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Symmetry-guided gradient descent for quantum neural networks
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Many supervised learning tasks have intrinsic symmetries, such as translational and rotational symmetry in
image classifications. These symmetries can be exploited to enhance performance. We formulate the symmetry
constraints into a concise mathematical form. We design two ways to adopt the constraints into the cost function,
thereby shaping the cost landscape in favor of parameter choices, which respect the given symmetry. Unlike
methods that alter the neural network circuit Ansatz to impose symmetry, our method only changes the classical
postprocessing of gradient descent, which is simpler to implement. We call the method symmetry-guided
gradient descent (SGGD). We illustrate SGGD in entanglement classification of Werner states and in two
classification tasks in a two-dimensional feature space. In both cases, the results show that SGGD can accelerate
the training, improve the generalization ability, and remove vanishing gradients, especially when the training
data is biased.
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I. INTRODUCTION

Quantum machine learning extends concepts from classical
machine learning into the regime of quantum superposition
[1,2]. Quantum neural networks can be viewed as quantum
generalizations of classical neural networks, amounting to
an extension of deep learning to the quantum regime [3–5].
QNNs have shown promising results, for example, in quan-
tum phase recognition [6] and classical classification tasks
[7]. QNNs employ parameterized quantum circuits (PQC)
[4,8–10], with a classical optimizer updating the parameters
during training. There are now several variants including
quantum graph neural networks [11,12], quantum convolu-
tion neural networks [6,13], and tensor network-based QNNs
[14–16].

Leveraging symmetry can improve the performance of
both classical and quantum neural networks. Inspired by suc-
cessful machine learning models, a field known as geometric
deep learning investigates the relation between symmetry and
learning [17,18]. Recently, such ideas have been extended
into the quantum regime, establishing the field of geometric
quantum machine learning [19–22]. To leverage symmetry
one may modify the quantum circuits being trained to gain
significant performance improvements [22–24]. However, the
symmetry-preserving modification entails altering the PQC
Ansatz, which can be experimentally costly. In specific
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scenarios (see Appendix A) such modifications of quantum
circuits even transform local unitaries into global unitaries,
which are difficult to implement in experiments. Such poten-
tial hardware inefficiencies motivated us to explore further
methods to leverage symmetry properties to optimize the per-
formance of quantum neural nets.

We give a mathematically justified method to modify the
cost function to guide the parameters toward the space with
the desired symmetry, a method which we call symmetry-
guided gradient descent (SGGD). We formulate the symmetry
constraints as a neat equation so that the constraints can easily
be rewritten as a penalty term. Specifically, we rewrite the
symmetry constraint into a concise equation and modify the
cost function to effectively guide the optimization of parame-
ters, steering the quantum circuit to satisfy the symmetry. We
designed two ways to implement SGGD, which involve aver-
aging an observable with a symmetry group, a process called
twirling. In one approach, the cost function gains a penalty
term that suppresses the appearance of symmetry-breaking
circuits by twirling. In the other approach, the original ob-
servable is replaced with the twirled one when calculating the
cost function.

We illustrate SGGD in numerical experiments with both
quantum and classical inputs. For the case of quantum input,
we consider the entanglement classification of Werner states
[25]. SGGD is shown to prevent biased sampling of input
states from leading to poor generalization, dramatically reduc-
ing the required training data size. Additionally, it sharpens
the slope of the cost curve, which leads to faster training. For
the case of classical inputs, we consider classifying a set of
two-dimensional (2D) points with rotational symmetry into a
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few categories. The 2D data are encoded into quantum states
by rotation gates [26,27]. The encoded states with their labels
are fed into a PQC for training. SGGD increases the accuracy
from 69.9%–89.6% in classification into two classes, and
increases the accuracy from 49.5%–66.1% in classification
into three classes when the training data is highly biased. In
both cases, our method can improve the generalization ability
significantly, especially when confronted with biased training
data—a prevalent challenge within high-dimensional spaces
[18,28].

Our method, SGGD, is widely applicable to gradient de-
scent over QNNs and other PQCs. The SGGD approach of
changing the cost function is more convenient than altering
the PQC Ansatz because the modification is implemented
classically, which does not impose additional workload on
quantum devices. As demonstrated in the numerical examples,
SGGD successfully reduces the occurrence of circuits that do
not satisfy the symmetry, thereby improving the efficiency of
the QNN model.

II. RESULTS

QNN setup. In QNN training, the PQC processes input data
on a quantum chip while the classical optimizer runs on a
classical computer to update parameters [29,30]. The input
data needs to be encoded into the quantum state if it is clas-
sical [26,31,32]. After the state is evolved by the PQC U (θ ),
commonly the output of QNN is determined by measuring an
observable O and obtaining its expectation value

fθ (x) = tr[(U (θ )ρ(x)U †(θ )O)], (1)

where the encoding ρ maps classical data x into the density
matrix ρ(x). Now, a classification function h, as classical
postprocessing, is applied to map this expectation value to
the predicted label. For instance, a step function h may be
employed by the model to predict the label of x; if fθ (x) � 0,
the model predicts the label of x as 1; otherwise, it predicts
the label of x as −1.

Symmetry constraint equation. The data label in many su-
pervised learning tasks is invariant under certain symmetries.
For example, the number of 1s in a bit string remains un-
changed through swapping two bits [see Fig. 1(a)]. Reference
[18] gives a formal expression of an S-invariant data label:

f (s(x)) = f (x), ∀x ∈ X , ∀s ∈ S, (2)

where S denotes the group that consists of symmetry opera-
tions. We describe the case where the classical postprocessing
function h is identity first before examining the case of general
h.

If an objective function fθ could approximate the tar-
get function f , there is an optimal parameter θ∗ such that
fθ∗ (s(x)) = fθ∗ (x) + ε, where ε is a tolerable error. Combin-
ing this condition with Eqs. (1) and (2), the optimal PQC
U (θ∗) that satisfies the symmetry of the data should obey

tr(ρ(x)S†Õ(θ∗)S) = tr(ρ(x)Õ(θ∗)) + ε, (3)

for all S in a symmetry matrix group, where Õ(θ ) is
U †(θ )OU (θ ). It can be observed that, as long as the encoded
states {ρ(x)} do not strictly reside within a linear subspace of
the entire Hilbert space H, Eq. (3) is equivalent to the follow-
ing symmetry constraint equation (for the detailed derivation,

FIG. 1. Imposing symmetry of a task on the cost landscape.
(a) Suppose |1, 0〉 = SWAP|0, 1〉 and |0, 1〉 should have the same label
so that SWAP is a task symmetry. A circuit with optimal parameter
θ∗ gives output 〈O〉θ∗ determining the assigned label. (b) The neural
net circuit is trained via gradient descent on a cost landscape. Using
the symmetry constraint equation (4), we shape the cost landscape
given the symmetry of the data labels. In this example, the gradient-
vanishing region around the optimal parameter θ∗ then shrinks,
where θ∗ is represented by the red dot. The symmetry guidance
method moreover improves training performance given biased data.

see Appendix B):

T (Õ(θ∗)) = Õ(θ∗) + E , (4)

where E is a tolerable-size error matrix, which satisfies
‖E‖ < ε. T is the twirling operator, which maps an operator
O into the symmetry-twirled Hamiltonian

T (O) =
∫

dμ(S)SOS†, (5)

where μ is the Haar measure.
Symmetry guided gradient descent (SGGD). Gradient de-

scent uses the gradient of the cost function as the direction for
updating parameters. A general method for guiding gradient
descent is to include an extra penalty term [33]. We say a
gradient descent is guided by symmetry if the cost function
is modified to make the parameters satisfy the symmetry
constraint equation Eq. (4). We now describe how to create
a penalty term for a given symmetry.

We take the mean square error (MSE) as a default cost
function c0(θ ), and construct a penalty term g(θ ) that employs
the Hilbert-Schmidt norm to evaluate the difference between
Õ(θ ) and T (Õ(θ )),

c1(θ ) = c0(θ ) + λg(θ )

= 1

|X |
∑
x∈X

[ fθ (x) − f (x)]2 + λ‖T (Õ(θ )) − Õ(θ )‖,

(6)

where X is the data set and λ controls the intensity of the
penalty term. The penalty term g(θ ) would reach the minimum
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value 0 when the circuit U (θ ) respects the symmetry con-
straint equation. Hence, the g(θ ) guides the parameters toward
the symmetry-preserving space during gradient descent. As
illustrated in Fig. 1(b), the gradient vanishing region shrinks
after including the penalty term in the cost function, implying
an improvement in parameter training. Moreover, g(θ ) aids
in discovering the optimal θ irrespective of the quality or the
quantity of data as the penalty constrains θ to the region with
symmetry, compensating for the lack of suitable training data.

The SGGD method could be directly applied to other gra-
dient based methods, such as ADAM [34] and mirror gradient
descent [20], by adding the penalty term to their cost function.
The performance can be further improved by tuning the inten-
sity coefficient λ. Thus, SGGD can be added to gradient based
methods rather than being mutually exclusive.

As a second way to incorporate symmetry guidance, we
directly substitute the symmetry constraint equation into the
objective function fθ ,

c2(θ ) = 1

|X |
∑
x∈X

{tr[ρ(x)T (Õ(θ ))] − f (x)}2. (7)

This cost function is guided by symmetry in the sense that
only those parameters that lead to variations in T (Õ(θ )) can
change the overall cost value c2.

The two methods differ in terms of what exactly is opti-
mised and in their computational cost. c1 only cares about
preserving symmetry rather than predicting accuracy, while
c2 cares both about symmetry and the accuracy of the QNN.
However, c2 introduces more burden in terms of quantum
devices since it makes explicit use of the twirled observable Õ
[35] whereas c1 can be evaluated via a swap test between the
twirled and nontwirled observables. While the twirled quanti-
ties can be calculated efficiently with a quantum device, in the
numerical experiments in this paper we calculate c1 and c2 via
naive and inefficient classical simulation. Whether calculated
with quantum devices or classical methods, the penalty term
only needs to be calculated once per training epoch without
looping over training inputs.

To illustrate and explain how and when SGGD is useful, we
analyze two examples. We choose examples that are nontrivial
yet sufficiently simple to also be analyzed by hand so one
can gain a full understanding of when and why SGGD works.
In some cases, the symmetry is an invariance of the classical
label and in some cases the symmetry is an invariance of the
quantum output under a unitary operation. The first example
we consider is of the latter type and the second example is of
the former.

Example: Entanglement classification. We now analyze
the task of entanglement classification of two-qubit Werner
states. This example illustrates how our methods alleviate bad
performance caused by biased training data.

Consider the task to classify Werner states [36,37] as entan-
gled or separable. Two-qubit Werner states can be expressed
as

ρW = 2 − p

6
I + 2p − 1

6
SWAP, (8)

where the parameter p ranges from −1 to 1. SWAP is a unitary
and Hermitian matrix defined by SWAP|i, j〉 = | j, i〉. Werner
states are entangled for p < 0 and separable for p � 0 [38].

FIG. 2. Settings and loss landscapes comparison for the clas-
sification of two-qubit Werner states. (a) illustrates how the
entanglement of Werner states changes along with the parameter p;
states in different color areas have different kinds of loss landscapes
in our case. (b) shows the QNN structure being used. (c) shows
the loss curves before (c0) and after (c1) applying symmetry guid-
ance for two representative samples from each color area, with
p = −0.25 and 0.25, respectively. Curves in this figure are rescaled,
with each value divided by the maximum value of its corresponding
curve.

We take the demanded symmetry matrix group to be all tensor
products of single-qubit unitaries, U ⊗ U , because Werner
states are invariant under these operations.

Consider how to employ a QNN for the above task. With-
out loss of generality, we say a state is classified as entangled
if the output of the QNN satisfies fθ (ρW) < 0 and as separable
otherwise. The simplest QNN that is composed of the identity
circuit followed by measuring the SWAP operator as the ob-
servable will output fθ (ρW) = p, and thus classify the state
correctly. For simplicity and clarity, we fix the observable as
SWAP and parametrize the circuit as a unitary UW (θ ), where
θ is the variational parameter to be trained. We assume a
one-dimensional parameter as it helps to visualize the loss
landscape easily. We use the following QNN Ansatz,

UW(θ ) = CNOTcos2(θ ), (9)

which is simple enough to elaborate the mechanisms of SGGD
while containing the unique optimal solution (identity) and
a biased solution [controlled-NOT (CNOT)]. The Ansatz struc-
ture is depicted in Fig. 2(b). The cost landscape highly
depends on the training data chosen. As shown in Fig. 2,
we find that the whole data set can be split into two subsets
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A = {p | p ∈ [0, 1/2)} and Ā = [−1, 1] − A. Training data
from Ā leads to a convex cost landscape that gives the correct
solution under gradient descent, and training data from A
yields a concave landscape that gives the biased solution. One
can verify the above claim by depicting the cost landscape for
each data point in A and Ā, respectively, as shown in Fig. 2(c)
with p = −0.25 and p = 0.25 as examples.

We find that SGGD alleviates the bias caused by training
data in A. The symmetry group G of input Werner states is
{U ⊗ U | U is unitary}. The penalty term given by Eq. (5) is

T (Õ(θ )) = α1I + α2SWAP, (10)

where Õ(θ )=U †
W(θ )SWAPUW(θ ), α1 =cos2( η

2 )/2, α2 =
sin2( η

2 ), and η = π sin2 θ . Substituting the twirled operator of
Eq. (10) into Eq. (6) we get the penalty term for c1 as

g(θ ) = 3
4 (sin2 η + 2 cos η + 2). (11)

Note that minimizing the penalty alone could optimize the
parameter θ since g(π/2) = 0 is the minimal value, and θ =
π/2 gives the optimal QNN circuit.

Using the SGGD cost function c1, all data points, no matter
in A or Ā, can give the optimal solution, as shown by the two
dotted curves in Fig. 2(c). This implies that even if the ma-
jority of the training data is picked from A, QNN can still be
trained correctly. SGGD thus dramatically improves the gen-
eralization performance of the QNN trained by biased data.
Additionally, the cost curves of data from Ā become steeper,
and the training converges faster, indicating that SGGD can
accelerate the training of QNNs. Experimental details and
alternative circuit Ansätze are given in the Appendix E 2.

Example: Classification of two-dimensional classical data.
Consider the task of classifying classical data points on a
2D plane [39] into two classes using hardware-efficient PQCs
[40]. As shown in Fig. 3(a), training data are sampled in the
range [0, 1]2, and data points are classified into two categories
depending on if their distance to the center point ( 1

2 , 1
2 ) is

smaller than 0.2 or not (a case of nonlinear classification).
This task can be solved by QNNs with high accuracy when
the training data are sampled uniformly from the whole data
space [39]. However, models can exhibit poor generalization
performance when training samples are not uniformly sam-
pled, e.g., when data is sampled from only the right half
of the data space, as shown in Fig. 3(a). We choose one
of the effective QNNs in Ref. [39], whose circuit structure
is detailed in the Appendix E 3, and compare its prediction
performances using the cost function c0 and the SGGD cost
function c2. SGGD with cost function 2 increases the accuracy
from 69.9%–89.6%. The reason we choose c2 here is that c1

is overly restrictive, imposing symmetry at the level of the
quantum output before the classical postprocessing. We do not
want the training to rule out models that respect the symmetry
of the label but are not symmetric before the postprocessing.

SGGD also performs well on a generalization to the above
2D classification task with three classes and a larger quantum
circuit with 16 qubits, as shown in Fig. 4. The data points
in [0, 1]2 with coordinates (x, y) are to be classified into
three categories based on their distances r to the center point
(0.5,0.5). If r < 0.2, then the data point belongs to class 0;
if r > 0.4, then it belongs to class 2; otherwise, it belongs

FIG. 3. SGGD enhances 2D classical data classification with two
classes using rotation encoding. (a) illustrates the distribution of the
training data, which is highly biased. The data points are classi-
fied into two categories marked as red and blue. (b) illustrates the
QNN structure, where the rotation encoding ET (x) and circuit Ansatz
UT (θ ) are detailed in the Appendix E 3. (c) and (d) demonstrate the
predictions on test data without using SGGD (cost function c0) and
using SGGD (cost function c2), respectively.

to class 1. This classification can be solved by applying the
two-class classifier we obtained above twice; the first classi-
fier tells whether the point is located inside the inner circle,
and the second classifier outputs whether the point is located
inside the outer circle. Via binary encoding, each coordinate
x or y is truncated into a four-digit binary string x or y and is
represented by four qubits, respectively, resulting in a eight-
qubit state |x, y〉 that encodes a truncated data point. Then,
we generate two copies of the state |x, y〉⊗2 using 16 qubits,
where each copy is fed into the two-class classifier quantum
circuit, as shown in Fig. 4(b). The upper quantum circuit
outputs whether the data point is inside the inner circle or not,
and the bottom circuit outputs whether the data point is inside
the outer circle or not. Combining the classification outcome
of these two parallel circuits, we can classify the data points
into one of the three classes. With highly biased training data
shown in Fig. 4(a), the accuracy of prediction is only 49.5%,
while using SGGD to modify the cost function increases the
accuracy to 66.1%.

Nontrivial classical postprocessing. We now consider non-
trivial classical postprocessing where h, a classical function of
the output f , is not the identity.

In this case, the requirement for a symmetry-invariant cir-
cuit changed from Eq. (3) to h( fθ [s(x)]) = h( fθ (x)). Circuits
that adhere to this equation are not necessarily bounded by the
symmetry constraint equation (see details in the Appendix B).
For instance, consider the labels assigned to |01〉 and |10〉,
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FIG. 4. SGGD enhances 2D classical data classification with three classes using binary encoding. (a) illustrates the highly biased
distribution of the training data set. Points are labeled into three classes according to their relative position to the circles. (b) Two identical
circuit Ansätze for two-class classification are applied to classify whether (i) the input data is inside the inner circle (the top branch) and (ii)
inside the outer circle (the bottom branch). Each circuit branch has eight qubits. We use a binary encoder E and the hardware-efficient Ansatz
U . (c) and (d) demonstrate the predictions on test data without using SGGD (cost function c0) and using SGGD (cost function c2), respectively.

both of which are assigned a label of 1. However, their respec-
tive probabilities of yielding the label 1 may differ. If we force
the parameters or the circuit to obey the symmetry constraint
equation, their probabilities to get label 1 are forced to be the
same, which is overly restrictive and thus harms the expressive
power of the PQCs.

We propose a modified version of the symmetry constraint
equation that integrates classical postprocessing. The basic
idea of modifying the symmetry constraint equation is consid-
ering h as an analytical function that can be expanded using a
Taylor series. By truncating the series to the t-order polyno-
mial ht , the effect of the postprocessing could be formulated
into a neat form,

ht ( f (x)) = tr((U (θ )ρ(x)U †(θ ))⊗t Oht (θ )). (12)

The operator Oht is determined by the truncated series. Let Õht

denote the operator U †⊗t (θ )Oht U
⊗t (θ ). We then prove that

the requirement of S-invariant data label leads to the modified
symmetry constraint equation,

P(T (Õht (θ
∗)) − Õht (θ

∗)) = 0, (13)

where P projects an observable in a Hilbert space H into the
symmetric subspace of H. The proof and the concrete forms
of Oht and P are shown in the Appendix C.

Connection to other results. The effect of SGGD is similar
to incorporating the symmetrically transformed data into the
training dataset. A frequently used method to utilize sym-
metry is data enhancement [41,42], which appends the data
generated by the symmetry transformation of the training set.
In the example of 2D classification, the training data from
the right-hand side [as shown in Fig. 3(a)] is in a sense
transformed to the upper side since the SWAP symmetry
transformation swaps the x0 and x1 coordinates of the input
data. In Fig. 3(d), the SGGD performs very well in the whole

022406-5



BIAN, ZHANG, MENG, ZHANG, AND DAHLSTEN PHYSICAL REVIEW A 110, 022406 (2024)

space except for the left-bottom part. Thus, the result of
SGGD is similar to data enhancement in this case.

However, data enhancement can lead to a significant
increase in the size of the data set, which introduces compu-
tational overhead. In contrast, SGGD does not increase the
training set size but adds overhead to the evaluation of the
cost function. Since data enhancement creates more training
data, the process of training models on the enhanced data
may become more challenging [22,28]. An intuitive example
is that, as the dimension increases, if we want to maintain
a constant data density within a unit volume, the total data
volume must grow exponentially with the dimension. The
required quantity of data increases exponentially with the
dimensions [18]. Linearly increasing the data size is insuffi-
cient in high-dimensional spaces. Consequently, resorting to
the twirling technique becomes a more viable option in such
scenarios because the SGGD achieves similar results without
significantly increasing the number of training data points.
Balancing the cost overhead of increasing the data set size and
the computational cost in the cost function can help to choose
a suitable method.

The SGGD approach has a challenge in common with other
penalty term approaches and we find a method to deal with
this challenge. The challenge is that in principle there is a
risk of the modification to the cost function impacting the
training results negatively [43,44]. This issue appeared in our
numerical experiments of 2D classification. To alleviate this
problem, we adjust the weight of the penalty term dynamically
during training. We incrementally augment the weight of the
penalty term to ensure the parameters are not overguided by
the symmetry constraint. This gradual increase in the size of
the penalty term results in successful training that outperforms
the nonguided training. (See details in the Appendix D.)

III. CONCLUSION AND OUTLOOK

We impose symmetry constraints on the QNN’s training,
establishing a symmetry-guided gradient descent (SGGD)
method. Our results show that SGGD can accelerate the train-
ing, improve the generalization ability, and remove vanishing
gradients, especially when the training data is biased. Our
method contributes understanding of how symmetry can be ef-
ficiently exploited in quantum machine learning and is widely
applicable to tasks with either classical or quantum input data.

Apart from applying SGGD for enhancing QNN perfor-
mance, further developments should be investigated. Optimal
strategies should be explored for (i) varying the strength of
the symmetry guidance during the training, and (ii) the norm
used in defining the guidance [45]. It should also be inves-
tigated to what extent the method enhances the performance
of more sophisticated forms of gradient descent such as the
generalisation of gradient descent known as mirror descent
[20]. The general method can also be adapted to guide circuit
design more generally: one expects that good designs for a
given problem should have a small symmetry penalty.
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APPENDIX A: HARDWARE INEFFICIENCY OF CIRCUIT
ANSATZ SYMMETRIZATION

One approach commonly employed to leverage symmetry
is modifying the circuits to adhere to the constraints imposed
by symmetry, which is referred to as Ansatz symmetrization.
An illustrative example is the gate symmetrization method
described in Ref. [22].

We will first introduce the gate symmetrization procedure
and then discuss the overhead that makes such symmetrization
hardware inefficient [40]. Assume that the Ansatz comprises a
set of gates denoted as G, given by

G = {eig1θ1 , eig2θ2 , eig3θ3 , · · · }, (A1)

where the gi represents the generators of the Ansatz. As an ex-
ample, let us consider a hardware-efficient Ansatz consisting
of rotation gates RX (θ ) and controlled-z gates,{

eiXθ , e−iA π
4
}
, (A2)

where A = I − Z1 − Z2 + Z1Z2. The gate symmetrization
technique twirls the set of generators to fulfill the sym-
metry requirement. For the previously mentioned hardware-
efficient Ansatz, the symmetrized circuit has the generators
{T (X ), T (A)}. If the output of the quantum circuit is invariant
under the {I, SWAP} operation, the twirled generators can be
expressed as

T (X1) = 1

|S|
∑
S∈S

SX1S† = 1

2
[X ⊗ I + SWAP(X ⊗ I )SWAP]

= 1

2
(X1 + X2)

and T (A) = A. In the main text, we define that S is a discrete
symmetry group. By utilizing these twirled generators, a new
set of gates is constructed,{

ei(X1+X2 ) θ
2 , e−iA π

4
}
. (A3)

This new gate set is then used to assemble a new quantum
circuit that satisfies the required symmetry. Consequently,
a quantum circuit that preserves symmetry is constructed
through the twirling process. The procedure of constructing
a symmetry-preserving QNN from the generators is referred
to as Ansatz symmetrization.

Now, we will analyze a specific case in which the sym-
metrization process will introduce an extra burden to the
quantum device. Considering we apply a ZZ gate eiθZ1Z2 on the
quantum circuit, and the output of QNN is invariant under the
permutation operators. The symmetrization of this gate gives
the generator

T (Z1Z2) = 1

n!

∑
σ∈S

σZ1Z2σ
† = 2

n(n − 1)

∑
i 	= j

ZiZ j, (A4)

where σ is a permutation operator, and S consists all possible
permutations. The realization of variational gates corresponds
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to the generator T (Z1Z2) are

eiT (Z1Z2 )θ =
∏
i, j

ei 2θ
n(n−1) ZiZ j , (A5)

which are pairwise connected ZZ gates over all qubits. Any
two qubits in the circuit have a ZZ gate that connects them.
Thus, in this example, the twirled gate in Eq. (A5) requires
n(n−1)

2 gates to implement, which significantly increases the
number of gates to implement.

Furthermore, in scenarios where the quantum device is
limited to performing only adjacent two-qubit gates, nonad-
jacent gates must be decomposed into a sequence of adjacent
gates. Most of the pairwise ZZ gates are not adjacent gates.

If we want to apply the gate described in Eq. (A5), we need
to decompose nonadjacent ZZ gates to adjacent basic gates.
Now, we evaluate the cost of such decomposition. First, we
decompose the ZZ gate into basic gates because current quan-
tum devices can not directly apply it,

(A6)

Then, the ZZ gate on ith and jth qubits need to be decomposed
to adjacent gates. We could use SWAP gate to decompose a
ZiZ j gate to adjacent ZZ gate,

(A7)

To decompose a single ZiZ j gate, excluding the case where
|i − j| = 1, we require the addition of 2(2|i − j| − 3) adja-
cent SWAP gates. The twirling of one ZZ gate needs 1

3 (2n3 −
9n2 + 7n) adjacent gates to achieve,

(n − 1) + 2(n − 2) + 6(n − 3) + 10(n − 4)

+ · · · + (4(n − 1) − 6) = 1

3
(2n3 − 9n2 + 7n) ∼ O(n3),

(A8)

which costs too many gates for the current noisy quantum
devices.

In addition to gate symmetrization, other approaches aimed
at constructing symmetry-preserving blocks within QNN en-
counter a similar challenge. Typically, the symmetry operators
employed are global unitaries that span multiple qubits. Thus,
as we have shown, it becomes evident that only a global gate
can maintain global symmetry. A global gate is usually hard
to achieve in quantum devices [46,47].

APPENDIX B: SYMMETRY CONSTRAINT EQUATION

In this section, we aim to give the proof of Eq. (4) in the
main text. Recall the symmetry requirement

tr(ρ(x)S†Õ(θ∗)S) = tr(ρ(x)Õ(θ∗)), (B1)

where S are symmetry operations, x is classical input data,
and O is the observable. We want to prove that the Eq. (B1) is
equivalent to the symmetry constraint equation,

T (Õ(θ∗)) = Õ(θ∗), (B2)

if the data set {ρ(x)} span the space of states.
In fact, Eq. (B1) are many equations because there are

many symmetry operations. This equivalence merges many
equations into one neat equation, which makes it easy to apply
in the cost function.

Proof. First, we give the case of discrete groups S . To
show that Eq. (B1) and Eq. (B2) are equivalent, we need to
show that the solution sets of the two equations are the same.
Precisely, we need to prove A ⊂ B and B ⊂ A, where

A :={U | tr(ρ(x)S†Õ(θ∗)S) = tr(ρ(x)Õ(θ∗))} (B3)

B :={U | T (Õ(θ∗)) = Õ(θ∗)}. (B4)

Recall that Õ(θ ) := U †(θ )OU (θ ).
We begin with the proof of A ⊂ B. U ∈ A means∑

S∈S
tr(ρ(x)S†Õ(θ )S) = |S|tr(ρ(x)Õ(θ ))

tr(ρ(x)
1

|S|
∑
S∈S

S†Õ(θ )S) = tr(ρ(x)Õ(θ ))

tr

(
ρ(x)

(
1

|S|
∑
S∈S

S†Õ(θ )S − Õ(θ )

))
= 0, ∀ρ(x) ∈ H.

Because {ρ(x)} span the space, tr(ρ(x)A) = 0 ∀ρ(x) im-
plies A = 0. Therefore, the following equation holds,

1

|S|
∑
S∈S

S†Õ(θ )S − Õ(θ ) = 0. (B5)

Thus, Eq. (B2) holds. It means ∀U ∈ A, U ∈ B, thereby A ⊂
B. Now, we prove that B ⊂ A. For any U ∈ B and any S0 ∈ S ,
we have

tr(ρ(x)S†
0Õ(θ )S0) = tr

(
ρ(x)S†

0

(
1

|S|
∑
S∈S

S†Õ(θ )S

)
S0

)

= tr

(
ρ(x)

(
1

|S|
∑
S∈S

S†
0S†Õ(θ )SS0

))

= tr

(
ρ(x)

(
1

|S|
∑
S∈S

S†Õ(θ )S

))
. (B6)
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In the first line, we just substituted the Eq. (B2) into the left-
hand side. The last line is based on the rearrangement theorem
of a group. Again, using Eq. (B2), the Eq. (B6) becomes

tr(ρ(x)S†
0Õ(θ )S0) = tr

(
ρ(x)

(
1

|S|
∑
S∈S

S†Õ(θ )S

))
= tr(ρ(x)Õ(θ )). (B7)

Thus, for all U in B, U is also in A, which means B ⊂ A.
Combining the result A ⊂ B, we get that A = B. For contin-
uous groups (Lie groups), the proof is the same because the
rearrangement theorem works for both discrete groups and
continuous groups. �

APPENDIX C: CLASSICAL POSTPROCESSING

In this section, we discuss how to derive the penalty term of
SGGD to the cost function when there is a nontrivial postpro-
cessing on the output of the QNN. Our analysis presented in
this section greatly increases the applicability of SGGD, as in
many cases postprocessing cannot be avoided—the output of
QNN is not the class label of the data but the probability of the
data being in each class. For instance, assuming the input state
|ψ〉 = |010〉 has a label of 1. A QNN that yields f (|010〉) =
0.9 signifies that the model assigns high probability to the
state |010〉 correctly corresponding to label 1, rather than label
the state |010〉 as 0.9. Requiring the invariance of the output of
QNN with respect to symmetry is too restrictive, as it requires
f (|010〉) = f (S|010〉) = 0.9 for all the symmetry operator
S. However, if f (|010〉) = 0.9 but f (|010〉) = 0.8, then the
state |010〉 will again be assigned label 1, and the symmetry
of the data label is respected. Suppose the postprocessing
that takes the probability to the label is the step function �,
where

�(x) =
{

1 if x � 0
−1 if x < 0. (C1)

Under this classical postprocessing, the label invariance is
expressed as

�( f (ρ)) = �( f (SρS†)). (C2)

Here, f (·) represents the output of the QNN, which provides
the probability of the data belonging to each class.

Imposing symmetry to postprocessing benefits the train-
ing and performance of the QNN. As pointed out above,
imposing the symmetry constraint on the output of QNN
adds more constraints to the parameters than is required. If
the circuit Ansatz is not capable of completely satisfying
the symmetry, requiring the QNN output to be invariant to
the symmetry operation may reduce the accessible region
of the parameters to a very small set that does not contain
the optimal parameter θ∗. This potentially makes a Ansatz
incapable of satisfying the requirements f (ρ) = f (SρS†) . In
this case, the optimal parameters θ∗ are not in the symmetry-
conserved space �′. The symmetry penalty term likely
produces a negative effect, which we observed in our numer-
ical experiments—the penalty term without postprocessing
pushes the convergence to a suboptimal parameter with worse
accuracy.

Here, we show that symmetry penalty terms can be de-
signed with classical postprocessing considered. Our method
of adding symmetry penalty terms incorporating classical
postprocessing greatly increases the applicability of SGGD.
Now, we introduce the detailed construction of the sym-
metry penalty term where there is classical postprocessing.
Suppose the postprocessing function h is an analytical func-
tion that could be expanded by a Taylor series. Truncate
the Taylor series in t order, we get an approximate value
of h(x),

h(x) = a0 + a1x + a2x2 + · · · + at x
t + O(xt+1), (C3)

where a j is the jth order derivative of h, a j = d j h
dx j (0), and N

is the order of ρ(x). Applying the postprocessing to the model
output fθ (x), we get

h( f [ρ(x)]) = a0 + a1tr(U (θ )ρ(x)U †(θ )O)

+ a2tr(U (θ )ρ(x)U †(θ )O)2 + · · · . (C4)

Note that

tr(U (θ )ρ(x)U †(θ )O)k

= tr
(
(U (θ )ρ(x)U †(θ ))⊗t O⊗k

⊗
I⊗t−k

)
, (C5)

the Eq. (C4) becomes

h( f [ρ(x)]) = tr

(
(U (θ )ρ(x)U †(θ ))⊗t

t∑
k=0

akO⊗k ⊗ I
⊗

t−k

)
.

(C6)
The deduction of this equation is in the Appendices.

For simplicity, define the operator F(h,t )(O) as F(h,t )(O) :=∑t
k=0 akO⊗k

⊗
1

⊗
t−k . While considering the classical post-

processing, the symmetry invariant requirement reads as

tr([U (θ∗)SρS†U †(θ∗)]⊗t F(h,t )(O))

= tr([U (θ∗)ρU †(θ∗)]⊗t F(h,t )(O)) (C7)

for ∀S ∈ SMat and optimal parameter θ∗. Notice that Eq. (C7)
is not equivalent to the condition

T (ÕF (θ∗)) = ÕF (θ∗), (C8)

where ÕF (θ∗) = U †(θ∗)⊗t F(h,t )(O)U (θ∗)⊗t . Here, we present
an example to support the statement. Because the observable
A = I

⊗
X − X

⊗
I make tr(ρ(x) ⊗ ρ(x)A) = 0 for ∀ρ(x) ∈

H, the twirled operator T (ÕF (θ∗)) = ÕF (θ∗) + A could also
satisfy the symmetry invariant condition of Eq. (C7).

This counterexample implies a way of symmetry penalty
term adjustment. Rather than the restriction in Eq. (C7), the
constraint of optimal operator ÕF (θ∗) turns to

T (ÕF (θ∗)) − ÕF (θ∗) ∈ At , (C9)

where At := {O|tr(ρ(x)⊗t O) = 0,∀ρ(x) ∈ H} is the solution
space. Due to the Schur-Weyl duality [48], the solution space
is equivalent to the symmetry subspace of the whole Hilbert
space. Precisely, let the projection operator by

P = 1

t!

∑
σ∈

σ, (C10)
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FIG. 5. Illustration of the effect of classical postprocessing. The
green area of the left-hand side square means the solution space of the
symmetry constraint equation. If non-trivial classical postprocessing
is present, the imposed constraint may become excessively stringent
such that the optimal parameter could not be located in the green
solution space. The modification in Eq. (C11) loses the constraint so
that the space with symmetry, the green area on the right-hand side,
is enlarged.

where  is the t-element permutation group. The solution
space At is equivalent to the image of the projection P. Thus,
Eq. (C9) induces that

(I − P)(T (ÕF (θ∗)) − ÕF (θ∗)) = 0. (C11)

Equation (C11) draws out the modified symmetry constraint
equation. The modified symmetry penalty term is g(h,t )(θ ) =
‖(I − P)(T (ÕF (θ )) − ÕF (θ ))‖.

Figure 5 shows the effect of the adjustment. Because a
solution of equation g(θ ) = 0 must be a solution of equa-
tion g(h,t )(θ ) while a solution of equation g(h,t )(θ ) may not
be a solution of equation g(θ ) = 0, the symmetry-preserved
parameter space expand after the adjustment. If a QNN is ap-
plied to classical postprocessing, adjustments must be made.
As we mentioned before, a QNN model may not satisfy
Eq. (C8) when the label is S invariant rather than the model
output is S invariant. In this case, the optimal parameters lie
out of �′, which is the solution space of the symmetry con-
straint equation (C8). The adjustment of the symmetry penalty
term makes the symmetry-preserved space, �′

h large enough

to contain the optimal parameter, where �′
h is the solution

space of the modified symmetry constraint equation (C11).

APPENDIX D: ADJUSTING THE COEFFICIENT
OF THE SYMMETRY PENALTY TERM TO GAIN

BETTER TRAINING PERFORMANCE

In this section, we present a strategy to adjust the coeffi-
cient of the symmetry penalty term to achieve better training
of a QNN. In the research of quantum supervised learning, one
of the frequently chosen cost functions is the mean-squared
error between data labels and predictions,

c(θ,X ) = 1

|X |
∑
x∈X

( fθ (ρ(x)) − f (ρ(x)))2, (D1)

where X is the data set. We add the symmetry penalty term to
this cost function,

cg(θ,X ) = c(θ,X ) + λg(θ ). (D2)

Here, the λ controls the intensity of the symmetry penalty
term.

With cost function cg, the data is updated in the following
way during gradient descending,

θ (i+1) = θ (i) + dc(θ,X )

dθ

∣∣∣∣
θ (i)

η + λ
dg(θ )

dθ

∣∣∣∣
θ (i)

η, (D3)

where θ (i) is the parameter of the ith iteration, and η is the

learning rate. The extra term λ
dg(θ )

dθ
|θ (i)η contributes a force

that leads to the symmetry-preserved space �′. What is more,
the symmetry penalty term g(θ ) would reach the minimum
value 0 when parameters θ are in the �′. Hence, the g(θ )
guides the parameters toward �′, and it vanishes when θ ∈ �′.

The controlling coefficient λ should be chosen carefully for
practical applications. Notice that the symmetry penalty term
only cares about symmetry rather than if the model makes
the correct prediction. If the symmetry penalty is assigned
with a large weight at the beginning, then the symmetry may
misguide the neural net to a wrong parameter configuration.
As shown in Fig. 6, if the symmetry-preserved space �′

FIG. 6. The misleading problem of the symmetry penalty term can be relieved by adjusting the weight of the penalty term dynamically.
The yellow square represents the whole parameter space, and the green area represents the space with symmetry. (a) shows a working case that
the symmetry can successfully guide the parameter θi closer to the optimal point θ∗, where the subscript i means the parameter of ith iteration.
(b) shows that the symmetry guides the parameter into the wrong place. In this case, there are two unconnected symmetry-preserving spaces,
and the symmetry penalty term will attract the training to the wrong side if the initial configuration is close to the upper left green region.
(c) shows the case when we apply the dynamic coefficient. The parameter will update without symmetry first, whose process is labeled by the
black arrow. Then, the parameter will be updated with the help of symmetry. The dynamical coefficient could solve the misleading issue if we
choose a proper strategy of changing the coefficient λ.
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is not connected, there are several islands in �′. When λ

makes λ
dg(θ )

dθ
 dc(θ,X )

dθ
, the parameters tend to be trapped

in one of the isolated regions where symmetry is satisfied.
However, once the parameters are initialized close to a re-
gion that does not contain the optimal parameter, the training
will be trapped in a local minimum, and performance will
be bad. In this sense, we say that the symmetry misleads
parameters.

However, the symmetry misleading phenomenon could be
relieved by a proper coefficient λ picking strategy. Several
efficient strategies are given here. The strategy uses dynamic
intense controlling coefficient, which is shown in Fig. 6. We
could let the λ be small at the beginning and let it become
larger as the number of iterations increases. This strategy
could be interpreted as one kind of pretraining. In the be-
ginning, the λ is negligible while dc(θ,X )

dθ
is dominant. At

this time, the original cost function c leads the parameters
close to the optimal parameters θ∗. After the parameters θ

close to θ∗, the λ becomes larger and larger, and the sym-
metry penalty term begins to have an impact that cannot be
ignored. Then, the misleading phenomenon disappears in this
case because the model parameters are close enough to the
optimal one.

Another strategy is fixing an appropriate λ. If the lambda
is bound by the following inequality in most places, the cost
function will be the dominant term under most circumstances,

λ �
∣∣∣∣dc

dg

∣∣∣∣. (D4)

Because the bounded λ makes λ
dg(θ )

dθ
� dc(θ,X )

dθ
for most

θ ∈ �. In this case, the symmetry penalty term just assists
the original cost function c. Although its hard to select a
subset ϒ ⊂ � that satisfies μ(ϒ) = (1 − ε)μ(�), where μ

is a measure in � and ε is a small number, we could
select the λ empirically. In the numerical experiments we
did, taking λ = 1

3 max(| dc
dg |) is small enough to avoid such

misleading.
Both strategies have their advantages. The utilization of an

unsuitable dynamic coefficient can have detrimental effects on
performance, compromising the effectiveness of the approach.
On the other hand, developing a well-designed dynamic al-
gorithm necessitates a considerable investment of time and
effort. While the second strategy presents practical conve-
nience in its implementation, it is important to note that the
efficacy of a fixed parameter λ employed in this approach
falls short when compared to the performance achieved by
a dynamically adjusted parameter λ that exhibits favorable
behavior.

APPENDIX E: SUPPLEMENTAL NUMERICAL RESULTS

In the following, we first show another example that uti-
lizes the first kind of symmetry-guided gradient descent c1

to classify two-qubit bitstrings into two categories, which
we call the cat-dog example. Then, we provide two two-
parameter QNNs for the Werner state classification case in our
main content, along with a detailed calculation process. We
also present the experiment details for the 2D classification
task.

1. Cat-dog example

a. Task formulation

Consider categorizing all pure quantum states under the
computational basis into two categories, which means states
corresponding bit strings with only 1s are labeled as cats
while others as dogs. Then, we choose the QNN as f (|ψ〉) =
tr(|ψ〉〈ψ |Z), where Z is chosen as the observable as we only
need to consider state amplitudes. Finally, we select 0 as the
threshold to identify these two classes, which means states
with f (|ψ〉) � 0 would be classified as cats while others as
dogs.

This task could be considered from the view of classical
logic circuits, where we process classical bit strings. These
tasks are transformed into implementing logical expressions
using logical circuits, such as Y = AB + AB for the two-bit
case, where Y is the logical circuit output, A and B are bits
inputs, and A is the inverse of A. This means we can always
find suitable quantum circuits to solve these tasks.

As only the number of 0s or 1s would influence their
category, the general form of the symmetry group here could
be formulated as

Hcat =
{ ∏

(i, j)

SWAPi j | i 	= j, ı, j = 1, 2, . . . , n

}
. (E1)

b. Two-qubit case

We first consider the simplest n = 2 case. According to the
two-bit case classical logical expression, which corresponds
to the functional expression of an XOR gate, we could use
circuits with only two qubits and detect the output value of
the second qubit.

The classification task could be achieved by X gates and
CNOT gates in two qubits since f is a binary function. Thus,
the quantum circuit that achieves the task must consist of X
gates and CNOT gates. We use Xcos(θ )2

and CNOTcos(θ )2
to switch

the gates. If θ = 0, the gates are open, else if θ = π
2 , the gates

are closed. The QNN we used here is

U (θ, φ) = (I ⊗ X)cos2(φ)CNOT
cos2(θ )
A→B , (E2)

FIG. 7. Symmetry penalty term landscape of two-qubit cat-dog
example. The highlighted region signifies the area subjected to a
substantial penalty. The red dots are the minimum of the penalty
term.
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FIG. 8. Loss landscapes before and after adding symmetry penalty term under all inputs.

where A, B denotes the first and second qubit in our circuit,
and → means A controls B. After the input state evolves by
the QNN, we measure the second qubit in Z basis.

The symmetry group in this task is H1 = {SWAP, I} because
the number of 1s is invariant under permutation. With the
symmetry group, we could calculate the symmetry penalty
term

g(θ, φ) = ‖U †(θ, φ)Z1U (θ, φ) − T (U †(θ, φ)Z1U (θ, φ))‖.
(E3)

The heat map of the symmetry penalty term g(θ, φ) is
shown in Fig. 7. Notice that cos2(θ ) = cos2(θ + π ). There are
two inequivalent minima (θ, φ) = (0, π/2) and (0, 0) of the
penalty term. If |01〉 and |10〉 are labeled 1, the optimal pa-
rameter is (0,0); else if |01〉 and |10〉 are labeled 0, the optimal
parameter is (0, π/2). Thus, the two minima of the symmetry
penalty term correspond to the two labeling strategies.

Generally, there would be a discrepancy between theoreti-
cal and empirical errors, as losses or training would be biased
under different training samples, which would then lead to
overfitting. This could be verified by the heat maps in our
case, as shown in Fig. 8, where we plot loss heat maps under
different single inputs. In this case, under the default loss
function, samples 00 and 01 would only train the φ parameter,
while using either 10 or 11 would have two possible local
minima, where one leads to the optimal point but another does
not. But after adding a symmetry penalty term with a suitable
guidance weight, we could see that all landscapes would have
only one local minimum, and they all are exactly located at the
optimal point. We summarize the above results in Table I.

This is an example showing that SG could help us deal with
overfitting. As for more qubits cases, it would be hard to show
improvement easily, and the circuit shows some properties
that could be further investigated.

2. Entanglement classification

a. Task formulation and analysis

Let us consider the example using QNN for Werner state
entanglement witness. Werner states could be classified into
entangled or separable states according to a given parameter
p,

ρW = 2 − p

6
I + 2p − 1

6
SWAP. (E4)

We formulate the task as finding a suitable observable that
could detect whether a Werner state is separable or entangled
according to its expectation value. In this task, we construct
the objective function as f (ρ) = tr(U (θ )ρU (θ )†O). Then,
we classify states according to their trace outputs, where we
take states with f (ρ) � 0 as separable states and states with
f (ρ) < 0 as entangled states.

Here, we work on the two-qubit case for illustration. A
two-qubit Werner state could be constructed by ρWerner =
t I

4 + (1 − t )|φ−〉〈φ−|, where the factor t ranges from 0 to 4/3.
2/3 is the split point of two kinds of states when t � 2/3 pro-
vides separable states and t > 2/3 provides entangled states.

This time, the symmetry group should be the whole set of
single-qubit unitary operators. We leverage tools provided in
[49] (see Eq. (48) in Ref. [49]) to calculate the twirled observ-
able. This corresponds to calculating the second moment of
a given observable O. In the two-qubit case, T (O) could be

TABLE I. Comparison among different cost function settings for two-qubits cat-dog example.

Symmetry penalty term Loss function Loss function + penalty term

Full Data Half × Half � � �
Half Data Half × Half � Half × Half � �
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FIG. 9. Symmetry penalty term landscape of two-qubit Werner
example 1.

calculated as

T (O) = cI,OI + cF ,OF , (E5)

where F = SWAP, cI,O = tr(O)−2−1tr(FO)
2 , and cF ,O = tr(FO)−2−1tr(O)

3 .

b. Two-qubit case 1

First, we try the circuit form U (θ, φ) =
CNOT

cos2(φ)
B→A CNOT

cos2(θ )
A→B . Then, we could get the landscape

of symmetry penalty term where only one local minimum
exists, as shown in Fig. 9. These samples could be separated
into four groups based on the shape of their loss landscapes,
though different samples having similar shapes would show
exactly the same values. We select one sample from each
class and show their loss landscapes in Fig. 10. These four

FIG. 11. Symmetry penalty term landscape of two-qubit Werner
example 2.

classes are entangled states (0 � t < 2/3 states), t = 1 state,
separable states with t < 1, and separable states with t > 1.
There is a split in separable states, as when gates in the given
gates are not all off, the trace output would be a constant
value of 1/2.

From their loss landscapes, we could see that when using
the default loss function, we need to select samples to train
the model perfectly, as using samples with shapes in (c) and
(d ) would not lead to the overall optimal point. However,
after adding the symmetry guidance term, we could train the
model using any sample we like. This result is similar to the
above two-qubit cat-dog case and shows that the symmetry
penalty term could help biased samples less influence the
optimization. But there is only one local minimum in this case,

FIG. 10. Loss landscapes before and after adding symmetry penalty term under selected input samples.
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FIG. 12. Loss landscapes before and after adding symmetry penalty term under selected input samples.

which is rare in normal tasks, so we consider a more complex
one in the following.

c. Two-qubit case 2

This time, we use the same circuit in the above cat-dog
example. We find that the model would output 1 − 0.5t when
a single IX gate turns on, while all other circuits expect the
identity circuit to output a constant value of 1/2.

The symmetry penalty term now changed to have two
optimal points, as shown in Fig. 11, though we only want the
(π/2, π/2), or the all-gates-off one. Samples could also be
categorized into four examples as above.

In this case, as samples and their loss landscapes are shown
in Fig. 12, we can see that we still need to select samples
for training perfectly in the default case. After adding the
guidance term, though the improvement is not as significant
as in the above two examples, new local minima were added
for samples that would not train the model well in the default

case. This means adding the guidance terms would help us
alleviate sample-biased overfitting in a probabilistic way.

3. Circuit and experiment details for 2D classification

The circuit we used for 2D classical data classification is
shown in Fig. 13.

The coding is implemented via the PENNYLANE library
[50]. The gradient descent uses the ADAM optimizer [34]
with a learning rate of 0.01 for both training with c0 and
c2. Training data are randomly generated samples from each
class, with 140 samples drawn from each area, as shown
in the main text, Fig. 3(a). After the training, we evalu-
ate the performances on samples uniformly selected from
the whole data space. The final overall accuracy increased
from 69.93 ± 4.51% to 89.62 ± 4.61% after adopting our c2

function in 21 runs of experiments. The classification re-
sults are shown in the main text, Figs. 3(c) and 3(d). Codes
and data for our numerical experiments can be found on
Github [51].

FIG. 13. QNN for 2D classical data classification.
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ometric deep learning: Grids, groups, graphs, geodesics, and
gauges, arXiv:2104.13478.

[19] M. Larocca, F. Sauvage, F. M. Sbahi, G. Verdon, P. J. Coles,
and M. Cerezo, Group-invariant quantum machine learning,
PRX Quantum 3, 030341 (2022).

[20] F. M. Sbahi, A. J. Martinez, S. Patel, D. Saberi, J. H. Yoo, G.
Roeder, and G. Verdon, Provably efficient variational genera-
tive modeling of quantum many-body systems via quantum-
probabilistic information geometry, arXiv:2206.04663.

[21] P. Mernyei, K. Meichanetzidis, and I. I. Ceylan, Equivariant
quantum graph circuits, in Proceedings of the International
Conference on Machine Learning (PMLR, Maryland, 2022),
pp. 15401–15420.

[22] J. J. Meyer, M. Mularski, E. Gil-Fuster, A. A. Mele, F.
Arzani, A. Wilms, and J. Eisert, Exploiting symmetry in vari-
ational quantum machine learning, PRX Quantum 4, 010328
(2023).

[23] C. Lyu, X. Xu, M.-H. Yung, and A. Bayat, Symmetry enhanced
variational quantum spin eigensolver, Quantum 7, 899 (2023).

[24] K. Seki, T. Shirakawa, and S. Yunoki, Symmetry-adapted vari-
ational quantum eigensolver, Phys. Rev. A 101, 052340 (2020).

[25] R. F. Werner, Quantum states with Einstein-Podolsky-Rosen
correlations admitting a hidden-variable model, Phys. Rev. A
40, 4277 (1989).

[26] M. Schuld and F. Petruccione, Machine Learning with Quantum
Computers (Springer, Berlin, 2021).

[27] M. Weigold, J. Barzen, F. Leymann, and M. Salm, Data encod-
ing patterns for quantum computing, in Proceedings of the 27th
Conference on Pattern Languages of Programs (The Hillside
Group, USA, 2020), pp. 1–11.

[28] W. Bi, H. Li, and J. Huang, Data augmentation for text genera-
tion without any augmented data, arXiv:2105.13650.

[29] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S.
Endo, K. Fujii, J. R. McClean, K. Mitarai, X. Yuan, L. Cincio
et al., Variational quantum algorithms, Nat. Rev. Phys. 3, 625
(2021).

[30] S. Endo, Z. Cai, S. C. Benjamin, and X. Yuan, Hybrid quantum-
classical algorithms and quantum error mitigation, J. Phys. Soc.
Jpn. 90, 032001 (2021).

[31] M. Schuld and F. Petruccione, Supervised Learning with Quan-
tum Computers (Springer, Berlin, 2018), Vol. 17.

[32] M. Schuld, Supervised quantum machine learning models are
kernel methods, arXiv:2101.11020.

[33] F. Rossi, P. Van Beek, and T. Walsh, Handbook of Constraint
Programming (Elsevier, Amsterdam, 2006).

[34] D. P. Kingma and J. Ba, Adam: A method for stochastic opti-
mization, arXiv:1412.6980.

[35] G. Tóth and J. J. García-Ripoll, Efficient algorithm for multiqu-
dit twirling for ensemble quantum computation, Phys. Rev. A
75, 042311 (2007).

[36] W. Dür and J. I. Cirac, Classification of multiqubit mixed
states: Separability and distillability properties, Phys. Rev. A
61, 042314 (2000).

[37] X. Gao and L.-M. Duan, Efficient representation of quantum
many-body states with deep neural networks, Nat. Commun. 8,
662 (2017).

[38] R. Unanyan, H. Kampermann, and D. Bruß, A decomposition
of separable Werner states, J. Phys. A: Math. Theor. 40, F483
(2007).

[39] T. Hubregtsen, J. Pichlmeier, P. Stecher, and K. Bertels, Evalua-
tion of parameterized quantum circuits: On the relation between
classification accuracy, expressibility, and entangling capability,
Quantum Mach. Intell. 3, 9 (2021).

[40] A. Kandala, A. Mezzacapo, K. Temme, M. Takita, M. Brink,
J. M. Chow, and J. M. Gambetta, Hardware-efficient variational
quantum eigensolver for small molecules and quantum mag-
nets, Nature (London) 549, 242 (2017).

[41] P. D. Faris, W. A. Ghali, R. Brant, C. M. Norris, P. D. Galbraith,
M. L. Knudtson, A. Investigators et al., Multiple imputation

022406-14

https://doi.org/10.1080/00107514.2014.964942
https://doi.org/10.1038/s43588-022-00311-3
https://doi.org/10.21468/SciPostPhysLectNotes.61
https://doi.org/10.1038/s41534-017-0032-4
https://doi.org/10.1088/2058-9565/aa8072
https://doi.org/10.1038/s41567-019-0648-8
https://doi.org/10.22331/q-2020-02-06-226
https://doi.org/10.1088/2058-9565/ab4eb5
https://arxiv.org/abs/1812.06323
https://doi.org/10.1002/qute.201900070
https://arxiv.org/abs/1909.12264
https://arxiv.org/abs/2201.05158
https://doi.org/10.1088/2058-9565/aaea94
https://arxiv.org/abs/2011.14651
https://doi.org/10.1103/PhysRevB.101.075135
https://doi.org/10.1109/MSP.2017.2693418
https://arxiv.org/abs/2104.13478
https://doi.org/10.1103/PRXQuantum.3.030341
https://arxiv.org/abs/2206.04663
https://doi.org/10.1103/PRXQuantum.4.010328
https://doi.org/10.22331/q-2023-01-19-899
https://doi.org/10.1103/PhysRevA.101.052340
https://doi.org/10.1103/PhysRevA.40.4277
https://arxiv.org/abs/2105.13650
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.7566/JPSJ.90.032001
https://arxiv.org/abs/2101.11020
https://arxiv.org/abs/1412.6980
https://doi.org/10.1103/PhysRevA.75.042311
https://doi.org/10.1103/PhysRevA.61.042314
https://doi.org/10.1038/s41467-017-00705-2
https://doi.org/10.1088/1751-8113/40/24/F07
https://doi.org/10.1007/s42484-021-00038-w
https://doi.org/10.1038/nature23879


SYMMETRY-GUIDED GRADIENT DESCENT FOR QUANTUM … PHYSICAL REVIEW A 110, 022406 (2024)

versus data enhancement for dealing with missing data in
observational health care outcome analyses, J. Clin. Epidemiol.
55, 184 (2002).

[42] B. R. Frieden, Image enhancement and restoration, in Picture
Processing and Digital Filtering, edited by T. S. Huang, Topics
in Applied Physics Vol. 6 (Springer, Berlin, Heidelberg, 1979).

[43] S. Bubeck et al., Convex optimization: Algorithms and com-
plexity, Found. Trends Mach. Learn. 8, 231 (2015).

[44] A. D. Belegundu and T. R. Chandrupatla, Optimization Con-
cepts and Applications in Engineering (Cambridge University
Press, Cambridge, 2019).

[45] C. C. Aggarwal, A. Hinneburg, and D. A. Keim, On the
surprising behavior of distance metrics in high dimensional
space, in Proceedings of the 8th International Conference:
Database Theory–ICDT 2001 (Springer, Berlin, 2001), Vol. 8,
pp. 420–434.

[46] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson,
and W. D. Oliver, A quantum engineer’s guide to superconduct-
ing qubits, Appl. Phys. Rev. 6, 021318 (2019).

[47] H.-L. Huang, D. Wu, D. Fan, and X. Zhu, Superconducting
quantum computing: A review, Sci. China Inf. Sci. 63, 180501
(2020).

[48] P. I. Etingof, O. Golberg, S. Hensel, T. Liu, A. Schwendner,
D. Vaintrob, and E. Yudovina, Introduction to Representation
Theory (AMS, Providence, 2011), Vol. 59.

[49] A. A. Mele, Introduction to Haar measure tools in quantum
information: A Beginner’s tutorial, Quantum 8, 1340 (2024).

[50] V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, S. Ahmed, V.
Ajith, M. S. Alam, G. Alonso-Linaje, B. A. Narayanan, A.
Asadi et al., Pennylane: Automatic differentiation of hybrid
quantum-classical computations, arXiv:1811.04968.

[51] https://github.com/Fragecity/SymmetryQNN

022406-15

https://doi.org/10.1016/S0895-4356(01)00433-4
https://doi.org/10.1561/2200000050
https://doi.org/10.1063/1.5089550
https://doi.org/10.1007/s11432-020-2881-9
https://doi.org/10.22331/q-2024-05-08-1340
https://arxiv.org/abs/1811.04968
https://github.com/Fragecity/SymmetryQNN

