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Continuous-variable quantum kernel method on a programmable photonic quantum processor
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Among various quantum machine learning (QML) algorithms, the quantum kernel method has especially
attracted attention due to its compatibility with noisy intermediate-scale quantum devices and its potential
to achieve quantum advantage. This method performs classification and regression by nonlinearly mapping
data into quantum states in a higher-dimensional Hilbert space. Thus far, the quantum kernel method has
been implemented only on qubit-based systems, but continuous-variable (CV) systems can potentially offer
superior computational power by utilizing its infinite-dimensional Hilbert space. Here, we demonstrate the
implementation of the classification task with the CV quantum kernel method on a programmable photonic
quantum processor. We experimentally prove that the CV quantum kernel method successfully classifies several
datasets robustly even under the experimental imperfections, with high accuracies comparable to the classical
kernel. This demonstration sheds light on the utility of CV quantum systems for QML and should stimulate
further study in other CV QML algorithms.
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I. INTRODUCTION

Recently, studies have been intense to realize large-scale
fault-tolerant quantum computing, but at present, we can only
access noisy intermediate-scale quantum (NISQ) devices [1].
Even with such devices, the realization of quantum advantage
for impractical problems has already been reported [2–4].
To go beyond this, there has been much interest in achiev-
ing quantum advantage for practical problems. One of the
most promising candidates for this goal is quantum machine
learning (QML) [5,6]. Thus far, a wide variety of QML for
NISQ devices has been proposed theoretically for qubit-based
systems [7–10] and demonstrated experimentally on several
physical platforms [11–15].

Among such QML algorithms, a quantum kernel method
has especially attracted attention due to its simplicity of im-
plementation [12–15] and its potential to achieve quantum
advantage. In general, a classical kernel method aims to per-
form tasks such as classification and regression by nonlinearly
mapping data into a higher-dimensional Hilbert space [16].
On the other hand, the quantum kernel method utilizes quan-
tum states as a nonlinear mapping [17]. The quantum kernel
method is expected to be advantageous compared with the
classical one because the mapping to complex quantum states
potentially has the ability to recognize classically intractable
complex patterns. References [18–20] have proved that this
approach has rigorous advantage over classical computation
in specific tasks.

In contrast to the qubit systems, there have been few
theoretical proposals [17,21,22] and no experimental imple-
mentations of the continuous-variable (CV) quantum kernel
method, although CV quantum computing can potentially
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offer superior computational power in the NISQ architecture.
CV quantum systems can handle infinite-dimensional Hilbert
space with only one mode in contrast to qubit systems with
two-dimensional Hilbert space per one qubit, which indicates
that we can map data into a larger Hilbert space with the CV
system. It can also easily construct a kernel that has not been
studied in the classical kernel method by using quantum states
unique to CV systems such as squeezed states [17,22].

In this paper, we successfully implement the classifi-
cation task with the CV quantum kernel method using a
programmable photonic quantum processor. We map given
data to phases of squeezed states [17,22] via a quantum
feature map and experimentally obtain the kernel matrix by
measuring the pairwise inner product of the feature states us-
ing a single-mode photonic quantum processor. The obtained
kernel is then given to a classical processor that solves a
convex quadratic program [23] and thereby efficiently finds
the linear classifier which optimally separates the training
data in feature space. By implementing the procedure above,
we experimentally prove that the CV quantum kernel method
successfully classifies several datasets robustly even under the
experimental imperfections, with high accuracies comparable
to the classical kernel. Our paper experimentally demonstrates
the utility of the CV quantum kernel method. Moreover, our
demonstration of CV QML should stimulate the study of the
other CV QML methods, such as quantum neural networks
[24], quantum reservoir computing [25], and other quantum
learning algorithms [26].

II. THEORY OF QUANTUM KERNEL METHOD

In this paper, we consider the situation that we are given
training datum xi = (xi,1, xi,2) ∈ R2(i = 1, . . . , l ) and its la-
bel yi ∈ {−1, 1}. Our goal is to recognize the pattern and
predict label ytest of unseen test datum xtest . To achieve this,
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the classical kernel method encodes xi to a higher-dimensional
Hilbert space H with a feature map φ : R2 → H. Then, we
compute a kernel which measures a similarity of two data and
is defined by K (xi, x j ) = 〈φ(xi ), φ(x j )〉H, where 〈·, ·〉H is an
inner product defined on H. With this kernel, we can construct
a classification model and predict the label of unseen data.
The classification model is obtained by first solving a convex
quadratic program

min
α

1

2
αT Qα −

l∑
i=1

αi

subject to yT α = 0, 0 � αi � 1, i = 1, . . . , l, (1)

where Q is an l by l positive semidefinite matrix
with Qi j = yiy jK (xi, x j ), y = (y1, . . . , yl )T ∈ Rl , and α =
(α1, . . . , αl )T ∈ Rl . After Eq. (1) is solved and α is deter-
mined, we can predict label ytest of test datum xtest as

ypred = sgn

(
l∑

i=1

yiαiK (xi, xtest ) + b

)
, (2)

where sgn(·) is a sign function. Note that b ∈ R can be also
calculated straightforwardly from α and (xi, yi ) [23].

In contrast, the quantum kernel method maps datum x to
a quantum state to utilize the large-dimensional and quantum
Hilbert space. Among several proposals about CV quantum
kernels [17,21,22], we encode data into squeezed states, one
of the typical CV quantum states. As for this squeezed-state
encoding, two ways of encoding are proposed in Ref. [22]:
amplitude encoding and phase encoding (squeezing-phase
kernel). Here, we adopt phase encoding because it has a hyper-
parameter (the squeezing level of the squeezed state) that can
be adjusted for given datasets, whereas amplitude encoding
does not have such a hyperparameter.

A squeezed state can be represented as Ŝ(r, θ )|0〉, where
Ŝ(r, θ ) = exp{[re−iθ â2 − reiθ (â†)2]/2} is the squeezing oper-
ator, â is an annihilation operator, and |0〉 is a vacuum state.
Real parameters r and θ determine the squeezing level and the
phase, respectively. The squeezing-phase kernel maps datum
x to squeezing phase θ [22] and is defined as

Krg (xi, x j ) =
2∏

k=1

κrg (xi,k, x j,k )

=
2∏

k=1

‖〈0|Ŝ†(rg, xi,k )Ŝ(rg, x j,k )|0〉‖2. (3)

Here, we call parameter rg a gate-squeezing level. This
parameter can be regarded as a hyperparameter which has to
be fixed before learning or tuned so that the performance of
learning is maximized. We also note that the squeezing-phase
kernel is a periodic function with a period of 2π . Such peri-
odic kernels are suitable for the classification of periodic data
[22]. We can also classify nonperiodic data by normalizing the
data so that they are always within one period of the kernel.
This strategy is taken in our experiment and will be described
later.

III. CONCEPT OF OUR IMPLEMENTATION

To evaluate κrg (xi,k, x j,k ) in Eq. (3) with a photonic quan-
tum processor, we first consider the circuit in Fig. 1(a). In
this setup, we prepare |0〉 as an input, implement operation
Ŝ†(rg, xi,k )Ŝ(rg, x j,k ), and measure the vacuum component
of the output state. Operation Ŝ†(rg, xi,k )Ŝ(rg, x j,k ) can be
decomposed into R̂(φ(i)

1 )Ŝ(r (i)
total, 0)R̂(φ(i)

2 ), i = (i, j, k) with
Bloch-Messiah decomposition [27], where r (i)

total is determined
as

e2r(i)
total = cos2 �(i) + cosh(4rg) sin2 �(i)

+ [sinh2(4rg) sin4 �(i)

+ 4 sinh2(2rg) sin2 �(i) cos2 �(i)]
1
2 , (4)

�(i) = xi,k − x j,k

2
, (5)

and R̂(φ) = exp(−iφâ†â) is a phase-shift operator (see
Appendix A for details). With equation R̂(φ)|0〉 = |0〉,
κrg (xi,k, x j,k ) in Eq. (3) turns into

κrg (xi,k, x j,k ) = ∥∥〈0|R̂(
φ

(i)
1

)
Ŝ
(
r (i)

total, 0
)
R̂
(
φ

(i)
2

)|0〉∥∥2

= ‖〈0|Ŝ(
r (i)

total, 0
)|0〉∥∥2

. (6)

Hence, to evaluate κrg (xi,k, x j,k ) in our experiment, we need

only Ŝ(r (i)
total, 0) instead of Ŝ†(rg, xi,k )Ŝ(rg, x j,k ) as shown in

Fig. 1(b). Note that from Eq. (4), the kernel value is dependent
only on the absolute difference of data |xi,k − x j,k|, rather than
the datum itself.

To realize the concept of Fig. 1(b), we next consider
the circuit shown in Fig. 1(c). In Fig. 1(c), we use a
measurement-induced squeezing gate [28] to perform the
squeezing operation Ŝ(r (i)

total, 0) in a programmable way. The
input state is a vacuum state with quadrature amplitudes
(q̂in, p̂in ). The ancillary state is a squeezed state with 〈q̂2

a〉 =
e−2ra and 〈p̂2

a〉 = e2ra , where (q̂a, p̂a ) represents quadrature
amplitudes of the ancillary mode. Here, we call parameter
ra an ancilla-squeezing level. These two fields interfere at
the beam splitter having variable transmissivity T . Then, the
homodyne detector measures quadrature amplitude p̂1 of one
of the beam-splitter output modes, and measurement outcome
p1 is fed forward to the other mode with a certain gain g by
displacing the quadrature amplitude by gp1 along the p direc-
tion. To let the above-described circuit act as squeezing gate
Ŝ(r (i)

total, 0), the parameters of the optical circuit are determined
by T = exp(−2r (i)

total ) and correspondingly the feedforward
gain is set to g = √

(1 − T )/T , in which settings the contri-
bution of the antisqueezed quadrature of ancilla p̂a to the gate
output is canceled. The quadrature amplitude of output state
q̂out,φ = q̂out cos φ + p̂out sin φ in Fig. 1(c) becomes

q̂out,φ = e−r(i)
total q̂in cos φ + er(i)

total p̂in sin φ

−
√

1 − exp
( − 2r (i)

total

)
q̂a cos φ, (7)

which asymptotically coincides with results of the ideal
squeezing gate Ŝ(r (i)

total, 0) in high squeezing limit ra →
∞ in the sense that the variance of the noise term
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FIG. 1. Experimental implementation of the CV quantum kernel method. (a) Conceptual diagram of measurement of our quantum kernel.
The input state is a vacuum state. Squeezing operators Ŝ†(rg, xi,k )Ŝ(rg, x j,k ) are applied to it for input data xi,k and x j,k . Finally, the vacuum
component of the output state is measured. (b) Conceptual diagram of our demonstration. Two squeezing operators Ŝ(rg, x j,k ) and Ŝ†(rg, xi,k )
are combined into one squeezing operator Ŝ(r (i)

total, 0). (c) Optical circuit to implement the circuit shown in Fig. 1(b). “Displace” indicates
a displacement operation depending on the measurement result of p̂1, (q̂i, p̂i ) are quadrature amplitudes of mode i whose definitions and
expressions are given in the main text, g is a feedforward gain, and T is a transmissivity of the beam splitter. (d) Experimental setup. EOM,
electro-optic modulator; HD, homodyne detector; LO, local oscillator; OPO, optical parametric oscillator; PBS, polarizing beam splitter; QWP,
quarter-wave plate; VBS, variable beam splitter.

√
1 − exp(−2r (i)

total )q̂a cos φ approaches zero (details of this
derivation are described in Appendix B).

Finally, Fig. 1(d) shows our experimental configuration.
This setup realizes the circuit in Fig. 1(c), but some parts
of it are modified for experimental convenience. First, the
final measurement of the vacuum component of Ŝ(r (i)

total, 0)|0〉
is performed by a homodyne detector (HD2) and the analy-
sis of its measurement result. Though a photon detector is
straightforward to measure the vacuum component, the homo-
dyne detector allows for the measurement with lower optical
loss compared to the photon detector. Second, for experi-
mental simplicity, we perform the feedforward operation not
by optical means but by numerical postprocessing of HD2’s
measurement outcome, as shown in Fig. 1(d). This processing
yields the same outcome as Eq. (7) without any loss of data or
shots (see Appendix B for details; similar tricks can be seen in
other works [29–31]). Through the above procedure, we can
evaluate κrg (xi,k, x j,k ) in Eq. (3). Hence, the kernel Krg (xi, x j )
can be obtained by using the circuit in Fig. 1(d) twice, evalu-
ating κrg (xi,k, x j,k ) for k = 1, 2, and then multiplying them.

IV. EXPERIMENTAL SETUP AND ANALYSIS

Here we describe the details of our experimental setup in
Fig. 1(d), which is based on our previous experiment [29]. We
use a continuous-wave laser of wavelength 1545.3 nm. The
ancillary squeezed state is made with an optical parametric
oscillator (OPO). The OPO is pumped by the second harmonic
fields with wavelength of 772.7 nm. The pump power is set
to 200 mW. The full width at half maximum of the OPO is
60 MHz.

The variable beam splitter is composed of a bulk electro-
optic modulator named EOM-1, a quarter-wave plate, and a
pair of polarizing beam splitters. EOM-1 serves as a variable
polarization rotator and thus works as a variable beam splitter
with the polarization optics. We insert the quarter-wave plate
so that the transmissivity is 50% when no voltage is applied
to EOM-1, which makes it easy to lock the relative phase

between the squeezed light and the local oscillator fields at
the homodyne detectors.

Each homodyne detection is performed by interfering the
signal field with the local oscillator field at a 50 : 50 beam
splitter. Two beams from the beam splitter are received by
two photodiodes. Then, the photocurrents are subtracted from
each other and amplified in the electric circuit. The bandwidth
of the circuit is about 200 MHz. The optical power of the
local oscillator field is set to 5 mW. A fiber-coupled electro-
optic modulator EOM-2 shifts the optical phase of the local
oscillator at HD2 for the control of the homodyne angle φ.
We measure the output state for φ = 0, π/4, and π/2 to
estimate the average and covariance matrix of the quadrature
amplitudes, as is described in Ref. [32]. Because the output
state is Gaussian, we can obtain its full information utilizing
the average and covariance matrix.

The outcome of the homodyne detection is acquired by
an oscilloscope and then sent to the classical computer. The
time-series waveform from the oscilloscope is converted to a
quadrature amplitude by multiplying it by a mode function
h(t ) defined by

h(t ) =
{

t e−�2t2
(|t | < t1)

0 (otherwise)
, (8)

where � = 3 × 107 s−1 and t1 = 50 ns. The purpose of using
this mode function is to eliminate undesirable effects of low-
frequency electrical noise from homodyne detectors [33].

Next, we explain the procedure to evaluate squeezing-
phase kernel κrg (xi,k, x j,k ) based on the above experimental
setup. We first set the voltages applied to EOM-1, which
corresponds to setting transmissivity T of the variable beam
splitter, according to input data (xi,k, x j,k ) and gate-squeezing
level rg. After setting transmissivity T , we measure the
output state with homodyne angle φ set to 0, π/4, and π/2.
From these results, we retrieve the covariance matrix and
calculate the vacuum component of output state Ŝ(r (i)

total )|0〉.
The calculated vacuum component corresponds to squeezing-
phase kernel κrg (xi,k, x j,k ). We acquire the squeezing-phase
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(a) (b)

FIG. 2. The experimental result of the output-state measurement. We measure each point five times and plot the average and standard
deviation. (a) The experimental result of the output-squeezing and antisqueezing levels (markers). We also show the theoretical kernel with
(solid line) and without (dotted line) imperfections of our experiment. The red, magenta, green, and blue lines are the result of gate-squeezing
levels 2, 4, 6, and 8 dB, respectively. (b) The experimental result of the squeezing-phase kernel (markers).

kernel by implementing the procedure above while changing
transmissivity T according to input data (xi,k, x j,k ).

As a preliminary measurement, the squeezed state from
the OPO is measured by HD1 (HD2) with the variable
beam splitter set to minimally (maximally) reflecting. The
ancilla-squeezing and antisqueezing levels are measured to be
−4.8 dB (−5.0 dB) and +8.9 dB (+8.9 dB) at HD1 (HD2).
This measurement result indicates that the overall optical loss
of the experimental setup is 25% (23%) at HD1 (HD2) and the
pure squeezing level is 10 dB. We use these parameters for the
later analysis.

V. EXPERIMENTAL RESULT

The classification task is performed as follows: first, we
prepare and preprocess 300 input data, which is sufficiently
large so as not to decrease accuracy of classification (details
of preprocessing are described in the fourth paragraph in this
section); second, we divide the input data into 225 training
and 75 test data; third, we calculate squeezing-phase ker-
nel Krg (xi, x j ) with each pair of training data (xi, x j ) using
our quantum processor; fourth, the classical computer gen-
erates a classification model using the kernel handed from
the quantum processor; finally, we classify the test data us-
ing the classification model and kernel between the training
and test data. To experimentally demonstrate the success-
ful implementation of our quantum kernel method, we show
three results: (i) the squeezing-phase kernel measured in our
experiment, (ii) the typical classification border drawn from
our squeezing-phase kernel, and (iii) the accuracy calculated
using K-fold method (K = 4) [34]. Each result of (i), (ii), and
(iii) is shown in the following.

First, to qualitatively examine that our quantum processor
evaluates properly the squeezing-phase kernel in Eq. (6), we
evaluate the squeezing and antisqueezing levels of the output
state, what we call output-squeezing and antisqueezing levels,
for rg corresponding to 2, 4, 6, and 8 dB. Figure 2(a) shows the
dependency of the output-squeezing level on the difference

of data |xi,k − x j,k|. The output-squeezing and antisqueezing
levels are measured at 26 points from zero to π . This range is
sufficient to evaluate the kernel because the kernel is an even
periodic function with a period of 2π . Each datum is evaluated
from 3 × 10 000 samples of q̂out,φ with φ = 0, π/4, and π/2.
The experimental results shown in Fig. 2(a) agree well with
the theoretical ones which include experimental imperfections
such as the finite ancilla-squeezing level and optical loss. The
fact that the output-squeezing levels reach below zero means
that our experiment is implemented in a quantum region. The
saturation of the output-squeezing level around 5 dB is due to
∼5 dB squeezing of ancillary squeezed states.

Then, we evaluate squeezing-phase kernel κrg (xi,k, x j,k ) by
calculating the vacuum component of the output state from
these results, as shown in Fig. 2(b). The kernel structure
of the experiment and the theory including the incomplete-
ness of the experimental system agree well with each other.
This means that experimental imperfections other than the
ones included in the theoretical line, such as the limited
accuracy of changing the transmissivity T , are sufficiently
small so as not to influence the shape of the kernel in this
experiment.

Next, we implement the classification task with a certain
dataset to visualize how well our quantum kernel classifies
the data, employing the support-vector-machine algorithm in
SCIKIT-LEARN [23] for solving Eq. (1). We use three types of
datasets, called “blobs,” “circle,” and “moon,” generated by
functions available in the SCIKIT-LEARN package. A dataset
consists of pairs of input data xi = (xi,1, xi,2) and the label
of the input data yi ∈ {−1, 1}. We then preprocess the input
data. First, xi is standardized in [−π/2, π/2]2 so that all the
difference of data satisfies 0 � |xi,k − x j,k| � π . For experi-
mental simplicity, we also discretize the generated (xi,1, xi,2)
to be on 26 × 26 lattice points. This preprocessing enables us
to implement the classifications using only 26 points of the
preobtained kernel, which is shown in Fig. 2(b). The lattice
is fine enough to retain accuracy compared to the accuracy
without latticelike preprocessing. We note this strategy is also
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FIG. 3. The typical border with the experimental kernel. We show three types of datasets, moon (upper row), circle (middle row), and blobs
(bottom row). The red and blue markers represent input data (xi,1, xi,2) with label yi = +1 and −1, respectively. In each panel, plus and cross
markers represent the training data, and square and diamond markers represent the test data. The black line indicates the classification border,
which determines the prediction of the label with the unseen new inputs. Each of these datasets is classified by using the squeezing-phase
kernel measured in our experiment with the gate-squeezing levels of 2, 4, 6, and 8 dB. The classification results with the classical kernel
(Gaussian RBF kernel) are also shown in the rightmost column as a reference. The labels of the horizontal (vertical) axes of each panel are
the same as those of the bottom (leftmost) panels. The regularization parameter C [23] is set to be 1.0 (default setting) for the support vector
machine with the quantum and classical kernels. The hyperparameter γ [23] of the Gaussian RBF kernel is set to be 3.0, where the accuracy is
almost saturated at the maximum for all types of the datasets.

used in the previous work [13]. The results are shown in
Fig. 3. Figure 3 indicates that the squeezing-phase kernel with
the higher gate-squeezing level draws the decision boundary
better so that the squeezing-phase kernel captures the feature
of each dataset, comparably to the classical kernel.

Finally, to evaluate the performance of our quantum kernel
quantitatively, we calculate the accuracy of classification from
300 input data using the K-fold method (K = 4). We first
divide the dataset into four subsets, each of which contains 75
data. Then, we train the classifier using the 75 × 3 data and
test its performance using the rest of the data (75 × 1 data).
Changing the subset for testing, we repeat the above procedure
four times and obtain four accuracies. We also change the
way of division ten times and obtain 4 × 10 accuracies per
one dataset. We implement this calculation for ten different
datasets and derive the average and the standard deviation
of them. The results are shown in Fig. 4. Figure 4 indicates
that the classification of blobs datasets is well performed by
the squeezing-phase kernel for gate-squeezing levels of 2, 4,
6, and 8 dB. On the other hand, the classifications of the
moon and circle datasets are poor for lower gate squeezing
levels, while they work well for higher gate squeezing levels.
We attribute this behavior to the more nonlinear boundary
of the moon and circle datasets compared with the blobs
dataset, which requires a more nonlinear kernel and thus a
higher gate squeezing level. We also see that the experimental
accuracies agree well with theoretical ones including experi-
mental incompleteness. Furthermore, the accuracies obtained

from the squeezing-phase kernels for higher gate-squeezing
levels are comparable to those obtained from the classical
Gaussian-RBF kernel (black dotted line). From these results,
we conclude that our implementation works as expected and
is comparable to the classification with the classical kernel.

VI. DISCUSSION

In conclusion, we demonstrated the successful implemen-
tation of the classification task with the CV quantum kernel
method using the programmable photonic quantum processor.
The results experimentally showed that the performances of
the quantum kernel method were comparable to the classical
one and agreed well with the numerical simulation. During the
learning process, we mapped the data to the squeezed state.
With this mapping, we demonstrated that we could implement
the quantum kernel method with a single-mode CV quantum
processor.

In this demonstration, even though the experimental sys-
tem was influenced by various imperfections including optical
loss, the quantum kernel method still successfully classified
the data by tuning the gate-squeezing level. Such imperfec-
tions limit the effective ancilla-squeezing levels, affecting the
shape of the quantum kernel. In addition, the gate-squeezing
level also affects the shape. The optimum effective ancilla-
and gate-squeezing levels for the overall performance depend
on the given datasets and are nontrivial. In fact, with lower
ancilla-squeezing levels or with higher gate-squeezing levels,
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(a) (b) (c)

FIG. 4. The machine-learning results of accuracy with squeezing-phase kernel. The accuracy calculated from K-fold validation is shown
for four different gate-squeezing levels. The error bar represents the standard deviation of learning with ten datasets. In each dataset, we
calculated accuracies from three types of the kernel: theoretical kernel including experimental imperfections such as finite squeezing of the
ancillary squeezed state and optical loss (theory including loss), theoretical kernel without including any experimental imperfections (theory),
and experimental kernel (experiment). The black dotted line represents the accuracy obtained from the classical Gaussian-RBF kernel (classical
kernel). The experimental result agrees well with the theoretical result including imperfections. Figures (a), (b), and (c) represent the accuracy
of the moon, circle, and blobs datasets, respectively. The settings of the parameters C and γ are the same as in Fig. 3.

the shape of the kernel in Fig. 2(b) becomes more nonlinear,
indicating that the feature map becomes more nonlinear, and
the kernel becomes more suitable for nonlinear separation.
On the other hand, it is also observed in our numerical sim-
ulation that the accuracies of the quantum kernel method
decrease with an extremely high gate-squeezing level of above
30 dB. This is probably because the peak of the kernel gets
too sharp and the kernel function becomes flat at almost all
regions other than |xi,k − x j,k| = 0 with such high squeez-
ing, and the kernel cannot capture the feature of data. The
optimum ancilla- and gate-squeezing levels should be investi-
gated, but their detailed analysis is left for future work. The
limited accuracy of changing the transmissivity would also
change the shape of the kernel because it causes the differ-
ence of r (i)

total and the insufficient cancellation of antisqueezed
component p̂a in the measurement-induced squeezing gate.
This effect is sufficiently suppressed in this experiment
but can become significant depending on experimental
parameters.

In our demonstration, we use the two-dimensional datum
x. However, our method can be straightforwardly adapted
to higher-dimensional data by increasing the range of k in
Eq. (3). This increases the number of measurements, but
such an increase can be avoided by discretizing the data
and using the preobtained kernel repeatedly, as we did in
our experiment. This strategy works because we encode each
component of the data into a single-mode quantum state
separately. In contrast, we can also consider the mapping
of data to multimode entangled states [35], but it is left for
future work.

Though our experiment in this paper can be simulated
efficiently with classical computers because our system is
entirely built with Gaussian building blocks [36], our imple-
mentation can be extended to a non-Gaussian regime by using
non-Gaussian quantum states as feature maps. For example,
a theoretical work [37] investigated the use of Fock states
as feature maps. Another paper [21] also investigated the
nonclassicality witness of the CV quantum kernel by taking a
quantum kernel based on single-photon states as an example.
As a next step, introducing such non-Gaussianity would be

important to achieve a quantum advantage in the CV quantum
kernel method [18–20].

This demonstration sheds light on the strength of CV quan-
tum computing. Our paper also stimulates the realizations of
other QMLs in CV systems [24–26] and thus opens a promis-
ing way toward quantum advantage.
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APPENDIX A: BLOCH-MESSIAH DECOMPOSITION
OF OUR CIRCUIT

Here, we derive Eq. (4). With the equations Ŝ(r, θ ) =
R̂(−θ/2)Ŝ(r, 0)R̂(θ/2) and R̂(φ)|0〉 = |0〉, κrg (xi,k, x j,k ) can
be described as

κrg (xi,k, x j,k ) = ‖〈0|Ŝ†(rg, xi,k )Ŝ(rg, x j,k )|0〉‖2

=
∥∥∥∥〈0|R̂

(
−xi,k

2

)
Ŝ(−rg, 0)R̂

(xi,k

2

)

× R̂
(
−x j,k

2

)
Ŝ(rg, 0)R̂

(x j,k

2

)
|0〉

∥∥∥∥
2

=‖〈0|Ŝ(−rg, 0)R̂(�(i) )Ŝ(rg, 0)|0〉‖2, (A1)

�(i) =xi,k − x j,k

2
. (A2)

Then, the transformation matrix M of the quadrature ampli-
tudes with the unitary operator Ŝ(−rg, 0)R̂(�(i) )Ŝ(rg, 0) can
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be described as

M =
[

erg 0
0 e−rg

][
cos �(i) sin �(i)

− sin �(i) cos �(i)

][
e−rg 0

0 erg

]

=
[

cos �(i) e2rg sin �(i)

−e−2rg sin �(i) cos �(i)

]
. (A3)

We apply Bloch-Messiah decomposition [27] to the matrix M.
The eigenvalues of MM† and M†M are both

λ
(i)
± = cos2 �(i) + cosh(4rg) sin2 �(i)

± [sinh2(4rg) sin4 �(i)

+ 4 sinh2(2rg) sin2 �(i) cos2 �(i)]
1
2 . (A4)

With this eigenvalue, the matrix M is decomposed into

M =
[

cos φ
(i)
1 sin φ

(i)
1

− sin φ
(i)
1 cos φ

(i)
1

]
⎡
⎣ 1√

λ
(i)
+

0

0
√

λ
(i)
+

⎤
⎦[

cos φ
(i)
2 sin φ

(i)
2

− sin φ
(i)
2 cos φ

(i)
2

]
, (A5)

which corresponds to the operator R̂(φ(i)
1 )Ŝ(lnλ

(i)
+ /2, 0)

R̂(φ(i)
2 ). Therefore, we can define the squeezing parameter by

r (i)
total = lnλ

(i)
+ /2, which is equivalent to Eq. (4).

APPENDIX B: INPUT-OUTPUT RELATION
OF THE OPTICAL CIRCUIT

Here, we derive Eq. (7). To perform the squeezing oper-
ation Ŝ(r (i)

total, 0), we use a measurement-induced squeezing
gate [28] shown in Fig. 1(c). First, we explain how this
measurement-induced implementation in Fig. 1(c) works. The
quadrature amplitudes of an input vacuum state and an ancil-
lary x-squeezed state are described as (q̂in, p̂in ) and (q̂a, p̂a ),
respectively. Let (q̂i, p̂i ) and (q̂i,φ, p̂i,φ ) (i = 1, 2, out, and
φ ∈ R) denote the quadrature amplitudes of the beams coming
out of the beam splitter defined by

q̂1 = √
1 − T q̂in +

√
T q̂a, (B1)

p̂1 = √
1 − T p̂in +

√
T p̂a, (B2)

q̂2 =
√

T q̂in − √
1 − T q̂a, (B3)

p̂2 =
√

T p̂in − √
1 − T p̂a, (B4)

[
q̂i,φ

p̂i,φ

]
=

[
cos φ sin φ

− sin φ cos φ

][
q̂i

p̂i

]
. (B5)

After the beam splitter operation, we measure p̂1 using the
homodyne detection and multiply the result by the feedfor-
ward gain g, and add it to p̂2. By choosing g = √

(1 − T )/T
to counteract the antisqueezed component p̂a, the output state
becomes[

q̂out

p̂out

]
=

[
q̂2

p̂2 + gp̂1

]
=

[√
T q̂in

1√
T

p̂in

]
−

[√
1 − T q̂a

0

]
. (B6)

In the high squeezing limit of q̂a → 0, the output state
becomes [

q̂out

p̂out

]
=

[√
T q̂in

1√
T

p̂in

]
, (B7)

which means a squeezing operation is performed on the input
state. Here, to set the squeezing level as r (i)

total, we define T =
exp(−2r (i)

total ). Then q̂out,φ is calculated as

q̂out,φ = q̂out cos φ + p̂out sin φ

= e−r(i)
total q̂in cos φ + er(i)

total p̂in sin φ

−
√

1 − exp
( − 2r (i)

total

)
q̂a cos φ, (B8)

which coincides with Eq. (7).
Then, we also note that the feedforward operation can be

implemented by postprocessing as Fig. 1(d) shows. This can
be explained by transforming q̂out,φ in Eq. (B8) as

q̂out,φ = q̂2 cos φ + ( p̂2 + gp̂1) sin φ

= (q̂2 cos φ + p̂2 sin φ) + g sin φ · p̂1

= q̂2,φ + g sin φ · p̂1. (B9)

Hence, q̂out,φ can be obtained by first measuring q̂2,φ and p̂1,
and then summing them up as Eq. (B9) shows. We adopt this
strategy in Fig. 1(d).
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