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One-axis twisting (OAT) and two-axis twisting (TAT) are well-known methods for achieving entanglement-
enhanced quantum metrology, and their time-reversal echo offers a potent tool for approaching the Heisenberg
limit even with detection noise. However, flipping the sign of interaction to implement the time-reversal echo
is generally challenging. Here, we propose an echo protocol based on synthetic TAT from interaction-fixed
OAT in a pseudospin-1/2 ensemble to achieve time-reversal quantum metrology. By applying modulation pulses
around two different orthogonal directions, the effective TAT and its echo can be realized without changing the
interaction. We demonstrate that this protocol not only outperforms the OAT echo scheme in both metrological
gain and evolution time but is also robust against detection noise. Our protocol presents a TAT echo scheme
that effectively avoids flipping the sign of interaction, providing a viable method for improving precision and
robustness of quantum metrology.
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I. INTRODUCTION

The aim of quantum metrology is to use quantum resources
such as correlations and entanglement to surpass the classical
precision limit [1–4]. It is well known that when using nonen-
tangled states, the phase estimation uncertainty is constrained
by the standard quantum limit (SQL), �φSQL = (νN )−1/2,
where ν is the number of identical experiments and N denotes
the particle number. The ultimate goal of quantum metrology
is to utilize entanglement to reach the Heisenberg limit (HL),
�φHL = ν−1/2N−1 [5–8].

One-axis twisting (OAT) [9] has been proposed to gen-
erate spin squeezed states [10–12] to outreach the SQL.
Up to date, many proof-of-principle experiments have been
demonstrated with various systems such as atomic Bose-
Einstein condensates (BECs) [13–15], trapped ions [16], and
cold atoms in an optical cavity [17,18]. However, using the
spin squeezed states generated by OAT, the phase estimation
uncertainty is only proportional to N−5/6, and the optimal
squeezing angle depends on the particle number N and the
evolution time T [5]. Two-axis twisting (TAT) [9,19–23],
which is performed simultaneously clockwise and counter-
clockwise twisting around two orthogonal axes, can generate
spin squeezed states with a fixed optimal squeezing angle
during the twisting evolution [9]. The corresponding phase es-
timation uncertainty is proportional to N−1, which can exhibit
the Heisenberg scaling [5]. However, the TAT interaction has
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not yet been found directly in any known physical systems. To
facilitate an effective TAT interaction, one can transform OAT
into TAT by applying well-designed sequences of transverse
coherent fields [12,24–29].

Apart from entanglement generation, state detection is also
important in quantum metrology. The detection of highly
entangled states generally requires single-particle resolved
detection. To relax the stringent requirement of low-noise
detection, interaction-based readout [16,30–54] has been
proposed in recent years. It provides a powerful way for
approaching the precision bound of the Heisenberg limit. It
is of broad interest to explore time-reversal echoes based on
the OAT [32] and TAT [33]. In particular for spin squeezed
states, using the time-reversal echo dynamics [31–35] as
interaction-based readout enables the Heisenberg-limited pre-
cision. However, it is necessary to reverse the quantum
dynamics of an interacting many-body system, which is typ-
ically realized by flipping the sign of interaction. Despite the
fact that the time-reversal echoes based on OAT [55] and
twist-and-turn [56] have been demonstrated with cold atoms
in an optical cavity, it is still experimentally challenging to flip
the sign of interaction in other systems [33], such as BECs
[13,14]. Therefore, a natural question arises: can one achieve
an effective TAT echo scheme without flipping the sign of
interaction?

In this paper, we propose an echo protocol based on syn-
thetic TAT from interaction-fixed OAT in a pseudospin-1/2
ensemble. By applying modulation pulses around two dif-
ferent orthogonal directions, the effective TAT and its echo,
i.e., an effective two-axis antitwisting (TAAT), can be realized
respectively without flipping the sign of the OAT interaction.
Our results show that, using the synthetic two-axis-twisting
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echo (STATE) protocol for phase estimation, one can not only
obtain larger metrological gain than that by using OAT echo,
but also require a shorter evolution time, even in the presence
of detection noises. The effects of pulse imperfections are
also considered, and our protocol is somewhat robust against
pulse imperfections. Our protocol can realize the effective
TAT echo scheme without flipping the sign of interaction, thus
proving a practical way for realizing robust high-precision
phase estimation.

II. REALIZATION OF THE SYNTHETIC
TWO-AXIS-TWISTING ECHO SCHEME

We consider a collective spin system with N spins occupy-
ing two different energy levels |↑〉 and |↓〉. It is convenient
to describe the system by collective spin operators Ĵμ =∑N

k=1 σ̂
(μ)
k /2, where σ̂

(μ)
k are Pauli operators for the kth par-

ticle with μ = x, y, z. The TAT Hamiltonian (we set h̄ = 1
hereafter) can be written as ĤTAT = χ ′(Ĵ2

x − Ĵ2
y ), where χ ′

indicates the TAT nonlinear interaction strength. Before in-
troducing how to realize our STATE scheme, we first briefly
introduce the echo scheme based on the original TAT [33].

The implementation process of a general echo scheme can
be expressed as |ψ f 〉 = R̂mÛ2R̂n(φ)Û1|ψi〉. At first, the initial
state is generally prepared in a spin coherent state (SCS) polar-
ized along the z axis, i.e., |ψi〉 = |↑〉⊗N . Second, the entangled
spin state is dynamically generated by Û1 = e−iĤTATT with
T the evolution time. Third, the phase encoding along Ĵα =√

2
2 (Ĵx − Ĵy) direction R̂n(φ) = e−iφĴα is performed. Then, the

antitwisting Û2 = Û †
1 = eiĤTATT is implemented to recover

back to a closely resembled SCS, resulting in a large displace-
ment 〈Ĵβ〉 with Ĵβ =

√
2

2 (Ĵx + Ĵy). Finally, one can rotate the

state with R̂m = e−iĴyπ/2eiĴzπ/4 and applying half-population
difference measurement 〈Ĵz〉 to extract the information of φ.

For realizing our STATE scheme, we consider adding the
linear coupling �1(t )Ĵy (along y axis) into the OAT Hamil-
tonian ĤOAT = χ Ĵ2

z for twisting [25] and adding the linear
coupling �2(t )Ĵx (along x axis) into the OAT Hamiltonian for
antitwisting, i.e.,

Ĥtwist (t ) = χ Ĵ2
z + �1(t )Ĵy (1)

and

Ĥantitwist (t ) = χ Ĵ2
z + �2(t )Ĵx, (2)

where the fixed χ stands for the OAT nonlinear interaction
strength, while the time-varying �1(t ) and �2(t ) are the linear
coupling amplitudes during twisting and antitwisting, respec-
tively. Hereafter, we assume the couplings are achieved by
short pulses. When the coupling pulses are switched on, we set
�1(t ) = �2(t ) = �, satisfying |�| 	 χN . In this case, linear
coupling dominates and nonlinear interaction can be ignored.
While coupling pulses are turned off, �1(t ) = �2(t ) = 0, it is
reduced to the OAT dynamics.

Then, we show how to achieve the TAT evolution
e−iχ (Ĵ2

x −Ĵ2
y )t and the TAAT evolution e−iχ (Ĵ2

y −Ĵ2
x )t by apply-

ing pulses based on interaction-fixed OAT. Assume the total
collective spin Ĵ2 = Ĵ2

x + Ĵ2
y + Ĵ2

z is conserved during the
time evolution. Thus, up to a constant phase factor, the

TAT evolution e−iχ (Ĵ2
x −Ĵ2

y )t can be written as e−iχ (Ĵ2+Ĵ2
x −Ĵ2

y )t =
e−iχ (2Ĵ2

x +Ĵ2
z )t , and the TAAT evolution e−iχ (Ĵ2

y −Ĵ2
x )t also can

be written as e−iχ (Ĵ2+Ĵ2
y −Ĵ2

x )t = e−iχ (2Ĵ2
y +Ĵ2

z )t . When η = χ�t
is small enough, the TAT and TAAT can be approximately
decomposed into OAT and linear rotations around different
axes. Using the second-order Trotter-Suzuki expansion [25],
we have

e−iη(Ĵ2
x −Ĵ2

y ) 
 e−i η

2 Ĵ2
z e−i2ηĴ2

x e−i η

2 Ĵ2
z + O[(−iη)3], (3)

e−iη(Ĵ2
y −Ĵ2

x ) 
 e−i η

2 Ĵ2
z e−i2ηĴ2

y e−i η

2 Ĵ2
z + O[(−iη)3]. (4)

For achieving the OAT around the x and y axis, the pulses
should be applied to rotate e−iχ Ĵ2

z t to e−iχ Ĵ2
x t or to e−iχ Ĵ2

y t as
follows:

R̂y
−π/2e−iχ Ĵ2

z t R̂y
+π/2 = e−iχ Ĵ2

x t , (5)

R̂x
−π/2e−iχ Ĵ2

z t R̂x
+π/2 = e−iχ Ĵ2

y t , (6)

where the ±π/2 rotation operators are defined as
R̂y

±π/2 = e∓iπ Ĵy/2 and R̂x
±π/2 = e∓iπ Ĵx/2, respectively.

Combining Eqs. (3) and (5), we arrive at

e−iη(Ĵ2
x −Ĵ2

y ) ≈ e−i η

2 Ĵ2
z R̂y

−π/2e−i2ηĴ2
z R̂y

+π/2e−i η

2 Ĵ2
z , (7)

and combining Eqs. (4) and (6), we arrive at

e−iη(Ĵ2
y −Ĵ2

x ) ≈ e−i η

2 Ĵ2
z R̂x

−π/2e−i2ηĴ2
z R̂x

+π/2e−i η

2 Ĵ2
z . (8)

Equations (7) and (8) indicate that the TAT and TAAT evolu-
tion can be implemented approximately via the Hamiltonian
in Eqs. (1) and (2) by using π/2-pulse sequences along y and
x direction, respectively.

Specifically, we show how to realize the synthetic two-axis
twisting (STAT) and synthetic two-axis antitwisting (STAAT)
in a small period. The whole period can be divided into three
parts. The STAT, as shown in the top of Fig. 1(a), can be
realized through implementing the first OAT evolution lasting
δt/2, subsequently applying a +π/2 pulse (red pulse) along y
followed by the second OAT evolution lasting 2δt , and finally
applying another −π/2 pulse (blue pulse) along y followed
by the third OAT evolution lasting δt/2. Thus, the STAT
evolution for such a single period �t = 3δt can be expressed
as

Ûa = e−iχ δt
2 Ĵ2

z R̂y
−π/2e−iχ2δt Ĵ2

z R̂y
+π/2e−iχ δt

2 Ĵ2
z . (9)

The operation for realizing the STAAT evolution is similar
with the STAT evolution, except that the first +π/2 pulse
(orange pulse) and the second −π/2 pulse (green pulse) are
along x, as shown in the bottom of Fig. 1(a). Thus the STAAT
evolution for such a single period �t can be written as

Ûb = e−iχ δt
2 Ĵ2

z R̂x
−π/2e−iχ2δt Ĵ2

z R̂x
+π/2e−iχ δt

2 Ĵ2
z . (10)

The above operations constitute the STAT or STAAT for a
single period of �t . Repeating these operations for Nc periods,
one can obtain the evolution of STAT or STAAT for a total
evolution time T = Nc�t . Therefore, the evolution operators
for twisting and antitwisting can be given by Û1(T ) = (Ûa)Nc

and Û2(T ) = (Ûb)Nc , respectively. For a given evolution time
T , when the interval of a single period is short enough
�t → 0, the evolution operators for TAT and TAAT can
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FIG. 1. (a) The implementation of the pulse sequence to realize STAT and STAAT in a short period, consisting of rotations R̂y
±π/2 (+, red

pulse; −, blue pulse) and rotations R̂x
±π/2 (+, orange pulse; −, green pulse), respectively. (b) Schematic diagram of the STATE protocol. The

upper panel shows the implementation process of the STATE protocol, which includes (I) the periodic pulse sequences to realize STAT, (II)
phase encoding, and (III) the periodic pulse sequences to realize STAAT. The lower panel shows the evolved states in each stage, visualized
by Husimi distribution on the generalized Bloch spheres. (i) In the beginning, the state is prepared in an unentangled state with all spins
polarized along z, (ii) then the entangled state is obtained after the STAT which includes Nc periods of pulse sequence Ûa, (iii) subsequently
the entangled state encodes the estimated phase around Ĵα =

√
2

2 (Ĵx − Ĵy ) direction, and (iv) finally the state is recovered as nearly a SCS with

large displacement along Ĵβ =
√

2
2 (Ĵx + Ĵy ) direction after the STAAT which includes Nc periods of pulse sequence Ûb. The final state is rotated

as R̂m = e−iĴyπ/2eiĴzπ/4 in order to transfer the large displacement to the z direction before the half-population difference measurement.

be represented exactly as Û1 = e−i(Ĵ2
x −Ĵ2

y )χT/3, and Û2 =
e−i(Ĵ2

y −Ĵ2
x )χT/3, respectively. Therefore, the effective Hamilto-

nian for STAT is

Ĥ eff
1 = χ

3

(
Ĵ2

x − Ĵ2
y

)
, (11)

and the one for STAAT is

Ĥ eff
2 = χ

3

(
Ĵ2

y − Ĵ2
x

)
. (12)

It is important to emphasize that the OAT interaction strength
χ is fixed throughout the time evolution.

Therefore, as shown in Fig. 1(b), our STATE scheme can
be implemented as follows:

|ψ f 〉 = R̂m(Ûb)Nc R̂n(φ)(Ûa)Nc |ψi〉. (13)

At first, the initial state |ψi〉 is prepared in a SCS polarized
along z. Then, the entangled spin state is achieved via im-
plementing synthetic TAT (Ûa)Nc . Subsequently, the phase
encoding R̂n(φ) = e−iφĴα is around the Ĵα =

√
2

2 (Ĵx − Ĵy) di-
rection. Finally, the synthetic TAAT (Ûb)Nc is implemented to
recover back to a near SCS, resulting in a large displacement
〈Ĵβ〉 with Ĵβ =

√
2

2 (Ĵx + Ĵy) (see Fig. 1). To perform the half-
population difference measurement, we rotate the state with
R̂m = e−iĴyπ/2eiĴzπ/4. Thus, one can achieve an effective TAT
echo protocol from interaction-fixed OAT by only applying a
sequence of pulses.

III. METROLOGICAL GAIN

In this section, we first introduce the metrological gain for
estimating the phase sensitivity and compare the four echo
schemes, including the OAT echo, synthetic OAT (SOAT)
echo, TAT echo, and STATE schemes. In Sec. III A, we
study the effects of pulse number on the metrological gain,
and consequently find out the required number of pulses for
realizing the metrological gain over OAT and close to the

TAT echo scheme. The effect of phase accumulation on the
metrological gain is investigated in Sec. III B. The small signal
phase is amplified via an echo leading to the improved signal
response to phase. Consequently, the metrological gain ob-
tained with echo is larger than that without echo. In Sec. III C,
the influences of pulse imperfections on metrological gain are
investigated which include the pulse strength, the uncertainty
of pulse area, the uncertainty of pulse action time, and the
uncertainty of pulse switch-on and -off time. In Sec. III D,
the effects of detection noise on metrological gain are studied,
in which the pulse imperfections are considered. Finally, the
scaling of metrological gain with particle number is shown
in Sec. III E, where the pulse imperfections and the detection
noise are considered simultaneously.

After implementing our STATE scheme, the last and most
important step is to evaluate the phase sensitivity. The phase
sensitivity can be estimated via the error propagation formula
after performing the half-population difference measurement

�φ = �Ĵz

|∂φ〈Ĵz〉|
, (14)

where 〈Ĵz〉 = 〈ψ f |Ĵz|ψ f 〉 and �Ĵz =
√

〈Ĵ2
z 〉 − 〈Ĵz〉2

represent
the mean and standard deviation of Ĵz, and ∂φ〈Ĵz〉 = ∂〈Ĵz〉/∂φ

denotes the signal response to phase. To compare with the
SQL phase sensitivity, the metrological gain is formally de-
fined as

G = 20 log10

[
(�φ)SQL

�φ

]
= 20 log10

(
|∂φ〈Ĵz〉|√

N�Ĵz

)
, (15)

where (�φ)SQL = 1/
√

N denotes the phase sensitivity of
SQL.

Below, we compare the four echo schemes, including the
OAT echo, SOAT echo, TAT echo, and STATE schemes
[32,33]. We first introduce the implementation process of
the OAT echo, SOAT echo, and TAT echo schemes. The
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FIG. 2. Dependence of metrological gain on evolution time T
with OAT, SOAT, TAT, and STAT echo schemes. For the STATE
scheme, Nc = 30. The particle number is chosen as N = 100 in our
simulations. The gray solid (dashed) line represents the HL (SQL).

implementation process of the OAT echo scheme is |ψ f 〉 =
R̂mÛ2R̂n(φ)Û1|ψi〉. The initial state |ψi〉 is chosen as an SCS
polarized along x. The phase encoding R̂n(φ) = e−iĴyφ is along
the y direction. The echo dynamics is implemented as Û2 =
Û †

1 with Û1 = e−iĤOATT and ĤOAT = χ Ĵ2
z . Finally, we imple-

ment the rotation R̂m = eiĴxϕ to perform the half-population
difference measurement, in which ϕ is chosen to provide
the largest metrological gain among all possible values. The
time-reversal echo of OAT is realized via flipping the sign
of many-body interaction. To compare with the STAT echo
scheme in the same system where no sign change is possible,
we also consider the SOAT echo scheme, whose implemen-
tation process is |ψ f 〉 = R̂mÛ1R̂n(φ)R̂x(θ )Û1|ψi〉. Different
from the OAT echo scheme, a rotation along the x axis
is applied via R̂x(θ ) = e−iĴxθ with θ = π − 2γopt before the
phase encoding and the sign of the Hamiltonian is left un-
changed. Here, γopt = 1

2 arctan(B/A) is the optimal angle of
squeezing for OAT, in which A = 1 − cosN−2(2χt ) and B =
4 cosN−2(χt ) sin(χt ) [9]. Further, to verify that the STAT
echo scheme is equivalent to the TAT echo scheme, the TAT
echo scheme is also considered. Different from the STATE
schemes, the dynamical evolution for the TAT echo scheme
is Û1 = e−iĤTATT with ĤTAT = χ (Ĵ2

x − Ĵ2
y )/3 and time-reversal

echo Û2 = Û †
1 is achieved by flipping the sign of the Hamilto-

nian.
We study the dependence of metrological gain on the evo-

lution time T for the STATE scheme, and compare with the
OAT echo, STAT echo, and TAT echo schemes, as shown in
Fig. 2. In our simulation (N = 100, χ = 1, Nc = 30), for the
STATE scheme (black dashed line), the maximal metrologi-
cal gain GSTAT

max ≈ 16.88 is achieved at the optimal evolution
time T STAT

opt = 0.0795, near the time 3 ln(2N )/(2Nχ ) [19],
and for the OAT echo scheme (blue dash-dotted line), the
maximal metrological gain GOAT

max ≈ 15.63 is achieved at the
optimal evolution time T OAT

opt = 0.1, corresponding to the time

1/(χ
√

N ) [32]. The result of the STAT echo is consistent with

1 10 20 30 40 50
0

10

20

OAT

TAT

STAT

0 200 400 600 800 1000
0

100

200

(a)

(b)

FIG. 3. (a) Dependence of metrological gain on the number of
periods Nc for the STATE scheme implemented with optimal evo-
lution time. The blue dash-dotted and orange solid lines represent
metrological gain obtained via the OAT and TAT echo schemes
implemented at near optimal evolution time. The particle number is
chosen as N = 100 in our simulations. (b) The minimum required
number of periods Nc satisfying GTAT − GSTAT < 0.01 for different
particle number.

the one of the TAT echo when Nc = 30, and the result of the
SOAT echo is consistent with the one of the OAT echo within
short evolution time. Compared to the OAT echo scheme,
the STAT echo scheme has a larger maximum achievable
metrological gain and a faster evolution time. Furthermore,
when compared to the SOAT echo scheme in the same system,
which does not allow for sign changes, the STATE scheme
also shows a larger maximum available metrological gain,
which is more effective and feasible for experiments.

A. Effects of pulse number

Since the STATE scheme is implemented by applying a
sequence of periodic pulses, the phase measurement precision
is bound to be affected by the pulse number. Here, we study
the effects of the pulse number on the metrological gain ob-
tained via our STATE scheme. In theory, Eq. (3) illustrates
that the validity of STAT depends on η = χ�t . Considering
the total evolution time T is fixed and divided into Nc periods,
the single period is �t = T/Nc. To ensure �t → 0, the total
number of periods Nc → ∞, i.e., the total number of pulses
Np = 4Nc → ∞. Therefore, a greater number of pulses is
better to achieve the effective TAT.

However, the available number of pulses may be limited
in practical experiments. Below, we investigate the depen-
dence of metrological gain on the number of total periods Nc

for the STATE scheme implemented with optimal evolution
time T = 3 ln(2N )/(2Nχ ) by numerical simulation, and the
results are shown in Fig. 3(a). As the number of pulses Np

increases, the metrological gain also increases. For both the
OAT echo (blue dash-dotted line) and TAT (orange solid line)
echo schemes, the corresponding optimal metrological gains
are chosen for comparison. For N = 100, when the number
of periods increases to Nc = 11, i.e., the number of pulses
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increases to Np = 44, the metrological gain of the STATE
scheme exceeds that of the OAT echo scheme. Further, when
the number of periods increases to Nc = 20, i.e., Np = 80, the
metrological gain of the STATE scheme is very close to that
of the TAT echo scheme. According to our simulation, for
the case of N = 100 particles, applying Np = 120 pulses is
sufficient.

For different particle number N , we investigate the min-
imum required number of periods Nc satisfying GTAT −
GSTAT < 0.01, where GTAT and GSTAT stand for the metrolog-
ical gain obtained via the TAT echo and STATE scheme at the
optimal evolution time T = 3 ln(2N )/(2Nχ ), respectively. As
the number of particles grows, the corresponding evolution
time decreases, and the number of required Nc increases, as
shown in Fig. 3(b).

B. Effects of phase accumulation

Here, we investigate the effects of phase accumulation.
In practice, the value of the estimated phase influences
the metrological gain of the echo protocols. The minimal
achievable uncertainty of the estimated phase is theoretically
determined by the quantum Cramér-Rao bound (QCRB) [6],
expressed as (�φ)QCRB = 1/

√
FQ, where the quantum Fisher

information can be calculated as FQ = 4(�Ĵα )2 [57,58]. The
corresponding metrological gain for the QCRB is denoted
as GQ = 20 log10[(�φ)SQL/(�φ)QCRB]. In practice, it proves
immensely beneficial to extract the achievable uncertainty
close to the QCRB through population measurement.

We show the normalized signal P = 〈Ĵz〉/N + 1/2 for
OAT, TAT, and STAT echoes in Fig. 4(a). The contrast is
defined as C = (Pmax − Pmin)/(Pmax + Pmin), with OAT and
STAT being C = 0.688 and 0.639, respectively. Although the
STATE scheme suffers a slight contrast loss compared with
the OAT echo scheme, a higher metrological gain can be
achieved. Figure 4(b) demonstrates the metrological gain ob-
tained via our STATE scheme at the optimal evolution time for
encoding different estimated phases. Notably, the result indi-
cates that significant metrological gain can be achieved via the
STATE scheme (purple dash-dotted line) for a tiny estimated
phase through population measurement, closely approaching
the QCRB when the accumulated phase φ ≈ 0. In contrast,
the achievable uncertainty obtained without the echo process
(pink dashed line) significantly deviates from the QCRB.

To elucidate why the echo scheme nearly saturates the
QCRB, we examine the signal 〈Ĵz〉 [Fig. 4(c)], signal response
to phase |∂φ〈Ĵz〉| [Fig. 4(d)], and quantum projection noise
�Ĵz [Fig. 4(e)]. The phase sensitivity is determined by the
noise �Ĵz and the signal response to phase |∂φ〈Ĵz〉|. Although
the noise �Ĵz based on the echo process surpasses the one
without the echo process, the signal response to phase |∂φ〈Ĵz〉|
is in the meantime significantly amplified. This substantial
amplification of the signal response to phase originates from
phase signal amplification of 〈Ĵz〉. Consequently, the phase
sensitivity nearly saturating the QCRB is facilitated through
phase amplification.

C. Effects of pulse imperfections

Up to this point, we have primarily dealt with ideal pulses
that simply rotate the quantum state by a phase shift of π/2
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FIG. 4. (a) The normalized signal P = 〈Ĵz〉/N + 1/2 for OAT,
TAT, and STAT echoes implemented at optimal evolution time. The
inset shows the results in the range of φ ∈ [−0.01, 0.01]. Depen-
dence of (b) metrological gain, (c) signal 〈Ĵz〉, (d) signal response
to phase |∂φ〈Ĵz〉|, and (e) standard deviation of the signal �Ĵz on
the rotation angle φ for the STATE scheme implemented at optimal
evolution time. Purple dash-dotted and pink dashed lines are the
cases with and without echo, respectively. Black dotted line repre-
sents the metrological gain corresponding to the QCRB. Here, the
particle number N = 100 and the number of periods Nc = 30 in our
simulations.

about the x or y axis. However, in practical experiments, the
applied pulses are not perfect. In the following, four types
of the pulse imperfections within our STATE scheme are
discussed.

First, alongside the pulse action, the interaction term χ Ĵ2
z

may have an influence. For the required π/2 pulses, a stronger
pulse intensity implies a shorter pulse duration and con-
sequently reduces the impact of the interaction term. The
dependence of metrological gain on the pulse Rabi frequency
is shown in Fig. 5(a). When the Rabi frequency is larger than
a threshold, the metrological gain saturates.

Additionally, the area of the pulse may not be exactly π/2
in experiments. Hence, we consider that the area of the applied
pulse has a Gaussian random distribution N (π/2, σp), where
σp is the standard deviation. To account for the variability
inherent in Gaussian distribution sampling, we conduct 100
numerical simulations. The impact of pulse area uncertainty
on metrological gain is shown in Fig. 5(b). The mean value
is denoted by a point with error bars indicating the standard
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FIG. 5. Effects of pulse imperfections on the metrological gain
including (a) pulse Rabi frequency, (b) uncertainty of pulse area,
(c) uncertainty of pulse action time, and (d) uncertainty of pulse
switch-on and -off time.

deviation. As the uncertainty of pulse area increases, metro-
logical gain decreases.

Furthermore, the timing of pulse action in our scheme
is also crucial. We assume the pulse action time follows
a Gaussian random distribution N (ta, σt ), where ta and σt

represent the expected value and standard deviation of each
perfect pulse action time, respectively. Figure 5(c) displays the
dependence of metrological gain on the uncertainty of pulse
action time. Here, δt/2 represents the first pulse action time in
each period. As the uncertainty of pulse action time increases,
metrological gain also decreases.

So far, we have separately examined the effects of pulse
Rabi frequency, pulse area uncertainty, and pulse action time
uncertainty on metrological gain. However, in practical ex-
periments, these effects may occur simultaneously. After
selecting a sufficiently strong pulse, the only remaining con-
trol factor is the timing of pulse activation and deactivation.
Therefore, uncertainty in these timings leads to indeterminate
phase application by the pulse. Here, we assume that the pulse
switch-on and switch-off times follow Gaussian random dis-
tributions N (ton, σs) and N (toff , σs), respectively. Figure 5(d)
illustrates the dependence of metrological gain on the un-
certainty of pulse activation and deactivation times. Here,
�t = π/(2�) denotes the time interval for pulse activation
and deactivation, where � is chosen as 2π×50 kHz, as shown
by the black dot marked in Fig. 5(a). Although the pulse
imperfection reduces the metrological gain, the SQL can still
be broken within a certain range. Through our calculations,
the metrological gain can remain high if one can control σs

below 0.005�t .

D. Effects of detection noise

In practical experiments, other experimental imperfections
also significantly affect the precision of the final phase es-
timation [59–61]. In particular, detection noise is a critical
factor influenced by the detector’s performance, leading to
inaccurate particle counting [32,37,40,62]. In this subsection,

10
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5
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FIG. 6. Metrological gain G vs the magnitude of detection noise
σd . All echo schemes are implemented with corresponding optimal
evolution time. For the STATE scheme, the uncertainty of pulse
switch-on and -off time is also considered with σs1 = 0.001�t (green
dot line), σs2 = 0.002�t (green dashed line), and σs3 = 0.003�t

(green dash-dotted line). Here, we choose the particle number
N = 100 and the number of periods Nc = 30 in our simulations.

we aim to investigate the robustness of our STATE scheme
against detection noise and compare it with the OAT echo and
TAT echo schemes.

Half-population difference is commonly selected as the
observable for the final state due to its practical implemen-
tation. Ideally, the measurement result can be expressed as
〈Ĵz〉 = ∑N/2

m=−N/2 Pm(φ)m, where Pm(φ) represents the mea-
sured probability of the final state projecting onto the basis
|J, m〉. However, for an inefficient detector with Gaussian
detection noise [40], the half-population difference measure-
ment may become

〈Ĵz〉σd =
N/2∑

m=−N/2

Pm(φ | σd )m, (16)

where Pm(φ | σd ) is the probability distribution considering
the detection noise, defined as

Pm(φ | σd ) =
N/2∑

n=−N/2

Ane−(m−n)2/2σ 2
d Pn(φ), (17)

with An = 1/
∑N/2

m=−N/2 e−(m−n)2/2σ 2
d being the normalization

factor.
We depict the metrological gain versus the magnitude

of detection noise in Fig. 6 for STATE schemes, consider-
ing both perfect and imperfect pulses. The imperfect pulses
account for the uncertainty of pulse switch-on and -off
times as previously. Results for STATE schemes with dif-
ferent pulse imperfections (σs1 = 0.001�t , σs2 = 0.002�t ,
and σs3 = 0.003�t ) are averaged over 100 simulations and
represented by green dot line, green dashed line, and green
dash-dotted line, respectively.

In addition, the results for OAT echo and TAT echo
schemes are presented for comparison, with all echo schemes
implemented at corresponding optimal evolution time and a
chosen number of periods Nc = 30 for the STATE scheme.
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FIG. 7. The scaling of metrological gain vs the particle number
N . All echo schemes are implemented with the corresponding opti-
mal time under detection noise σd = √

N/10. The minimum required
number of periods Nc,min (purple square marker) which are used for
all STATE schemes satisfying GTAT − GSTAT < 0.01 is shown on the
right.

Remarkably, for all echo schemes, the metrological gain
remains nearly unchanged below σd = √

N/10, and even
surpasses the SQL under large detection noise, indicating
the effectiveness of echo protocols in enhancing robustness
to detection noise. For perfect pulses, the metrological gain
obtained via the STATE scheme outperforms that via the OAT
echo scheme with the same detection noise. This demonstrates
that the STATE scheme is not only robust against detection
noise but also superior to the OAT echo scheme under the
same detection noise. Conversely, for imperfect pulses, the
performance of the STATE scheme with σs1 = 0.001�t

surpasses that of the OAT echo scheme. The STATE scheme
with σs2 = 0.002�t performs similarly to the OAT echo
scheme under small detection noise but outperforms it under
large detection noise. However, the STATE scheme with
σs3 = 0.003�t performs worse than the OAT echo scheme
under small detection noise, but outperforms it under large
detection noise.

E. Scaling with respect to particle number

Finally, we examine the scaling of metrological gain versus
particle number N with detection noise σd = √

N/10 for the
STATE scheme and compare it with the OAT echo and TAT
echo schemes, as illustrated in Fig. 7. The results for STATE
schemes with different pulse imperfections (σs1 = 0.001�t ,
σs2 = 0.002�t , and σs3 = 0.003�t ) are averaged over 100

simulations and depicted as green dotted, green dashed, and
green dash-dotted lines, respectively. The pulse strengths
for various particle numbers (10,20,50,100,200,500,1000) are
represented by � = 2π × (2, 5, 20, 100, 300, 5000, 100 000)
k Hz. For implementing the STATE scheme with perfect
pulses, we determine the minimum number of periods Nc,min

satisfying GTAT − GSTAT < 0.01. This Nc,min is used for the
STATE scheme with both perfect and imperfect pulses, as
shown in Fig. 7 with the purple line. All echo schemes are
implemented with their corresponding optimal time.

The numerical results reveal that the STATE scheme uti-
lizing perfect pulses adheres to Heisenberg scaling under
detection noise σd = √

N/10 and outperforms the OAT echo
scheme. When considering the STATE scheme using im-
perfect pulses, the numerical findings indicate that schemes
with different fluctuations at the moment when the pulse is
turned on and off approximately adhere to Heisenberg scaling
under small particle numbers. However, under large parti-
cle numbers, their metrological gains gradually deviate from
Heisenberg scaling.

IV. CONCLUSION

In conclusion, we have proposed the synthetic two-
axis-twisting echo protocol from interaction-fixed one-axis
twisting for implementing entanglement-enhanced quantum
metrology. Our protocol does not need to flip the sign of inter-
action for achieving time-reversal dynamics. We demonstrate
that this protocol is not only robust against detection noise,
but also outperforms the one-axis-twisting echo scheme with
higher metrological gain and shorter evolution time. Further,
this scheme can nearly saturate the ultimate precision bound
and may approach the Heisenberg scaling even in the case
with detection noise. In addition, we have carefully analyzed
the effects of pulse imperfections which may occur in ex-
periments. Our scheme may also be realized with continuous
pulse driving [26], which can avoid the effects of pulse imper-
fections. Our protocol realizes the effective two-axis-twisting
echo scheme without flipping the sign of interaction, thus
proving a promising method for realizing higher precision and
detection-noise-robust quantum metrology in various quan-
tum many-body systems.

ACKNOWLEDGMENTS

The authors thank Yi Shen for critical reading and helpful
suggestions. This work is supported by the National Key
Research and Development Program of China (Grant No.
2022YFA1404104) and the National Natural Science Foun-
dation of China (Grant No. 12025509).

[1] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum-enhanced
measurements: Beating the standard quantum limit, Science
306, 1330 (2004).

[2] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum metrology,
Phys. Rev. Lett. 96, 010401 (2006).

[3] C. Lee, Adiabatic Mach-Zehnder interferometry on a quantized
Bose-Josephson junction, Phys. Rev. Lett. 97, 150402 (2006).

[4] V. Giovannetti, S. Lloyd, and L. Maccone, Advances in quan-
tum metrology, Nat. Photon. 5, 222 (2011).

[5] J. Ma, X. Wang, C. Sun, and F. Nori, Quantum spin squeezing,
Phys. Rep. 509, 89 (2011).

[6] L. Pezzè, A. Smerzi, M. K. Oberthaler, R. Schmied, and
P. Treutlein, Quantum metrology with nonclassical states of
atomic ensembles, Rev. Mod. Phys. 90, 035005 (2018).

022407-7

https://doi.org/10.1126/science.1104149
https://doi.org/10.1103/PhysRevLett.96.010401
https://doi.org/10.1103/PhysRevLett.97.150402
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1016/j.physrep.2011.08.003
https://doi.org/10.1103/RevModPhys.90.035005


MA, ZHOU, HUANG, AND LEE PHYSICAL REVIEW A 110, 022407 (2024)

[7] C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum sensing,
Rev. Mod. Phys. 89, 035002 (2017).

[8] J. Huang, M. Zhuang, and C. Lee, Entanglement-enhanced
quantum metrology: From standard quantum limit to
Heisenberg limit, Appl. Phys. Rev. 11, 031302 (2024).

[9] M. Kitagawa and M. Ueda, Squeezed spin states, Phys. Rev. A
47, 5138 (1993).

[10] L.-G. Huang, F. Chen, X. Li, Y. Li, R. Lü, and Y.-C.
Liu, Dynamic synthesis of Heisenberg-limited spin squeezing,
npj Quantum Inf. 7, 168 (2021).

[11] L.-G. Huang, X. Zhang, Y. Wang, Z. Hua, Y. Tang, and Y.-C.
Liu, Heisenberg-limited spin squeezing in coupled spin sys-
tems, Phys. Rev. A 107, 042613 (2023).

[12] Y. Wang, X. Zhang, and Y.-C. Liu, Spin squeezing through
collective spin-spin interactions, arXiv:2311.15667.

[13] C. Gross, T. Zibold, E. Nicklas, J. Esteve, and M. K. Oberthaler,
Nonlinear atom interferometer surpasses classical precision
limit, Nature (London) 464, 1165 (2010).

[14] M. F. Riedel, P. Böhi, Y. Li, T. W. Hänsch, A. Sinatra, and
P. Treutlein, Atom-chip-based generation of entanglement for
quantum metrology, Nature (London) 464, 1170 (2010).

[15] H. Strobel, W. Muessel, D. Linnemann, T. Zibold, D. B. Hume,
L. Pezzè, A. Smerzi, and M. K. Oberthaler, Fisher information
and entanglement of non-Gaussian spin states, Science 345, 424
(2014).

[16] K. A. Gilmore, M. Affolter, R. J. Lewis-Swan, D. Barberena, E.
Jordan, A. M. Rey, and J. J. Bollinger, Quantum-enhanced sens-
ing of displacements and electric fields with two-dimensional
trapped-ion crystals, Science 373, 673 (2021).

[17] I. D. Leroux, M. H. Schleier-Smith, and V. Vuletić, Implemen-
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