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Multipartite entanglement classes of a multiport beam splitter
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The states generated by a multiport beam splitter usually display genuine multipartite entanglement between
the many spatial modes. Here we investigate the different classes of multipartite entangled states that arise in this
practical situation, working within the paradigm of stochastic local operations with classical communication.
We highlight three scenarios, one where the multipartite entanglement classes follow a total number hierarchy,
another where the various classes follow a nonclassicality degree hierarchy, and a third one that is a combination
of the previous two. Moreover, the multipartite entanglement of higher-dimensional versions of Dicke states
relates naturally to our results.
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I. INTRODUCTION

Multipartite entanglement is a fundamental property of
quantum systems, enabling the success of tasks that would
be unthinkable classically [1–4]. It has deep connections to
many-body physics [5,6] as well as foundational aspects of
quantum theory [7]. In the paradigm of stochastic local op-
erations with classical communication (SLOCC), there are
inequivalent classes of multipartite entangled states, each
class having radically distinct physical and informational
properties [8]. A considerable number of criteria have been
developed to address the problem of SLOCC classifica-
tion [9–14], which is known to be highly nontrivial from a
computational point of view.

In the realm of quantum optics, a multiport beam splitter
(MBS) can be employed for the generation of certain specific
multipartite entangled states [15,16]. Our approach in the
present work, however, is to consider typical output states of
a MBS and to then determine the SLOCC classes that arise in
this practical scenario. These multimode entangled states are
the result of the action of the MBS on a single-mode input
state, revealing nonclassical features of this state [17–20].

The paper is divided as follows. In Sec. II, we give a brief
review of the problem of SLOCC classification in general,
as well as the main features of a multiport beam splitter. In
Sec. III, we show various results concerning the multipartite
entanglement classes of the states generated by a multiport
beam splitter. We consider three paradigmatic scenarios ac-
cording to the input state: (a) input states that are finite
superpositions of number states, (b) input states that are finite
superpositions of coherent states, and (c) input states that are
finite superpositions of both number and coherent states. This
restriction to finite superpositions comes from the observa-
tions in Ref. [21], where it is shown that even in the bipartite
case there exist states with an infinite degree of entanglement
that cannot be connected through SLOCC. We show that the
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multipartite entanglement classes of scenario (a) are governed
by a hierarchy based on the highest total number of photons in
the state, while the classes in scenario (b) follow a hierarchy
based on the so-called nonclassicality rank [17,18]. Interest-
ingly, some superpositions of qudit Dicke states [22–24] and
a recent generalization of these [25] fall in the classification
scheme of scenario (a). In Sec. IV, we compare the three types
of states arising from scenarios (a), (b), and (c), showing that
each scenario constitutes a multipartite entanglement class
of its own and that this induces inequivalencies between the
corresponding input states. Finally in Sec. V, we discuss the
conclusions of the results as well as perspectives on future
problems.

II. PRELIMINARIES

A. Multipartite entanglement classes

We consider a state space H composed of m subsystems
H1,H2, . . . ,Hm, i.e., H = ⊗m

k=1 Hk . Let dim(Hk ) = dk and
let {|e1, e2, . . . , em〉} denote the computational basis of H,
with ek = 0, 1, . . . , dk − 1. An arbitrary state |�〉 ∈ H is
written in the computational basis as

|�〉 =
dk−1∑
ek=0

�e1e2...em |e1, e2, . . . , em〉,

where the scalars �e1e2...em constitute the so-called coefficient
tensor of the state |�〉. For the purposes of this work, we can
assume d1 = d2 = · · · = dm = d . We can arrange the coef-
ficients �e1e2...em in a matrix M|�〉 = (�e1,e2...em ), called the
coefficient matrix of |�〉, where the rows are indexed by the
values e1 = 0, 1, . . . , d − 1, while the columns are indexed
by the remaining values e2 . . . em in lexicographic order. We
can then arrange M|�〉 as

M|�〉 = (M0|M1|. . .|Mdm−2−1),
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where each submatrix Mk is a d×d block. For the bipartite
case m = 2, the coefficient matrix is a proper matrix:

M|�〉 =

⎛
⎜⎜⎝

�0,0 �0,1 . . . �0,d−1

�1,0 �1,1 . . . �1,d−1
...

...
...

�d−1,0 �d−1,1 . . . �d−1,d−1

⎞
⎟⎟⎠.

The coefficient matrix for the case d = 2 and m = 3 (three
qubits) is given by

M|�〉 =
(

�0,00 �0,01 �0,10 �0,11

�1,00 �1,01 �1,10 �1,11

)
.

In general, we say that a state ρ is SLOCC equivalent to ρ ′
(notation: ρ ∼ ρ ′) if one can be obtained from the other by the
sole use of SLOCC procedures; otherwise, we call the states
SLOCC inequivalent. For pure states, the problem simplifies
significantly [2].

Observation 1. The m-partite pure states |�〉 and |�〉 are
SLOCC equivalent if and only if there exists invertible local
operators (ILOs) Lk such that

|�〉 = L1 ⊗ L2 ⊗ · · · ⊗ Lm|�〉.
Besides entanglement, ILOs play an important role in hid-

den nonlocality [26,27], where they are known as local filters.
The action of ILOs on a state |�〉 induces linear operations on
the rows and columns of the coefficient matrix M|�〉. For the
bipartite case m = 2, the rank of M|�〉, called the Schmidt
rank of |�〉, is invariant under ILOs and thus two bipartite
pure states are SLOCC equivalent if and only if they have the
same (finite) Schmidt rank [14,28]. For m > 3, we say that a
state is genuinely mutipartite entangled if it is entangled with
respect to any bipartition of the state space, i.e., if the Schmidt
rank of any bipartition is greater than 1.

The three-qubit case d = 2 and m = 3 reveals that there
are two SLOCC-inequivalent classes of genuinely entan-
gled states [8]: the Greenberger-Home-Zeilinger (GHZ) class,
with representative |GHZ〉 = 2−1/2(|000〉 + |111〉) and the
W class, with representative |W 〉 = 3−1/2(|001〉 + |010〉 +
|100〉). For the four-qubit case d = 2 and m = 4, it is known
that there exists an infinite number of SLOCC-inequivalent
genuinely entangled states and it is then more practical to
classify states in terms of a finite number of families of
SLOCC-equivalent classes [10].

For the construction of some of the ILOs connecting
SLOCC-equivalent states, we use the ideas of Ref. [14], where
ILOs are decomposed as finite sequences of elementary local
operations (ELOs). It is possible to then employ a multipartite
version of the Gauss-Jordan elimination procedure on the co-
efficient matrix of a state in order to map it into the coefficient
matrix of a suitable state that is representative of this class.
Other multipartite entanglement classification schemes based
on the coefficient matrix are found in Refs. [11,12,29–31].

B. States generated by a multiport beam splitter

A MBS is an optical device that implements linear op-
erations on the creation and annihilation operators on m
spatial modes [32]. Specifically, if we write a vector a† =
(a†

1, a†
2, . . . , a†

m), then the effect of the MBS is to perform the
map a† → Sa†, where S, the so-called scattering matrix, is

an element of SU (m); a similar transformation takes place
for the annihilation operators. Alternatively, one can see the
effect of the MBS as the unitary action a†

k → USa†
kU †

S , for
k = 1, . . . , m.

We are mainly interested in input states of the form |ψ〉 ⊗
|0, 0, . . . , 0〉, where all modes but the first one are equal
to the vacuum state. The reason for this restriction is to
avoid interference effects between different modes, which can
complicate considerably the problem of entanglement clas-
sification [33–35]. Moreover, the MBS is a passive physical
device and any quantum correlation present at its exit can be
traced back to the quantum correlations of the single-mode
state |ψ〉 entering the MBS [17–20]. With this restriction in
mind, we show in Appendix A that a balanced MBS on the
first mode, in the sense that

a†
1 → USa†

1U †
S = a†

1 + a†
2 + · · · + a†

m√
m

,

is sufficient for the SLOCC classification of output states of
any MBS; thus, without loss of generality, in what follows we
only consider the action of a balanced MBS.

A number state on the first mode is given by

|n, 0, . . . , 0〉 = (a†
1)n

√
n!

|0, 0, . . . , 0〉.

The output state of the MBS |�n〉 = US|n, 0, . . . , 0〉 is thus

|�n〉 = 1√
n!

(
a†

1 + a†
2 + · · · + a†

m√
m

)n

|0, 0, . . . , 0〉

=
∑

n1+···+nm=n

(
n

n1, . . . , nm

)
(a†

1)n1 . . . (a†
m)nm

√
n!mn

|0, . . . , 0〉,

where the summation runs through all the possible non-
negative integer values n1, . . . , nm satisfying the constraint
n1 + · · · + nm = n and we use the multinomial coefficient(

n

n1, . . . , nm

)
= n!

n1!n2! . . . nm!
.

Some simple algebraic manipulation results in

|�n〉 = 1

mn/2

∑
n1+···+nm=n

√(
n

n1, . . . , nm

)
|n1 . . . nm〉.

This state is symmetrical with respect to any permutation of
the modes.

Another interesting type of input state is the coherent state

|α, 0, . . . , 0〉 = D1(α)|0, 0, . . . , 0〉,

where D1(α) = eαa†
1−α∗a1 is the displacement operator. The

output state US|α, 0, . . . , 0〉 then reads

|ηα〉 = |α/
√

m, α/
√

m, . . . , α/
√

m〉,

since USD1(α)U †
S = D1(α/

√
m)D2(α/

√
m) . . . Dm(α/

√
m).
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III. RESULTS

A. Superpositions of number states as input

We consider an m-port balanced beam splitter and an input
state on the first mode given by

|ψ〉 ⊗ |0, . . . , 0〉 =
N∑

n=0

cn|n, 0, . . . , 0〉,

representing an arbitrary finite superposition of number states.
The value N represents the highest total number of photons
or energy. A finite superposition of number states can be
obtained from an infinite one via truncation methods [36–38].
The resulting output state of the MBS is then

|�〉 = US|ψ〉 ⊗ |0, . . . , 0〉 =
N∑

n=0

cn|�n〉, (1)

where, according to the previous section,

|�n〉 =
∑

n1+...+nm=n

Cn
n1...nm

|n1 . . . nm〉;

Cn
n1...nm

= 1

mn/2

√(
n

n1, . . . , nm

)
. (2)

We now show that |�〉 can be brought to a more convenient

form |�〉 = ∑N
n=0 hn|�n〉, where hn = cn

√
n!
mn and we define

the un-normalized states1

|�n〉 =
∑

n1+···+nm=n

|n1 . . . nm〉,

which we call uniform states. Some superpositions of these
uniform states were considered in Ref. [14], based on the
related work [39] and having interesting properties such as
coefficient matrices with special structures. Moreover, some
of the so-called qudit Dicke states [22–24], as well as the
recent spin-s Dicke states [25], can be seen as specific super-
positions of the uniform states |�n〉, i.e., are special cases of
states in the form |�〉 = ∑N

n=0 hn|�n〉 and hence their SLOCC
classification can be obtained within our framework.

Observation 2. The output state |�〉 is SLOCC equivalent
to |�〉. In particular, |�n〉 ∼ |�n〉 for any value of n.

Proof. Given the following invertible operation on mode k,

Rk =
N∑

nk=0

√
nk!|nk〉〈nk|,

we notice first that
m⊗

k=1

Rk|�n〉 =
∑

n1+···+nm=n

Cn
n1...nm

m⊗
k=1

Rk|n1 . . . nm〉

=
∑

n1+···+nm=n

Cn
n1...nm

√
n1! . . . nm!|n1 . . . nm〉

=
√

n!

mn

∑
n1+···+nm=n

|n1 . . . nm〉 =
√

n!

mn
|�n〉.

1An un-normalized state |ν〉 is trivially SLOCC equivalent to its
normalized version via the ILO 1√〈ν|ν〉I.

We thus conclude that
m⊗

k=1

Rk|�〉 =
N∑

n=0

cn

m⊗
k=1

Rk|�n〉 =
N∑

n=0

hn|�n〉 = |�〉,

where hn = cn

√
n!
mn . �

We are now ready to show that the output state |�〉 =∑N
n=0 cn|�n〉 is SLOCC equivalent to |�N 〉, i.e., the term with

highest number of photons.
Observation 3. The uniform state |�〉 is SLOCC equiv-

alent to |�N 〉. Moreover, we have the following chain of
SLOCC equivalences:

|�〉 ∼ |�〉 ∼ |�N 〉 ∼ |�N 〉.
Proof. In what follows, x denotes the number x/(N + 1)

in base N + 1. For example, if N = 3, then 56 = 32,
since 56/4 = 14 and 14 equals 32 = 3.41 + 2.40 in base 4.
The state |�〉 has a coefficient matrix given by M|�〉 =
(�n1,n2...nm ). We then write the array n2 . . . nm, which gives the
columns of M|�〉, as n2 . . . nm. The coefficient matrix of |�〉
can then be written as

M|�〉 = (
M0|M1|M2|. . .|Mdm−2−1

)
,

where the submatrices Mk are indexed according to their first
column k with the decimal expression n2n3 . . . nm; notice that
k is then a multiple of N + 1. This notation is to take into
account the repetitions of submatrices that occur for m > 3,
as well as identifying null submatrices and allowing possi-
ble future generalizations for the infinite superposition case.
Moreover, let ||�k|| = n2 + n3 + · · · + nm. The submatrices Mk
are Hankel matrices [40] of a special form,

M0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

h0 h1 h2 h3 . . . hN

h1 h2 h3 . . . hN 0

h2 h3 . .
. 0

...

h3
... . .

.
. .

.

... hN 0
...

hN 0 . . . . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Mk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h1 h2 h3 h4 . . . hN 0
h2 h3 h4 . . . hN 0 0

h3 h4 . .
. 0

...
...

h4
... . .

.
. .

. ...
... hN 0

... 0
hN 0 . . . . . . 0 0
0 0 . . . . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

||�k|| = 1,

Mk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

h2 h3 h4 h5 . . . hN 0 0
h3 h4 h5 . . . hN 0 0 0

h4 h5 . .
. 0

...
...

...

h5
... . .

.
. .

. ...
...

... hN 0
... 0 0

hN 0 . . . . . . 0 0 0
0 0 . . . . . . 0 0 0
0 0 . . . . . . 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

||�k|| = 2,
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and an arbitrary submatrix with ||�k|| = n is given by

Mk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

hn hn+1 hn+2 hn+3 . . . hN 0 . . . 0
hn+1 hn+2 hn+3 . . . hN 0 0 . . . 0

hn+2 hn+3 . .
. 0

...
...

...

hn+3
... . .

.
. .

.

... hN 0
...

...
...

hN 0 . . . . . . 0 0 . . . 0
0 0 . . . . . . 0 0 . . . 0
...

...
...

...
...

0 0 . . . . . . 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Notice that if ||�k|| > N , the submatrix Mk is a null ma-
trix. Let A = A(N−1)A(N−2) . . . A(1)A(0), where A(k) = I +∑N−1

n=k λn|n〉〈N − k|, with I denoting the identity operator and
λn = −hn/hN . The matrices representing these operators in
the number basis are given by

A(0) =

⎛
⎜⎜⎜⎜⎝

1 λ0

1 λ1
. . .

...

1 λN−1

1

⎞
⎟⎟⎟⎟⎠,

A(1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 λ1

1 λ2
. . .

...

1 λN−1

1
1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

and, in general,

A(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 λk

1 λk+1
. . .

...

1 λN−1

1
. . .

1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

k = 0, 1, . . . , N − 1,

where the empty spaces are to be understood as 0. No-
tice that each A(k) is the product of ELOs that imple-
ment Gaussian elimination on the lines of the coefficient
matrix [14].

Let Aq denote the operator A just introduced acting on
mode q. The operation A1|�〉 = A(N−1)

1 A(N−2)
1 . . . A(1)

1 A(0)
1 |�〉

corresponds to the left multiplication AMk of each submatrix
of the coefficient matrix. The operation A(0)

1 |�〉 amounts to

mapping M0 into

A(0)M0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 h1 h2 h3 . . . hN

0 h2 h3 . . . hN 0
... h3

... . .
. 0

...
...

... hN . .
.

0 hN 0
...

hN 0 . . . . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

while the other submatrices are unchanged. The operation
A(1)

1 A(0)
1 |�〉 maps A(0)M0 into

A(1)A(0)M0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 h2 h3 . . . hN

0 0 h3 . . . hN 0
...

...
... . .

. 0
...

... 0 hN . .
.

0 hN 0
...

hN 0 . . . . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

while the various Mk with ||�k|| = 1 are mapped into

A(1)Mk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 h2 h3 h4 . . . hN 0
0 h3 h4 . . . hN 0 0

0 h4
... . .

. 0
...

...
...

... hN . .
. ...

0 hN 0
... 0

hN 0 . . . . . . 0 0
0 0 . . . . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and the other submatrices are unchanged. The operation
A(2)

1 A(1)
1 A(0)

1 |�〉 maps A(1)A(0)M0 into

A(2)A(1)A(0)M0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 h3 h4 . . . hN

0 0 0 h4 . . . hN 0
...

...
...

... . .
. 0 0

...
... 0 hN . .

. 0
...

... 0 hN 0 . .
.

0 hN 0 0
...

hN 0 0 . . . . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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maps the various A(1)Mk with ||�k|| = 1 into

A(2)A(1)Mk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 h3 h4 . . . hN 0
0 0 h4 . . . hN 0 0

0
...

... . .
. 0

...
...

... 0 hN . .
.

0 hN 0
...

...

hN 0 . . . . . . 0 0
0 0 . . . . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and the various Mk with ||�k|| = 2 into

A(2)Mk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 h3 h4 h5 . . . hN 0 0
0 h4 h5 . . . hN 0 0 0
... h5

... . .
. 0

...
...

...
...

... hN . .
. ...

...

0 hN 0
... 0 0

hN 0 . . . . . . 0 0 0
0 0 . . . . . . 0 0 0
0 0 . . . . . . 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

while the other submatrices are unchanged. It is easy to see
then that the overall effect of A1|�〉 on the various submatrices
such that ||�k|| = n is

Mk →

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0 hN 0 . . . 0
0 0 . . . 0 hN 0 0 . . . 0

0
... . .

. 0
...

...
...

... 0 . .
.

. .
.

0 hN 0
...

...
...

hN 0 . . . . . . 0 0 . . . 0
0 0 . . . . . . 0 0 . . . 0
...

...
...

...
...

0 0 . . . . . . 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Defining Y = (1/hN )I, we see that YA1|�〉 = |�N 〉. �
In Appendix B, we use Observation 3 to show that the

Schmidt rank of |�〉 for any bipartition of the modes is N + 1,
implying that it is a genuinely m-partite entangled state if
N �= 0. Since the Schmidt rank is invariant under SLOCC,
we see that |�n〉 and |�n′ 〉 are SLOCC inequivalent whenever
n �= n′. In other words, for each value of n there is a SLOCC
equivalence class Cn with representatives |�n〉 and |�n〉. The
set Cn is convex, with mixed states comprised of convex com-
binations of the pure states in this SLOCC equivalence class;
for a mixed state with the density matrix ρ, the minimum
Schmidt rank of the pure states that are needed to construct
ρ is called the Schmidt number of ρ [41,42].

Moreover, the Schmidt number implies the following hier-
archy among the SLOCC classes [43], as depicted in Fig. 1:

C0 ⊂ C1 ⊂ C2 ⊂ · · · ⊂ Cn−1 ⊂ Cn ⊂ Cn+1 ⊂ · · · .

Similarly to the relation between the GHZ and W
classes [44], pure states in CK are those SLOCC equivalent
to |�K〉. By Observation 3, all states in the form

|�〉 = c0|�0〉 + c1|�1〉 + · · · + cK |�K〉
are in CK as well. Hence, we can always find a |�〉 ∈ CK that
is arbitrarily close (but never equal) to |�k〉 if k < K , e.g., by

FIG. 1. Structure of SLOCC classes for input states that are finite
superpositions of number states.

making ck → 1. The converse is not valid; however, since we
cannot increase the Schmidt rank of any bipartition by ILOs,
implying that it is not possible to find a state in CK arbitrarily
close to a given state in CK+1. This relation among the classes
can be inferred as well from the maximum overlap between a
given representative in a class and the whole set of states of
some other class [45].

B. Superpositions of coherent states as input

We now consider arbitrary “cat states” [46] of the form

|ψ〉 = 1

N

r−1∑
k=0

ck|αk〉

on the first mode, where |αk〉 are distinct coherent states and
N is a normalization factor. The number r represents the so-
called nonclassicality rank [17,18] of the input state.

This finite superposition of coherent states, when going
through an m-port beam splitter, results in the output state

|�〉 = US|ψ〉 ⊗ |0, . . . , 0〉 = 1

N

r−1∑
k=0

ck|ηαk 〉,

where |ηαk 〉 = |βk, . . . , βk〉 and βk = αk/
√

m.
Observation 4. The output state |�〉 is SLOCC equivalent

to the GHZ state

|GHZ(r)〉 = |0〉⊗m + |1〉⊗m + · · · + |r − 1〉⊗m

√
r

.

Proof. In each mode, the states |β0〉, |β1〉, . . . , |βr−1〉 form
a linearly independent set [47]. By Gram-Schmidt orthogonal-
ization [48], there exists an invertible operator B such that the
states |χk〉 = B|βk〉, k = 0, 1, . . . , r − 1, form an orthonor-
mal basis. Moreover, the unitary W = ∑r−1

k=0 |k〉〈χk| changes
from the {|χ0〉, |χ1〉, . . . , |χr−1〉} basis to the number ba-
sis {|0〉, |1〉, . . . , |r − 1〉}. Defining T = ∑r−1

n=0 c−1
n |n〉〈n| and

Y ′ = (N /
√

r)I, we have

Y ′T1

m⊗
q=1

WqBq|�〉 = 1√
r

r−1∑
k=0

|k, k, . . . , k〉,
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FIG. 2. Structure of SLOCC classes for input states that are finite
superpositions of coherent states.

and we have shown that |�〉 is SLOCC equivalent to the m-
partite GHZ state |GHZ(r)〉. �

With a reasoning similar to the previous case, each state
|GHZ(r)〉 constitutes a representative of a SLOCC equivalence
class Rr , (r = 1, 2 . . .). The Schmidt rank of |GHZ(r)〉 for any
bipartition of the state space H is obviously r. We deduce then
a hierarchy based on the nonclassicality rank of the input state,
as depicted in Fig. 2:

R1 ⊂ R2 ⊂ R3 ⊂ · · · ⊂ Rr−1 ⊂ Rr ⊂ Rr+1 ⊂ · · · .

Let C = ∑r−1
n=0 dn|n〉〈n|. Then we have

C1|GHZ(r)〉 = 1√
r

r−1∑
k=0

dk|k, k, . . . , k〉.

It is clear then that |GHZ(r)〉 can be made arbitrarily close to
|GHZ(r′ )〉 for r′ < r, but the converse is not true for r′ > r.

C. Hybrid superpositions

A more exotic example of the input state is a finite super-
position of both number and coherent states,

|ψ〉 = 1

N

(
N∑

n=0

cn|n〉 +
r−1∑
k=0

dk|αk〉
)

,

where N stands for a normalization factor. The output state
produced by a MBS when |ψ〉 is the input is, according to the
previous discussion,

|�〉 = 1

N

(
N∑

n=0

cn|�n〉 +
r−1∑
k=0

dk|ηαk 〉
)

,

where |ηαk 〉 = |βk, . . . , βk〉 and βk = αk/
√

m.
Observation 5. The output state |�〉 is SLOCC equivalent

to the state

|�N 〉 +
N+r∑

n=N+1

|n〉⊗m.

Proof. The set of states {|0〉, |1〉, . . . , |N〉} ∪
{|β0〉, |β1〉, . . . , |βr−1〉} is linearly independent in each
mode. By Gram-Schmidt orthogonalization [48], there

exists an invertible operator F such that F |n〉 = |n〉,
n = 0, 1, . . . , N , and |μk〉 = F |βk〉, k = 0, 1, . . . , r − 1,
and such that {|0〉, |1〉, . . . , |N〉} ∪ {|μ0〉, |μ1〉, . . . , |μr−1〉}
forms an orthonormal basis. The unitary V = ∑N

n=0 |n〉〈n| +∑N+r
k=N+1 |k〉〈μk−(N+1)| changes from the {|0〉, |1〉, . . . , |N〉} ∪

{|μ0〉, |μ1〉, . . . , |μr−1〉} basis to the number basis
{|0〉, |1〉, . . . , |N〉, |N + 1〉, |N + 2〉, . . . , |N + r〉}. Defining
Q = ∑N

n=0 |n〉〈n| + ∑N+r
n=N+1 d−1

n |n〉〈n| and P = (N )I, we
have

Q1P1

m⊗
q=1

VqFq|�〉 =
N∑

n=0

cn|�n〉 +
N+r∑

n=N+1

|n〉⊗m.

Let G = ∑N
n=0

√
n!|n〉〈n| + ∑N+r

n=N+1 |n〉〈n|; we have, accord-
ing to the proof of Observation 2,

m⊗
q=1

Gq

⎛
⎝ N∑

n=0

cn|�n〉 +
N+r∑

n=N+1

|n〉⊗m

⎞
⎠

=
N∑

n=0

hn|�n〉 +
N+r∑

n=N+1

|n〉⊗m.

Let A and Y be the operators used in the proof of Observation
3. Then we have

YA1

⎛
⎝ N∑

n=0

hn|�n〉 +
N+r∑

n=N+1

|n〉⊗m

⎞
⎠ = |�N 〉 +

N+r∑
n=N+1

|n〉⊗m,

and the output state |�〉 is thus SLOCC equivalent to |�N 〉 +∑N+r
n=N+1 |n〉⊗m. �
By previous results, the Schmidt rank of |�N 〉 +∑N+r
n=N+1 |n〉⊗m is N + r + 1. Hence, there are different val-

ues of N and r where the respective states states have equal
Schmidt ranks. For example, the states |�3〉 + ∑5

n=4 |n〉⊗m

and |�2〉 + ∑5
n=3 |n〉⊗m both have Schmidt rank 6. As

discussed in the next session, these states are SLOCC inequiv-
alent, despite having equal Schmidt ranks.

IV. COMPARISON BETWEEN THE THREE SCENARIOS

We considered the three types of superpositions of the
previous section separately and, in order to determine whether
each type of representative is equivalent or inequivalent under
SLOCC, we invoke the following result from Refs. [49,50].

Theorem 1. Two pure states of a multipartite system are
equivalent under SLOCC if and only if (i) they have the same
local rank of each party, and (ii) the ranges of the adjoint
reduced density matrices of each party of them are related by
certain ILOs.

By adjoint reduced density matrices, we can understand the
density matrices obtained through discarding (partial trace) of
one of the local subsystems Hk of the global system H =
H1 ⊗ H2 ⊗ · · · ⊗ Hm. Denoting by ak the number of prod-
uct states in the range of the adjoint reduced density matrix
related to Hk , it is a consequence of Theorem 1 above that,
if two states are SLOCC equivalent, then the array of values
[a1, a2, . . . , am] of these states must be equal. Or, equiva-
lently, if any value ak differs for these states, then they are
SLOCC inequivalent.

022409-6
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Due to the full permutational symmetry of the states con-
sidered and the simple form of the representatives in each
scenario, the values ak of a given state are all equal and are
easily obtained. Following the notation in Refs. [49,50], we
have the following classification:

(i) |�N 〉 ∼ |�N 〉 ∈ [1, 1, . . . , 1].
(ii) |GHZ(r)〉 ∈ [r, r, . . . , r].
(iii) |�N 〉 + ∑N+r

n=N+1 |n〉⊗m ∈ [r + 1, r + 1, . . . , r + 1].
It is straightforward then that each representative is

SLOCC inequivalent to the other, even if they have the same
Schmidt rank. For example, the Schmidt rank of |GHZ(M )〉,
|�M−1〉, and |�M−2〉 + |M − 1〉⊗m is M, but each is re-
spectively in [M, M, . . . , M], [1, 1, . . . , 1], and [2, 2, . . . , 2],
being thus inequivalent by SLOCC.

The inequivalence between the three scenarios does not
imply a hierarchy among the different SLOCC classes. How-
ever, in the multiqubit situation there are analytical results
concerning the relationship between the multiqubit GHZ and
W classes [44,45], coming from parametrizations of the sym-
metric subspaces of multiqubits. The hierarchies between the
SLOCC classes described here will thus remain an open ques-
tion.

As shown in Refs. [17–20] the multipartite entanglement of
the output state of a MBS is due to the nonclassicality of the
single-mode input state. We see that, despite having the same
Schmidt rank, the output states in each of the three scenar-
ios just described belong to different SLOCC classes. Since
there is a one-to-one correspondence between the Schmidt
rank of the output state and the nonclassicality rank of the
input state, this implies that the input states are inequivalent,
despite having equal nonclassicality ranks. By inequivalent
we mean that these input states could not be mapped into one
another via single-mode classical operations, i.e., quantum
operations that preserve the linearity in a and a† [51]. For
example, the input states |1〉 and |α〉 + |β〉 entering an m-port
beam splitter result in output states in the m-partite SLOCC
classes W and GHZ, respectively, as shown previously. Hence,
|1〉 and |α〉 + |β〉 are inequivalent by single-mode classical
operations.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, we investigated the different multipartite
entanglement classes that arise in a multiport beam splitter in
three distinct situations, depending on the single-mode states
that enter the device. In the first scenario, we considered
input states that are finite superpositions of number states
and concluded that the different SLOCC equivalence classes
were related to the highest total number of the output state.
Physically, this is the highest energy attained by the state
and thus more energy results in more “powerful” multipartite
entanglement. In the second scenario, we analyzed input states
that are finite superpositions of coherent states and identified
a hierarchy among the SLOCC classes, but this time in terms
of the nonclassicality rank of the input state. In the third
scenario, we considered a hybrid situation where the input
states are a superposition of both number and coherent states,

obtaining a SLOCC classification that is a combination of
the other two scenarios. The multipartite entanglement classes
corresponding to each scenario were all shown to be inequiv-
alent to each other.

The results obtained here give possible alternatives for the
generation of target multipartite entangled states with desir-
able properties. In regards to entanglement properties related
to the SLOCC equivalence class of a state, our work shows
that one could employ as an input a finite superposition of
number states—which can be obtained by truncation of a
suitable continuous-variable state [36]—in a given experi-
mental scenario that favors this kind of preparation procedure,
instead of using a number state itself, whose implementa-
tion can be challenging in various situations; see, however,
Refs. [52,53] for recent proposals on efficient number state
generation. Likewise, instead of directly generating a GHZ-
like state [15,16,54], by using cat states as inputs on a
MBS, one obtains a multipartite entangled state with the
same SLOCC properties. Moreover, there are limitations to
the manipulation of states via linear quantum-optical dynam-
ics [35,55] and thus the possibility of finding alternative states
within a desired SLOCC class should be studied.

For the classification of mixed states, one could employ
the techniques in Refs. [44,45] in order to detect to which
multipartite entanglement classes a given mixed output state
belongs, besides the use of the Schmidt number [43]. A related
problem is the physical implementation of so-called SLOCC
witnesses in the quantum optical domain. These interesting
and complex open questions go beyond the scope of the
present work and will be investigated elsewhere.
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APPENDIX

1. Generality of a balanced multiport beam splitter

We show here that a balanced MBS is sufficient for our
classification scheme, i.e., the many different transmission
and reflection terms in an unbalanced MBS do not influence
the multipartite entanglement classification obtained, since
these terms can be manipulated via the action of suitable ILOs
on the final output state. In other words, the output state of
an arbitrary unbalanced MBS will be shown to be SLOCC
equivalent to the output state of a balanced MBS.

An arbitrary input state on the first mode is given by

|ψ〉 =
∞∑

n=0

cn|n〉 =
∞∑

n=0

cn
(a†

1)n

√
n!

|0〉.
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If this state goes through an arbitrary unbalanced m-port beam splitter, the resulting output state is given by

|�̃〉 =
∞∑

n=0

cn√
n!

(γ1a†
1 + γ2a†

2 + · · · + γma†
m)n|0, 0, . . . , 0〉

=
∞∑

n=0

cn√
n!

∑
n1+···+nm=n

(
n

n1, n2, . . . , nm

)
(γ1a†

1)n1 (γ2a†
2)n2 · · · (γma†

m)nm |0, 0, . . . , 0〉

=
∞∑

n=0

cn

∑
n1+···+nm=n

√(
n

n1, n2, . . . , nm

)
γ

n1
1 γ

n2
2 . . . γ nm

m |n1, n2, . . . , nm〉,

where γk ∈ C and |γ1|2 + |γ2|2 + · · · + |γm|2 = 1. Defining the following (bounded) ILO on mode q,

Dq = 1√
m

∞∑
q=0

(
γ −1

q

)nq |nq〉〈nq|,

we see that its effect on the output state is

m⊗
q=1

Dq|�̃〉 =
∞∑

n=0

cn

∑
n1+···+nm=n

√(
n

n1, n2, . . . , nm

)
γ

n1
1 γ

n2
2 . . . γ nm

m

m⊗
q=1

Dq|n1, n2, . . . , nm〉

=
∞∑

n=0

cn

mn/2

∑
n1+···+nm=n

√(
n

n1, n2, . . . , nm

)
|n1, n2, . . . , nm〉,

which is the expression for the output state of a balanced MBS, according to Eqs. (1) and (2).

2. Schmidt rank of |�N〉
We show that the Schmidt rank of |�N 〉 is N + 1. According to Observation 3, we have the following SLOCC equivalences

|�〉 ∼ |�〉 ∼ |�N 〉 ∼ |�N 〉; since the Schmidt rank is invariant under SLOCC, this implies that the Schmidt rank of the output
state (1) is N + 1 as well.

Without loss of generality, let us consider an arbitrary bipartition (H1 ⊗ H2 ⊗ · · · ⊗ Hk−1) ⊗ (Hk ⊗ Hk+1 ⊗ · · · ⊗ Hm) of
the global state space H. The Schmidt decomposition of the state |�N 〉 corresponding to this bipartition is given by

|�N 〉 = |00 . . . 00〉 ⊗
⎛
⎝ ∑

nk+nk+1+···+nm=N

|nk, nk+1, . . . , nm〉
⎞
⎠

+
⎛
⎝ ∑

n1+n2+···+nk−1=1

|n1, n2, . . . , nk−1〉
⎞
⎠ ⊗

⎛
⎝ ∑

nk+nk+1+···+nm=N−1

|nk, nk+1, . . . , nm〉
⎞
⎠

+
⎛
⎝ ∑

n1+n2+···+nk−1=2

|n1, n2, . . . , nk−1〉
⎞
⎠ ⊗

⎛
⎝ ∑

nk+nk+1+···+nm=N−2

|nk, nk+1, . . . , nm〉
⎞
⎠

+ · · · +
⎛
⎝ ∑

n1+n2+···+nk−1=N

|n1, n2, . . . , nk−1〉
⎞
⎠ ⊗ |00 . . . 00〉.

Since for any bipartition of H the number of terms in the Schmidt decomposition above is N + 1, we conclude that the Schmidt
rank of |�N 〉 is N + 1.
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