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Certification of two-qubit quantum systems with temporal inequality
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Self-testing of quantum devices based on observed measurement statistics is a method to certify quantum
systems using minimal resources. In Irfan et al. [A. A. M. Irfan, K. Mayer, G. Ortiz, and E. Knill, Phys. Rev.
A 101, 032106 (2020)] a scheme based on observing measurement statistics that demonstrate Kochen-Specker
contextuality has been shown to certify two-qubit entangled states and measurements without the requirement of
spatial separation between the subsystems. However, this scheme assumes a set of compatibility conditions on
the measurements which are crucial to demonstrating Kochen-Specker contextuality. In this paper, we propose
a self-testing protocol to certify the above two-qubit states and measurements without the assumption of the
compatibility conditions, and at the same time without requiring the spatial separation between the subsystems.
Our protocol is based on the observation of sequential correlations leading to the maximal violation of a temporal
inequality derived from noncontextuality inequality. Moreover, our protocol is robust to small experimental
errors or noise.
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I. INTRODUCTION

Realizing fault-tolerant quantum computation plays a key
role in achieving quantum technologies. A fault-tolerant quan-
tum computer may be achieved by making use of topological
qubits in which qubits are encoded as the subspace of a
high-dimensional space of a suitable physical system such
as Majorana fermions [1,2]. The circuit model of quantum
computing can be replaced by Pauli-based computing which
makes use of only a minimal number of Pauli measurements
[3]. Such Pauli-based computing can be realized by topologi-
cal qubits [4].

Before performing any quantum information processing
task, it is important to certify how close are the relevant
quantum devices to the ideal ones. There are the certifica-
tion methods such as tomography [5–7] and self-testing [8]
that have been explored to certify the relevant quantum de-
vices. While certifying quantum devices, it is desirable to use
methods that make use of a limited number of resources and
minimize the assumptions on the quantum devices. Certifi-
cation schemes based on tomography can become resource
consuming depending on the quantum system to be certified
and they require that certain assumptions such as the Hilbert-
space dimension of the quantum system have to be trusted.
On the other hand, self-testing of quantum devices aims to
provide certification using a minimal number of resources and
a minimal number of assumptions. Self-testing was originally
introduced as a device-independent certification of quantum
state and measurements for quantum cryptographic applica-
tions [9]. Device-independent certification schemes are based
on the observation of nonclassical correlations that imply
Bell nonlocality [10,11]. These schemes do not depend on
the detailed characterization of the quantum devices; impor-
tantly, they do not assume the Hilbert-space dimension of the
quantum systems to be certified.

Self-testing based on Bell nonlocality has a restriction that
it can be used to certify composite quantum systems that
have entanglement and admit spatial separation between the
subsystems and local measurements on subsystems. Recently,
self-testing based on observation of Kochen-Specker contex-
tuality [12] has been explored to certify quantum systems
which do not have entanglement or do admit a spatial sepa-
ration between the subsystems [13–16]. Such a certification
method is relevant in the context of certification quantum
devices for quantum computation purposes as computation
typically happens in a local fashion. Note, however, that
contextuality-based certification methods require the mea-
surements to obey certain compatibility relations in order to
observe the nonclassical correlations, whereas it is in general
difficult to asses whether such relations are satisfied in an
experiment.

Sequential correlation inequalities, on the other hand, such
as the Leggett-Garg inequality [17] or temporal inequality
[18] can be used to demonstrate nonclassicality based on
quantum measurements on single quantum systems without
the need of assuming that the measurements are jointly mea-
surable. Motivated by this, such inequalities have also been
explored to certify quantum measurements on single quantum
systems without the requirement of any compatibility condi-
tions on the quantum measurements [19–22]. However, these
certification schemes also make a few minimal assumptions;
for instance, in Refs. [19–21] it is assumed that (a) the prepa-
ration device always prepares a maximally mixed state and
(b) measurements do not have any memory and they return
only the postmeasurement state, while in Ref. [22] one can
certify only the temporal correlation matrix. Moreover, one
can lift the assumption of producing maximally mixed states
by the measurement device with (a) ensuring that the input
state to the device is always a full rank state and (b) sequential
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action of the same measurement will output a certain outcome
always [23].

In Ref. [15], a certification scheme has been proposed
to certify quantum measurements of a fermionic system for
topological quantum computing. These quantum measure-
ments are a subset of two-qubit Pauli measurements that
demonstrate Kochen-Specker contextuality. As this scheme is
based on observed statistics that imply Kochen-Specker con-
textuality, it assumes certain compatibility conditions on the
quantum measurements. In this paper, we propose a certifica-
tion scheme based on a temporal inequality to certify the same
subset of two-qubit Pauli measurements along with the same
quantum state. Our scheme may be applied to certify those
two-qubit quantum states and measurements for topological
quantum computing without assuming the compatibility rela-
tions to hold, unlike the approach of Ref. [15]. However, we
assume that the measurements are projective. In this respect,
we would like to mention that the previous approaches such
as the one in Ref. [21] also make this assumption. In fact, in
that work it is assumed that the measurement device produces
always a maximally mixed state as well as that the same
measurement applied many times in a sequence yields the
same outcome. As proven in Ref. [21] (see Appendix there),
these assumptions imply that the involved measurements are
projective. Yet, in our paper we do not assume the input state
to be maximally mixed. Let us finally mention that we also
show our self-testing scheme to be robust to small experimen-
tal errors or noise.

Before we discuss our methodology and main results, we
provide some background information necessary for further
considerations.

A. Sequential correlations

We consider a sequential measurements scenario to ob-
serve a violation of a temporal inequality. The scenario
consists of a preparation device that prepares a single quantum
system in an unknown quantum state ρ and a sequence of
two and three black-box operations. These operations are di-
chotomic measurements denoted by Ai, with i = 1, . . . , 6. The
outcomes of these measurements are denoted by ai which can
take the values ±1. We then assume that these measurements
are projective, and so Ai are the standard quantum observables
such that A2

i = 1. Notice here that, while we do not restrict
the dimension of the underlying Hilbert space, we cannot,
however, exploit here the Naimark dilation argument that al-
lows one to represent generalized measurements in terms of
projective ones acting on a higher-dimensional Hilbert space.
This is because we do not impose any commutation relations
for the measurements.

In our sequential scenario, we finally need to assume that
the measurements Ai are nondemolishing, i.e., they do not
destroy the physical system, and also that each black box has
no memory and returns the actual postmeasurement state.

In an experiment that realizes this scenario, the joint prob-
abilities corresponding to the sequences of two measurements
and three measurements can be observed. For instance, the
joint probabilities of measuring {A1, A4} in the temporal order
A1 → A4 and {A1, A2, A3} in the temporal order A1 → A2 →
A3 are given by P(a1, a4|A1, A4) and P(a1, a2, a3|A1, A2, A3),

respectively. In terms of these joint probabilities, the second-
and third-order sequential correlations denoted by 〈A1A4〉π
and 〈A1A2A3〉π are defined as

〈A1A4〉π =
∑
a1,a4

a1a4P(a1, a4|A1, A4),

〈A1A2A3〉π =
∑

a1,a2,a3

a1a2a3P(a1, a2, a3|A1, A2, A3),

respectively.
Quantum-mechanical versions of the sequential corre-

lations, such as 〈A1A4〉π and 〈A1A2A3〉π , can then be
written as

〈A1A4〉π = 1
2 tr(ρ{A1, A4}), (1)

〈A1A2A3〉π = 1
4 tr(ρ{A1, {A2, A3}}), (2)

respectively, where ρ = |ψ〉 〈ψ | (see the Appendix in
Ref. [24] for the derivation of such formulas) and {A, B} =
AB + BA is the standard anticommutator. The other sequential
correlations can also be similarly expressed in terms of the
anticommutator.

B. Noncontextuality inequality

Using these sequential correlations one can demonstrate
both contextual and temporal correlations. We will now first
describe how to demonstrate contextual correlation here. Sup-
pose the sets of measurements {A1, A4}, {A2, A5}, {A3, A6},
{A1, A2, A3}, and {A4, A5, A6} that are measured sequentially
are treated as contexts, i.e., the measurements in these sets
commute with each other:

[A1, A4] = [A2, A5] = [A3, A6] = [A1, A2] = [A1, A3]

= [A2, A3] = [A4, A5] = [A4, A6] = [A5, A6] = 0,

(3)

where [A, B] = AB − BA. Then, the quantum-mechanical ver-
sions of the sequential correlations simplify as 〈A1A4〉π =
〈A1A4〉 and 〈A1A2A3〉π = 〈A1A2A3〉, such that these sets of
measurements can be used to demonstrate Kochen-Specker
contextuality. For instance, the sequential measurements of
these contexts with the two-qubit observables

A1 = X ⊗ 1, A4 = 1 ⊗ X,

A2 = 1 ⊗ Z, A5 = Z ⊗ 1,

A3 = X ⊗ Z, A6 = Z ⊗ X (4)

on the two-qubit maximally entangled state,

|φ+〉 = (|00〉 + |11〉)/
√

2, (5)

imply Kochen-Specker contextuality through a logical con-
tradiction by providing noncontextual value assignments to
each observable in the context. The above contexts form a
subset of the contexts pertaining to the famous Peres-Mermin
square demonstrating Kochen-Specker contextuality for any
two-qubit state [25,26]. Moreover, one can consider a non-
contextuality inequality as used in Ref. [27] in terms of the
expectation values corresponding to joint measurements of the
observables in the above contexts as follows:

INC = 〈A1A2A3〉 + 〈A4A5A6〉
+ 〈A1A4〉 + 〈A2A5〉 − 〈A3A6〉 � ηC, (6)
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where ηC = 3 is the classical bound of the inequality. The
quantum bound ηQ = 5 of the above inequality can be ob-
tained from the state given by Eq. (5) for the measurements
given by Eq. (4). In Ref. [15], the measurement statistics
pertaining to the maximal violation of the inequality (6) have
been shown to provide robust certification of two-qubit Pauli
measurements in a setup such as Majorana fermions.

Now, the stage is set to discuss our setup and main results
regarding certification of the two-qubit state and measure-
ments using a temporal inequality. In the next section (Sec. II),
we discuss the procedure to obtain the temporal inequality
from the noncontextuality inequality considered earlier within
the sequential correlations scenario. We also discuss how such
inequality can be used to certify the two-qubit systems with
permissible small experimental errors and noises. We con-
clude in Sec. III.

II. ROBUST CERTIFICATION OF THE TWO-QUBIT
SYSTEMS USING TEMPORAL INEQUALITY

A. Temporal inequality

Our goal is to propose a temporal extension of the in-
equality (6) to certify the two-qubit maximally entangled state
(5) and measurements (4) without assuming the compatibility
relations (3). To this aim, we consider the following temporal
inequality:

IT := 1
2 (〈A1A2A3〉π + 〈A2A1A3〉π + 〈A4A5A6〉π

+ 〈A5A4A6〉π ) + 〈A1A4〉π + 〈A2A5〉π − 〈A3A6〉π � ηC,

(7)

where no compatibility relations for the measurements are
assumed. It has been argued in Ref. [18] that the existence
of a single joint probability distribution for all the outcomes
of the measurements is the common underpinning assump-
tion for the Bell-type, Kochen-Specker noncontextuality, and
temporal inequalities. Therefore, in order to derive the max-
imal classical value of the inequality ηC one optimizes the
expression IT over all deterministic strategies in which all
measurements have definite values independently of the mea-
surement sequence. In other words, all expectation values
in IT split into products of expectation values of individual
observables, and each such expectation value takes the values
±1. Hence, for the inequality (7) we have

ηC = max
ai∈{±1}

[
1
2 (a1a2a3 + a2a1a3 + a4a5a6 + a5a4a6)

+ a1a4 + a2a5 − a3a6
]
,

= max
ai∈{±1}

[a1a2a3 + a4a5a6 + a1a4 + a2a5 − a3a6]

which gives ηC = 3.
Then, in order to determine the maximal quantum value ηQ

of IT let us observe that it directly follows from the definitions
(1) that the sequential expectation values are bounded as

−1 � 〈AiAj〉π � 1, −1 � 〈AiAjAk〉π � 1

for any i, j, and k. As a consequence ηQ = 5. What is more,
this value is achieved by the same quantum state and mea-
surements that lead to the maximal quantum violation of
the noncontextuality inequality (6). In the next section, we

demonstrate that the quantum bound of the inequality (7)
can be used to certify this quantum realization without the
assumption of the compatibility relations as used in the case
of the inequality (6).

B. Robust self-testing of two-qubit systems

Consider an experimental situation that realizes the se-
quential scenario, in which we assume that both the state and
measurements and their compatibility relations are unknown.
Together, we consider a reference experiment with a known
pure state |ψ̂〉 ∈ Cd for d = 4 and known observables Âi

acting on C4 that obey the compatibility relations given by
Eq. (3). We assume that our reference experiment leads to
the maximal violation of the temporal inequality given by
Eq. (7). With these two experiments at hand, for our purpose,
we adopt the definition of self-testing used in Ref. [15] (see
also Ref. [20]) as given below.

Definition 1. Given that the state |ψ〉 ∈ H and a set of
measurements Ai with i ∈ [1, 6] maximally violate the given
temporal inequality (7), then the self-testing of the state |ψ̂〉 ∈
C4 and the set of observables Âi acting on C4 is defined by the
existence of a projection P : H → C4 and a unitary U acting
on C4 such that

U †(P Ai P†)U = Âi, (8)

U (P |ψ〉) = |ψ̂〉. (9)

In other words, the above definition implies that based
on the observed maximal violation of the inequality, one is
able to identify a subspace V = C4 in H on which all the
observables act invariantly. Equivalently, Ais can be decom-
posed as Ai = Âi ⊕ A′

i, where Âi act on V , whereas A′
i act

on the orthocomplement of V in H; in particular, A′
i |ψ〉 = 0.

Moreover, there is a unitary U † Âi U = Âi.

C. Symmetries of the inequality

Before we proceed with the self-testing proof, let us ob-
serve the following symmetries of the inequality (7):

(1) A1 ↔ A2 and A4 ↔ A5, (10)

(2) A1 ↔ A3 and A4 ↔ −A6, (11)

(3) A2 ↔ −A3 and A5 ↔ A6, (12)

(4) A1 ↔ A4 and A2 ↔ A5 and A3 ↔ A6. (13)

It can be checked that in any of these four cases, the inequality
(7) remains invariant. In the following, we will employ these
symmetries to prove our self-testing statement.

Now, assume that our first experiment achieves the quan-
tum bound of the inequality (7). This directly implies that
all except the last correlation functions of the inequality
take value 1, whereas the last term equals −1, which via
the Cauchy-Schwartz inequality translate to the following
equations:

A1A2A3|ψ〉 = |ψ〉 and permutations, (14)

A4A5A6|ψ〉 = |ψ〉 and permutations, (15)

A1A4|ψ〉 = |ψ〉 and permutations, (16)
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A2A5|ψ〉 = |ψ〉 and permutations, (17)

A3A6|ψ〉 = −|ψ〉 and permutations, (18)

where permutations refers to the fact that the above relations
also hold if we permute the observables. Using these identi-
ties, we now proceed to show the following anticommutation
relations:

{A1, A5}|ψ〉 = {A1, A6}|ψ〉 = {A2, A4}|ψ〉
= {A2, A6}|ψ〉 = {A3, A4}|ψ〉
= {A3, A5}|ψ〉 = 0. (19)

One directly deduces from the identities given by
Eqs. (14)–(18) that

A1A5|ψ〉 = A1A2|ψ〉 = A3|ψ〉 = −A6 |ψ〉
= −A5A4|ψ〉 = −A5A1|ψ〉, (20)

where in the first line we used A5|ψ〉 = A2|ψ〉 from Eq. (17)
and A1A2|ψ〉 = A3|ψ〉 that stems from Eq. (14). On the
other hand, in the second line, we used A3|ψ〉 = −A6|ψ〉
from Eq. (18), A6|ψ〉 = A5A4|ψ〉 from Eq. (15), and A4|ψ〉 =
A1|ψ〉 from Eq. (16).

In the following, we employ the symmetries in Eqs. (10)–
(13) to obtain other similar relations. Employing the first,
second, and third symmetries (10)–(12) of the inequality in
the argument given by Eq. (20), we can get

A2A4|ψ〉 = −A4A2|ψ〉, (21)

A3A5|ψ〉 = −A5A3|ψ〉, (22)

A1A6|ψ〉 = −A6A1|ψ〉, (23)

respectively. Now, employing the second and first symmetries
of the inequality in Eqs. (21) and (22), respectively, we get the
remaining anticommutation relations:

A2A6|ψ〉 = −A6A2|ψ〉, (24)

A3A4|ψ〉 = −A4A3|ψ〉. (25)

Now, as in Ref. [15] we define the subspace

V := span{|ψ〉, A1|ψ〉, A5|ψ〉, A1A5|ψ〉}, (26)

and prove the following fact for it.
Lemma 1. V is an invariant subspace under the action of

all the observables Ai for i ∈ [1, 6].
Proof. First, under the action of A1, V is trivially invariant.

Next, using the fact that A2
5 = 1 and {A1, A5} |ψ〉 = 0, it fol-

lows that A5V belongs to V up to the phase factor −1. Having
established that V is invariant under the action of A1 and A5,
from the first symmetry (10) of the inequality, it follows that
A2 and A4 also leave the subspace V invariant.

Next, we proceed to see the action of A3 on all the elements
of V . Using the relations given by Eqs. (14) and (17), it fol-
lows that A3 |ψ〉 = A1A5 |ψ〉, A3A1 |ψ〉 = A5 |ψ〉, A3A5 |ψ〉 =
A1 |ψ〉, and A3A1A5 |ψ〉 = |ψ〉. Therefore, we have arrived at
A3V ⊆ V . Using the fourth symmetry in (13) of the inequality
in these arguments used to establish invariance of V under the
action of A3, it then follows that A6V ⊆ V . �

Due to Lemma 1, it suffices for our purpose to identify the
form of the state |ψ〉 and the operators Ai restricted to the
subspace V . In fact, the whole Hilbert space splits as H =
V ⊕ V ⊥, where V ⊥ is an orthocomplement of V in H. Then,
the fact that V is an invariant subspace of all the observables
Ai means that they have the following block structure:

Ai = Âi ⊕ A′
i, (27)

where Âi = PAiP with P : H → V being a projection onto V .
Since A′

i act trivially on V , that is, A′
iV = 0, which means that

the observed correlations giving rise to the maximal violation
of the inequality (7) come solely from the subspace V , in what
follows we can restrict our attention to the operators Âi.

Lemma 2. Suppose the maximal quantum violation of
the inequality (7) is observed. Then, [Â1, Â2] = [Â1, Â3] =
[Â2, Â3] = [Â4, Â5] = [Â4, Â6] = [Â5, Â6] = [Â1, Â4] =
[Â2, Â5] = [Â3, Â6] = 0.

Proof. It is enough to show explicitly that [Â1, Â2] =
[Â1, Â4] = 0. Then, by using symmetries of the inequality (7),
the other commutators can be argued to vanish.

To show that [Â1, Â2] = 0, we prove that the action
of the commutator [A1, A2] on the invariant subspace
vanishes. First, from the relations given by Eq. (14),
we have A1A2 |ψ〉 = A2A1 |ψ〉 = A3 |ψ〉 which implies that
[A1, A2] |ψ〉 = 0. Second, it also follows from the rela-
tions given by Eq. (14) that A1A2A1 |ψ〉 = A2A1A1 |ψ〉 =
A2 |ψ〉 which implies that [A1, A2]A1 |ψ〉 = 0. Third, us-
ing the relation given by Eq. (17), we have A1A2A5 |ψ〉 =
A1 |ψ〉. On the other hand, using the relations given by
Eqs. (17) and (14), we have A2A1A5 |ψ〉 = A2A1A2 |ψ〉 =
A1 |ψ〉. Therefore, [A1, A2]A5 |ψ〉 = 0. Finally, let us check
whether [A1, A2]A1A5 |ψ〉 also vanishes. In the third case
above, we have shown that A2A1A5 |ψ〉 = A1 |ψ〉. Using this
relation, it follows that A1A2A1A5 |ψ〉 = |ψ〉. On the other
hand, using the relations given by Eqs. (17) and (14), we
have A2A1A1A5 |ψ〉 = |ψ〉. Therefore, we have arrived at
[A1, A2]A1A5 |ψ〉 = 0.

Using the symmetries (11) and (12) of the inequality
in the above arguments, we also have [A2, A3]V = 0 and
[A1, A3]V = 0, respectively. The fact that the action of the
commutators [A1, A2], [A2, A3], and [A1, A3] vanishes on V
implies that the action of the commutators [A4, A5], [A5, A6],
and [A4, A6] on V vanishes as well. This follows from the
fourth symmetry (13) of the inequality.

Next, we proceed to demonstrate that the action of
the commutator [A1, A4] on the invariant subspace van-
ishes. First, using Eq. (16), we have A1A4 |ψ〉 = A4A1 |ψ〉 =
|ψ〉 which implies that [A1, A4] |ψ〉 = 0. Second, using
the same relation, we have A1A4A1 |ψ〉 = A4 |ψ〉; on the
other hand, A4A1A1 |ψ〉 = A4 |ψ〉. From this, it follows that
[A1, A4]A1 |ψ〉 = 0. Third,

A1A4A5 |ψ〉 = A1A6 |ψ〉 = −A1A3 |ψ〉 = −A2 |ψ〉 ,

where we have used relations given by Eqs. (15), (18), and
(14), respectively. On the other hand, we also have

A4A1A5 = A4A1A2 |ψ〉 = A4A3 |ψ〉 = −A4A6 |ψ〉
= −A4A4A5 |ψ〉 = −A2 |ψ〉
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where in the first line we have used relations given by
Eqs. (17), (14), and (18), respectively, and then we have
employed the relations given by Eqs. (15) and (17), re-
spectively. Combining the above two equations implies that
[A1, A4]A5 |ψ〉 = 0. Finally,

A1A4A1A5 |ψ〉 = A1A4A1A2 |ψ〉 = A1A4A3 |ψ〉
= −A1A4A6 |ψ〉 = −A1A5 |ψ〉
= −A1A2 |ψ〉 = −A3 |ψ〉

where in the first line we have used the relations given by
Eqs. (17) and (14), respectively, and then we have employed
the relations given by Eqs. (18), (15), (17), and (14), respec-
tively. On the other hand, we also have

A4A1A1A5 |ψ〉 = A6 |ψ〉 = −A3 |ψ〉 ,

where we have employed the relations given by Eqs. (15) and
(18), respectively. Combining these two equations, we get that
[A1, A4]A1A5 |ψ〉 = 0.

Using the symmetries of the inequality in (10) and (11) in
the above arguments used to demonstrate that the action of the
commutator [A1, A4] vanishes on V , we will get [A2, A5]V =
0 and [A3, A6]V = 0, respectively. �

Lemma 3. Suppose the maximal quantum violation of the
inequality (7) is observed. Then,

{Â1, Â5} = {Â1, Â6}
= {Â2, Â4} = {Â2, Â6}
= {Â3, Â4} = {Â3, Â5} = 0. (28)

Proof. It is enough to show explicitly that {Â1, Â5} = 0, by
demonstrating that the anticommutator {A1, A5} vanishes on
the invariant subspace. First, in Eq. (20), it has been shown
that {A1, A5} |ψ〉 = 0. Second, using the fact that A1A5 |ψ〉 =
−A5A1 |ψ〉, we have A1A5A1 |ψ〉 = −A5 |ψ〉; on the other
hand, A5A1A1 |ψ〉 = A5 |ψ〉, which implies {A1, A5}A1 |ψ〉 =
0. Third, using the fact that A1A5 |ψ〉 = −A5A1 |ψ〉, we
have A1A5A5 |ψ〉 = A1 |ψ〉; on the other hand, A5A1A5 |ψ〉 =
−A1 |ψ〉. Therefore, we get {A1, A5}A5 |ψ〉 = 0. Finally, us-
ing the anticommutation relation {A1, A5} |ψ〉 = 0, we obtain
A1A5A1A5 |ψ〉 = − |ψ〉 and A1A5A5A1 |ψ〉 = |ψ〉. Therefore,
we have {A1, A5}A1A5 |ψ〉 = 0.

Using symmetries of the inequality (7) in Eqs. (10)–(13)
as used to demonstrate Eq. (19), it then follows that the
other anticommutators in Lemma 3 can similarly be shown
to vanish. �

Having proven Lemma 3, we can infer that the dimension
d of the subspace V is an even number by using the tech-
niques as adopted in Refs. [16,28–31]. Thus, we can write the
dimension d = 2k for some k ∈ N, and thus V = C2 ⊗ Ck .
Moreover, since dim V � 4, one concludes that k = 1, 2.

Lemma 4. Suppose the maximal quantum violation of the
inequality (7) is observed. Then, there exists a unitary U =
U1(12 ⊗ U2) acting on V such that

UÂ1U
† = X ⊗ 1, UÂ2U

† = 1 ⊗ Z,

UÂ3U
† = ±X ⊗ Z, UÂ4U

† = 1 ⊗ X,

UÂ5U
† = Z ⊗ 1, UÂ6U

† = ±Z ⊗ X. (29)

Proof. First, from Lemma 3, we have {Â1, Â5} = 0 which
implies that there exists a unitary U1 acting on V such that

U †
1 Â1 U1 = X ⊗ 1k, (30)

U †
1 Â5 U1 = Z ⊗ 1k, (31)

where, as already mentioned, the dimension d of the subspace
V is given by d = 2k for some k = 1, 2. Using then the above
form of Â1 and Â5 and the relations in Lemmas 2 and 3 we can
write the remaining operators as follows:

U †
1 Â2 U1 = 12 ⊗ M, (32)

U †
1 Â3 U1 = X ⊗ N, (33)

U †
1 Â4 U1 = 12 ⊗ O, (34)

U †
1 Â6 U1 = Z ⊗ P, (35)

where M, N, O, and P are Hermitian involutions acting on the
subspace of dimension k. To show explicitly how the above
equations are obtained let us focus on Â2; the proof for the
other observable is basically the same. Since Â2 acts on C2 ⊗
Ck , it can be decomposed in the Pauli basis as

U †
1 Â2 U1 = 12 ⊗ M1 + X ⊗ M2 + Y ⊗ M3 + Z ⊗ M4,

(36)

where Y is the third Pauli matrix and Mi are some Hermitian
matrices acting on Ck . Now, it follows from the fact that Â2

commutes with Â1, that M3 = M4 = 0. Then, from [Â2, Â5] =
0, one obtains that M2 = 0, and, by putting M1 = M, we arrive
at Eq. (32).

Second, from Lemma 3, we also have {Â2, Â4} = 0 which
is equivalent to {M, O} = 0. Since both M and O are invo-
lutions, one concludes that k = 2, or, equivalently, that Ck =
C2. In what follows, using {M, O} = 0, we can fix M = Z and
O = X . Now, from Lemmas 2 and 3, using [Â2, Â3] = 0 and
{Â3, Â4} = 0, we find that [N, Z] = 0 as well as {N, X } = 0.
This is possible if N = ±Z . Similarly, using {Â2, Â6} = 0 and
[Â4, Â6] = 0, we find that O = ±X . Therefore, there exists
another unitary transformation U2 : Ck → Ck such that

U †
2 M U2 = Z, U †

2 N U2 = ±Z,

U †
2 OU2 = X, U †

2 P U2 = ±X.

Then, we find the relations in Eq. (29). �
We have thus arrived at the main result of this paper.
Theorem 1. If a quantum state |ψ〉 and a set of measure-

ments Ai with i ∈ [1, 6] maximally violate the inequality (7),
then there exists a projection P : H → V with V = C2 ⊗ C2
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and a unitary U acting on V such that

U † (PÂ1P†)U = X ⊗ 12, U † (PÂ4P†)U = 12 ⊗ X,

U † (PÂ2P†)U = 12 ⊗ Z, U † (PÂ5P†)U = Z ⊗ 12,

U † (PÂ3P†)U = X ⊗ Z, U † (PÂ6P†)U = Z ⊗ X, (37)

U (P|ψ〉) = |φ+〉, (38)

where |φ+〉 is the two-qubit maximally entangled state Eq. (5).
Proof. A quantum state |ψ〉 that belongs to a Hilbert space

H and a set of observables Ai acting on H attain the maximal
quantum violation of the inequality (7) if and only if they sat-
isfy the set of Eqs. (14)–(18). The algebraic relations induced
by this set of equations let us prove Lemmas 1–4 which imply
that there exists a projection P : H → V ∼= C4 and a unitary
U = U1(12 ⊗ U2) acting on V ∼= C4 for which Eqs. (29) hold
true. Now, using stabilizer condition Eq. (14), we find that
the sign in front of U †Â3U can only be +1. Similarly, using
Eq. (15), we can fix the sign of U †Â6U to be +1.

From the above characterization of the observables, we
can infer the form of the state |ψ〉. Indeed, after plugging
Ai = Âi ⊕ Ai with Âi as given by Eq. (37), into the conditions
(16) and (17) one realizes that the latter is simply the stabiliz-
ing conditions of the two-qubit maximally entangled state and
thus U (P |ψ〉) = |φ+〉. This completes the proof. �

Given this self-testing statement, we will now show in
the following theorem that the above self-testing protocol is
robust to very small errors (ε) which might come from noise or
experimental imperfections. A rigorous proof of the following
fact has been furnished in the Appendix.

Theorem 2. Suppose a quantum state |ψ〉 and a set of
measurements Ai with i ∈ [1, 6] in H provide a nonmaximal
violation 5 − ε of the inequality (7). Then, there exists a
projection P : H → V (with V = C2 ⊗ C2) and a unitary U
acting on V such that the measurements Âi and the state |ψ̂〉
acting on V satisfy the following relations:∥∥U †Ânoisy

i U − Âopt
i

∥∥ � m1
√

ε + m2ε
1/4,

| 〈ψ̂ |φ+〉 |2 � 1 − (
s1ε + s2ε

3/4 + s3
√

ε
)
, (39)

where m1, m2, s1, s2, and s3 are positive constants and Âopt

are the optimal measurements obtained in Eq. (37).

III. CONCLUSIONS AND OUTLOOK

In order to demonstrate Kochen-Specker contextuality via
noncontextuality inequalities, we need to assume certain com-
patibility relations between the measurements by defining
“contexts.” On the other hand, with temporal inequalities,
we do not need to assume any compatibility conditions on
the quantum measurements. In Ref. [15], a self-testing pro-
tocol based on observing measurement statistics that imply
Kochen-Specker contextuality was proposed. This protocol
certifies a two-qubit maximally entangled state and a subset
of two-qubit Pauli measurements for realizing a topological
quantum computer. In this paper, we proposed a self-testing
protocol based on a temporal inequality that certifies this two-
qubit entangled state and measurements. Thus, our scheme
provides an alternative certification to the approach based on

Kochen-Specker contextuality as it does not assume those
compatibility conditions.

As a future direction, it would be interesting to find a self-
testing scheme using temporal inequalities which will work
for general measurements. In our paper, we need to assume
that measurements are projective if we drop the compatibility
assumption. Note that Ref. [21] assumes that the measure-
ment device produces a maximally mixed state as well as
that the same measurement performed many times produces a
particular outcome with certainty always in order to drop com-
patibility assumptions. Alternatively, it was suggested that one
can assume a full rank input state to the measurement device
instead of a maximally mixed state in order to remove the
compatibility assumptions [23]. Therefore, we are lacking a
universal self-testing scheme where such assumptions will be
lifted. Also, it would be useful to find temporal inequalities
with which we can reproduce self-testing statements for other
existing noncontextuality inequalities. In another work, we
extend our protocol to certify n-qubit quantum states and
measurements with n � 3 [32].
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APPENDIX: ROBUSTNESS ANALYSIS

In this section we show that our certification scheme is ro-
bust to the experimental errors and imperfections, i.e., we can
certify the state and measurements within a threshold fidelity
close to the ideal state and measurements, even when the
inequality (7) is violated nonmaximally. Let us assume that
a maximal violation of the inequality (7) is obtained with an
ε error, i.e., a nonmaximal violation of 5 − ε is observed. We
will now demonstrate that for ε → 0, the quantum realization
is very close to the optimal quantum realization that gives the
maximal bound. For a nonmaximal violation of 5 − ε it is
implied that the sequential correlations satisfy the following
bounds:

〈A1A2A3〉π � 1 − 2ε, 〈A2A1A3〉π � 1 − 2ε,

〈A4A5A6〉π � 1 − 2ε, 〈A5A4A6〉π � 1 − 2ε,

〈A1A4〉π � 1 − ε, 〈A2A5〉π � 1 − ε,

−〈A3A6〉π � 1 − ε, (A1)

for some ε > 0. From these error-prone correlations we will
do all the steps that went into the self-testing in the error-
free scenario, i.e., we will deduce the commutation relations,
anticommutation relations, invariant subspace, and states and
measurements within a small error bound. The sequential
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correlations in (A1) further bound the quantum expectation
values in the following way:

〈(A1A2A3 + A3A2A1)〉 � 2(1 − 4ε) ∀ permutations,
(A2)

〈(A4A5A6 + A6A5A4)〉 � 2(1 − 4ε) ∀ permutations.
(A3)

It can be seen that these relations are an approximate version
of the optimal relations in (14)–(18). Equipped with these
relations we now present the following lemma that will be
useful for further proofs.

Lemma 5. Suppose the relations in (A1)–(A3) are satisfied
for some ε > 0. Then the following bounds hold true:

‖(A1 − A2A3) |ψ〉 ‖ � 4
√

ε ∀ permutations, (A4)

‖(A4 − A5A6) |ψ〉 ‖ � 4
√

ε ∀ permutations, (A5)

‖(A1 − A4) |ψ〉 ‖ � 2
√

ε, (A6)

‖(A2 − A5) |ψ〉 ‖ � 2
√

ε, (A7)

‖(A3 + A6) |ψ〉 ‖ � 2
√

ε. (A8)

Proof. We note the following:

‖(A1 − A2A3) |ψ〉 ‖ =
√

2 − 〈(A1A2A3 + A3A2A1)〉 � 4
√

ε,

where we simplify the norm by using the fact that Ai are
unitary measurements and then we substitute (A2) to get the
inequality. In the noise-free scenario, this reduces to A1 |ψ〉 =
A2A3 |ψ〉. In a similar way, we can obtain other relations. �

Using these relations one can obtain the following error
bounds on the anticommutators in Eq. (19):

‖{Ai, Aj} |ψ〉 ‖ � 14
√

ε. (A9)

The error bound can be obtained by following the proof
of Eq. (19) and replacing each step of “equality” in the
proof with a triangle inequality and then using the bounds
in (A4)–(A8). For instance, in the anticommutation proof of
{A1, A5} |ψ〉 = 0 in Eq. (20), we do the following:

‖(A1A5 + A5A1) |ψ〉 ‖
� ‖(A1A5 − A1A2) |ψ〉 ‖ + ‖(A1A2 − A3) |ψ〉 ‖

+ ‖(A3 + A6) |ψ〉 ‖ + ‖(−A6 + A5A4) |ψ〉 ‖
+ ‖(−A5A4 + A5A1) |ψ〉 ‖ � 14

√
ε, (A10)

where we have used a chain of triangle inequalities for the
vector norm, the error bounds from (A4)–(A8), and the fact
that the vector norm is unitarily invariant. In the same way,
we can get error bounds on the other anticommutators from
Eq. (19).

Action of Ai on subspace V

Next, we will show that the invariant subspace V :=
span{|ψ〉, A1|ψ〉, A5|ψ〉, A1A5|ψ〉} considered in (26) is now
approximately invariant under the action of operators Ai

for i ∈ {1, . . . , 6}. We find that the operator A1 keeps the
space V invariant. For A5, the nontrivial transformations are

(1) A5A1 |ψ〉 ≈ −A1A5 |ψ〉 + 14
√

ε |ξ 〉 and (2) A5A1A5 |ψ〉 ≈
−A1 |ψ〉 + 14

√
ε |ξ 〉 from Eq. (A10). Therefore, A5 keeps the

vectors from V approximately invariant. Note that vector |ξ 〉 is
arbitrary, moreover, we can assume without loss of generality
that |ξ 〉 lives in a subspace orthogonal to V .

Similarly, one can show that other operators keep the
subspace invariant approximately. For example, the op-
erator A2 acting on V changes its vectors to A2 |ψ〉 ≈
A5 |ψ〉 + 2

√
ε |ξ 〉 and A2A5 |ψ〉 ≈ A2

2 |ψ〉 + 2
√

εA2 |ξ 〉 using
Eq. (A7). Now, the vector A2A1 |ψ〉 ≈ A1A2 |ψ〉 + 8

√
ε |ξ 〉

due to the relation that ‖A1A2 − A2A1‖ � ‖A1A2 − A3‖ +
‖A3 − A2A1‖ � 8

√
ε [using (A4)]. Then, it implies us-

ing Eq. (A7) that A2A1 |ψ〉 ≈ A1A5 |ψ〉 + 2
√

ε(1 + 4A1) |ξ 〉.
The last vector A2A1A5 |ψ〉 ≈ A2A1A2 |ψ〉 + 2

√
εA2A1 |ξ 〉

first, then A2A1A2 |ψ〉 ≈ A2
2A1 |ψ〉 + 8

√
εA2 |ξ 〉. Therefore,

A2 keeps V invariant approximately. We tabulate all such
transformation in Table I.

From Table I, we see that indeed action of Ai keeps V
invariant approximately. However, notice that the vectors in-
side V are not necessarily orthogonal. Therefore, it is not
guaranteed that Ai acting on an arbitrary state from V will
keep it approximately within V . To proceed, we need to show
the following:

max
|ψ〉1,|ψ〉2∈V

‖Ai |ψ〉1 − |ψ〉2 ‖ � f (ε), (A11)

where f (ε) is some well-behaved function of ε. This will
ensure that the action of Ai on V will be approximately in-
variant. For this purpose, we state and prove the following
lemma. Importantly, we can remove maximization using the
Gram-Schmidt orthogonalization procedure.

Lemma 6. Under the action of operators Ai for
i ∈ {1, . . . , 6}, the subspace V := span{|ψ〉, A1|ψ〉, A5|ψ〉,
A1A5|ψ〉} changes as follows:

∀ |ψ〉1 ∈ V, ∃ |ψ〉k ∈ V, s.t.

‖Ai |ψ〉1 − |ψ〉k ‖ � 2Ci
√

ε, (A12)

where Ci with i ∈ [1, 6] are real, finite, and positive constants
and k ∈ [1, 5].

Proof. Let us denote the vectors that span the subspace
V as |e1〉 = |ψ〉, |e2〉 = A1|ψ〉, |e3〉 = A5|ψ〉, and |e4〉 =
A1A5|ψ〉 and define the Gram matrix (	) with the elements
	mn = 〈em| en〉. Then, by applying the Gram-Schmidt (GS)
orthogonalization procedure one finds an orthogonal basis that
spans the subspace V . We denote this basis as {|φm〉 |m =
1, . . . , 4}, where |φm〉 are expressed in terms of the initial
vectors |em〉 as [33]

|φm〉 =
∑

n

[	−1/2]nm |en〉 . (A13)

Now, we notice that the Gram matrix 	 is invariant when
we have following transformation.

(1) |e1〉 → X2 |e1〉=A1 |ψ〉, |e2〉 → X2 |e2〉=|ψ〉,
|e3〉→X2 |e3〉=A1A5 |ψ〉, and |e4〉→X2 |e4〉=A5 |ψ〉.

(2) |e1〉 → X3 |e1〉 = A5 |ψ〉, |e2〉 → X3 |e2〉 = A1A5 |ψ〉,
|e3〉 → X3 |e3〉 = |ψ〉, and |e4〉 → X3 |e4〉 = A1 |ψ〉.

(3) |e1〉 → X4 |e1〉 = A1A5 |ψ〉, |e2〉 → X4 |e2〉 = A5 |ψ〉,
|e3〉 → X4 |e3〉 = A1 |ψ〉, and |e4〉 → X4 |e4〉 = |ψ〉.

Here the symbolic operators, X2, X3, and X4, mimic the
action of A1, A5, and A1A5 respectively. Therefore, we have
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TABLE I. AiV → V + f (ε). The table describes how the vectors spanning V transform under the action of Ai in the nonideal scenario.
Here, we denote χ = 2 + A1, �1 = 1 + 4A1, �2 = A2(1 + �4), �3 = 2 + A4�4, �4 = 1 + χ , and �5 = 3 + χ .

V |ψ〉 A1|ψ〉 A5|ψ〉 A1A5|ψ〉
A1V A1|ψ〉 |ψ〉 A1A5|ψ〉 A5|ψ〉
A2V A5 |ψ〉 + 2

√
ε |ξ〉 A1A5 |ψ〉 + 2

√
ε�1 |ξ〉 |ψ〉 + 2

√
εA2 |ξ〉 A1 |ψ〉 + 2

√
ε�2 |ξ〉

A3V A1A5 |ψ〉 + 2
√

εχ |ξ〉 A5 |ψ〉 + 6
√

ε |ξ〉 A1 |ψ〉 + 2
√

ε(2 + A3) |ξ〉 |ψ〉 + 2
√

εA3χ |ξ〉
A4V A1 |ψ〉 + 2

√
ε |ξ〉 |ψ〉 + 2

√
εA4 |ξ〉 −A1A5 |ψ〉 + 2

√
ε�5 |ξ〉 −A5 |ψ〉 + 2

√
ε�3 |ξ〉

A5V A5 |ψ〉 −A1A5 |ψ〉 + 14
√

ε |ξ〉 |ψ〉 −A1 |ψ〉 + 14
√

ε |ξ〉
A6V −A1A5 |ψ〉 + 2

√
ε�4 |ξ〉 A5 |ψ〉 + 2

√
ε(2 + A6) |ξ〉 A1 |ψ〉 + 6

√
ε |ξ〉 − |ψ〉 + 2

√
εA6�4 |ξ〉

another three GS bases (with the same Gram matrix 	) which
also span V . It is evident from Table I that we only need
these four bases, {Xk |en〉} ∈ V for our analysis below. Now,
any vector |ψ〉k ∈ V , ∀k ∈ [1, 4] can be expressed in terms of
these orthogonal bases as

|ψ〉k =
∑

m

αmXk |φm〉 =
∑

m

αm

∑
n

[
	−1/2

]
nmXk |en〉 ,

(A14)

where X1 = 1 and αm are complex coefficients satisfying∑
i |αm|2 = 1. Notice here that the action of Xk on the set of

vectors |en〉 ∈ V in Eq. (A14) is listed above.
Equipped with the above relations, we are now ready to

prove the lemma. First we prove that A1 |ψ〉1 = |ψ〉2 below:

A1 |ψ〉1 = A1

(∑
m

αm

∑
n

[
	−1/2

]
nm |en〉

)

=
∑

m

αm

∑
n

[
	−1/2

]
nmX2 |en〉 = |ψ〉2 ,

where we use Eq. (A14). Now, consider the action of A2 on V ,
and then using Table I

A2 |ψ〉1 =
∑

m

αm

∑
n

[	−1/2]nmA2 |en〉

≈
∑

m

αm

∑
n

[	−1/2]nm{X3 |en〉 + 2
√

ε fn(A2) |ξ 〉}

= |ψ〉3 + 2
√

ε
∑

m

αm

∑
n

[	−1/2]nm fn(A2) |ξ 〉 ,

where f1(A2) = 1, f2(A2) = 1 + 4A1, f3(A2) = A2, and
f4(A2) = A2(4 + A1) using Table I and we use Eq. (A14) in
the second line. Note that in the above equation, we find that
the Gram matrix remains invariant also under the action of
{Ai|i ∈ [2, 6]} as 〈en |ξ 〉 = 0. By rearranging the terms, we
find the below relation:

‖A2 |ψ〉1 − |ψ〉3 ‖ � 2
√

ε
∑

m

∥∥∥∥∥
∑

n

[	−1/2]nm fn(A2) |ξ 〉
∥∥∥∥∥

� 2
√

εC2,

where we used |αm| � 1 and identified the real and positive
constant C2 as

C2 =
∑

m

∥∥∥∥∥
∑

n

[	−1/2]nm fn(A2) |ξ 〉
∥∥∥∥∥.

Notice that it is straightforward to find the expression of C2 by
opening the summation over n. In this way a lot of terms will
be simplified by noticing that A2

i = 1.
Similarly, we can prove that all the operators Ai will keep

V approximately invariant. In the end, we get the following
relations for the rest of the operators for their actions on V :

∀ |ψ〉1 ∈ V ∃ |ψ〉4 ∈ V, s.t. ‖A3 |ψ〉1 − |ψ〉4 ‖ � 2
√

εC3,

∀ |ψ〉1 ∈ V ∃ |ψ〉2 ∈ V, s.t. ‖A4 |ψ〉1 − |ψ〉2 ‖ � 2
√

εC4,

∀ |ψ〉1 ∈ V ∃ |ψ〉3 ∈ V, s.t. ‖A5 |ψ〉1 − |ψ〉3 ‖ � 2
√

εC5,

∀ |ψ〉1 ∈ V ∃ |ψ〉4 ∈ V, s.t. ‖A6 |ψ〉1 − |ψ〉4 ‖ � 2
√

εC6,

(A15)

where Ci with i ∈ {3, . . . , 6} are real, finite, and positive con-
stants. Moreover, the constants Ci can in general be estimated
by the following relation:

Ci =
∑

m

∥∥∥∥∥
∑

n

[	−1/2]nm fn(Ai ) |ξ 〉
∥∥∥∥∥, (A16)

where the expressions of fn(Ai ) can be found from Table I.
Hence, we prove the lemma. �

Due to Lemma 6, the operators Ai are approximately re-
stricted to the subspace V , i.e., we can write them as Ai =
(Âi B†

B A′
i
), where similar to the error-free scenario Âi = PAiP

with P : H → V projects onto V , A′
i acts trivially on V , and

the correlation terms between V and V ⊥ represented with B
are of the order of 2Ci

√
ε. Since the action of A′

i on V is trivial
and B on V is of the order of 2Ci

√
ε, we can conclude that

the contribution to the nonmaximal violation comes mostly
from the operators Âi. For the remaining proof, we can limit
ourselves to Âi only. Furthermore, due to (A15) all the eigen-
values ai of operators Ai, respectively, are bounded as follows:

|a1| = 1, 1 − 2Ci
√

ε � |ai| � 1. (A17)

Note that since A1 keeps V invariant, we have the unitary
condition Â2

1 = 1, whereas all the remaining hatted opera-
tors are not unitary anymore. For robust self-testing, we also
need to show that the commutators and anticommutators from
Lemmas 2 and 3 hold within a small error bound proportional
to ε. We derive these bounds in the next two lemmas. The
derivations of the error bounds on the commutators and an-
ticommutators are obtained by following the proofs in the
error-free scenario and replacing the “equalities” with the
relevant triangle inequalities.
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Lemma 7. Suppose a nonmaximal quantum violation 5 − ε of the inequality (7) is observed. Then the following error bounds
on the commutation relations can be obtained:

{‖[Â1, Â2]‖, ‖[Â1, Â3]‖, ‖[Â2, Â3]‖} � 4(C2 + C3)
√

ε,

{‖[Â4, Â5]‖, ‖[Â4, Â6]‖, ‖[Â5, Â6]‖} � 4(C4 + C5 + C6)
√

ε,

‖[Â1, Â4] � 4C4
√

ε, ‖‖[Â2, Â5]‖ � 4(C2 + C5)
√

ε, ‖[Â3, Â6]‖ � 4(C3 + C6)
√

ε.

Proof. We will show the proof for error bound on [Â1, Â2], and the remaining bounds are obtained in a similar way. To
get a bound on ‖[Â1, Â2]‖, we will prove that ‖[A1, A2]‖ is bounded by 4(C2 + C3)

√
ε in arbitrary vectors from subspace V .

Considering the vector |ψ〉1 ∈ V , we have

‖[A1, A2] |ψ〉1 ‖ � ‖(A1A2 − A3) |ψ〉1 ‖ + ‖(A3 − A2A1) |ψ〉1 ‖,
where we use the triangle inequality. Now, considering the term

∑
i ‖(A1A2 − A3) |ψ〉1 ‖ and evaluating it,

‖(A1A2 − A3) |ψ〉1 ‖ � ‖A1A2 |ψ〉1 − |ψ〉4 ‖ + ‖ |ψ〉4 − A3 |ψ〉1 ‖,
where |ψ〉4 ∈ V . According to Lemma 6, ‖ |ψ〉4 − A3 |ψ〉1 ‖ � 2

√
εC3. We need to evaluate the first term above. Further notice

that

‖A1A2 |ψ〉1 − |ψ〉4 ‖ � ‖A1A2 |ψ〉1 − A1 |ψ〉3 ‖ + ‖A1 |ψ〉3 − |ψ〉4 ‖,
where |ψ〉3 ∈ V . Using Lemma 6, we conclude that ‖A1A2 |ψ〉1 − A1 |ψ〉3 ‖ � 2

√
εC2. Note that the relation A1 |ψ〉3 = |ψ〉4

holds trivially. Therefore, we reach to the following expression after collecting all such contributions:

‖[A1, A2] |ψ〉1 ‖ � 4
√

ε(C2 + C3).

Similarly, we show this for all the commutators. This proves our claim. �
Next, we find the error bound for the anticommutation relations in the following lemma.
Lemma 8. Suppose a nonmaximal quantum violation 5 − ε of the inequality (7) is observed. Then the following error bounds

on the anticommutation relations can be obtained:

{‖{Â1, Â5}‖, ‖{Â2, Â4}‖, ‖{Â3, Â4}‖, ‖{Â3, Â5}‖, ‖{Â1, Â6}‖, ‖{Â2, Â6}‖} � 4Cγ

√
ε,

where Cγ = ∑6
i=2 Ci is also a finite constant.

Proof. We consider ‖{Â3, Â4}‖, and prove the upper bound for it by showing that ‖{A3, A4}‖ � 4Cγ

√
ε for every element of

V . Similar to the proof of Lemma 7, consider any arbitrary |ψ〉1 ∈ V , then

‖{A3, A4} |ψ〉1 ‖ � ‖(A3A4 − A3A1) |ψ〉1 ‖ + ‖(A3A1 − A2) |ψ〉1 ‖ + ‖(A2 − A5) |ψ〉1 ‖
+ ‖(A5 − A4A6) |ψ〉1 ‖ + ‖(A4A6 + A4A3) |ψ〉1 ‖,

where we use the triangle inequality. Then from Lemma 6, the first three terms in the right-hand side are easy to compute
and, directly, ‖(A3A4 − A3A1) |ψ〉1 ‖ � 2

√
εC4, ‖(A3A1 − A2) |ψ〉1 ‖ � 2

√
ε(C2 + C3) and ‖(A2 − A5) |ψ〉1 ‖ � 2

√
ε(C2 + C5).

The fourth one can be estimated as ‖(A5 − A4A6) |ψ〉1 ‖ � 2
√

ε(C4 + C5 + C6) and the last one can be expressed as ‖(A4A6 +
A4A3) |ψ〉1 ‖ � 2

√
ε(C6 + C3). Collecting all these contributions, we find that

‖{A3, A4} |ψ〉1 ‖ � 4Cγ

√
ε,

where Cγ = ∑6
i=2 Ci. In the same way, we can show the other anticommutator bounds by Lemma 6. �

Having proved Lemma 8, we can show that for a basis {|φi〉}, we have Tr(Â5Â1Â5 + Â1) = ∑
i 〈φi| Â5Â1Â5 + Â1 |φi〉 �∑

i ‖ 〈φi| {Â1, Â5} |φi〉 ‖ � 4Cγ

√
ε, where the first inequality is obtained using the triangle inequality and the next one by using

the bound on ‖{Â1, Â5} |ψ〉1 ‖. Therefore, we can deduce that Tr(Â1) � 4Cγ

√
ε which is possible only when Tr(Â1) = 0. A

similar situation holds for all other operators Âi. As in the noise-free case, we can write the dimension d = 2k for k ∈ N, and
thus V = C2 ⊗ Ck . Also since, dimV � 4, we can only have k = 1, 2. Now we are ready to certify the measurements in the
following lemma.

Lemma 9. Suppose a nonmaximal quantum violation 5 − ε of the inequality (7) is observed. Then, there exists a basis in V
such that

Â1 = X ⊗ 1, ‖Â2 − 1 ⊗ Z‖ � 2c2
√

ε + 8Cε1/4,

‖Â3 − X ⊗ Z‖ � 2c3
√

ε + 16Cε1/4, ‖Â4 − 1 ⊗ X‖ � 2c4
√

ε + 16Cε1/4,

‖A5 − Z ⊗ 1‖ � 6Cγ

√
ε + 2Cε

1
4 , ‖Â6 − Z ⊗ X‖ � 2c6

√
ε + 16Cε1/4, (A18)

where c2 = C2 + 2C̄2, c3 = C3 + 2C̄3 + 2C̄4 + 2Cγ − 2C2, c4 = C2 + 2C̄2 + 2C̄4 + Cγ , and c6 = Cγ + C2 + C3 + 2C̄2 + 2C̄6.
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Proof. From Lemma 8, we have ‖{A1, A5}‖ � 4Cγ

√
ε, which implies that there exists a unitary U1 acting on V such that

Â(1)
1 = X ⊗ 1, and Â(1)

5 = 1 ⊗ M1 + X ⊗ Mx + Y ⊗ My + Z ⊗ Mz, (A19)

where action of Uk on the operator O is denoted as U†
k OUk = O(k) for our convenience. Substituting the above form in the bound

‖{Â1, Â5}‖ � 4Cγ

√
ε, we get that ‖{Â(1)

1 , Â(1)
5 }‖ = ‖{X ⊗ 1, Â(1)

5 }‖ � 4Cγ

√
ε, which further implies that

‖1 ⊗ M1 + X ⊗ Mx‖ = ∥∥Â(1)
5 − Y ⊗ My − Z ⊗ Mz

∥∥ � 2Cγ

√
ε. (A20)

Therefore, it holds that ‖(Y ⊗ My + Z ⊗ Mz )2‖ � (1 − 2Cγ

√
ε)2. From this approximate unitary, we can deduce the following:∥∥1 ⊗ (

M2
y + M2

z

) + Y Z ⊗ [My, Mz]
∥∥ � (1 − 2Cγ

√
ε)2

⇒ (1 − 2Cγ

√
ε)2 �

∥∥M2
y + M2

z

∥∥ � 1, and ‖[My, Mz]‖ � 4Cγ

√
ε − 16Cγ ε � 4Cγ

√
ε. (A21)

It is known that for such almost commuting Hermitian matrices we can find another pair of commuting Hermitian matrices
M ′

y, M ′
z arbitrarily close to My, Mz respectively [34,35], which in our case can be stated as

[M ′
y, M ′

z] = 0, s.t. {‖My − M ′
y‖, ‖Mz − M ′

z‖} � Cε1/4, (A22)

where C is a constant independent of My, Mz; however, it is function of ε and grows slower than any power of ε. From (A21) it
can also be seen that ‖My − cos α1‖ � 2Cγ

√
ε and ‖Mz − sin α1‖ � 2Cγ

√
ε, ∀α ∈ [0, 2π ], which further implies the following:

‖M ′
y − cos α1‖ � ‖M ′

y − My‖ + ‖My − cos α1‖ � 2Cγ

√
ε + Cε1/4.

And similarly, we have ‖M ′
z − sin α1‖ � 2Cγ

√
ε + Cε1/4. Now by substituting these bounds in (A20) we get the following by

using triangle inequalities:∥∥Â(1)
5 − cos αY ⊗ 1 − sin αZ ⊗ 1

∥∥ − ‖Y ⊗ (M ′
y − cos α1)‖ − ‖Z ⊗ (M ′

z − sin α1)‖ � 2Cγ

√
ε

⇒ ∥∥Â(1)
5 − cos αY ⊗ 1 − sin αZ ⊗ 1

∥∥ � 6Cγ

√
ε + 2Cε1/4. (A23)

Therefore, we can proceed further by applying another unitary U2 such that U†
2 (cos αY ⊗ 1 + sin αZ ⊗ 1)U2 → Z ⊗ 1 and keep

Â(1)
1 = X ⊗ 1 unchanged as the rotation is in the y-z plane. Therefore we have a unitary U1 = U1U2 such that

U †
1 Â1U1 = X ⊗ 1, ‖U †

1 Â5U1 − Z ⊗ 1‖ � 6Cγ

√
ε + 2Cε1/4. (A24)

Now that we have the above form of Â1 and Â5, we can write the remaining operators in the same basis as following by using
Lemmas 7 and 8:

‖U †
1 Â2U1 − 1 ⊗ N‖ � 2C̄2

√
ε + 4Cε1/4, ‖U †

1 Â3U1 − X ⊗ O‖ � 2C̄3
√

ε + 4Cε1/4,

‖U †
1 Â4U1 − 1 ⊗ P‖ � 2C̄4

√
ε + 4Cε1/4, ‖U †

1 Â6U1 − Z ⊗ Q‖ � 2C̄6
√

ε + 4Cε1/4, (A25)

where C̄2 = (4 + √
2)C2 + √

2C3 + 4C5, C̄3 = 4Cγ + √
2(C2 + C3), C̄4 = (4 + √

2)C4 + 4(C5 + C6), C̄6 =
√

C2
γ + C2

6 +
4(C4 + C5 + C6), and N, O, P, and Q are Hermitian operators acting on the subspace of dimension k � 2. We will show
explicitly how to obtain the relation for Â2 and the remaining operators can be obtained similarly: first, by expanding Â2 in
the Pauli basis as follows:

Â2 = 1 ⊗ N + X ⊗ Nx + Y ⊗ Ny + Z ⊗ Nz. (A26)

Substituting this form in the bounds on commutation relations of Â2 with Â1 and Â5 from Lemma 7, we will get the following
relations respectively:

‖Y ⊗ Ny + Z ⊗ Nz‖ = ‖Â2 − 1 ⊗ N − X ⊗ Nx‖ � 2(C2 + C3)
√

ε,

‖Y ⊗ Ny + X ⊗ Nx‖ = ‖Â2 − 1 ⊗ N − Z ⊗ Nz‖ � 8(C2 + C5)
√

ε + 4Cε1/4. (A27)

Now notice that since Â2 is almost a unitary matrix, the operators Nx, Ny, and Nz approximately commute with each other. We
can further show by manipulating the above expression that

‖(Y ⊗ Ny + Z ⊗ Nz )2‖ = ∥∥1 ⊗ N2
y + 1 ⊗ N2

z + Y Z[1 ⊗ Ny,1 ⊗ Nz]
∥∥ � 4(C2 + C3)2ε

⇒ ∥∥1 ⊗ N2
y + 1 ⊗ N2

z

∥∥ � 4(C2 + C3)2ε + ‖Y Z[1 ⊗ Ny,1 ⊗ Nz]‖ � 8(C2 + C3)2ε

⇒ ‖Ny‖, ‖Nz‖ � (C2 + C3)
√

8ε,

where we have expanded using the triangle inequality and then upper bounded ‖Y Z[1 ⊗ Ny,1 ⊗ Nz]‖ by [2(C2 + C3)
√

ε]2,
using the fact that 1 − 2C2

√
ε � |a2| � 1 from (A17). Substituting these in the second relation of (A27), we will get the bound
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‖Â2 − 1 ⊗ N‖ � 2C̄2
√

ε + 4Cε1/4, with C̄2 = (4 + √
2)C2 + √

2C3 + 4C5. In a similar way we can get the relations for the
remaining operators in Â3, Â4, and Â6 in (A25).

Now, using the bounds on Â2 and Â4 (A25) and the bound on {Â2, Â4} from Lemma 8 we can show that

‖{1 ⊗ N, 1 ⊗ P}‖ � ‖(1 ⊗ N − A2)1 ⊗ P‖ + ‖A2(1 ⊗ P − A4)‖ + ‖1 ⊗ P(1 ⊗ N − A2)‖ + ‖(1 ⊗ P − A4)A2‖
+ ‖{A2, A4}‖ � 4(Cγ + C̄2 + C̄4)

√
ε + 16Cε1/4. (A28)

We can now find a unitary operator U3 such that

‖1 ⊗ N (3) − 1 ⊗ Z‖ � ‖1 ⊗ N − Â2‖ + ∥∥Â(3)
2 − 1 ⊗ Z

∥∥ � 2(C2 + C̄2)
√

ε + 4Cε1/4, (A29)

where we have first used the triangle inequality and then the bounds on ‖1 ⊗ N − Â2‖ from (A25), ‖Â2 − 1 ⊗ Z‖, from the fact
that the minimum eigenvalue of Â2 is 1 − 2C2

√
ε. Now using the anticommutation bound in (A28) and the inequality in (A29),

we can get the following relation:

‖{1 ⊗ P(3),1 ⊗ Z}‖ � ‖{1 ⊗ P,1 ⊗ N}‖ + ‖{1 ⊗ P(3), (1 ⊗ Z − 1 ⊗ N (3) )}‖
� 4(Cγ + C2 + 2C̄2 + C̄4)

√
ε + 24Cε1/4,

where we first use the triangle inequality and then apply the upper bounds. From the above relation, the form of 1 ⊗ P(3) =
p11 ⊗ 1 + px1 ⊗ X + py1 ⊗ Y + pz1 ⊗ Z can be written as

‖1 ⊗ P(3) − px1 ⊗ X − py1 ⊗ Y ‖ � 2(Cγ + C2 + 2C̄2 + C̄4)
√

ε + 12Cε1/4.

By finding another unitary U4 which rotates the operator pxX + pyY to X and leaves 1 ⊗ Z invariant as it rotates the operators
only in the x-y plane, we can get the following by defining U2 = U4U3:

‖U †
2 1 ⊗ NU2 − 1 ⊗ Z‖ � 2(C2 + C̄2)

√
ε + 4Cε1/4,

‖U †
2 1 ⊗ PU2 − 1 ⊗ X‖ � 2(Cγ + C2 + 2C̄2 + C̄4)

√
ε + 12Cε1/4. (A30)

Thus by defining the effect of these unitaries as U = U2U1, and then substituting the relations of (A30) further in (A25) for Â2

and Â4, we will get

‖U †Â4U − 1 ⊗ X‖ � ‖U †Â4U − U †
2 1 ⊗ PU2‖ + ‖U †

2 1 ⊗ PU2 − 1 ⊗ X‖ � 2(C2 + 2C̄2 + 2C̄4 + Cγ )
√

ε + 16Cε1/4,

‖U †Â2U − 1 ⊗ Z‖ � ‖U †Â2U − U †
2 1 ⊗ NU2‖ + ‖U †

2 1 ⊗ NU2 − 1 ⊗ Z‖ � 2(C2 + 2C̄2)
√

ε + 8Cε1/4. (A31)

Now to obtain the operators Â3 and Â6 we need to determine O and Q. To do this, we use the bounds on the commutator and
anticommutator of Â3(Â6) with Â2 and Â4 from Lemmas 7 and 8. Let us note the following relations for O:

‖[X ⊗ O, 1 ⊗ Z]‖ � ‖(X ⊗ O − Â3)⊗Z‖ + ‖Â3(1 ⊗ Z − Â2)‖ + ‖(Â2 − 1 ⊗ Z )Â3‖ + ‖1 ⊗ Z (Â3 − X ⊗ O)‖
+ ‖[Â2, Â3]‖ � 4(C2 + C̄2 + C3 + C̄3)

√
ε + 24Cε1/4,

‖{X ⊗ O, 1 ⊗ X }‖ � ‖(X ⊗ O − Â3)1 ⊗ X‖ + ‖A3(1 ⊗ X − A4)‖ + ‖1 ⊗ X (X ⊗ O − Â3)‖ + ‖(1 ⊗ X − A4)A3‖
+ ‖{A3, A4}‖ � 4(Cγ + C̄3 + C̄4)

√
ε + 24Cε1/4.

Here we have used the triangle inequalities and then the bounds from (A25) and (A31) and then the bounds on ‖[A2, A3]‖ and
‖{A3, A4}‖. From the above two relations, we can deduce that ‖[O, Z]‖ and ‖{O, X }‖ also satisfy the same bound. Expanding
the operator O as o11 + oxX + oyY + ozZ , we can conclude the following:

‖oxX + oyY ‖ � 2(C2 + C̄2 + C3 + C̄3)
√

ε + 12Cε1/4,

‖o11 + oxX‖ � 2(Cγ + C̄3 + C̄4)
√

ε + 12Cε1/4,

where from the second relation we can write |o1 ± ox| � 2(Cγ + C̄3 + C̄4)
√

ε + 12Cε1/4, which implies that |o1| and |ox| are
also bounded by the same number. Substituting this in the first inequality we can bound ‖oy‖ and then from there we can show
that

‖O − Z‖ � ‖O − ozZ‖ + ‖ozZ − Z‖ = ‖o11 + oxX + oyY ‖ + ‖ozZ − Z‖ � ‖o11 + oxX‖ + ‖oyY ‖ + ‖ozZ − Z‖
� 2(C3 + C̄3 + 2C̄4 + 2Cγ − 2C2)

√
ε + 12Cε1/4,

where we have used the triangle inequalities and then the bounds on respective operators proved just above. Also, |oz ± 1| �
2C3

√
ε because the minimum magnitude of Â3 eigenvalues is 1 − 2C3

√
ε. In the same way, we can get the following bound on

‖Q − X‖:

‖Q − X‖ � 2(Cγ + C2 + C3 + 2C̄2 + C̄6)
√

ε + 12Cε1/4.
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Substituting these relations in (A25), and by using the triangle inequalities, we get that

‖U †Â3U − X ⊗ Z‖ � ‖U †Â3U − X ⊗ O‖ + ‖X ⊗ O − X ⊗ Z‖ � 2(C3 + 2C̄3 + 2C̄4 + 2Cγ − 2C2)
√

ε + 16Cε1/4,

‖U †Â6U − Z ⊗ X‖ � ‖U †Â6U − Z ⊗ Q‖ + ‖Z ⊗ Q − Z ⊗ X‖ � 2(Cγ + C2 + C3 + 2C̄2 + 2C̄6)
√

ε + 16Cε1/4.

This completes the proof. �
Lemma 10. Suppose a nonmaximal quantum violation 5 − ε of the inequality (7) is observed. Then, there exists a basis in

the subspace V such that

| 〈ψ̂ |φ+〉 |2 � 1 − (
s1ε + s2ε

3/4 + s3
√

ε
)
, (A32)

where s1 and s2 are positive constants, and |φ+〉 is the two-qubit maximally entangled state and U (P| |ψ〉) = |ψ̂〉.
Proof. Let us consider the following expectation value in any arbitrary state from V :

〈X ⊗ X 〉 = 1 − 1
2‖X ⊗ 1 − 1 ⊗ X‖2 � 1 − 1

2 (‖X ⊗ 1 − A1‖2 + ‖A1 − A4‖2 + ‖A4 − 1 ⊗ X‖2)

� 1 − 2
[
4C2

4 + c2
4

]
ε − 32c4Cε3/4 − 128C2√ε,

where we have used triangle inequality in the first line, then used Eq. (A6) and Lemma 9 in the second line. In the same way by
using Lemma 9 and Eqs. (A7) and (A8), we can show respectively that

〈Z ⊗ Z〉 � 1 − 2
[
9C2

γ + C2
2 + c2

2 + C2
5

]
ε − 4(3Cγ + 4c2)Cε3/4 − 34C2√ε,

−〈Y ⊗ Y 〉 = 1 − 1
2‖X ⊗ Z − Z ⊗ X‖2 � 1 − 1

2 (‖X ⊗ Z − A3‖2 + ‖A3 − A6‖2 + ‖A6 − Z ⊗ X‖2)

� 1 − 2
[
c2

3 + c2
6 + C2

3 + C2
6

]
ε − 32(c3 + c6)Cε3/4 − 256C2√ε, (A33)

where we have used iXZ = −iZX = Y with i = √−1. From the above three relations, it is straightforward to guess that the
state must be of the form |ψ̂〉 = cos(θ ) |φ+〉 + sin(θ ) |φ−〉, where |φ−〉 is orthogonal to |φ+〉. The lowest bound on the fidelity
of |ψ̂〉 with |φ+〉 comes from the last relation (A33). Therefore, we get

cos2(θ ) − sin2(θ ) � 1 − 2(s1ε + s2ε
3/4 + s3

√
ε),

where s1, s2, and s3 denote the constant factors (divided by 2) in front of ε, ε3/4, and
√

ε respectively in Eq. (A33). This
immediately implies the following:

| 〈ψ̂ |φ+〉 |2 = cos2(θ ) � 1 − (s1ε + s2ε
3/4 + s3

√
ε).

Hence, we prove the lemma. �
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[8] I. Šupić and J. Bowles, Self-testing of quantum systems: A
review, Quantum 4, 337 (2020).

[9] D. Mayers and A. Yao, Self testing quantum apparatus,
Quantum Inf. Comput. 4, 273 (2004).

[10] J. S. Bell, On the Einstein Podolsky Rosen paradox, Phys. Phys.
Fiz. 1, 195 (1964).

[11] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S.
Wehner, Bell nonlocality, Rev. Mod. Phys. 86, 419 (2014).

[12] S. Kochen and E. P. Specker, The problem of hidden variables
in quantum mechanics, J. Math. Mech. 17, 59 (1967).

[13] K. Bharti, M. Ray, A. Varvitsiotis, N. A. Warsi, A. Cabello, and
L.-C. Kwek, Robust self-testing of quantum systems via non-
contextuality inequalities, Phys. Rev. Lett. 122, 250403 (2019).

[14] K. Bharti, M. Ray, A. Varvitsiotis, A. Cabello, and L.-C. Kwek,
Local certification of programmable quantum devices of arbi-
trary high dimensionality, arXiv:1911.09448.

[15] A. A. M. Irfan, K. Mayer, G. Ortiz, and E. Knill, Certified
quantum measurement of Majorana fermions, Phys. Rev. A 101,
032106 (2020).

022408-12

https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/PhysRevB.95.235305
https://doi.org/10.1103/PhysRevX.6.021043
https://doi.org/10.1103/PhysRevLett.128.180504
https://doi.org/10.1103/PhysRevLett.78.390
https://doi.org/10.1103/PhysRevLett.86.4195
https://doi.org/10.1103/PhysRevA.66.012303
https://doi.org/10.22331/q-2020-09-30-337
https://doi.org/10.26421/QIC4.4
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1103/RevModPhys.86.419
https://www.jstor.org/stable/24902153
https://doi.org/10.1103/PhysRevLett.122.250403
https://arxiv.org/abs/1911.09448
https://doi.org/10.1103/PhysRevA.101.032106


CERTIFICATION OF TWO-QUBIT QUANTUM SYSTEMS … PHYSICAL REVIEW A 110, 022408 (2024)

[16] R. Santos, C. Jebarathinam, and R. Augusiak, Scalable noncon-
textuality inequalities and certification of multiqubit quantum
systems, Phys. Rev. A 106, 012431 (2022).

[17] A. J. Leggett and A. Garg, Quantum mechanics versus macro-
scopic realism: Is the flux there when nobody looks?, Phys. Rev.
Lett. 54, 857 (1985).
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Bell inequalities for qubit graph states and robust self-testing,
Phys. Rev. Lett. 124, 020402 (2020).

[32] G. Sharma, C. Jebarathinam, S. Sazim, and R. Augusiak,
Certification of multiqubit quantum systems with temporal in-
equalities, arXiv:2404.02709.

[33] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed. (Cam-
bridge University, New York, 2013).

[34] I. Kachkovskiy and Y. Safarov, Distance to normal elements
in C∗-algebras of real rank zero, J. Am. Math. Soc. 29, 61
(2016).

[35] M. B. Hastings, Making almost commuting matrices commute,
Commun. Math. Phys. 291, 321 (2009).

022408-13

https://doi.org/10.1103/PhysRevA.106.012431
https://doi.org/10.1103/PhysRevLett.54.857
https://doi.org/10.1103/PhysRevA.89.042109
https://doi.org/10.1103/PhysRevA.103.062604
https://doi.org/10.22331/q-2020-08-03-302
https://doi.org/10.22331/q-2022-05-19-716
https://arxiv.org/abs/2206.06092
https://arxiv.org/abs/2307.01333
https://doi.org/10.1103/PhysRevA.98.062115
https://doi.org/10.1016/0375-9601(90)90172-K
https://doi.org/10.1103/PhysRevLett.65.3373
https://doi.org/10.1103/PhysRevLett.100.130404
https://doi.org/10.1103/PhysRevLett.117.070402
https://doi.org/10.22331/q-2019-10-24-198
https://doi.org/10.1038/s41534-021-00490-3
https://doi.org/10.1103/PhysRevLett.124.020402
https://arxiv.org/abs/2404.02709
https://doi.org/10.1090/S0894-0347-2015-00823-2
https://doi.org/10.1007/s00220-009-0877-2

