
PHYSICAL REVIEW A 110, 022405 (2024)

Using quantum computers to identify prime numbers via entanglement dynamics

Victor F. dos Santos * and Jonas Maziero †

Physics Department, Center for Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS 97105-900, Brazil

(Received 22 March 2024; accepted 9 July 2024; published 2 August 2024)

Recently, the entanglement dynamics of two harmonic oscillators initially prepared in a separable-coherent
state was demonstrated to offer a pathway for prime number identification. This article presents a generalized ap-
proach and outlines a deterministic algorithm making possible the implementation of this theoretical concept on
scalable fault-tolerant qubit-based quantum computers. We prove that the diagonal unitary operations employed
in our algorithm exhibit a polynomial-time complexity of degree two, contrasting with the previously reported
exponential complexity of general diagonal unitaries.

DOI: 10.1103/PhysRevA.110.022405

I. INTRODUCTION

The quest to reliably and efficiently identify prime num-
bers (PNs) remains a topic of great interest in number theory
[1–4], particularly due to its intriguing connection with the
nontrivial zeros of Riemann’s zeta function [5–8]. Over the
centuries, numerous classical algorithms have been devised
for identifying primes, each offering its own set of advan-
tages and limitations [1,2,9]. Among these, the AKS primality
test stands out as the first deterministic algorithm to exhibit
polynomial-time complexity for verifying the primality of
individual integers, albeit with a polynomial degree that ren-
ders it less efficient for larger numbers [10]. Conversely, the
Sieve of Eratosthenes offers a simpler approach, focusing
on identifying all PNs within a specified range N . Its time
complexity, O(N log log N), renders it particularly efficient
for this purpose [2].

While classical algorithms for PNs identification [10–13]
have undergone significant development, their adaptation to
the realm of quantum computers (QCs) remains relatively lim-
ited [14–16]. However, the intersection of such questions with
experimental physics [17–19] presents a promising avenue
for the development of more intuitive quantum algorithms.
A notable recent study [19] proposed an innovative approach
to primality testing using quantum optics. In their work, re-
searchers devised an experiment involving the entanglement
of two quantum harmonic oscillators initially prepared in
coherent states, followed by the measurement of the reduced
linear entropy of one of them. They theorized that information
regarding PNs could be extracted from the Fourier modes
of the reduced linear entropy: PNs were expected to adhere
to a lower bound curve, while composite numbers would
consistently surpass this bound. Although the experimental
implementation has yet to be realized, and has known scal-
ability limitations, their theoretical groundwork has laid the
foundation for us to generalize their approach and to develop a

*Contact author: victorfds997@gmail.com
†Contact author: jonas.maziero@ufsm.br

deterministic algorithm tailored for implementation on qubit-
based QCs.

In this article, we build upon the theoretical framework
proposed in Ref. [19], aiming to adapt it for implementation
on qubit-based QCs by removing certain restrictions imposed
on the Hamiltonian and initial states. As a result, we demon-
strate, as detailed in the Appendixes, that the class of diagonal
unitary gates utilized in our approach can be implemented
in polynomial time, contrary to the expectations set forth
in Refs. [20,21]. Our algorithm is designed to determine
all PNs within a given range N through the manipulation
of a bipartite system AB and the measurement of the lin-
ear entropy of entanglement [22–25] of subsystem A over a
period T .

Our methodology unfolds with the following steps. First,
we modify the definitions to align with the peculiarities of
qubit-based QCs. Secondly, we select a suitable initial state
that can be efficiently prepared. Thirdly, we efficiently prepare
an evolved state using the techniques outlined in Ref. [21],
which surprisingly results in exponential gate cost reduction
in comparison to the general case. Subsequently, we measure
the reduced purity, a task that can be executed efficiently
[26]. Following this, we calculate the Fourier modes of the
reduced purity function via numerical integration methods
[27].

Given a data set encompassing all points within the range
N , our algorithm enables the deterministic identification of
Fourier modes corresponding to PNs, allowing for the distinc-
tion between primes and composites. We quantify the number
of gates utilized at each step, with a specific focus on Z rota-
tions, controlled-NOT, and Hadamard gates. Additionally, we
discuss simulations conducted using QISKIT [28] and explore
potential enhancements to our algorithm for more efficient
implementation on real qubit-based QCs.

We begin by establishing key definitions. Let A and B
represent the respective subsystems, each characterized by a
time-independent Hamiltonian ĤA and ĤB, where ĤA = ĤB.
We define a bipartite Hamiltonian ĤAB = λĤA ⊗ ĤB, with
λ ∈ R denoting the coupling constant. The corresponding
time-evolution operator is given by Û (t) = e−iĤABt/h̄ [29].

2469-9926/2024/110(2)/022405(17) 022405-1 ©2024 American Physical Society

https://orcid.org/0009-0009-0319-4852
https://orcid.org/0000-0002-2872-986X
https://ror.org/01b78mz79
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.110.022405&domain=pdf&date_stamp=2024-08-02
https://doi.org/10.1103/PhysRevA.110.022405

VICTOR F. DOS SANTOS AND JONAS MAZIERO PHYSICAL REVIEW A 110, 022405 (2024)

To obtain a distinction between prime and composite num-
bers, we employ the initial state |ψ (0)〉AB = |φ〉A ⊗ |φ〉B. A
suitable choice for these individual states is

|φ〉S =
d∑

nS=1

cnS |EnS 〉, (1)

where S = A, B represents the subsystem index, d is the
dimension of each subsystem, cnS �= 0 are the initial-state
coefficients, and {EnS }d

nS=1 and {|EnS 〉}d
nS=1 denote the eigen-

values and eigenvectors of each subsystem Hamiltonian,
respectively. The evolved state at time t is |ψ (t)〉AB =
Û (t)|ψ (0)〉AB = ∑d

nA,nB=1 cnA cnB e−iλEnA EnB t/h̄|EnA EnB〉.
Our main condition requires that the energy levels of both

individual Hamiltonians are equidistant, i.e., EnS = nSμ for
some constant μ ∈ R. Defining ω = λμ2/h̄, we find that

Û (t) =
d∑

nA,nB=1

e−iωnAnBt
∣∣EnA EnB

〉〈
EnA EnB

∣∣ (2)

and

|ψ (t)〉AB =
d∑

nA,nB=1

cnA cnB e−iωnAnBt
∣∣EnA EnB

〉
. (3)

A key result of our research is the demonstration of high
gate efficiency for implementing the diagonal unitary gate
specified in Eq. (2), as detailed in Appendix D. We show that
the gate cost for constructing the q-qubit unitary gate Û (t)
using this method is a polynomial function G2(q) = 3

4 q2 + q.
This result not only facilitates PNs identification but also
paves the way for efficient implementation of similar unitary
gates in future qubit-based QCs research.

The remainder of this article is organized as follows. In
Sec. II, we give the general expression for the reduced purity
of a subsystem (A) and highlight its mathematical proper-
ties. Next, in Sec. III, we establish the theoretical connection
between the Fourier modes of the reduced purity and the
distribution of prime numbers. Then, in Sec. IV, we report
our quantum algorithm, specifying the techniques used and
the associated computational costs. In Sec. V, we present the
results of simulations made using QISKIT. Finally, we conclude
in Sec. VI by revisiting the key points of our method and
quantum algorithm, while discussing limitations and further
potential improvements with respect to an implementation on
quantum hardware. Additional details supporting our findings
are provided in the Appendices. Appendix A is a summary
of the technique developed in Ref. [21] for the implementa-
tion of general diagonal unitary gates using Walsh functions.
Appendix B presents a proof for a known identity that relates
tensor products of Pauli Ẑ gates and ĈNOTs, and a proof for
how this identity relates to the implementation of exponentials
of Walsh operators. In Appendix C, we prove some results
regarding Walsh matrices and delineate our notation for them,
as it will be heavily used in further demonstrations. Then,
Appendix D uses results from the previous Appendices to rig-
orously demonstrate that the diagonal unitary gate in Eq. (2)
may be implemented efficiently using only a polynomial num-
ber (with respect to the number of qubits) of elementary gates.
Furthermore, Appendix E is a direct proof for a modified

version of the SWAP test, aiming for the estimation of the
reduced purity.

II. REDUCED PURITY

Without loss of generality, we designate subsystem A for
computing the reduced purity γA(t). Let us begin by revisit-
ing the definition of the reduced density operator ρ̂A(t) for
a system AB with density operator ρ̂AB(t), given as ρ̂A(t) =
TrB(ρ̂AB(t)), where TrB(.) denotes the partial trace function
[30] over subsystem B. The reduced purity function, γA(t) =
Tr(ρ̂2

A(t)), can then be computed from ρ̂A(t). This quantity is
related to the linear entanglement entropy by El (|ψ (t)〉AB) =
1 − γA(t). Given that ρ̂AB(t) = |ψ (t)〉AB〈ψ (t)|, the reduced
purity can be straightforwardly expressed as

γA(t) =
d∑

j,k,l,m=1

|c j |2|ck|2|cl |2|cm|2e−iωt (j−k)(l−m). (4)

It is noteworthy to highlight several properties of the func-
tion γA(t) defined in Eq. (4). First, it exhibits time periodicity
with period T = 2π/ω, a characteristic stemming directly
from the time evolution of our system. Secondly, a notable
observation arises from the structure of the sum in Eq. (4):
the indices j, k, l, and m all take the same values. As a
consequence, the imaginary parts of the phases e−iωt (j−k)(l−m)

for a fixed t mutually cancel each other. This cancella-
tion is crucial, ensuring that γA(t) remains a real-valued
function. This function is symmetric about half the period,
γA(T/2 + h) = γA(T/2 − h), which enables us to halve the
number of times we need to execute the quantum circuit to
obtain it.

III. MAPPING PRIME NUMBERS WITH FOURIER MODES

The reduced purity function given by Eq. (4) can be
expressed as a finite sum of cosines, where the maximum
number of Fourier modes αn is (d − 1)2. Therefore, employ-
ing a Fourier expansion in this scenario yields

γA(t) = α0 +
(d−1)2∑

n=1

αn cos(nωt), (5)

where α0 represents the average value and αn are the Fourier
modes [31].

To compute the Fourier modes αn, we utilize the expression

αn = 4
d−1∑

k,m=1

d∑
j>k

d∑
l>m

|c j |2|ck|2|cl |2|cm|2δn
(j−k)(l−m), (6)

where δn
(j−k)(l−m) represents the Kronecker delta function en-

suring the resonance condition for the Fourier modes. This
formulation allows us to decompose the reduced purity γA(t)
into its constituent Fourier components, facilitating the iden-
tification of PNs based on their distinct Fourier signatures.

For prime n, the trivial decomposition is (j − k) = n and
(l − m) = 1, and vice versa. This results in a unique decom-
position that corresponds to the expected behavior for prime
numbers. However, if n is composite, it possesses nontrivial
decompositions as well. To examine the impact of these de-
compositions on the Fourier modes expressed in Eq. (6), let us

022405-2

USING QUANTUM COMPUTERS TO IDENTIFY PRIME … PHYSICAL REVIEW A 110, 022405 (2024)

define the lower bound Bn as the value obtained from Eq. (6)
using the trivial decomposition of n � 2. Hence we have

Bn = 8
d−n∑
k=1

d−1∑
m=1

|ck|2|cm|2|ck+n|2|cm+1|2. (7)

This lower bound Bn provides insight into the minimum value
that the Fourier coefficient αn can attain for a given composite
n. Understanding this bound is crucial for discerning the dis-
tinct Fourier signatures associated with prime and composite
numbers. For 2 � n � d − 1, we have Bn > 0 as per Eq. (7).
However, when d � n � (d − 1)2, the domain of Bn can be
extended such that Bn = 0.

Now, let {y(n)
r }z

r=1 represent the sequence of z distinct divi-
sors of n � 2 in increasing order of magnitude. Excluding the
trivial cases y(n)

1 = 1 and y(n)
z = n, we find that in general

αn = Bn + 4
z−1∑
r=2

d− n

y(n)
r∑

k=1

d−y(n)
r∑

m=1

|ck|2|cm|2∣∣ck+ n

y(n)
r

∣∣2∣∣cm+y(n)
r

∣∣2.
(8)

This expression for αn encompasses both the contribution
from the trivial decomposition and the contributions from the
nontrivial divisors of n, enabling a comprehensive assessment
of the Fourier modes associated with composite numbers.

In the domain 2 � n � 2(d − 1), we can confidently as-
sert that αn > Bn holds true. However, beyond this range,
specifically in the interval 2(d − 1) < n � (d − 1)2, certain
composite numbers n = n0 may exhibit αn0 = 0. This phe-
nomenon arises because the first semiprimes (numbers that are
the product of two prime numbers) are multiples of 2. Conse-
quently, for n0 = 2v, where v > d − 1 is a prime, there exist
no values for the indices k and m in Eq. (8) that fall within their
defined ranges in the summation. However, in this interval it
is possible to discard any integer as a prime candidate if it has
a nonzero Fourier mode. Since prime numbers always yield
αn = 0 in this interval, we can safely guarantee that if αn �= 0,
then n is composite. The inverse, however, is not always true:
some composite numbers have αn = 0.

Here is the summary of the expected values of αn in the
three regimes.

Regime I: 2 � n � d − 1. For prime numbers in this
range, it holds true that αn = Bn > 0; otherwise, αn > Bn.

Regime II: d � n � 2(d − 1). Prime numbers in this
interval exhibit αn = Bn = 0, while composite numbers con-
sistently demonstrate αn > 0.

Regime III: 2(d − 1) < n � (d − 1)2. Prime numbers
within this regime always yield αn = 0. However, some
composite numbers may also yield αn = 0 in this interval.
Consequently, this regime cannot provide conclusive evidence
regarding the primality of n. Nonetheless, any integer n with
αn �= 0 in this regime is guaranteed to be a composite number.

This summary provides a clear delineation of the behavior
of αn across different regimes, aiding in the identification of
prime numbers based on their Fourier modes.

Our regime of interest is D = I ∪ II. In D, it is consistently
true that

αn � Bn, (9)

with equality achieved if and only if n is a prime number. This
inequality forms the cornerstone of the algorithm and serves

as the basis for objectively distinguishing prime numbers from
composites.

While the protocol enables the computation of αn, without
knowledge of Bn in Regime I, it is impossible to discern
whether αn = Bn or αn �= Bn. A straightforward solution in-
volves obtaining the analytical value of the lower bound
Bn within that regime, achievable by selecting a simple
initial state and utilizing Eq. (7) subsequently. In our algo-
rithm, for simplicity, we opt for an initial state of maximum
superposition.

IV. THE QUANTUM ALGORITHM

Below, we provide a structured description of all the steps
necessary to develop our protocol. We also present here the
number of gates necessary for each step.

1. Qubit codification. To adapt our protocol to a qubit-based
quantum computing algorithm, we need to adjust some of our
definitions regarding the translation of qudits to qubits. Given
that the bipartite system AB has d2 energy levels and we aim to
utilize q qubits instead of two qudits, the condition is imposed
that

d2 = 2q. (10)

Equation (10) inherently assumes that d is a power of 2. If d is
not a power of 2, we have to find q such that q = 2�log2(d)	,
where �.	 denotes the ceiling function. We conveniently as-
sign the first half of qubits to represent subsystem A and the
remaining half to represent subsystem B.

2. Initial state flexibility. The initial state |ψ (0)〉AB is de-
fined as the product state |ψ (0)〉AB = |φ〉A ⊗ |φ〉B, where the
coefficients cnS of the subsystem states |φ〉S = ∑d

nS=1 cnS |EnS 〉
must satisfy cnS �= 0. Leveraging this degree of freedom,
we opt for convenience by employing an initial state that
achieves maximum superposition, expressed as |ψ (0)〉AB =
1
d

∑d
nA,nB=1 |EnA EnB〉. Here, we implicitly define the eigenbasis

{EnS }d
nS=1 as the computational basis for each set of q/2 qubits.

To produce this initial state, we apply a series of Hadamard
gates Ĥ [29] to all q qubits:

|ψ (0)〉AB = Ĥ⊗q|000 . . . 0〉. (11)

It is evident that the number of gates required here to generate
this initial state is simply

G1(q) = q. (12)

3. Evolved state preparation. The detailed results regarding
this item are provided in Appendix A. To obtain the evolved
state |ψ (t)〉AB of Eq. (3), we employ the method outlined
in Ref. [21] to construct Û (t) efficiently. Initially, we have
to determine, in principle, all the 2q − 1 Walsh angles a j (t)
[32–35]. However, according to the results shown in Ap-
pendix D, only 1

4 q2 + q of them are non-null. By definition,
Walsh angles are expressed as

a j (t) = 1

2q

2q−1∑
k=0

fk (t)w jk, (13)

where w jk denotes the Paley-ordered discrete Walsh functions
and fk (t) are the eigenvalues of the operator f̂ (t), extracted
from Û (t) = ei f̂ (t).

022405-3

VICTOR F. DOS SANTOS AND JONAS MAZIERO PHYSICAL REVIEW A 110, 022405 (2024)

Together with the Walsh angles a j (t), the unitary gate Û (t)
is obtained using the formalism of Walsh operators ŵ j . The
expression for Û (t) is then given by

Û (t) =
2q−1∏
j=1

eia j (t)ŵ j . (14)

To produce the exponential operators eia j (t)ŵ j , we use the
identity presented in Appendix B and consider the binary
representation (jq . . . j2 j1) of the integer j, with the most
significant nonzero bit (MSB) on the left. This enables us
to represent the exponential operator as a single Z rotation,
R̂z(θ j (t)), applied to qubit qmh j

, flanked by two identical
controlled-NOT gates, with qubit qmi serving as the control and
qubit qmh j

as the target. Here, the index mhj � 1 signifies the
position of the MSB of j and the indices mi are defined by
the condition jmi = 1. These R̂z(θ j (t)) rotations have angles
θ j (t) = −2a j (t).

Therefore, preparing |ψ (t)〉AB = Û (t)|ψ (0)〉AB demands a
number of gates given by

G2(q) = 3
4 q2 + q. (15)

4. Reduced purity estimation. This step involves efficiently
obtaining the reduced purity γA(t) of Eq. (4) by utilizing
techniques from Ref. [26]. The quantum circuit employed
here resembles the SWAP test circuit [36,37] and employs an
ancilla qubit q0 and two copies of q qubits prepared in the
same pure state. The operations sequence for this quantum
circuit is as follows: a Hadamard gate on q0, qubit-qubit
controlled-SWAP gates between the first q/2 qubits of each
copy, with q0 as the control qubit, another Hadamard gate on
q0, and a measurement of q0 in the computational basis. After
repeatedly executing the circuit, we estimate the probability
P0 of obtaining the state |0〉 for q0. Then, as detailed in
Appendix E, the reduced purity over time can be estimated
using the expression γA(t) = 2P0(t) − 1.

This step involves a total number of gates given by

G3(q) = 3
2 q + 2. (16)

5. Fourier modes calculation. In Regime I, we obtain the
lower bound Bn of Eq. (7) using the initial state of Eq. (11).
In this case, c j = 1√

d
for any j and the corresponding lower

bound Bn interpolation in this range of n is a straight line with
a negative slope. In Regime II, the lower bound is Bn = 0. The
expression for Bn in the regime of interest D = I ∪ II can then
be written as

Bn =
{−8(d−1)

d4 n + 8d−8
d3 if n ∈ I,

0 if n ∈ II.

Considering the remarks made in the previous section, we
know that in a graph of Fourier modes every prime number
must have a corresponding αn position belonging exactly
to the interpolated curve of Bn. Any composite number in
the regime of interest D has αn > Bn and thus is necessarily
above Bn.

FIG. 1. Comparison of simulation results with theoretical predic-
tions for the Fourier modes of the reduced purity across different
dimensions (d = 16, 32, 64). Red points represent the analytical val-
ues of αn, calculated directly from their theoretical expressions, while
the green line stands for the minimum value for the Fourier modes,
also derived from theoretical calculations. Blue points illustrate the
Fourier modes obtained through numerical integration of the reduced
purity γA(t) extracted from the classical emulation of our quantum
circuit. The numerical integration was performed using various par-
tition values (p = 375, 1500, 6000). Prime numbers are expected to
align with the lower bound Bn, whereas composite numbers appear
above.

Now, using Fourier analysis, the Fourier modes αn are
calculated by the integral

αn = 2ω

π

∫ T/2

0
γA(t) cos(nωt)dt . (17)

Normally, Eq. (17) would be an integral over the whole period
T , but we are employing the property of the symmetry of
γA(t), presented earlier in this article. After calculating the

022405-4

USING QUANTUM COMPUTERS TO IDENTIFY PRIME … PHYSICAL REVIEW A 110, 022405 (2024)

FIG. 2. Schematic of the quantum circuit for our algorithm for d = 4. Each colored box corresponds to a stage of the circuit and represents
the set of operations in the respective step for the two copies of q qubits. In the first stage, we prepare the initial state of maximum superposition
|ψ (0)〉AB for both copies of q = 4 qubits, starting from the state |0〉 for each qubit. The second stage is used for the efficient state preparation
of |ψ (t)〉AB for each copy, where the total number of gates, including both copies, is given by 3

2 q2 + 2q. In the last stage, with the aid of an
ancilla qubit q0, we apply the gates corresponding to the variation of the SWAP test to extract the reduced purity γA(t) after executing the circuit
several times.

Fourier modes αn, the last part of our algorithm involves
comparing the value of αn with the analytical lower bound
Bn. In this final step, the numerical integration is done in p
partitions, resulting in an equivalent number of points used for
γA(t) in the interval 0 � t � T/2. Consequently, to achieve
a desired precision ε, our quantum circuit requires at least
p executions. Currently, the exact optimal scaling of p with
respect to d , for a given ε, remains undetermined.

V. SIMULATIONS

In order to evaluate the applicability of our algorithm,
classical simulations were performed using IBM’s QISKIT

framework (version 0.45.1). These simulations targeted three
distinct values of d , with results depicted in blue in Fig. 1. For
all the simulations, we used 105 shots and fixed ω = 0.1 s−1,
as changing the value of ω has no effect on the Fourier modes
αn. Regarding the number of executions p of the circuit, we
selected p = 375, p = 1500, and p = 6000 for the dimen-
sions d = 16, d = 32, and d = 64, respectively. The values
of p were chosen to achieve roughly the same accuracy for
the three values of d . Using PYTHON (version 3.11.3) with
the SCIPY library (version 1.11.3), Fourier modes αn were cal-
culated with Simpson’s rule for the numerical integration of
Eq. (17). Due to the substantial size of the quantum circuit for
the three dimensions analyzed in our simulations, we present
the circuit for a lower dimension, d = 4, purely for illustrative
purposes. This simplified example is shown in Fig. 2, allowing
us to convey the structure without the complexity of the larger
dimensions.

VI. CONCLUSIONS

Concluding, this work presented a qubit-based quantum al-
gorithm for prime number identification, rooted in the analysis
of entangled subsystem dynamics. By employing a bipartite
Hamiltonian and analyzing the Fourier modes of the reduced
purity, we distinguish between prime and composite num-
bers within the range 2 � n � 2(d − 1). Implementing this
on a qubit-based system involves transforming a two-qudit
system into a qubit system, with the unitary gate of Eq. (2)
implementable in polynomial time, contrary to the expected
exponential gate requirements.

Our quantum circuit executes in three stages with a total
gate cost indicating quadratic scaling in the number of digits
of N = 2(d − 1). Despite idealized simulations, implemen-
tation on quantum hardware is feasible but faces challenges
such as qubit connectivity. Alternatives like trapped ion quan-
tum computers or modified gate preparation and reduced
purity measurement methods could overcome these.

The efficient realization of unitary operations demonstrates
the potential for broader application in quantum computing,
suggesting future work could extend this algorithm to verify
larger primes. This progress in quantum algorithm optimiza-
tion could significantly impact the field’s practical application
to fundamental computational problems.

The data that support the findings of this study are avail-
able at [38]. This repository includes the PYTHON code for
implementing the quantum algorithm in QISKIT, the simula-
tion results, and auxiliary codes that support the theoretical
findings.

022405-5

VICTOR F. DOS SANTOS AND JONAS MAZIERO PHYSICAL REVIEW A 110, 022405 (2024)

ACKNOWLEDGMENTS

This work was supported by the Coordination for the Im-
provement of Higher Education Personnel (CAPES), Grant
No. 23081.031640/2023-17, by the National Council for Sci-
entific and Technological Development (CNPq), Grants No.
309862/2021-3, No. 409673/2022-6, and No. 421792/2022-
1, and the National Institute for the Science and Technology of
Quantum Information (INCT-IQ), Grant No. 465469/2014-0.
We thank A. D. Ribeiro for valuable discussions on the subject
of this article.

APPENDIX A: DIAGONAL UNITARY GATE
IMPLEMENTATION USING WALSH FUNCTIONS

In this Appendix, we provide an overview of the algorithm
introduced in Ref. [21] for implementing unitary operations
on quantum computers. To begin, we establish some defini-
tions. Let q denote the number of qubits and consider positive
integers j and k with binary and dyadic representations given
by

bin(j) = (jq jq−1 · · · j1), (A1)

dyad(k) = (k1k2 · · · kq), (A2)

where the most significant bit (MSB) is on the left. Hence-
forth, we assume j = 0, 1, . . . , 2q − 1 and k = 0, 1, . . . ,

2q − 1.
Next, we define the discrete Paley-ordered Walsh functions

w jk as

w jk = (−1)
∑q

i=1 jiki . (A3)

Let us discretize the interval 0 � x < 1 into points given by

xk = k

2q
. (A4)

Since the Walsh functions form an orthonormal basis, we can
define the Walsh-Fourier transform for a function fk = f (xk)
as follows:

a j = 1

2q

2q−1∑
k=0

fkw jk, (A5)

fk =
2q−1∑
j=0

a jw jk. (A6)

In qubit-based quantum computing, the state of q qubits
generally takes the form |ψ〉 = ∑2q−1

k=0 ck|k〉, where the com-
putational basis |k〉 is defined as

|k〉 = |k1k2 · · · kq〉, (A7)

with k represented in dyadic form dyad(k) = (k1k2 · · · kq).
Now, let us define the unitary operator Û = ei f̂ [29], where
f̂ is a diagonal operator in the computational basis:

f̂ |k〉 = fk|k〉. (A8)

Walsh operators {ŵ j}2q−1
j=0 acting on q qubits are naturally

defined as

ŵ j = (Ẑ1) j1 ⊗ (Ẑ2) j2 ⊗ · · · ⊗ (Ẑq) jq , (A9)

where (Ẑi)1 = Ẑi represents the Pauli Z operator and (Ẑi)0 = Î
denotes the identity matrix, both acting on the ith qubit qi.

This definition of Walsh operators is advantageous because
their action on the computational basis is given by

ŵ j |k〉 = w jk|k〉. (A10)

This implies that the eigenvalues of Walsh operators ŵ j are
the Walsh functions w jk and these operators form a basis for
diagonal operators f̂ . Additionally, due to their form, Walsh
operators commute. Therefore, considering ŵ0 = Î , we can
disregard j = 0, leading to the expression

Û = ei f̂ =
2q−1∏
j=1

eia j ŵ j . (A11)

In essence, to apply the method outlined in Ref. [21],
we begin by determining the fk values associated with the
unitary gate Û . Subsequently, we construct the Walsh func-
tions w jk using the procedure described in Appendix C. With
these components in hand, Eq. (A5) allows us to compute the
Walsh angles a j . Finally, utilizing the identity presented in
Appendix B to construct the ŵ j operators in Eq. (A11) yields
the desired unitary Û with a gate cost of O(2q) in general.
This gate cost can be optimized by reordering the commuting
exponential operators in Eq. (A11) using the GRAY code. It
is important to note that, even with optimal construction, the
quantum circuit for this method typically requires O(2q) gates.
However, as we will demonstrate in Appendix D, for the spe-
cific case of the q-qubit unitary gate Û (t) described in Eq. (2),
implementation with a polynomial gate cost is achievable by
identifying the null Walsh angles aj (t).

APPENDIX B: RELATION BETWEEN PAULI Z GATES
AND CNOT STAIRCASES

In this Appendix, we delve into a fundamental identity piv-
otal to our analysis, which concerns the tensor product of Pauli
Ẑ operators. This identity plays a crucial role in simplifying
the representation of quantum states and operations within
our framework. To lay the groundwork for our discussion, we
introduce the following essential notation and concepts.

h j , the Hamming weight of j, represents the number of 1’s
in the binary representation of j, corresponding to the number
of Ẑ operators in the tensor product.

The identity operator Î⊗r acts on r qubits, serving as
a placeholder in tensor products where no operation is
performed.

The operators Âh j are constructed from a sequence
of controlled-NOT(ĈNOT) gates, defined as Âh j =
ĈNOT

1
h j

ĈNOT
2
h j

· · · ĈNOT
h j−1
h j

, where ĈNOT
a
b denotes a ĈNOT

gate with qubit qa as the control and qubit qb as the target.
With these definitions in place, we establish the following

identity:

Ẑ1 ⊗ Ẑ2 ⊗ · · · ⊗ Ẑh j−1 ⊗ Ẑh j = Âh j (Î
⊗(h j−1) ⊗ Ẑ)Â−1

h j
. (B1)

This identity demonstrates how a tensor product of Ẑ opera-
tors can be equivalently expressed through a transformation
involving Âh j and its inverse, significantly simplifying the
representation and manipulation of such operations. Building
upon this foundation, we further examine its implications in

022405-6

USING QUANTUM COMPUTERS TO IDENTIFY PRIME … PHYSICAL REVIEW A 110, 022405 (2024)

the exponential form:

eia j (Ẑ1⊗Ẑ2⊗···⊗Ẑh j −1⊗Ẑh j) = Âh j (Î
⊗(h j−1) ⊗ eia j Ẑ)Â−1

h j
. (B2)

This expression further underscores the utility of the Âh j trans-
formation in facilitating the implementation of the exponential
quantum gates eia j ŵ j .

Now, we proceed with the proofs. For the calculations
below, unless otherwise convenient, we do not specify the
qubit index i of Pauli operators Ẑi or any other operators. We
start by rewriting the left side of Eq. (B1) using the projectors

̂0 = |0〉〈0| and
̂1 = |1〉〈1|:

Ẑ ⊗ Ẑ ⊗ · · · ⊗ Ẑ ⊗ Ẑ

= (
̂0 −
̂1) ⊗ (
̂0 −
̂1) ⊗ · · · ⊗ (
̂0 −
̂1) ⊗ Ẑ

=
∑
bin(s)

(−1)hs
̂s1 ⊗
̂s2 ⊗ · · · ⊗
̂s(h j −1) ⊗ Ẑ

=
∑
bin(s)

hs even

̂s1 ⊗
̂s2 ⊗ · · · ⊗
̂s(h j −1) ⊗ Ẑ

−
∑
bin(s)
hs odd

̂s1 ⊗
̂s2 ⊗ · · · ⊗
̂s(h j −1) ⊗ Ẑ, (B3)

where the sum on bin(s) concerns all the possible binary
representations bin(s) = (s(h j−1)s(h j−2) · · · s1) of h j − 1 bits. It
will be helpful to define

�even =
∑
bin(s)

hs even

̂s1 ⊗
̂s2 ⊗ · · · ⊗
̂s(h j −1) , (B4)

�odd =
∑
bin(s)
hs odd

̂s1 ⊗
̂s2 ⊗ · · · ⊗
̂s(h j −1) . (B5)

For these two definitions, the following relations are inherited
from the projectors:

�even�even = �even, (B6)

�odd�odd = �odd, (B7)

�even�odd = �odd�even = 0. (B8)

Therefore, after defining Î as the identity gate acting on a
single qubit and recalling that X̂ ẐX̂ = −Ẑ , we obtain

Ẑ ⊗ Ẑ ⊗ · · · ⊗ Ẑ ⊗ Ẑ

= �even ⊗ Ẑ − �odd ⊗ Ẑ

= �even ⊗ Ẑ + �odd ⊗ X̂ ẐX̂

= (�even ⊗ Î)(Î⊗(h j−1) ⊗ Ẑ)(�even ⊗ Î)

+ (�odd ⊗ X̂)(Î⊗(h j−1) ⊗ Ẑ)(�odd ⊗ X̂)

= (�even ⊗ Î)(Î⊗(h j−1) ⊗ Ẑ)(�even ⊗ Î)

+ (�odd ⊗ X̂)(Î⊗(h j−1) ⊗ Ẑ)(�odd ⊗ X̂)

+ (�odd ⊗ X̂)(Î⊗(h j−1) ⊗ Ẑ)(�even ⊗ Î)

+ (�even ⊗ Î)(Î⊗(h j−1) ⊗ Ẑ)(�odd ⊗ X̂)

= (�even ⊗ Î + �odd ⊗ X̂)(Î⊗(h j−1) ⊗ Ẑ)

× (�even ⊗ Î + �odd ⊗ X̂). (B9)

To continue, we examine the product of two controlled-NOT

gates targeting the same qubit:

ĈNOT
1
3ĈNOT

2
3 = (
̂0 ⊗ Î ⊗ Î +
̂1 ⊗ Î ⊗ X̂)

× (Î ⊗
̂0 ⊗ Î + Î ⊗
̂1 ⊗ X̂)

=
̂0 ⊗
̂0 ⊗ Î +
̂0 ⊗
̂1 ⊗ X̂

+
̂1 ⊗
̂0 ⊗ X̂ +
̂1 ⊗
̂1 ⊗ Î

= (
̂0 ⊗
̂0 +
̂1 ⊗
̂1) ⊗ Î

+ (
̂1 ⊗
̂0 +
̂0 ⊗
̂1) ⊗ X̂ . (B10)

The equation above suggests a similar form for a more general
case. In fact, it holds that

Âh j = ĈNOT
1
h j

ĈNOT
2
h j

· · · ĈNOT
h j−1
h j

=
∑
bin(s)

hs even

̂s1 ⊗
̂s2 ⊗ · · · ⊗
̂s(h j −1) ⊗ Î

+
∑
bin(s)
hs odd

̂s1 ⊗
̂s2 ⊗ · · · ⊗
̂s(h j −1) ⊗ X̂

= �even ⊗ Î + �odd ⊗ X̂ . (B11)

Then, because Â−1
h j

= Âh j , we obtain the proposed expres-
sion (B1) by using the identity (B11) on Eq. (B9):

Ẑ1 ⊗ Ẑ2 ⊗ · · · ⊗ Ẑh j−1 ⊗ Ẑh j = Âh j (Î
⊗(h j−1) ⊗ Ẑ)Â−1

h j
.

(B12)

Using this result, we can further demonstrate the validity of
Eq. (B2):

eia j

(
Ẑ1⊗Ẑ2⊗···⊗Ẑh j −1⊗Ẑh j

)
=

∞∑
n=0

(ia j)n

n!
(Ẑ ⊗ Ẑ ⊗ · · · ⊗ Ẑ)n

=
∞∑

n=0

(ia j)n

n!

[
Âh j (Î

⊗(h j−1) ⊗ Ẑ)Â−1
h j

]n

=
∞∑

n=0

(ia j)n

n!
Âh j (Î

⊗(h j−1) ⊗ Ẑn)Â−1
h j

= Âh j

(
Î⊗(h j−1) ⊗

∞∑
n=0

(ia j Ẑ)n

n!

)
Â−1

h j

= Âh j (Î
⊗(h j−1) ⊗ eia j Ẑ)Â−1

h j
. (B13)

In this context, we revisit the formulation of Walsh opera-
tors, as delineated in Eq. (A9), represented by ŵ j = (Ẑ1) j1 ⊗
(Ẑ2) j2 ⊗ · · · ⊗ (Ẑq) jq , where the action of eia j ŵ j on a q-qubit
basis state |k〉 = |k1k2 · · · kq〉 is considered. To elaborate on
the analysis, we introduce a strategic reordering of the indices
ji, segregating them into two distinct sets: the first, denoted by
{mi}h j

i=1, corresponds to indices where jmi = 1, spanning the
initial h j bits; the latter set, {mi}q

i=h j+1, encompasses indices
with jmi = 0, accounting for the remaining q − hj bits. The
accordingly reconfigured states of qubits qi and the operators
(Ẑi) ji can be achieved by applying SWAP gates. This culmi-

022405-7

VICTOR F. DOS SANTOS AND JONAS MAZIERO PHYSICAL REVIEW A 110, 022405 (2024)

nates in the revised Walsh operator �̂ j and revised basis state
|k′〉, articulated as

�̂ j = (
Ẑm1 ⊗ Ẑm2 ⊗ · · · ⊗ Ẑmh j

)
⊗ (

Îmh j +1 ⊗ Îmh j +2 ⊗ · · · ⊗ Îmq

)
, (B14)

|k′〉 = ∣∣km1 km2 · · · kmq

〉
. (B15)

Leveraging Eq. (B13), we have

eia j�̂ j |k′〉 = e
ia j

(
Ẑm1 ⊗Ẑm2 ⊗···⊗Ẑmh j

)
⊗
(

Îmh j +1 ⊗Îmh j +2 ⊗···⊗Îmq

)
× ∣∣km1 km2 · · · kmq

〉
= e

ia j

(
Ẑm1 ⊗Ẑm2 ⊗···⊗Ẑmh j

)
⊗ (

Îmh j +1 ⊗ Îmh j +2 ⊗ · · · ⊗ Îmq

)∣∣km1 km2 · · · kmq

〉
= [

Âh j (Î
⊗(h j−1) ⊗ eia j Ẑ)Â−1

h j

]
⊗ Î⊗(q−h j)

∣∣km1 km2 · · · kmq

〉
. (B16)

As it was stated previously, our objective lies in the action
of the original operator eia j ŵ j on the original basis state |k〉,
i.e., eia j ŵ j |k〉. However, through the application of the same
SWAP gates used before to Eq. (B16), we restore the original
sequence of qubits and Pauli operators, thereby preserving the
structural integrity of the action of the operator eia j ŵ j on the
basis state |k〉.

APPENDIX C: WALSH MATRICES CONSTRUCTION

A well-established result in the literature states that any
discrete Walsh function w jk can be represented as a product
of Rademacher functions, with the exception of w0k , which
trivially remains a constant function w0k = 1. Rademacher
functions, denoted as wlr k , are Walsh functions where lr is a
power of 2, specifically lr = 2(r−1).

To illustrate, consider a Walsh matrix w(.,.), where w jk =
w(j,k), representing Paley-ordered Walsh functions arranged in
a square matrix of dimensions 2q × 2q. In matrix formalism,
any row w(j,.) can be understood as the columnwise product

of the corresponding h j Rademacher rows {w(lmi ,.)
}h j

i=1, orga-
nized by ascending order of magnitude lm1 < lm2 < · · · < lmh j

.
Here, h j signifies the Hamming weight of j. The Rademacher

rows w(lmi ,.)
satisfy j = ∑h j

i=1 lmi = ∑h j

i=1 2(mi−1).
Here, we introduce this result as a proposition with minor

adjustments. This adaptation enables us to introduce the re-
quired notation for the theorem detailed in the next Appendix,
which concerns the implementation of Û (t). Consistent with
convention, we index the rows and columns of our Walsh
matrix starting from 0, with the maximum index value being
2q − 1.

Proposition 1. Consider a positive integer r satisfying 1 �
r � q, where lr = 2(r−1). Let {mi}h j

i=1 be a sequence of integers
in increasing order of magnitude and let j be any row index
of the 2q × 2q Walsh matrix w(.,.). Then, the row w(j,.) will
satisfy only one of the following statements

(1) If j = lr , then the Rademacher row w(j,.) = w(lr ,.) of
the Walsh matrix is given by

w(lr ,.) = [(Rr)(−Rr)(Rr)(−Rr) · · · (Rr)(−Rr)], (C1)

where Rr = (+1)(×Tr) is a row of length Tr = 2(q−r) and Tr

is called the period of the row w(lr ,.). The notation means that
w(lr ,.) is composed of sign alternating sequences of Tr ele-
ments. These sequences are Rr and −Rr and all their elements
are, respectively, equal to +1 and −1.

(2) If j �= lr , we define j = ∑h j

i=1 lmi = ∑h j

i=1 2(mi−1); then
the row w(j,.) of the Walsh matrix is given by

w(j,.) = [(
Rm1

)(−Rm1

)(
Rm1

)(−Rm1

) · · · (Rm1

)(−Rm1

)]
,

(C2)

where Rm1 is obtained from the recursive relation

Rm(i−1) = [(
Rmi

)(−Rmi

)(
Rmi

)(−Rmi

) · · · (Rmi

)(−Rmi

)]
,

(C3)

with Rm0 = w(j,.) and Rmh j
= (+1)(×Tmh j

). Each Rmi , for 1 �
i � h j , is a row of length Tmi = 2(q−mi).

Proof. We shall prove each case of Proposition 1 sepa-
rately.

1. Case j = lr . The binary representation of j = lr =
2(r−1) is given by

bin(j) = (000 · · · 01r0 · · · 000), (C4)

where we have introduced the notation 1r = jr = 1 to make it
clear that the only nonzero binary element of bin(j) is in the
position r.

Definition 1. We define the exponent S(j, k) of Eq. (A3) as

S(j, k) =
q∑

i=1

jiki. (C5)

If S(j, k) is even, then w(j,k) = 1. If S(j, k) is odd, then
w(j,k) = −1.

Then, for any 0 � k � 2q − 1, we have

kr = 0 ⇒ S(j, k) = jrkr = even, (C6)

kr = 1 ⇒ S(j, k) = jrkr = odd. (C7)

Now, we consider only a partial dyadic representation string
dyadr(k) of k. Since the dyadic string of k is the same as its
reverse binary string, a partial dyadic string up to the position
r is defined as

dyadr(k) = (krkr+1 · · · k(q−1)kq). (C8)

There are q − r + 1 entries in the partial dyadic string of
Eq. (C8), resulting in a total of 2(q−r+1) combinations. The
first half of these combinations corresponds to kr = 0 and
the second half corresponds to kr = 1. That is, the first 2(q−r)

elements of S(j, .) are even and the next 2(q−r) elements of
S(j, .) are odd. Note that we did not consider the other r − 1
entries that show up in the complete dyadic string dyad(k) of
k. This is justified by the fact that the pattern we just described
will remain true for any configuration of the disregarded r − 1
entries, as changing any of these entries allows another total
of 2(q−r+1) possible combinations with the same pattern for
dyadr(k). From this, we infer that S(j, .) is completely defined

022405-8

USING QUANTUM COMPUTERS TO IDENTIFY PRIME … PHYSICAL REVIEW A 110, 022405 (2024)

by alternating sequences of even and odd elements, with each
sequence having length Tr = 2(q−r). Thus, using that w(j,k) =
(−1)S(j,k), the Rademacher row w(j,.) = w(lr ,.) will be given
by

w(lr ,.) = [(Rr)(−Rr)(Rr)(−Rr) · · · (Rr)(−Rr)], (C9)

with Rr = (+1)(×Tr) and period Tr = 2(q−r).
2. Case j �= lr . Even though j here cannot be written as a

power of 2, it can always be written as a sum of these powers:

j =
h j∑

i=1

lmi =
h j∑

i=1

2(mi−1), (C10)

and we conveniently choose the indices mi to match the posi-
tions of the nonzero binary elements of j, i.e., jmi = 1. That
is, if we consider only the nonzero binary elements bin �=0(j)
of the binary representation bin(j) of j, then

bin�=0(j) = (
jmh j

· · · jm2 jm1

)
. (C11)

Thus, for any 0 � k � 2q − 1, we have

S(j, k) =
q∑

i=1

jiki =
h j∑

i=1

jmi kmi . (C12)

Because each term jmi kmi in the sum above is the correspond-
ing lmi term S(lmi , k), it must be true that

w(j,k) = (−1)
∑h j

i=1 S
(

lmi ,k
)

=
h j∏

i=1

(−1)S
(

lmi ,k
)

=
h j∏

i=1

w(
lmi ,k

). (C13)

Equation (C13) means that any row w(j,) is the columnwise
product of the corresponding Rademacher rows w(lmi ,.)

such

that j = ∑h j

i=1 lmi .
Since lm1 < lm2 < · · · < lmh j

, the respective periods Tmi =
2(q−mi), for 1 � i � h j , must obey Tm1 > Tm2 > · · · > Tmh j

.
We know that, for 0 � k � Tm1 − 1, we have w(lm1 ,k) = +1.
Then, if 0 � k � Tm1 − 1, the elements w(j,k) of Eq. (C13)

can be written as w(j,k) = ∏h j

i=2 w(lmi ,k). Now, any Rademacher
row w(lmi ,.)

has a period Tmi and thus is composed of alternat-
ing pairs of sequences, where each pair is made of a sequence
of Tmi terms all equal to +1 and a sequence of Tmi terms all
equal to −1. This implies that the number of times L[1,i] we
can fit these pairs of 2Tmi terms into the length of the largest
period Tm1 is given by

L[1,i] = Tm1

2Tmi

= 2(q−m1)

2 × 2(q−mi)

= 2(mi−m1)

2

= lmi

2lm1

, (C14)

which evidently shows, for i � 2, that L[1,i] is an integer,
specifically, a power of 2. Now, for Tm1 � k � 2Tm1 − 1 we
must have w(lm1 ,k) = −1 and the pattern of w(j,.) will occur
again for these next Tm1 values of k, except that in this case
we get a sign change, i.e., w(j,k) = −∏h j

i=2 w(lmi ,k). After these
first 2Tm1 terms, the periodicity of w(lm1 ,.) implies that the
aforementioned pattern will continue to repeat itself until we
have the row w(j,.) completely filled. From that, we conclude
that Tm1 is a common period for every composing Rademacher
row of w(j,.). We can also analyze how many pairs of 2Tmi

terms fit into the length of any other period Tmi′ > Tmi , that is,
calculate the expression for L[i′,i]. In this case, for any i > i′,
we have

L[i′,i] = Tmi′

2Tmi

= 2(q−mi′)

2 × 2(q−mi)

= 2(mi−mi′)

2

= lmi

2lmi′
. (C15)

This shows that any period Tmi′ , for h j − 1 � i′ � 1, has a
length that can be perfectly fit by an integer number of pairs
of 2Tmi terms such that Tmi′ > Tmi . The extreme case of Tmh j

,
however, will never have any lower period, a relevant fact that
leads to the following definition.

Definition 2. To proceed, for 1 � i � h j , we define the
recursive relation

Rm(i−1) = [(
Rmi

)(− Rmi

)(
Rmi

)(− Rmi

) · · · (Rmi

)(− Rmi

)]
,

(C16)
where Rmh j

= (+1)(×Tmh j
), and Rm0 and Rmi have respective

periods Tm0 = 2q and Tmi = 2(q−mi).
Utilizing the recursive relation in Eq. (C16), we demon-

strate that w(j,.) = Rm0 . This recursive relation maintains a
critical connection with the Rademacher rows w(lmi ,.)

. The
initial condition Rmh j

= (+1)(×Tmh j
) is chosen due to Tmh j

being the minimal period, thus serving as the recursive
sequence’s base case. For periods Tm(i−1) > Tmh j

, the sequence
iteratively incorporates Rmi , further integrating the effects of
Rm(i+1) until the base case Rmh j

= (+1)(×Tmh j
) is reached.

Particularly, Rm0 is synthesized through several (Rm1)(−Rm1)
pairs, effectively encapsulating the periodic characteristics of
the composing Rademacher rows of w(j,.). Therefore, each
term in the sequence Rm1 of Tm1 terms corresponds to either∏h j

i=2 w(lmi ,k) or its negative counterpart, −∏h j

i=2 w(lmi ,k), for
the relevant Tm1 columns k. As we have shown, the products
±∏h j

i=2 w(lmi ,k) fully compose the row w(j,.), leading to the
conclusion that w(j,.) = Rm0 . Hence we have

w(j,.) = [(
Rm1

)(−Rm1

)(
Rm1

)(−Rm1

) · · · (Rm1

)(−Rm1

)]
.

(C17)

�

022405-9

VICTOR F. DOS SANTOS AND JONAS MAZIERO PHYSICAL REVIEW A 110, 022405 (2024)

APPENDIX D: DEMONSTRATION
OF POLYNOMIAL COST

As we have shown in the first Appendix, to use the method
of Ref. [21], we must calculate the Walsh angles a j , given
by

a j = 1

2q

2q−1∑
k=0

fkw jk

= 1

2q
[w(j,.)] × [�f]T , (D1)

where we have introduced the symbol T for transposition,
since �f is defined as a row vector. The components fk of �f
are extracted as the eigenvalues of the operator

f̂ =
2q−1∑
k=0

fk|k〉〈k|. (D2)

Then, a general unitary operator of the form Û = ei f̂ , when
represented in the computational basis |k〉, is given by the

following diagonal matrix:

U =

⎡
⎢⎢⎣

D1 0 · · · 0
0 D2 · · · 0
...

...
. . .

...

0 0 · · · Dd

⎤
⎥⎥⎦, (D3)

where d2 = 2q, with d a power of 2, and the Ds are diagonal
matrices for 1 � s � d . In this paper, we define these diagonal
matrices Ds as

Ds =

⎡
⎢⎢⎢⎣

eiϕs 0 · · · 0
0 e2iϕs · · · 0
...

...
. . .

...

0 0 · · · ediϕs

⎤
⎥⎥⎥⎦, (D4)

where i2 = −1, ϕs = sκ , and κ is a real number. Comparing
with the unitary gate Û (t) of Eq. (2) for our quantum algo-
rithm, we must use κ = −ωt . However, since κ is a global
factor for �f and thus a multiplicative factor in the expression
for aj in Eq. (D1), we can choose κ = 1 to facilitate further
calculations. The vector �f that we are going to use is then
given by

�f = [(1, 2, 3, . . . , d), (2, 4, 6, . . . , 2d), (3, 6, 9, . . . , 3d), (4, 8, 12, . . . , 4d), . . . , (d, 2d, 3d, . . . , d2)]. (D5)

There is also another global factor 1
2q = 1

d2 in the ex-
pression (D1), which can be equally disregarded in the
calculations. Taking into account these two global factors, aj

will be redefined to be

a j = [w(j,.)] × [�f]T , (D6)

with �f given by Eq. (D5). Thus the relevant Walsh angles a j (t)
for Û (t) should be defined as

a j (t) = −ωt

d2
a j . (D7)

Since there is no risk of confusion, a j and a j (t) are both
referred to as “Walsh angles” in this work. The following
theorem concerns the derivations of the expressions for the
nonzero Walsh angles aj (t) corresponding to the unitary gate
Û (t) of Eq. (2). Even though we are using q even here, it
should be noted that a similar theorem holds for odd values
of q, opening possibilities for the efficient implementation
of any 2q × 2q diagonal unitary gate Û (t) with the form of
Eq. (2).

Theorem 2. Let W be the set of nonzero Walsh angles aj (t)
for the q-qubit unitary gate Û (t) of Eq. (2), with q even. Then

W = W1 ∪ W2, (D8)

with

W1 =
⎧⎨
⎩a j (t) =

⎧⎨
⎩

d (1+d)ωt
8 j if j � d/2,

d2(1+d)ωt
8 j if j � d,

∣∣∣∣h j = 1

⎫⎬
⎭, (D9)

and

W2 =
{

a j (t) = −d3ωt

16lm1 lm2

∣∣∣∣h j = 2

and j = lm1 + lm2 for lm1 � d/2 and lm2 � d

}
, (D10)

where h j is the Hamming weight of j and d2 = 2q.
The quantum circuit corresponding to the implementation

of Û (t) is presented for d = 4 in Fig. 3. As it is evident,
Theorem 2 eliminates the vast majority of the 2q − 1 Walsh
angles a j (t) that would be necessary, in general, to implement
this type of unitary gate exactly. In Lemma 3, we show that
the number of gates needed to exactly implement Û (t) is a
polynomial function of q.

In what follows, we list some definitions and their respec-
tive properties, in order to use them in the proof of Theorem
2, that will be presented afterwards.

Definition 3. Elementary vectors are defined as

�Pη = [η, 2η, 3η, . . . , dη]. (D11)

Definition 4. Extended vectors are defined as

�P{α|α+β} = [�Pα, �Pα+1, �Pα+2, . . . , �Pα+β]. (D12)

Definition 5. Partial vectors are defined as

�p (η)
{α|α+β} = [

p(η)
α , p(η)

α+1, p(η)
α+2, . . . , p(η)

α+β

]
, (D13)

where we defined the notation �Pη = [p(η)
1 , p(η)

2 , p(η)
3 , . . . , p(η)

d]
for elementary vectors.

022405-10

USING QUANTUM COMPUTERS TO IDENTIFY PRIME … PHYSICAL REVIEW A 110, 022405 (2024)

FIG. 3. Quantum circuit that implements the unitary gate Û (t) for d = 4. We used the mathematical identity demonstrated in Appendix B
to express an exponential of Z Pauli gates as a single Z rotation R̂z(θ j (t)), with the angles given by θ j (t) = −2aj (t), and several controlled-NOT

gates.

Property 6. Using Eq. (D5) for �f and Definition 3 for �Pη,
we can write

�f = [�P1, �P2, �P3, . . . , �Pd]. (D14)

Property 7. By the Definition 3 for elementary vectors �Pη,
it follows that

�Pη = η �P1. (D15)

Property 8. It follows directly from Property 7 that

�Pη − �Pη+� = −� �P1. (D16)

Property 9. Applying Property 8 for each elementary vec-
tor of Definition 4 gives us

�P{α|α+β} − �P{α+�|α+�+β}

= [�Pα, �Pα+1, �Pα+2, . . . , �Pα+β]

− [�Pα+�, �Pα+�+1, �Pα+�+2, . . . , �Pα+�+β]

= [�Pα − �Pα+�, �Pα+1 − �Pα+�+1, �Pα+2

− �Pα+�+2, . . . , �Pα+β − �Pα+�+β]

= −�[�P1, �P1, �P1, . . . , �P1]. (D17)

Property 10. It follows, respectively, from Definition 5 of
partial vectors �p (η)

{α|α+β}, Property 7, and Definition 3 applied

to �P1 that

�p (η)
{α|α+β} − �p (η)

{α+�|α+�+β}

= [
p(η)

α , p(η)
α+1, p(η)

α+2, . . . , p(η)
α+β

]
− [

p(η)
α+�, p(η)

α+�+1, p(η)
α+�+2, . . . , p(η)

α+�+β

]
= [

p(η)
α − p(η)

α+�, p(η)
α+1 − p(η)

α+�+1, p(η)
α+2 − p(η)

α+�+2,

. . . , p(η)
α+β − p(η)

α+�+β

]
=η
[
p(1)

α − p(1)
α+�, p(1)

α+1 − p(1)
α+�+1, p(1)

α+2 − p(1)
α+�+2,

. . . , p(1)
α+β − p(1)

α+�+β

]
= − η�[1, 1, 1, . . . , 1]. (D18)

Building upon the definitions and properties outlined ear-
lier, we now introduce an important vector, denoted by �f σ

mi
,

constructed from components of �f . This vector emerges as a
cornerstone of our analysis, serving as the basis for deriving

key properties that will be extensively used in our proof.
Alongside �f σ

mi
, we define a scalar quantity, F σ

i , designed to
facilitate subsequent calculations.

Definition 11. Let i and σ be two integers such that 1 �
i � h j and 1 � σ � lmi , where lmi = d2

2Tmi
. We define �f σ

mi
as

the vector formed by the σ th 2Tmi elements of �f .
Definition 12. We use the recursive relation (C16) and

Definition 11 to define the scalar F σ
i = [(Rmi)(−Rmi)] ×

[�f σ
mi

]T .
Property 13. If we use Definitions 11 and 12 with i = 1,

then

a j = [w(j,.)] × [�f]T

= [Rm0] × [�f]T

= [(
Rm1

)(−Rm1

)(
Rm1

)(−Rm1

) · · · (Rm1

)(−Rm1

)]
× [�f 1

m1
, �f 2

m1
, �f 3

m1
, . . . , �f σ

m1
, . . . , �f lm1

m1

]T

=
lm1∑
τ=1

[(
Rm1

)(−Rm1

)]× [�f τ
m1

]T

=
lm1∑
τ=1

F τ
1 . (D19)

The following two properties form the foundation of our
strategy to distinguish which Walsh angles a j are null and
which are not. The technique we will use involves determining
whether the composing powers lmi of j possess corresponding
periods Tmi � d or Tmi � d/2. Depending on this categoriza-
tion, we will then employ either extended or partial vector
notation.

Property 14. Let Tmi = μid , for μi � 1 a power of 2.
Then, �f τ

mi
= [�P{(2τ−2)μi+1|(2τ−1)μi}, �P{(2τ−1)μi+1|2τμi}] and after

using Definition 12 and Property 9

F τ
i = [(

Rmi

)(−Rmi

)][�P{(2τ−2)μi+1|(2τ−1)μi}, �P{(2τ−1)μi+1|2τμi}
]T

= [
Rmi

]× [�P{(2τ−2)μi+1|(2τ−1)μi}
]T

+ [−Rmi

]× [�P{(2τ−1)μi+1|2τμi}
]T

= [
Rmi

][�P{(2τ−2)μi+1|(2τ−1)μi} − �P{(2τ−1)μi+1|2τμi}
]T

= [
Rmi

]× [−μi(�P1, �P1, �P1, . . . , �P1)]T . (D20)

022405-11

VICTOR F. DOS SANTOS AND JONAS MAZIERO PHYSICAL REVIEW A 110, 022405 (2024)

Thus, by defining F τ
1 = F1, we have the following property

for expression (D19):
a j = lm1 F1. (D21)

Property 15. Let Tmi = d/νi, for νi � 2 a power of
2. Then, �f τ

mi
= [�p (η)

{(2τ−2)d/νi+1|(2τ−1)d/νi}, �p (η)
{(2τ−1)d/νi+1|2τd/νi}].

After using Definition 12 and Property 10, we obtain

F τ
i = [(

Rmi

)(−Rmi

)]
× [

�p (η)
{(2τ−2)d/νi+1|(2τ−1)d/νi}, �p (η)

{(2τ−1)d/νi+1|2τd/νi}
]T

= [
Rmi

]× [
�p (η)
{(2τ−2)d/νi+1|(2τ−1)d/νi}

]T

+ [−Rmi

]× [
�p (η)
{(2τ−1)d/νi+1|2τd/νi}

]T

= [
Rmi

][
�p (η)
{(2τ−2)d/νi+1|(2τ−1)d/νi} − �p (η)

{(2τ−1)d/νi+1|2τd/νi}
]T

= [
Rmi

]×
[
−ηd

νi
(1, 1, 1, . . . , 1)

]T

. (D22)

We know that 1 � η � d and, within a fixed η, there is d
Tm1

partial vectors of the form �p (η)
{α|α+Tm1 −1}. Then, we define F τ

1 =
F (η)

1 and replace the sum of Eq. (D19) on τ with the sum
on η and a multiplication by the term d

2Tm1
= ν1

2 to obtain the

following property:

a j = ν1

2

d∑
η=1

F (η)
1 . (D23)

Proof. Having stated these definitions and properties, now
we go to the proof of the theorem. We shall prove separately
the formulas of a j (t) for each Hamming weight h j = 1, h j =
2, and h j � 3.

1. Case h j = 1. In this case, we have j = lm1 = 2m1−1 and
Rm1 = (+1)(×Tm1).

1.1. Subcase lm1 � d/2. Here, we have Tm1 = μ1d , for
μ1 � 1 a power of 2. First, we calculate the scalar F1 using
Eq. (D20):

F1 = [
Rm1

]× [−μ1(�P1, �P1, �P1, . . . , �P1)]T

= [
(+1)

(×Tm1

)]× [−μ1(�P1, �P1, �P1, . . . , �P1)]T

= −μ1(P1 + P1 + P1 + · · · + P1)

= −μ2
1P1, (D24)

where we have defined P1 as the sum of all the elements of �P1,
that is, P1 = 1 + 2 + 3 + · · · + d . Because P1 = (1+d)d

2 , then

F1 = −μ2
1(1 + d)d

2
. (D25)

Now, since Tm1 = μ1d and by definition Tm1 = d2/2lm1 ,
with lm1 = j, we can write μ1 = d/2 j. If we use Property 14
to calculate a j , then

a j = lm1 F1

= j

(
− μ2

1(1 + d)d

2

)

= −(1 + d)d3

8 j
. (D26)

To obtain the relevant Walsh angle a j (t), we make use of
Eq. (D7). Thus

a j (t) = d (1 + d)ωt

8 j
. (D27)

1.2. Subcase lm1 � d . For this subcase, we have Tm1 = d/ν1

for ν1 � 2 a power of 2. The scalar F (η)
1 = F τ

1 is calculated by
the expression (D22):

F (η)
1 = [

Rm1

]×
[
−ηd

ν1
(1, 1, 1, . . . , 1)

]T

= [
(+1)

(× Tm1

)]×
[
−ηd

ν1
(1, 1, 1, . . . , 1)

]T

= −ηd

ν1
(1 + 1 + 1 + · · · + 1)

= −ηd2

ν2
1

. (D28)

Using that Tm1 = d/ν1 = d2/2lm1 , with lm1 = j, we write
ν1 = 2 j/d . Then, using Property 15 to calculate the Walsh
angles a j ,

a j = ν1

2

d∑
η=1

F (η)
1

= −ν1d2

2ν2
1

d∑
η=1

η

= −(1 + d)d4

8 j
. (D29)

Therefore, by Eq. (D7),

a j (t) = d2(1 + d)ωt

8 j
. (D30)

Thus, for h j = 1, we always have

a j (t) �= 0. (D31)

2. Case h j = 2. In this case, we have j = lm1 + lm2 . We use
the recursive relation of Eq. (C16) to write

Rm1 = [(
Rm2

)(−Rm2

)(
Rm2

)(−Rm2

) · · · (Rm2

)(−Rm2

)]
,

(D32)
with Rm2 = (+1)(×Tm2).

2.1. Subcase lm1 < d/2, lm2 � d/2. Here, we have Tm1 =
μ1d and Tm2 = μ2d , where both μ1 � 2 and μ2 � 1 are
powers of 2. First, we calculate the scalar F1 using
Eq. (D20):

F1 = [
Rm1

]× [−μ1(�P1, �P1, �P1, . . . , �P1)]T

= [(
Rm2

)(−Rm2

)(
Rm2

)(−Rm2

) · · · (Rm2

)(−Rm2

)]
× [−μ1(�P1, �P1, �P1, . . . , �P1)]T

= −μ1Tm1

2Tm2

([
Rm2

]× (�P1, �P1, . . . , �P1)T − [
Rm2

]
× (�P1, �P1, . . . , �P1)T

)
= 0, (D33)

where the factor Tm1/2Tm2 was introduced because we col-
lapsed the sum of all the Tm1/2Tm2 products [(Rm2)(−Rm2)] ×

022405-12

USING QUANTUM COMPUTERS TO IDENTIFY PRIME … PHYSICAL REVIEW A 110, 022405 (2024)

[�P1, �P1, . . . , �P1]T into just a single product. Then, using Prop-
erty 14 for a j , we obtain

a j = lm1 F1

= 0, (D34)

and by Eq. (D7)

a j (t) = 0. (D35)

2.2. Subcase lm1 � d, lm2 > d . In this subcase, we have Tm1 =
d/ν1 and Tm2 = d/ν2, where both ν1 � 2 and ν2 � 4 are pow-
ers of 2. Now, we calculate the scalar F (η)

1 using Eq. (D22),

F (η)
1 = [

Rm1

]×
[−ηd

ν1
(1, 1, 1, . . . , 1)

]T

= [(
Rm2

)(−Rm2

)(
Rm2

)(−Rm2

) · · · (Rm2

)(−Rm2

)]
×
[−ηd

ν1
(1, 1, 1, . . . , 1)

]T

= −ηdTm1

2ν1Tm2

([
Rm2

]× (1, 1, . . . , 1)T − [
Rm2

]
× (1, 1, . . . , 1)T

)
= 0, (D36)

for any 1 � η � d . From Property 15 for a j , we conclude that

a j = ν1

2

d∑
η=1

F (η)
1

= 0. (D37)

Thus, by Eq. (D7), we must also have

a j (t) = 0. (D38)

2.3. Subcase lm1 � d/2, lm2 � d . For this final subcase, we
have Tm1 = μ1d and Tm2 = d/ν2, where μ1 � 1 and ν2 � 2
are powers of 2. We start by calculating the scalar F1 using
Eq. (D20):

F1 = [
Rm1

]× [−μ1(�P1, �P1, �P1, . . . , �P1)]T

= [(
Rm2

)(−Rm2

)(
Rm2

)(−Rm2

) · · · (Rm2

)(−Rm2

)]
× [−μ1(�P1, �P1, �P1, . . . , �P1)]T . (D39)

However, we can no longer calculate products of the form
[Rm2] × (�P1, �P1, . . . , �P1)T , because now Rm2 has length Tm2 =
d/ν2, which is less than the length of �P1. To be able to calcu-
late the right side of expression (D39), we break each �P1 into
smaller parts of length Tm2 , using partial vectors �p (η)

{α|α+Tm2 −1}.

First, we notice that �P1 corresponds to partial vectors with η =
1. Second, since �P1 has length d , we can fit d/Tm2 = ν2 partial
vectors �p (η)

{α|α+Tm2 −1} into �P1. That is, considering Eq. (D22),
the ν2/2 products that we have to calculate are related to
F τ

2 = F (1)
2 by the expression

−μ1F (1)
2 = [(

Rm2

)(−Rm2

)][−μ1
(
�p (1)
{(2τ−2)d/ν2+1|(2τ−1)d/ν2},

�p (1)
{(2τ−1)d/ν2+1|2τd/ν2}

)]T

= [
Rm2

]×
[
μ1d

ν2
(1, 1, . . . , 1)

]T

. (D40)

After calculating the product of Eq. (D40) and multiplying
it by the number ν2/2, we should then multiply the result by
the number of elementary vectors �P1 appearing in Eq. (D39),
which is Tm1/d = μ1. Therefore,

F1 = (μ1)
(ν2

2

)(−μ1F (1)
2

)

= [
Rm2

]×
[
μ2

1d

2
(1, 1, . . . , 1)

]T

= [
(+1)

(×Tm2

)]×
[
μ2

1d

2
(1, 1, . . . , 1)

]T

= μ2
1d

2
(1 + 1 + · · · + 1)

= μ2
1d2

2ν2
. (D41)

With F1 calculated, a j will be given by Property 14. To
simplify the final result for a j , we will use Tm1 = μ1d =
d2/2lm1 and Tm2 = d/ν2 = d2/2lm2 to write μ1 = d/2lm1 and
ν2 = 2lm2/d . Therefore, by Property 14 we have that

a j = lm1 F1

= lm1

(
μ2

1d2

2ν2

)

= d5

16lm1 lm2

. (D42)

Again, by making use of Eq. (D7), we obtain

a j (t) = −d3ωt

16lm1 lm2

. (D43)

Thus, for h j = 2, if lm1 � d/2 and lm2 � d , we necessarily
have

a j (t) �= 0. (D44)

Otherwise a j (t) = 0.
3. Case h j � 3. For this case, we have in general j = lm1 +

lm2 +∑h j

i=3 lmi .
3.1. Subcase lm1 < d/2, lm2 � d/2. Here, we have a similar

situation to subcase 2.1: Tm1 = μ1d and Tm2 = μ2d . However,
we also have other powers lmi with respective periods Tmi =
d2/2lmi for i � 3. We will show that, for any such Tmi , it must
be true that a j = 0. We recall the recursive relation (C16) and
use Eq. (D20) to obtain

F1 = [
Rm1

]× [−μ1(�P1, �P1, �P1, . . . , �P1)]T

= [(
Rm2

)(−Rm2

)(
Rm2

)(−Rm2

) · · · (Rm2

)(−Rm2

)]
× [−μ1(�P1, �P1, �P1, . . . , �P1)]T

= −μ1Tm1

2Tm2

([
Rm2

]× (�P1, �P1, . . . , �P1)T − [
Rm2

]
× (�P1, �P1, . . . , �P1)T

)
= 0. (D45)

In the scenario of subcase 2.1, we have Rm2 = (+1)(×Tm2)
and F1 = 0. Although for the present subcase we have Rm2 �=
(+1)(×Tm2), the scalar F1 is again identically null, just like

022405-13

VICTOR F. DOS SANTOS AND JONAS MAZIERO PHYSICAL REVIEW A 110, 022405 (2024)

in subcase 2.1. Note that we have not imposed any restrictions
on lmi , that is, F1 = 0 regardless of whether lmi � d/2 or lmi �
d . Now, from Property 14 we have a j = lm1 F1. Thus, if there

are any others lmi such that j = lm1 + lm2 +∑h j

i=3 lmi , it holds
that

a j = 0. (D46)

Therefore, by Eq. (D7), it follows that

a j (t) = 0. (D47)

3.2. Sub-case lm1 � d, lm2 > d, lmi > d . This situation is an
extension of subcase 2.2: Tm1 = d/ν1 and Tm2 = d/ν2. Again,
we have powers lmi with respective periods Tmi , with i � 3. By
the recursive relation (C16) and Eq. (D22), we obtain

F (η)
1 = [

Rm1

]×
[−ηd

ν1
(1, 1, 1, . . . , 1)

]T

= [(
Rm2

)(−Rm2

)(
Rm2

)(−Rm2

) · · · (Rm2

)(−Rm2

)]
×
[−ηd

ν1
(1, 1, 1, . . . , 1)

]T

= −ηdTm1

2ν1Tm2

([
Rm2

]× (1, 1, . . . , 1)T − [
Rm2

]
× (1, 1, . . . , 1)T

)
= 0, (D48)

for any 1 � η � d . Similarly to what happened for F1 in
subcase 3.1, here the result of F (η)

1 is independent of the form
of Rm2 . This is relevant because, in the present subcase, Rm2

is obtained by other Rmi that we did not specify. Now, from
Property 15 we have a j = ν1

2

∑d
η=1 F (η)

1 . Then, it must be true
that

a j = 0 (D49)

and by Eq. (D7) it follows that

a j (t) = 0. (D50)

3.3. Subcase lm1 � d/2, lm2 � d, lmi > d . In subcase 2.3,
we have shown that a j �= 0. Here, since there are other powers
lmi , the situation, however, will turn out to be different. We
should repeat the calculations of subcase 2.3 by first using
Eq. (D40):

−μ1F (1)
2 = [

Rm2

]×
[
μ1d

ν2
(1, 1, . . . , 1)

]T

. (D51)

We must calculate F1, since Tm1 � d . From the calculations of
subcase 2.3, F1 is given by F1 = (μ1)(ν2

2)(−μ1F (1)
2). Thus

F1 = (μ1)
(ν2

2

)(−μ1F (1)
2

)

= [
Rm2

]×
[
μ2

1d

2
(1, 1, . . . , 1)

]T

= [(
Rm3

)(−Rm3

)(
Rm3

)(−Rm3

) · · · (Rm3

)(−Rm3

)]
×
[
μ2

1d

2
(1, 1, . . . , 1)

]T

= μ2
1dTm2

4Tm3

([
Rm3

]× (1, . . . , 1)T − [
Rm3

]× (1, . . . , 1)T
)

= 0. (D52)

From Property 14, the Walsh angles for this subcase are given
by a j = lm1 F1. Therefore,

a j = 0 (D53)

and from Eq. (D7) we get

a j (t) = 0. (D54)

Just like it happened for subcase 2.2, where we had lm1 � d
and lm2 > d , the Walsh angles a j (t) are also null here. This is
true for any lmi�3 that composes j. The conclusion is that, for
any j with h j � 3, we have a j (t) = 0.

We know that the only nonzero Walsh angles aj (t) are
those with Hamming weight hj = 1 or h j = 2, that is, cases 1
and 2. In case 1, it is always true that a j (t) �= 0. In case 2, the
Walsh angles are aj (t) �= 0 if and only if we simultaneously
have lm1 � d/2 and lm2 � d . Therefore, if W is the set of
nonzero Walsh angles, then it is the union of two subsets W1

and W2, composed, respectively, by the nonzero Walsh angles
with h j = 1 and h j = 2. We can summarize this as

W = W1 ∪ W2, (D55)

with

W1 =
⎧⎨
⎩a j (t) =

⎧⎨
⎩

d (1+d)ωt
8 j if j � d/2,

d2(1+d)ωt
8 j if j � d,

∣∣∣∣h j = 1

⎫⎬
⎭ (D56)

and

W2 =
{

a j (t) = −d3ωt

16lm1 lm2

∣∣∣∣h j = 2 and j = lm1 + lm2 ,

where lm1 � d/2 and lm2 � d

}
. (D57)

Lemma 3. Let G2(q) be the number of gates necessary
to implement the q-qubit unitary gate Û (t) exactly. If we
use only Z rotations and controlled-NOT gates, then G2(q) =
3
4 q2 + q.

Proof. As it is established in Appendix B, we can calculate
the exponential operators eia j (t)ŵ j in Eq. (A11) by applying
a Z rotation on qubit qmh j

, where mhj is the MSB of j and
two controlled-NOT gates targeted on qmh j

for each controlling

qubit. That is, the number of gates for a single eia j (t)ŵ j is given
by one Z rotation and 2(h j − 1) controlled-NOT gates, result-
ing in 2h j − 1 gates. Now, from Theorem 2, the only nonzero
Walsh angles a j (t) are those for which we have h j = 1 or
h j = 2.

For h j = 1 it is always true that a j (t) �= 0 and the re-
spective values of j correspond to powers of 2. We know
that, within 1 � j � 2q − 1, there are q powers of 2. Then,
the total number of gates G(1)

2 (q) necessary for h j = 1 is
G(1)

2 (q) = (2h j − 1)q. Thus

G(1)
2 (q) = q. (D58)

For h j = 2, we have a j (t) �= 0 if and only if j = lm1 + lm2

with lm1 � d/2 and lm2 � d . To find how many gates G(2)
2 (q)

022405-14

USING QUANTUM COMPUTERS TO IDENTIFY PRIME … PHYSICAL REVIEW A 110, 022405 (2024)

are needed here, we must count how many combinations of
lm1 and lm2 are possible. First, we notice that d/2 = 2

q
2 /2 =

2(q
2 −1). If we pick lm1 as satisfying lm1 = d/2, then d/2 =

lm1 = 2(m1−1) implies that m1 = q
2 . That is, there are q

2 possible
values for lm1 � d/2. Because there is a total of q powers of
2 in the interval 1 � j � 2q − 1, then there is also q − q

2 = q
2

possible values for lm2 . We conclude that the number of com-

binations of lm1 and lm2 is (q
2)(q

2) = q2

4 . Then, the number

G(2)
2 (q) of gates necessary for h j = 2 is G(2)

2 = (2h j − 1) q2

4 .
Thus

G(2)
2 = 3

4 q2. (D59)

Finally, the total gate cost G2(q) = G(1)
2 (q) + G(2)

2 (q) for the
implementation of the unitary Û (t) is

G2(q) = 3
4 q2 + q. (D60)

�

APPENDIX E: PURITY ESTIMATION USING A
VARIATION OF THE SWAP TEST

In Ref. [26], the authors explore an interferometric setup to
extract Tr(Û ρ̂) based on its correlation with the visibility v,
where Û represents a unitary gate and ρ̂ denotes the density
operator of the system. Their investigation draws parallels
between this quantum circuit and the one employed in the
SWAP test. However, there are notable distinctions: they utilize
a controlled-Û gate instead of a controlled-SWAP gate and
consider density operators ρ̂ instead of pure states |ψ〉.

The authors further contend that, by selecting Û as the
SWAP gate and letting ρ̂ = ρ̂S1 ⊗ ρ̂S2 represent the joint density
operator of two subsystems S1 and S2, a specific scenario
arises:

Tr
(
ρ̂S1 ρ̂S2

) = 2P0 − 1, (E1)

where P0 signifies the probability of measuring the state |0〉 for
the ancilla qubit subsequent to the application of the unitary
gates forming the quantum circuit.

In this Appendix, we present an operational proof for
Eq. (E1). Particularly, when ρ̂S1 = ρ̂S2 , it yields the purity
Tr(ρ̂2

S1
) = 2P0 − 1, a key quantity for our quantum algorithm.

Before delving into the proof, we first introduce an identity
pertaining to the SWAP gate.

Proposition 4. Let V̂1 and V̂2 be two linear operators acting,
respectively, on d2-dimensional Hilbert spaces H1 and H2,
with H1 = H2. Then, the following identity for the ŜWAP gate
holds

Tr((V̂1 ⊗ V̂2)ŜWAP) = Tr(V̂1V̂2). (E2)

Proof. We will calculate both sides of Eq. (E2) and show
that they lead to the same expression. To do that, we start by
defining the matrix representations of V̂i on the computational
basis:

V̂i =

⎡
⎢⎢⎢⎢⎢⎣

V (1,1)
i V (1,2)

i · · · V (1,d)

V (2,1)
i V (2,2)

i · · · V (2,d)
i

...
...

. . .
...

V (d,1)
i V (d,2)

i · · · V (d,d)
i

⎤
⎥⎥⎥⎥⎥⎦. (E3)

Then, we can write

V̂1V̂2 =

⎡
⎢⎢⎢⎣
∑d

k=1 V (1,k)
1 V (k,1)

2 · · · ∗
...

. . .
...

∗ ∗ ∑d
k=1 V (d,k)

1 V (k,d)
2

⎤
⎥⎥⎥⎦,

(E4)

with ∗ denoting matrix elements we do not need. Thus

Tr(V̂1V̂2) =
d∑

j,k=1

V (j,k)
1 V (k, j)

2 . (E5)

Now, we calculate the left side of Eq. (E2):

Tr((V̂1 ⊗ V̂2)ŜWAP)

= Tr

⎛
⎝
⎛
⎝ d∑

j,k=1

V (j,k)
1 | j〉〈k| ⊗

d∑
l,m=1

V (l,m)
2 |l〉〈m|

⎞
⎠ŜWAP

⎞
⎠

=
d∑

j,k=1

d∑
l,m=1

V (j,k)
1 V (l,m)

2 Tr(| j〉 ⊗ |l〉〈k| ⊗ 〈m|ŜWAP)

=
d∑

j,k=1

d∑
l,m=1

V (j,k)
1 V (l,m)

2 Tr(| j〉 ⊗ |l〉〈m| ⊗ 〈k|)

=
d∑

j,k=1

d∑
l,m=1

V (j,k)
1 V (l,m)

2 〈m| j〉〈k|l〉

=
d∑

j,k=1

V (j,k)
1 V (k, j)

2 . (E6)

FIG. 4. Schematic representation of a modified SWAP test em-
ployed to determine Tr(ρ̂S1 ρ̂S2) in a four-qubit system (q = 4).
Initially, qubits q1 and q2 are prepared in the state ρ̂S1 , while qubits
q3 and q4 are prepared in the state ρ̂S2 . An ancilla qubit q0 is
introduced. The circuit involves a Hadamard gate applied to q0,
qubit-qubit controlled-SWAP gates between the two qubit sets, and
a final Hadamard gate on q0. By measuring q0 multiple times and
obtaining P0, the quantity Tr(ρ̂S1 ρ̂S2) can be estimated as 2P0 − 1.

022405-15

VICTOR F. DOS SANTOS AND JONAS MAZIERO PHYSICAL REVIEW A 110, 022405 (2024)

Therefore,

Tr((V̂1 ⊗ V̂2)ŜWAP) = Tr(V̂1V̂2). (E7)

�
We are now prepared to demonstrate the validity of

Eq. (E1). This proof will be conducted by constructing the
proposed quantum circuit introduced in Ref. [26], illustrated
in Fig. 4 for the specific scenario involving q = 4 qubits
and one ancilla qubit. Our system comprises an ancilla qubit
q0 and two subsystems, denoted as S1 and S2. Initially, the
system’s density operator ρ̂ is given by the tensor product:

ρ̂ = |0〉〈0| ⊗ ρ̂S1 ⊗ ρ̂S2 . (E8)

Following the sequence of gates outlined in the
quantum circuit, we define ρ̂ (1) = Ĥ ρ̂Ĥ , ρ̂ (2) =
(ĈSWAP)(ρ̂ (1))(ĈSWAP), and ρ̂ (3) = Ĥ ρ̂ (2)Ĥ . Commencing
with ρ̂ (1), we proceed by applying a Hadamard gate Ĥ to q0:

ρ̂ (1) = Ĥ ρ̂Ĥ

= 1
2 (|0〉 + |1〉)(〈0| + 〈1|) ⊗ ρ̂S1 ⊗ ρ̂S2

= |+〉〈+| ⊗ ρ̂S1 ⊗ ρ̂S2 , (E9)

with |±〉 := 1√
2
(|0〉 ± |1〉). By applying the controlled-SWAP

gate ĈSWAP, we obtain

ρ̂ (2) = (ĈSWAP)(ρ̂ (1))(ĈSWAP)

= (|0〉〈0| ⊗ Î + |1〉〈1| ⊗ ŜWAP)
(|+〉〈+| ⊗ ρ̂S1 ⊗ ρ̂S2

)
× (|0〉〈0| ⊗ Î + |1〉〈1| ⊗ ŜWAP)

= 1√
2

(|0〉〈+| ⊗ ρ̂S1 ⊗ ρ̂S2 + |1〉〈+| ⊗ ŜWAP
(
ρ̂S1 ⊗ ρ̂S2

))
× (|0〉〈0| ⊗ Î + |1〉〈1| ⊗ ŜWAP)

= 1

2

(|0〉〈0| ⊗ ρ̂S1 ⊗ ρ̂S2 + |1〉〈0| ⊗ ŜWAP
(
ρ̂S1 ⊗ ρ̂S2

)
+ |0〉〈1| ⊗ (

ρ̂S1 ⊗ ρ̂S2

)
ŜWAP

+ |1〉〈1| ⊗ ŜWAP
(
ρ̂S1 ⊗ ρ̂S2

)
ŜWAP

)
. (E10)

To finalize, we apply another Hadamard gate to q0:

ρ̂ (3) = Ĥ ρ̂ (2)Ĥ

= 1
2

(|+〉〈+| ⊗ ρ̂S1 ⊗ ρ̂S2 + |−〉〈+| ⊗ ŜWAP
(
ρ̂S1 ⊗ ρ̂S2

)
+ |+〉〈−| ⊗ (

ρ̂S1 ⊗ ρ̂S2

)
ŜWAP

+ |−〉〈−| ⊗ ŜWAP
(
ρ̂S1 ⊗ ρ̂S2

)
ŜWAP

)
. (E11)

The next step is to calculate the reduced density operator
ρ̂0 for the ancilla qubit. To do that, we take the partial trace
over S1 and S2:

ρ̂0 = TrS1S2 (ρ̂ (3))

= 1

2

(|+〉〈+|Tr
(
ρ̂S1 ⊗ ρ̂S2

)+ |−〉〈+|Tr
[
ŜWAP

(
ρ̂S1 ⊗ ρ̂S2

)]
+ |+〉〈−|Tr

[(
ρ̂S1 ⊗ ρ̂S2

)
ŜWAP

]
+ |−〉〈−|Tr

[
ŜWAP

(
ρ̂S1 ⊗ ρ̂S2

)
ŜWAP

])

FIG. 5. Quantum circuit used for the estimation of the reduced
purity γA of a system AB composed by q = 4 qubits. This circuit is
analogous to the general case, with some exceptions. Here, the first q
qubits after the ancilla qubit q0 and the last q qubits are prepared
in the same state ρ̂. Also, the controlled-SWAP gates are applied
only between the first half of qubits of each copy. Then, measuring
q0 for various identical circuits allows us to estimate the reduced
purity γA = Tr(ρ̂2

A), which corresponds to the bipartite reduced state
of qubits q1 and q2 or q5 and q6.

= 1

2

(
(|+〉〈+| + |−〉〈−|) + (|−〉〈+| + |+〉〈−|)

× Tr
[(

ρ̂S1 ⊗ ρ̂S2

)
ŜWAP

])
= Î + Tr

(
ρ̂S1 ρ̂S2

)
Ẑ

2
, (E12)

where in the last step we used the identity (E2). Thus the
probability P0 = Tr(|0〉〈0|ρ̂0) of obtaining state |0〉 for the
ancilla qubit is

P0 = Tr

(
|0〉〈0|

(
Î + Tr

(
ρ̂S1 ρ̂S2

)
Ẑ

2

))

= 1

2
Tr
(|0〉〈0| + Tr

(
ρ̂S1 ρ̂S2

)|0〉〈0|)
= 1 + Tr

(
ρ̂S1 ρ̂S2

)
2

. (E13)

Therefore, we find that Tr(ρ̂S1 ρ̂S2) = 2P0 − 1. Now, spe-
cializing to the case where ρ̂S1 = ρ̂S2 , we obtain the purity

γS1 = Tr
(
ρ̂2

S1

) = 2P0 − 1. (E14)

In our quantum algorithm, γS1 = γA is a function of time and
is actually the reduced purity of subsystem A. The quantum
circuit for this special case is shown in Fig. 5 for two identical
systems A and B with q = 4 qubits each.

022405-16

USING QUANTUM COMPUTERS TO IDENTIFY PRIME … PHYSICAL REVIEW A 110, 022405 (2024)

[1] D. M. Bressoud, Factorization and Primality Testing (Springer-
Verlag, New York, 1989).

[2] R. Crandall and C. Pomerance, Prime Numbers: A Computa-
tional Perspective (Springer, New York, 2005).

[3] R. Baillie, A. Fiori, and S. S. Wagstaff, Jr., Strengthen-
ing the Baillie-PSW primality test, Math. Comp. 90, 1931
(2021).

[4] A. Granville, It is easy to determine whether a given integer is
prime, Bull. Amer. Math. Soc. 42, 3 (2005).

[5] D. Schumayer and D. A. W. Hutchinson, Colloquium: Physics
of the Riemann hypothesis, Rev. Mod. Phys. 83, 307 (2011).

[6] M. Wolf, Will a physicist prove the Riemann hypothesis? Rep.
Prog. Phys. 83, 036001 (2020).

[7] C. Feiler and W. P. Schleich, Entanglement and analytical
continuation: An intimate relation told by the Riemann zeta
function, New J. Phys. 15, 063009 (2013).

[8] G. Sierra and P. K. Townsend, Landau levels and Riemann
Zeros, Phys. Rev. Lett. 101, 110201 (2008).

[9] S. Aaronson, The Prime Facts: From Euclid to AKS, https://
www.scottaaronson.com/writings/prime.pdf.

[10] M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P, Ann.
Math. 160, 781 (2004).

[11] H. A. Helfgott, An improved sieve of Eratosthenes, Math.
Comp. 89, 333 (2020).

[12] G. L. Miller, Riemann’s hypothesis and tests for primality, J.
Comput. Syst. Sci. 13, 300 (1976).

[13] L. M. Adleman, On distinguishing prime numbers from com-
posite numbers, Ann. Math. 117, 173 (1983).

[14] A. Donis-Vela and J. C. Garcia-Escartin, A quantum primality
test with order finding, Quantum Inf. Comput. 18, 1143 (2018).

[15] H. F. Chau and H.-K. Lo, Primality test via quantum factoriza-
tion, Int. J. Mod. Phys. C 08, 131 (1997).

[16] J. Li, X. Peng, J. Du, and D. Suter, An efficient exact quantum
algorithm for the integer square-free decomposition problem,
Sci. Rep. 2, 260 (2012).

[17] D. García-Martín, E. Ribas, S. Carrazza, J. I. Latorre, and G.
Sierra, The Prime state and its quantum relatives, Quantum 4,
371 (2020).

[18] G. Mussardo, A. Trombettoni, and Z. Zhang, Prime suspects in
a quantum ladder, Phys. Rev. Lett. 125, 240603 (2020).

[19] A. L. M. Southier, L. F. Santos, P. H. S. Ribeiro, and A. D.
Ribeiro, Identifying primes from entanglement dynamics, Phys.
Rev. A 108, 042404 (2023).

[20] S. S. Bullock and I. L. Markov, Asymptotically optimal cir-
cuits for arbitrary n-qubit diagonal computations, Quantum Inf.
Comput. 4, 27 (2004).

[21] J. Welch, D. Greenbaum, S. Mostame, and A. Aspuru-Guzik,
Efficient quantum circuits for diagonal unitaries without ancil-
las, New J. Phys. 16, 033040 (2014).

[22] C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher,
Concentrating partial entanglement by local operations, Phys.
Rev. A 53, 2046 (1996).

[23] G. Vidal and R. Tarrach, Robustness of entanglement, Phys.
Rev. A 59, 141 (1999).

[24] M. L. W. Basso and J. Maziero, Entanglement monotones from
complementarity relations, J. Phys. A: Math. Theor. 55, 355304
(2022).

[25] M. V. Scherer and A. D. Ribeiro, Entanglement dynamics of
spins using a few complex trajectories, Phys. Rev. A 104,
042222 (2021).

[26] A. K. Ekert, C. M. Alves, D. K. L. Oi, M. Horodecki, P.
Horodecki, and L. C. Kwek, Direct estimations of linear and
nonlinear functionals of a quantum state, Phys. Rev. Lett. 88,
217901 (2002).

[27] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes: The Art of Scientific Computing
(Cambridge University Press, New York, 2007).

[28] A. Javadi-Abhari et al., Quantum computing with Qiskit,
arXiv:2405.08810.

[29] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press, Cam-
bridge, UK, 2000).

[30] J. Maziero, Computing partial traces and reduced density ma-
trices, Int. J. Mod. Phys. C 28, 1750005 (2017).

[31] G. B. Arfken, H. J. Weber, and F. E. Harris, Mathematical Meth-
ods for Physicists: A Comprehensive Guide, 7th ed. (Elsevier,
Oxford, 2013).

[32] J. L. Walsh, A closed set of normal orthogonal functions, Am.
J. Math. 45, 5 (1923).

[33] N. J. Fine, On the Walsh functions, Trans. Am. Math. Soc. 65,
372 (1949).

[34] L. Zhihua and Z. Qishan, Ordering of Walsh functions, IEEE
Trans. Electromagn. Compat. EMC-25, 115 (1983).

[35] C.-K. Yuen, Function approximation by Walsh series, IEEE
Trans. Comput. C-24, 590 (1975).

[36] H. Buhrman, R. Cleve, J. Watrous, and R. de Wolf, Quantum
fingerprinting, Phys. Rev. Lett. 87, 167902 (2001).

[37] A. Barenco, A. Berthiaume, D. Deutsch, A. Ekert, R. Jozsa,
and C. Macchiavello, Stabilization of quantum computations by
symmetrization, SIAM J. Comput. 26, 1541 (1997).

[38] https://github.com/santosvictorf/primes-identification-using-
qcomputers/tree/main/qiskit.

022405-17

https://doi.org/10.1090/mcom/3616
https://doi.org/10.1090/S0273-0979-04-01037-7
https://doi.org/10.1103/RevModPhys.83.307
https://doi.org/10.1088/1361-6633/ab3de7
https://doi.org/10.1088/1367-2630/15/6/063009
https://doi.org/10.1103/PhysRevLett.101.110201
https://www.scottaaronson.com/writings/prime.pdf
https://doi.org/10.4007/annals.2004.160.781
https://doi.org/10.1090/mcom/3438
https://doi.org/10.1016/S0022-0000(76)80043-8
https://doi.org/10.2307/2006975
https://doi.org/10.26421/QIC18.13-14-5
https://doi.org/10.1142/S0129183197000138
https://doi.org/10.1038/srep00260
https://doi.org/10.22331/q-2020-12-11-371
https://doi.org/10.1103/PhysRevLett.125.240603
https://doi.org/10.1103/PhysRevA.108.042404
https://doi.org/10.1088/1367-2630/16/3/033040
https://doi.org/10.1103/PhysRevA.53.2046
https://doi.org/10.1103/PhysRevA.59.141
https://doi.org/10.1088/1751-8121/ac83fc
https://doi.org/10.1103/PhysRevA.104.042222
https://doi.org/10.1103/PhysRevLett.88.217901
https://arxiv.org/abs/2405.08810
https://doi.org/10.1142/S012918311750005X
https://doi.org/10.2307/2387224
https://doi.org/10.1090/S0002-9947-1949-0032833-2
https://doi.org/10.1109/TEMC.1983.304153
https://doi.org/10.1109/T-C.1975.224271
https://doi.org/10.1103/PhysRevLett.87.167902
https://doi.org/10.1137/S0097539796302452
https://github.com/santosvictorf/primes-identification-using-qcomputers/tree/main/qiskit

