rate of 0.01 and a batch size
of 128. Each simulation was repeated five times with random
parameter initialization.

For experiments on IBM quantum hardware, QCNN cir-
cuits were configured with a basic convolutional ansatz
comprising two Ry(θ ) gates, where Ri(θ ) represent a single-
qubit rotation around the i axis of the Bloch sphere by an angle
θ , and a CNOT gate (refer to Fig. 2(a) in Ref. [47]). To min-
imize circuit depth, pooling gates were omitted. Moreover,
the QCNN architecture was designed to allow only nearest-
neighbor qubit interactions, eliminating the need for qubit
swapping.

The training on quantum hardware consisted of 50 opti-
mization iterations, using the Nesterov momentum gradient
descent with a learning rate of 0.1 and a batch size of 10. Ex-
periments were conducted on three distinct quantum devices:
ibmq_jakarta, ibmq_toronto, and ibmq_perth.

Performance evaluation was carried out by assessing the
classification accuracy of the trained QCNN models on a sep-
arate test set comprising 500 data points. This assessment was
executed across three different quantum devices: ibmq_lagos,
ibmq_kolkata, and ibmq_jakarta. The presented results were
obtained from 1024 executions of quantum circuits.

3. Effective dimension

The analysis of the effective dimension utilizes the QNN
architecture depicted in Fig. 7. The ZZ feature map, as ex-
plained in Eq. (4) and depicted in Fig. 8, is used for mapping
classical data to quantum states. When NQE is not used,
gj = xi j , which is the jth component of the input vector xi,

022411-10



NEURAL QUANTUM EMBEDDING: PUSHING THE LIMITS … PHYSICAL REVIEW A 110, 022411 (2024)

FIG. 8. Quantum circuit diagram for the trainable ZZ feature map
V [g(xi,w)]. The top and bottom segments collectively represent a
single quantum circuit, split into two parts due to limited horizontal
space. It uses mapping functions gj ∈ g(xi, w) to encode the input
vector xi.

and the quantum embedding becomes equivalent to Eq. (4)
with L = 1. When NQE is turned on, g j = g j (xi,w), which is
the jth component of the output vector generated by a three-
layer neural network. This output vector can be expressed
as g(xi,w) = σ [w(1)σ (w(0)xi + b(0) ) + b(1)]. In this equation,
w(0) ∈ R12×4, w(1) ∈ R4×12, b(0) ∈ R12, and b(1) ∈ R4 are the
trainable parameters of the network, and σ stands for the
ReLU activation function.

The parameterized unitary operator of the QNN used in this
analysis, represented as U (θ ) in Fig. 7, is shown in Fig. 9. This
circuit design is attractive for several reasons. First, it offers a
high degree of expressibility and entangling capability while
maintaining a relatively small number of gates and parameters
[58]. In addition, this design is hardware efficient [16,69], as
it relies solely on single-qubit rotations and CNOT operations
between adjacent qubits.

The analysis encompassed 10 artificial binary datasets,
each containing 400 samples. These datasets, characterized
by four features and four clusters per class, were gen-
erated through the make_classification function from the
Scikit-Learn library [70]. The NQE model was trained for
100 iterations using the Adam optimizer [71] with a batch
size of 25.

The local effective dimension [54] was determined using
the get_effective_dimension function from the LocalEffec-
tiveDimension class in QISKIT [72].

APPENDIX B: RELATION BETWEEN LINEAR
AND MSE LOSS

The main text focuses on maximizing the trace dis-
tance, which sets the optimal lower bound for the lin-
ear loss. However, many conventional quantum machine

FIG. 9. Parameterized quantum circuit layout for the QNN,
which is represented as U (θ ) in Fig. 7.

learning (QML) routines employ mean squared error (MSE)
loss. Here, we provide some relationship between linear loss
and MSE loss. Consider the data {xi, yi}N

i=1 and the vectors
Y = (y1, y2, . . . , yN ) and f (X ) = [ f (x1), f (x2), . . . , f (xN )].
The linear and MSE loss are expressed as

Llinear = ||Y − f (X )||1, (B1)

LMSE = ||Y − f (X )||22. (B2)

By the vector norm inequalities, we can both upper bound and
lower bound the MSE loss with the linear loss,

1

N
L2

linear � LMSE � L2
linear. (B3)

Reducing the lower bound of empirical linear loss by max-
imizing the trace distance reduces both the upper and lower
bounds of the empirical MSE loss. Hence, we can expect
neural quantum embedding (NQE) to work favorably for MSE
loss as well.

APPENDIX C: RELATION BETWEEN IMPLICIT LOSS
FUNCTION AND TRACE DISTANCE

During the NQE training, we optimize the classical neural
network to maximize the trace distance between two data-
embedded ensembles. Although using trace distance directly
as a loss function is ideal, we utilized an implicit loss func-
tion due to the computational hardness of the trace distance
calculation. The implicit loss function is delineated in Eq. (3).

When yi = y j , the loss function directs NQE to maximize
the fidelity between |xi〉 and |x j〉 as much as possible. Due to
the contractive property of the trace distance, D(ρ−, ρ+) �
D(|ψ−〉, |ψ+〉), where, |ψ−〉, |ψ+〉 are the purification of
ρ−, ρ+, respectively. The equality holds when the two data
ensembles are pure states. The purity of ρ± is

Tr[(ρ±)2] = 1

(N±)2

N±∑
i, j=1

|〈x±
i |x±

j 〉|2.

Therefore, maximizing the fidelity when yi = y j increases the
purity of ρ±, allowing the trace distance to achieve its upper
bound.

Conversely, when yi 
= y j , the loss function directs NQE
to minimize the fidelity between |xi〉 and |x j〉 as much as
possible. For simplicity, let us consider a balanced set of
data, N+ = N− = N . Due to strong convexity of the trace
distance [24],

D

(
1

N

N∑
i=1

|x−
i 〉〈x−

i |, 1

N

N∑
i=1

|x+
i 〉〈x+

i |
)

� 1

N

N∑
i=1

√
1 − |〈x+

i |x−
i 〉|2. (C1)

Hence, minimizing the fidelity when yi 
= y j increases the
upper bound of the trace distance. Therefore, it is evident that
minimizing the implicit loss function contributes positively to
maximizing the trace distance.
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FIG. 10. Results for the additional experiments with Fashion-MNIST datasets using noiseless simulations. (a) Plot depicting the evolution
of the trace distance between two ensembles of quantum states embedded by the NQE models during training, compared to the trace distance
from conventional quantum embedding without NQE. (b) QCNN simulation results. The blue solid, red dashed, and green dash-dotted lines
represent the mean training loss histories for conventional ZZ feature embedding, PCA-NQE, and NQE, respectively. The shaded regions in
the figure represent one standard deviation from the mean. These values are acquired from five repetitions of each QCNN training with random
initialization of parameters. The thicker versions of these lines indicate the theoretical lower bounds for each method. (c) A comparative
analysis of the generalization error bound G with varying regularization weights λ. This plot illustrates the performance enhancement—lower
generalization error bound—when employing NQE (green triangles) and PCA-NQE (red circles) over conventional methods without NQE
(blue squares) in quantum kernel methods. The error bound G was determined based on five independent numerical simulations, presenting
both the mean and one standard deviation of G. (d) Left: A comparative analysis of expressibility with and without NQE models. The deviation
from unitary 2-design is depicted, where a smaller deviation indicates higher expressibility. The deviation is derived from 12 000 (2000)
Fashion-MNIST training (test) data results. Right: A comparative analysis of the variance of quantum kernel elements with and without NQE
models. The variance was computed from the off-diagonal elements of the quantum kernel matrix KQ, constructed from 1000 samples of
Fashion-MNIST datasets. The mean and one standard deviation from five independent iterations are shown.

APPENDIX D: SIMULATION RESULTS
ON AN ADDITIONAL DATASET

In Sec. II C 1 of the main text, we presented how utiliz-
ing PCA-NQE and NQE improves QCNN performance when
classifying MNIST datasets, by demonstrating trace distance
history [Fig. 2(a)], as well as QCNN loss history and clas-
sification accuracies [Figs. 2(b) and 2(c)]. In Secs. II E and
II F, we illustrated how employing NQE models can improve
generalization performances and trainability.

In this section, we present additional experiments tested on
classes {T-shirt/Top, Trouser} of the Fashion-MNIST dataset
[52]. Figures 10 and 11 display results from noiseless and
noisy simulations, respectively. In both figures, panel (a) de-
picts the trace distance history with and without NQE models,
panel (b) presents QCNN loss history and classification ac-
curacy with and without NQE models, panel (c) presents
the upper bound of generalization error in QKM with and
without NQE models, and panel (d) presents expressibility
and trainability with and without NQE models. In alignment

with the results in the main text, additional experiments with
the Fashion-MNIST datasets indicate that employing NQE
effectively improves training error, classification accuracy,
generalization performance, and trainability.

The methodology for these experiments mirrors that of
the experiments with MNIST datasets, which are detailed in
Appendix A 1, and Secs. II E and II F. Due to the constraints
in accessing IBM quantum hardware, we adapted our ap-
proach for the noisy experiments. Instead of direct hardware
utilization, we employed a simulation environment using the
IBM FakeVigo device. This simulator mimics the essential
characteristics of the ibmq_vigo device, including its basis
gates, qubit connectivity, qubit relaxation (T1) and dephasing
(T2) times, and readout error rates.

APPENDIX E: SIMULATION RESULTS
WITH LARGER QUANTUM CIRCUITS

In Sec. II C 1 of the main text, we presented how utiliz-
ing NQE improves QCNN performances by demonstrating
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FIG. 11. Results for the additional experiments with Fashion-MNIST datasets using noisy simulations replicating the characteristics of the
ibmq_vigo quantum computer. Descriptions for (a)–(d) are identical to those provided in the caption of Fig. 10.

four-qubit experiments on both numerical simulation and IBM
quantum hardware experiments. In this section, we illustrate
the effectiveness of NQE methods in larger quantum systems,
specifically those comprising 8 and 12 qubits. Consistent with
the main text, we compare the effectiveness of NQE methods
on trace distance history [Figs. 12(a), 13(a)], QCNN loss
histories and classification accuracies [Figs. 12(b), 13(b)],
upper bound of generalization in QKM [Figs. 12(c), 13(c)],
and expressibility and trainability [Figs. 12(d), 13(d)] in 8
and 12 qubit setups. Due to limited computational resources
and access to IBM quantum hardware, the experiments are
only conducted with numerical simulation. The experimental
methods are identical to the ones of Sec. II C 1 of the main
text, except the expressibility is computed by deviation from
1-design (instead of 2-design) due to limited computational
resources.

The experimental results further validate that NQE meth-
ods are effective at enhancing QML algorithms on larger
quantum systems. Application of NQE yielded improvements
in training loss, classification accuracy, generalization up-
per bounds, and trainability metrics. Unlike in four-qubit
experiments, training losses did not reach their theoretical
minima. This indicates that QCNN circuits did not ac-
curately approximate the optimal Helstrom measure. Such
behavior is expected as QCNN circuits are inexpressive
due to its parameter-sharing and nearest-neighbor variational
ansatz constraints. Nonetheless, NQE application signifi-
cantly enhanced training loss, underscoring its utility in
advancing QML algorithm performance. Additionally, in sce-
narios where NQE is not employed, there is a notable decline

in trainability with 8 and 12 qubits [Figs. 12(d), 13(d)], as
opposed to those with 4 qubits (Fig. 6). This reduction in
trainability is evidenced by increased expressibility and kernel
variance. Conversely, in systems utilizing NQE models, both
expressibility and kernel variance maintain consistent levels,
demonstrating enhanced trainability even in larger-scale quan-
tum circuits.

APPENDIX F: ADDITIONAL ANALYSIS
ON EXPRESSIBILITY AND TRAINABILITY

Let N be the number of samples drawn from a data distri-
bution D, and let d = dim(span{|xi〉}i=1,...,N ) � N represents
the dimension of the subspace spanned by the quantum state
representation of training data, determined by quantum em-
bedding [32]. The dimension d serves as an indicator of
the expressibility of the given quantum embedding and the
complexity of the machine learning (ML) model necessary for
learning from the quantum-embedded data. This relationship
can be rigorously demonstrated in the context of the quantum
kernel method (QKM) as follows. The QKM can be employed
to learn a quantum model defined by f (x) = Tr[OUρ(x)U †],
where ρ(x) is the density matrix representation of the data
encoded as a quantum state, from N samples drawn from a
data distribution D. The expected risk (i.e., prediction error)
of the prediction model h(x) constructed from the learning
procedure is bounded as

Ex∈D|h(x) − f (x)| � c

√
min[d, Tr(O2)]

N
, (F1)

022411-13



HUR, ARAUJO, AND PARK PHYSICAL REVIEW A 110, 022411 (2024)

FIG. 12. Results for the additional experiments with eight qubit noiseless simulations. Descriptions for (a)–(c) are identical to those
provided in the caption of Fig. 10. (d) Left: A comparative analysis of expressibility with and without NQE models. The deviation from
unitary 1-design is depicted, where a smaller deviation indicates higher expressibility. The deviation is derived from 12 665 (2115) MNIST
training (test) data results. Right: A comparative analysis of the variance of quantum kernel elements with and without NQE models. The
variance was computed from the off-diagonal elements of the quantum kernel matrix KQ, constructed from 1000 samples of MNIST datasets.
The mean and one standard deviation from five independent iterations are shown.

FIG. 13. Results for the additional experiments with 12 qubit noiseless simulations. Descriptions for (a)–(d) are identical to those provided
in the caption of Fig. 12.
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TABLE I. The rank of the quantum kernel matrix (d) evaluated
with and without NQE. Four different binary datasets, each contain-
ing 800 samples, were generated from two pairs of MNIST classes.
For each pair of datasets, two PCA configurations were used to
reduce the number of features to four and eight, respectively.

d

NQE
Dataset (5 runs)

Classes Input size Untrained 1 2 3 4 5

0 and 1 4 175 15 14 19 15 13
8 800 14 16 17 20 20

3 and 8 4 175 38 38 40 31 27
8 800 55 54 87 50 127

where c > 0 is a constant. The quantity of interest here is d
because it is affected by NQE and Tr(O2) grows exponentially

with the number of qubits in many cases (e.g., Pauli observ-
ables). This equation implies that the hardness of the learning
problem depends on the quantum embedding that represents
the set of N training data.

We conducted numerical experiments to assess the effec-
tiveness of NQE in reducing the dimension d . To evaluate
this, we employed a binary classification task involving the
discrimination of digits 0 and 1 or 3 and 8 from the MNIST
dataset. We computed the rank of the quantum kernel matrix
both with and without NQE, and the dimension d was de-
termined as d = rank(KQ). The results, presented in Table I,
clearly demonstrate that NQE effectively reduces d . As d rep-
resents the effective dimension of the quantum training data
used for model training, its reduction indicates that simpler
ML models with NQE can achieve comparable performance
to more complex models applied to the original data without
NQE. The findings suggest that by using NQE, we can con-
strain quantum embedding to those that allow for large data
separability. This reduction in the expressibility of quantum
embedding, conversely, improves the trainability of the model.
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[29] K. Siudzińska, S. Chakraborty, and D. Chruściński, Interpo-
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