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Variational quantum algorithms, inspired by neural networks, have become a novel approach in quantum
computing. However, designing efficient parameterized quantum circuits remains a challenge. Quantum archi-
tecture search tackles this by adjusting circuit structures along with gate parameters to automatically discover
high-performance circuit structures. In this study, we propose an end-to-end distributed quantum architecture
search framework, where we aim to automatically design distributed quantum circuit structures for intercon-
nected quantum processing units with specific qubit connectivity. We devise a circuit generation algorithm which
incorporates TeleGate and TeleData methods to enable nonlocal gate implementation across quantum processing
units. While taking into account qubit connectivity, we also incorporate qubit assignment from logical to physical
qubits within our quantum architecture search framework. A two-stage progressive training-free strategy is
employed to evaluate extensive circuit structures without circuit training costs. Through numerical experiments
on three VQE tasks, the efficacy and efficiency of our scheme is demonstrated. Our research into discovering
efficient structures for distributed quantum circuits is crucial for near-term quantum computing where a single
quantum processing unit has a limited number of qubits. Distributed quantum circuits allow for breaking down
complex computations into manageable parts that can be processed across multiple quantum processing units.
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I. INTRODUCTION

Variational quantum algorithms (VQAs) [1] represent a
novel approach to algorithm design that has emerged in re-
cent years within the realm of quantum computing research.
Drawing inspiration from machine learning methodologies,
VQAs leverage parameterized quantum circuits (PQCs), also
known as variational quantum circuits (VQCs), as analogs
to neural networks. These PQCs undergo iterative updates
to their gate parameters aimed at optimizing an objective
function. Building upon the foundation of VQCs, a range
of intriguing quantum machine learning models have been
proposed. For instance, a hybrid quantum-classical neural
network with deep residual learning has been proposed [2].
Quantum generative adversarial networks [3–5] integrate both
quantum and classical generators and discriminators, facili-
tating the generation of quantum or classical data. Quantum
attention networks [6–8] have been developed incorporating
the attention mechanisms to better capture intricate inter-
connections among features within high-dimensional data.
Quantum counterparts of denoising diffusion probabilistic
models [9–11] have been devised to generate quantum state
ensembles. Quantum analogs of capsule networks [12] have
been developed. Deep quantum neural networks [13] and
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quantum convolutional neural networks [14] have been real-
ized on superconducting processors.

Drawing inspiration from neural architecture search (NAS)
[15], which focuses on automatically designing neural net-
work architectures, various schemes for quantum architecture
search (QAS) have emerged. In QAS, not only are the gate
parameters adjustable but the structures of quantum circuits,
comprising gate types and positions, are also learnable. This
adaptability yields more compact PQCs tailored to specific
tasks and hardware-specific qubit connectivity.

A machine learning approach has been employed to dis-
cover quantum algorithms for computing the overlap Tr(ρσ )
between two quantum states ρ and σ [16]. Although the swap
test serves as a standard algorithm for this purpose across var-
ious applications, the learned algorithms exhibit significantly
reduced depths, with one achieving constant depth. Various
aspects of QAS have been explored, including modeling the
search space [17,18], refining the search strategy [19,20], and
enhancing the evaluation methods [21,22].

In this work, our focus lies within the domain of distributed
quantum computing [23]. By interconnecting and coordinat-
ing multiple small-scale quantum processing units (QPUs),
we aim to leverage a greater number of qubits to tackle
larger-scale problems, thereby presenting a promising archi-
tecture for near-term quantum computing. Our objective is
to automatically devise distributed quantum circuit structures
tailored for specific VQA tasks. We thus endeavor to employ
QAS to design distributed quantum circuits.
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Concretely, we first propose a circuit generation algorithm.
This algorithm begins by transforming the graph describ-
ing the distributed system into a virtual connectivity graph.
Subsequently, it iteratively samples gate types and positions
randomly. Two distinct methods facilitating the implemen-
tation of nonlocal gates across various QPUs are integrated
into our algorithm. Besides taking into account the qubit
connectivity of QPUs, our distributed QAS framework also
incorporates the qubit assignment process into its workflow,
which is often overlooked in previous QAS literature. To cir-
cumvent the training costs associated with VQCs and enable
exploration across a broader spectrum of circuit structures,
we adopt the training-free evaluation methodology [24]. This
methodology streamlines vast circuit structures through two
stages, utilizing a path-based proxy and an expressibility-
based proxy as filters. We evaluate our distributed QAS
framework through three VQE tasks, demonstrating both the
efficacy and efficiency of our approach through numerical
experimentation.

The proposed scheme, which adjusts both circuit struc-
tures and gate parameters, shares similarities with the VAns
(variable ansatz) method [25] and the adaptive derivative-
assembled pseudo-Trotter Ansatz variational quantum eigen-
solver (ADAPT-VQE) algorithm [26]. The VAns method
applies a set of rules to both add and remove quantum gates
from the circuit in an informed manner during the opti-
mization, while the ADAPT-VQE algorithm incrementally
expands the circuit by adding gates that implement fermionic
operators selected from a pool of single and double excitation
operators. Compared with these methods, the proposed dis-
tributed QAS framework offers a distinct approach. Instead
of using a nested optimization loop where the outer loop
optimizes the circuit structure and the inner loop optimizes
the gate parameters, the proposed distributed QAS employs
training-free proxies to evaluate circuit structures without
optimizing the gate parameters. Only a filtered selection of
promising candidate circuit structures then undergo the gate
parameter optimization process. Additionally, the proposed
scheme features the integration of qubit assignment and the
implementation of nonlocal gates, resulting in a comprehen-
sive end-to-end distributed QAS framework.

The remainder of this article is organized as follows: In
Sec. II, some related work on QAS are reviewed. Then, in
Sec. III, we present our distributed QAS framework including
qubit assignment, methods for nonlocal gate implementation,
virtual connective graph construction, distributed circuit gen-
eration, and the search strategy. Section IV is dedicated to
the evaluation of our proposed framework across three VQE
tasks. Section V discusses some issues related to our frame-
work. Finally, Sec. VI concludes this article.

II. RELATED WORK

A neural network based predictor has been used as the
evaluation policy for QAS [21]. Rather than training quantum
circuits to assess their performance, this method trains a neu-
ral predictor to directly gauge the performance of quantum
circuits using only their structures. This predictor is then
integrated into the QAS workflow to accelerate the search
process. A graph self-supervised methodology was introduced

to improve predictor-based QAS [27]. A graph encoder is pre-
trained using a well-designed pretext task on a large number
of unlabeled quantum circuits, aiming to generate meaningful
representations of quantum circuits. Subsequently, the down-
stream predictor is trained on a small set of quantum circuit
representations paired with their labels. Once the encoder is
trained, it becomes applicable to various downstream tasks.

A quantum neuro-evolution algorithm was introduced to
autonomously find near-optimal quantum neural networks for
different machine learning tasks [17]. This algorithm estab-
lishes a one-to-one mapping between quantum circuits and
directed graphs, reducing the problem of finding the appro-
priate gate sequences to a task of searching suitable paths
in the corresponding graph as a Markovian process. The
non-sorted genetic algorithm II (NSGA-II) was employed to
automatically generate optimal ad hoc Ansatz for classifica-
tion tasks utilizing quantum support vector machines [19].
This multi-objective genetic algorithm enables the simulta-
neous maximization of accuracy and minimization of Ansatz
size. A genome-length-adjustable evolutionary algorithm was
utilized to design a robust VQA circuit that is optimized
over variations of both circuit Ansätze and gate parameters,
without any prior assumptions on circuit structure or depth
[20]. Evolutionary quantum neural architecture search (EQ-
NAS), an evolutionary QAS algorithm designed for image
classification, was introduced [28]. This algorithm initiates a
quantum population following quantum image encoding and
further refines it through the application of quantum rotation
gates and entirety interference crossover operations.

A quantum circuit architecture optimization algorithm
leveraging Monte Carlo tree (MCT) search was proposed [18].
This algorithm first models the search space with an MCT
that can be regarded as a supernet. During MCT training, the
weight sharing strategy is utilized to reduce computation cost.
Training results are stored in MCT nodes for future decisions,
and hierarchical node selection is applied to obtain an opti-
mal Ansatz. An algorithmic framework, combing nested MCT
search with the combinatorial multi-armed bandit model, was
introduced for the automatic design of quantum circuits [29].

A QAS scheme incorporating supernet and weight sharing
was introduced [22]. This method establishes a supernet defin-
ing the Ansatz pool, parametrizing each Ansatz via weight
sharing strategy. Subsequently, it iteratively samples an Ansatz
from the pool and optimize its parameters. Following evalua-
tion across a number of Ansätze, the top-performing candidate
is selected and fine tuned with few iterations. QuantumNAS is
a comprehensive framework for noise-adaptive co-search of
variational circuits and qubit mapping [30]. Initially, a super-
circuit is constructed and trained through iteratively sampling
and updating the subcircuits. Then, an evolutionary co-search
of subcircuit and its qubit mapping is deployed. Finally, iter-
ative gate pruning and fine-tuning procedures are executed to
eliminate redundant gates.

A general framework of differentiable QAS was proposed
[31]. This approach involves the relaxation of the discrete
search space of quantum circuit structures onto a continuous
and differentiable domain, enabling optimization through gra-
dient descent. QuantumDARTS is a differentiable QAS based
on Gumbel-Softmax [32]. This algorithm distinguishes itself
from existing methods that typically demand extensive circuit
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sampling and evaluation. It introduces a micro search strategy
to infer the subcircuit structure from a small-scale problem
and then transfer it to a large-scale context. A gradient-based
QAS algorithm enhanced with meta-learning was introduced
[33]. This approach learns good initialization heuristics of
the architecture, along with the meta-parameters of quan-
tum gates from a number of training tasks. By doing so,
it enables the algorithm to swiftly adjust to new tasks with
minimal gradient updates, facilitating fast learning on new
tasks.

QAS algorithms require calculating the performances for
a large number of circuits during the search process, which
incurs substantial computational costs due to the iterative
updating of gate parameters. The predictor-based approach
alleviates the training cost of PQCs by using a predic-
tor to approximate the circuit performance. However, the
predictor is trained using a supervised learning approach,
which necessitates calculating the ground-truth performances
for the circuits in the training set. The quantity of circuit-
performance pairs is crucial for the predictor’s generalization
ability. In the weight sharing approach, the performance of
a sub-circuit is estimated using parameters inherited from
the super-circuit. Nevertheless, there is no guarantee that the
performance of a quantum circuit with inherited parameters
will strongly correlate with the performance when trained
individually.

A training-free QAS approach, utilizing two proxies to
rank quantum circuits in place of the expensive circuit train-
ing, was introduced [24]. Initially, directed acyclic graphs
are utilized for circuit representation, and a zero-cost proxy
based on the number of paths in the directed acyclic graph
effectively filters out a substantial portion of unpromis-
ing circuits. Subsequently, an expressibility-based proxy,
finely reflecting circuit performance, is employed to iden-
tify high-performance circuits from the remaining candidates.
However, like most QAS literature, qubit assignment is not
considered.

To fill the gap in automatically designing quantum circuits
for distributed quantum computing, we propose a distributed
QAS framework, which incorporates the latest training-free
QAS approach to avoid expensive circuit training cost. The
qubit assignment overlooked by previous literature is inte-
grated into the optimization process, to better utilize the qubit
topology property of the quantum device. Additionally, we
incorporate two methods for implementing nonlocal gates,
TeleGate and TeleData, resulting in a flexible distributed QAS
framework.

III. DISTRIBUTED QUANTUM ARCHITECTURE SEARCH

A distributed quantum computing system comprises mul-
tiple QPUs interconnected by quantum links. It can be
characterized by a graph G = (Q, E , L), where Q represents
the set of qubits, E represents the set of coupling edges be-
tween qubits on the same QPU, and L represents the set of
quantum links, each connecting two communication qubits
from different QPUs. There are two types of qubits on QPUs,
the data qubits Qd and communication qubits Qc. The data
qubits are dedicated to computation, while the communication
qubits are reserved for facilitating nonlocal operations, which

q1

q0 q2

q3

q4

q6

q5 q7

q8

q9

QPU #1 QPU #2

FIG. 1. Two IBM Yorktown quantum processors are intercon-
nected via a quantum link. Circles with solid lines represent data
qubits, while circles with dash-dotted lines represent communication
qubits. Solid lines denote local couplings, while the wavy line rep-
resents the quantum link for distributing pairs of entangled qubits to
two communication qubits.

will be elaborated later. Figure 1 depicts a distributed quantum
computing system where two five-qubit QPUs are intercon-
nected by a quantum link. The data qubit set Qd consists of
{q0, q1, q2, q3, q6, q7, q8, q9}, while the communication qubit
set Qc consists of {q4, q5}. The total number of data qubits
available for assignment of logical qubits is eight, implying a
maximum problem size of eight qubits.

Without loss of generality, we assume the edges between
qubits are undirected, enabling a controlled-NOT (CNOT) gate
to be applied on a pair of adjacent qubits regardless of which
one serves as the control qubit. Additionally, we assumes that
each data qubit is connected to at most one communication
qubit.

A. Qubit assignment

As the connectivity of physical qubits depends on specific
QPU, certain qubits exhibit more connections to others, while
some have less. Thus, a well-suited qubit assignment becomes
crucial for effectively addressing computation tasks. Qubit
assignment is a mapping from logical qubits to data qubits,
which can be defined as

fq : Ql −→ Qd , (1)

where Ql and Qd denote logical qubits and data qubits, re-
spectively. If there are more data qubits available than logical
qubits required, some data qubits are reserved to accommo-
date teleported qubits. These reserved qubits are termed as
empty qubits.

It’s worth noting that previous research on QAS has rarely
included qubit assignment fq as a part of the optimization
process, despite considering qubit connectivity. In this study,
we integrate the optimization of fq into our QAS framework
to learn an optimal fq.

B. Nonlocal gate implementation

Without the use of quantum links, only single-qubit and
local two-qubit gates can be executed, while a nonlocal two-
qubit gate involving two qubits from different QPUs is not
feasible. In this work, we assume the native gate set includes
single-qubit U gates, two-qubit CNOT gates, and SWAP gates,

022403-3



SITU, HE, ZHENG, AND LI PHYSICAL REVIEW A 110, 022403 (2024)

defined as follows:

U(θ, φ, λ) =
[

cos(θ/2) −eiλ sin(θ/2)
eiφ sin(θ/2) ei(φ+λ) cos(θ/2)

]
,

CNOT =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦, SWAP =

⎡
⎢⎢⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤
⎥⎥⎦.

(2)

We use superscripts and subscripts to denote the control and
target qubits of CNOT gates. For instance, CNOTa

b indicates that
qubit a serves as the control and qubit b serves as the target.

In quantum distributed computing, two widely used meth-
ods for implementing nonlocal gates are the TeleGate method
and the TeleData method [23]. Both methods leverage shared
entangled qubits and classical communication to realize non-
local gates.

1. TeleGate method

We first describe the TeleGate method. Suppose the state
of data qubits is represented by |ψ〉. By treating all the qubits
as a single composite system, we can express its state as

|ψ〉(|00〉 + |11〉)ab = (|0〉c|ψ0〉 + |1〉c|ψ1〉)(|00〉 + |11〉)ab,

(3)

where the subscript c denotes the control qubit of the nonlocal
CNOT gate, while subscripts a and b denote the communica-
tion qubits sharing a Bell state. Note that |ψ0〉 and |ψ1〉 are
unnormalized for brevity. Qubits c and a are situated within
one QPU and connected by an edge, while qubit b is located
on another QPU.

To implement nonlocal CNOT gates, the TeleGate method
initially employs a “cat-entangler” primitive operation [34],
which transforms the quantum state of the entire system to

|00〉cb|ψ0〉 + |11〉cb|ψ1〉. (4)

The details of how this transformation works are given in
the Appendix. We can see that after the cat-entangler, the
control qubit c on one QPU and the communication qubit b on
another QPU become entangled. Consequently, a local CNOT

gate controlled by qubit b is equivalent to a nonlocal CNOT

gate controlled by qubit c. For ease of explanation later on,
we refer to qubit c as being in “control mode.”

In the example depicted in Fig. 1, if a cat-entangler opera-
tion is performed on q2q4q5, the resulting state becomes

|00〉q2q5 |ψ0〉 + |11〉q2q5 |ψ1〉. (5)

When using q5 as the control qubit, local CNOT
q5
q6 is equivalent

to nonlocal CNOT
q2
q6 . Analogously, local CNOT

q5
q7 is equivalent

to nonlocal CNOT
q2
q7 . In this way, two nonlocal CNOT gates be-

come possible. At the same time, qubit q2 can still participate
in local CNOT gates, such as CNOT

q2
q0 , CNOT

q2
q1 , and CNOT

q2
q3 .

The nonlocal gates mentioned above remains feasible as
long as qubit c remains in control mode, but it cannot act as the
target of other gates. To transition qubit c out of control mode,
the “cat-disentangler” primitive operation [34] is required.
The cat-disentangler transforms Eq. (4) to

|0〉c|ψ0〉 + |1〉c|ψ1〉. (6)

q1

q0 q2

q3

q6

q7

q8

q9

FIG. 2. The virtual connectivity graph is derived from the dis-
tributed architecture depicted in Fig. 1. Local two-qubit gates can
be directed performed on qubits connected by solid lines. The two
dashed lines represent virtual edges added through the cat-entangler
primitive operation on qubits q2q4q5.

The details of how this transformation works are given in the
Appendix. After the cat-disentangler operation, qubit c transi-
tions out of control mode and can participate in all local gates.
Since communication qubits a and b have been measured,
the shared entanglement is depleted. A new pair of entangled
qubits must be distributed among qubits a and b. We say that
the cat-entangler and the cat-disentangler cost one ebit.

In order to hide the intricacies of cat-entangler and cat-
disentangler operations within our QAS framework, we can
ignore the presence of communication qubits. We dynami-
cally add or remove “virtual edges” whenever these primitive
operations occur. Figure 2 depicts the virtual connectivity
graph corresponding to the data qubits in Fig. 1. When a
cat-entangler operation is performed on q2q4q5, virtual edges
(q2, q6) and (q2, q7) are inserted with q2 entering control
mode. With the presence of these virtual edges and the knowl-
edge that q2 is in control mode, two nonlocal CNOT gates
CNOT2

6 and CNOT2
7 become feasible. Similarly, a cat-entangler

operation on q3q4q5 results in the insertion of virtual edges
(q3, q6) and (q3, q7), with q3 entering control mode. A cat-
entangler operation on q6q5q4 leads to the insertion of virtual
edges (q6, q2) and (q6, q3), with q6 entering control mode. A
cat-entangler operated on q7q5q4 results in the insertion of
virtual edges (q7, q2) and (q7, q3), with q7 entering control
mode. When a cat-disentangler operation occurs, the associ-
ated virtual edges are removed, and the corresponding qubit
in control mode transitions out of control mode.

2. TeleData method

When there are more data qubits available than logic qubits
required for the computation task, empty qubits are present.
To transmit a qubit from one QPU to the empty qubit of
another QPU, the teleportation protocol [35] is employed, as
direct qubit transmission is susceptible to decoherence. Tele-
portation is a well-known quantum protocol, and we’ll omit
its detailed workings here. In essence, a data qubit adjacent to
a communication qubit of QPU 1 and an empty qubit adjacent
to a communication qubit of QPU 2 can be swapped if the
two communication qubits share a pair of entangled qubits. In
the example depicted in Fig. 1, in order to perform a nonlocal
CNOT gate on q2q8, we can teleport q2 to q5, swap q5 and q7

(which must be empty), and then perform a CNOT gate on q7q8.

022403-4



DISTRIBUTED QUANTUM ARCHITECTURE SEARCH PHYSICAL REVIEW A 110, 022403 (2024)

The TeleData method incurs the same cost of one ebit as
the TeleGate method. If the communication qubits required
for teleportation are already occupied by the cat-entangler, no
entangled qubits are available for teleportation. In such cases,
the cat-disentangler can be invoked to release the communi-
cation qubits, allowing for the distribution of a new pair of
entangled qubits between them.

C. Virtual connectivity graph

Before generating random circuits, we first deduce a
virtual connectivity graph from the graph description of
the distributed quantum computing system, denoted as G =
(Q, E , L). The virtual connectivity graph only includes data
qubits Qd ⊂ Q, excluding edges involving communication
qubits. The permissable positions of local gates are defined
by

Sl ← E − {(a, b) ∈ E |a /∈ Qd ∨ b /∈ Qd}. (7)

SWAP gates that do not alter qubit connectivity are prohibited.
For instance, SWAP(q0, q1) in Fig. 2 is not allowed because
neighbours of q0 and q1 remain unchanged after the SWAP

gate. The permissable positions of SWAP gates are defined by

Ss ← {(a, b) ∈ Sl |R(a) − {b} �= R(b) − {a}}, (8)

where R(x) = {y|(x, y) ∈ Sl}. The TeleGate method results in
adding virtual edges to the virtual connectivity graph. The
permissable virtual edges are defined by

Stg ← ∪(a,b)∈LR′(a) × R′(b), (9)

where R′(x) = {y|(x, y) ∈ E}. The permissable positions of
nonlocal gates implemented through the TeleData method are
defined by

Std ← ∪(a,b)∈L [(R′[R′(a)] − {a}) × R′(b)]

∪ [R′(a) × (R′[R′(b)] − {b})]. (10)

D. Circuit generation

In QAS, a large number of circuit structures are explored.
The algorithm for generating random distributed quantum
circuit structures is provided in Algorithm 1. Given the graph
description of the distributed quantum computing system, our
algorithm initially identifies the permissible positions of local
gates and nonlocal gates. It then proceeds iteratively, adding
gates by randomly selecting their types and positions. Our
algorithm ensures that empty qubits cannot be the objectives
of U and CNOT gates, and at least one of the participating
qubits in a SWAP gate is nonempty. The proportion of local
and nonlocal two-qubit gates is predefined. The TeleGate and
TeleData procedures are invoked when a nonlocal gate needs
to be added.

Three categories of distributed circuits can be generated:
(1) circuits with nonlocal gates implemented through the Tel-
eGate method, (2) circuits with nonlocal gates implemented
through the TeleData method, and (3) circuits with nonlocal
gates implemented through either TeleGate or TeleData.

Before adding a gate, some requirements are checked to
prevent redundancy. Some examples of redundant gates are
illustrated in Fig. 3. In order to generate more efficient cir-
cuits, we ensure that (1) two consecutive gates cannot be of

ALGORITHM 1. Generation of distributed quantum circuits.

Input: G = (Q, E , L): a graph description of the distributed
quantum computing system; Ng: the number of gates in a
circuit; Pg: the distribution of gate types; pnl : the probability of
nonlocal gates; M: the method to implement nonlocal gates.

Output: C: a distributed quantum circuit; Ne: the number of ebits
1: Deduce the virtual connectivity graph according to

Eqs. (7)–(10).
2: C ← ∅
3: Ne ← 0
4: while |C| < Ng do
5: select a random gate type g ∈ {U, CNOT, SWAP} according

to Pg

6: if g = U then
7: select a random qubit q from nonempty qubits
8: if redundant(g, q) = False then
9: if control_mode(q) = True then

10: remove virtual edges related to q
11: control_mode(q) ← False
12: C ← C ∪ {(g, q)}
13: else if g = CNOT then
14: pick a random value a ∈ (0, 1)
15: if a > pnl then
16: randomly choose the control c and the target t from Sl

satisfying neither c nor t is empty
17: if redundant(g, c, t ) = False then
18: if control_mode(t ) = True then
19: remove virtual edges related to t
20: control_mode(t ) ← False
21: C ← C ∪ {(g, c, t )}
22: else
23: call NonlocalGate (procedure 2)
24: else if g =SWAP then
25: select a random position (a, b) from Ss satisfying either

a or b is non-empty
26: if redundant(g, a, b) = False then
27: if control_mode(a) = True then
28: remove virtual edges related to a
29: control_mode(a) ← False
30: if control_mode(b) = True then
31: remove virtual edges related to b
32: control_mode(b) ← False
33: C ← C ∪ {(g, a, b)}

return C, Ne

the same type because two U gates can be combined into one,
and two CNOT gates with the same control and target cancel
each other out. (2) After SWAP(a, b), another SWAP(a, b) is

U U U U

U

FIG. 3. Examples of redundant gates.
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PROCEDURE 2. NonlocalGate.

1: if M = TeleGate then
2: S′

tg ← {(a, b) ∈ Stg|nonempty(a) = True ∧ nonempty(b) =
True}

3: if S′
tg �= ∅ then

4: randomly select the control c and target t from S′
tg

5: if redundant(g, c, t ) = False then
6: if control_mode(c) = True then
7: C ← C ∪ {(g, c, t )}
8: else
9: call TeleGate (procedure 3)

10: else if M = TeleData then
11: S′

td ← {(a, b) ∈ Std |nonempty(a) = True ∧ nonempty(b) =
True}

12: if S′
td �= ∅ then

13: randomly select the control c and target t from S′
td

14: if redundant(g, c, t ) = False then
15: if empty qubit for teleportation exists then
16: call TeleData (procedure 4)
17: else if M = Both then
18: S′ ← {(a, b) ∈ Stg ∪ Std |nonempty(a) = True ∧ nonempty

(b) = True}
19: if S′ �= ∅ then
20: randomly select the control c and target t from S′

21: if redundant(g, c, t ) = False then
22: if g ∈ Stg then
23: if control_mode(c) = True then
24: C ← C ∪ {(g, c, t )}
25: else
26: if g ∈ Std ∧ empty qubit for teleportation exists

then
27: call TeleGate (procedure 3) or TeleData

(procedure 4) with equal probability
28: else
29: call TeleGate (procedure 3)
30: else
31: if empty qubit for teleportation exists then
32: call TeleData (procedure 4)

permitted if a or b has participated in a two-qubit gate (but not
the same two-qubit gate) or has been involved in the TeleData
procedure. (3) If the initial state of the circuit is |0〉, a CNOT

gate cannot be the first gate of its control qubit. Additionally,
SWAP(a, b) is not allowed if a and b have not been affected by
other gates except when one of them is an empty qubit.

PROCEDURE 3. TeleGate.

1: if required quantum link in use then
2: remove associated virtual edges to release the link
3: let the corresponding control qubit exit control mode
4: add virtual edges related to c
5: control_mode(c) ← True
6: C ← C ∪ {(g, c, t )}
7: Ne ← Ne + 1

PROCEDURE 4. TeleData.

1: from qubits c and t , select the qubit to be teleported and denote
it as a

2: if required quantum link in use then
3: remove associated virtual edges to release the link
4: let the corresponding control qubit exit control mode
5: if control_mode(t ) = True then
6: remove virtual edges related to t
7: control_mode(t ) ← False
8: teleport qubit a
9: C ← C ∪ {(g, c, t )}

10: Ne ← Ne + 1

E. Search strategy

In this work, we employ a two-stage progressive strategy
free from training requirements [24] to navigate the expansive
search space effectively. This strategy utilizes two training-
free proxies to evaluate the performance of numerous circuits
efficiently. It filters out unpromising circuits, retaining only a
select few candidates. Subsequently, these candidate circuits
are trained on specific VQA task to ascertain the optimal
circuit.

Following the generation of Ka distributed quantum cir-
cuits, the number of paths between the input and output nodes
of the directed acyclic graph representation of each circuit is
calculated. The circuits are then sorted in descending order
based on their number of paths, and the top Kp circuits are se-
lected. Because of its low computational cost and its capability
to capture the topological complexity of quantum circuits,
the path-based proxy can effectively serve as a preliminary
filtering mechanism to eliminate poor-performance circuits.

Next, the expressibility [36] of each of the Kp circuits is
evaluated as follows

E (C) = DKL(PC (F )||PHaar (F )), (11)

where PC (F ) represents the distribution of F =
|〈0|V †(θ )|V (θ ′)|0〉|2 generated by sampling random gate
parameters θ and θ ′, PHaar (F ) represents the distribution of
F = |〈ψ |ψ ′〉|2 with |ψ〉 and |ψ ′〉 being Haar random states,
and DKL denotes the Kullback-Leibler divergence. A smaller
expressibility value E (C) indicates better expressibility of the
circuit C. These circuits are once again sorted in ascending
order of their expressibility values, and the top Ke circuits are
chosen to constitute the candidate circuit set. Expressibility
reflects the quantum circuits’ capacity to uniformly reach the
entire Hilbert space, making it a more precise filtering proxy.
Finally, a small subset of candidate circuits that survive the
two-stage filtering process undergo tailored training specific
to the problem at hand.

IV. EVALUATION

We evaluate our distributed quantum architecture search
framework using three six-qubit VQE tasks: the BeH2

molecule, the Heisenberg model and the transverse-field
Ising model (TFIM). The Hamiltonian for BeH2 at its
lowest-energy interatomic distance (bond distance) is con-
structed according to Ref. [37]. The Hamiltonian of the
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Heisenberg model with periodic boundary condition is
given by HHeisenberg = ∑

i XiXi+1 + YiYi+1 + ZiZi+1 + Zi. The
Hamiltonian of the TFIM with periodic boundary condition is
HTFIM = ∑

i ZiZi+1 + Xi. The goal of VQE tasks is to deter-
mine the ground state energy of these Hamiltonians, denoted
Eg = minθ 〈0|V †(θ )HV (θ )|0〉, where V (θ ) represents a varia-
tional quantum circuit with gate parameters denoted by θ . A
solution is considered optimal if it falls within the chemical
accuracy threshold of 0.0016 of the ground-state energy.

The generated circuits adhere strictly to the topological
constraints illustrated in Fig. 1. To enhance the diversity of
generated circuits, the distribution of gate types Pg for each
circuit is chosen randomly from three predefined distributions:
(0.4, 0.2, 0.4), (0.5, 0.25, 0.25), and (0.6, 0.3, 0.1), where the
three probabilities in each distribution correspond to U, CNOT

and SWAP gates, respectively. Additionally, the probability of
nonlocal gates pnl for each circuit is randomly selected from
{0.1, 0.2, 0.3, 0.4}. We maintain that the number of U gates is
not less than the number of CNOT gates, and the number of
nonlocal gates does not exceed the number of local gates.

In the numerical simulations, we set the values of Ka,
Kp, and Ke to 100 000, 10 000, and 1000, respectively. The
hyperparameters Ka, Kp, and Ke determine the number of cir-
cuits whose number of paths, expressibility, and performance
will be calculated, respectively. We choose their values by
balancing the need for a sufficient number of samples with
acceptable computation time. The Ke circuits, sorted based on
their expressibility, serve as candidate circuits for the VQE
tasks. These candidate circuits are trained individually, fol-
lowing the order of expressibility from better to worse. We
refer to the training of each candidate circuit as a query.
During each query, the candidate circuit undergoes training
with 10 random initializations of parameters until conver-
gence, achievement of chemical accuracy, or reaching the
maximum number of iterations 10 000. The minimal energy
found within 10 runs is regarded as the performance of a PQC.
For simulation and training of quantum circuits, we utilize
the TensorCircuit framework [38]. We employ the Adam op-
timizer with a learning rate of 0.01 to optimize the parameters
of the circuits.

Figure 4 illustrates the distribution of the number of paths
among the generated Ka circuits, as well as the expressibility
distribution of Kp circuits featuring the highest number of
paths. These circuits are generated using Ng = 50 gates and
the TeleGate method (M = TeleGate). It can be observed that
the distribution of circuits is concentrated in the region with
fewer paths, and as the number of paths increases, the distri-
bution exhibits a long-tail phenomenon. Given the correlation
between the number of paths and expressibility elucidated in
Ref. [24], we select the top-Kp circuits with the highest num-
ber of paths and calculate their expressibility. The distribution
of expressibility among these selected circuits is concentrated
in the region of low expressibility values, corresponding to
better expressibility, thus ensuring promising performance in
the VQE tasks. Similar distributions can be observed when
varying Ng and M.

The distributions of the number of ebits for circuits gener-
ated with Ng = 40, 50, 60 gates using the TeleGate method is
depicted in Fig. 5. The distributions approximate normal dis-
tributions. As the two-stage filtering process progresses, the

FIG. 4. Histograms depicting the number of paths and express-
ibility of generated circuits with 50 gates using the TeleGate method.
(a) The number of paths for all Ka circuits. (b) The expressibility of
Kp circuits filtered based on the number of paths.

mean of the normal distribution shifts towards higher values.
A higher value of ebits corresponds to more nonlocal gates,
thereby increasing the expressibility of the circuit. Similar
distributions can be observed when employing the TeleData
method or a combination of TeleGate and TeleData.

After filtering the generated circuits by the number of paths
and then the expressibility, the remaining circuits are queried
for VQE tasks, following the order from better to worse ex-
pressibility. Figure 6 illustrates the achieved lowest energy
for the BeH2 problem among all Ke candidate circuits when
using the TeleGate method. As the number of gates increases,
the distribution gradually shifts towards the optimal solution.
With Ng = 40, the gap between the found solution and the
optimal one is 0.0030, slightly larger than the chemical ac-
curacy threshold. As Ng increases to 50, 13 optimal solutions
are found, and this number rises to 79 when Ng increases to
60.

To further investigate the efficiency of finding optimal so-
lutions, we depict the variation of the lowest energy achieved
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FIG. 5. Histograms depicting the number of ebits in generated circuits using the TeleGate method. The left, middle, and right column
represent all Ka circuits, Kp circuits filtered by the number of paths, and Ke circuits filtered by expressibility, respectively. The top, middle, and
bottom row represent circuits with 40, 50, and 60 gates, respectively.

FIG. 6. Histograms depicting the lowest energy achieved for the BeH2 problem by Ke candidate circuits using the TeleGate method. Plots
(a)–(c) represent circuits with 40, 50, and 60 gates, respectively. The red dashed line denotes the ground-state energy of BeH2, while the green
solid line indicates the energy within the chemical accuracy threshold of 0.0016.
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FIG. 7. Lowest energy achieved versus number of queries for
BeH2 problem. Panel (b) is a magnification of the first 50 queries
in panel (a).

with the number of queries in Fig. 7. As more candidate
circuits are queried, the lowest energy achieved decreases.
Generally, circuits with more gates correspond to better solu-
tion and faster convergence to optimal solutions. For instance,
with Ng = 60 and M = Both, the first query successfully finds
the optimal solution. Similarly, the TeleGate and TeleData
methods also discover the optimal solution within 20 queries.
When Ng decreases to 50, optimal solutions can be found
within 200 queries. No optimal solution can be found when
Ng = 40. The overall query process is efficient as only a small

FIG. 8. Number of optimal solutions versus number of queries
for BeH2 problem.

number of candidate circuits need to be queried before finding
the optimal solution. Figure 8 illustrates the relation between
the number of optimal solutions and the number of queries. It
can be seen that as the number of queries increases, there is a
gradual increase in the number of optimal solutions.

Table I presents the simulation results for the six-qubit
BeH2 molecule, Heisenberg model, and TFIM, respectively.
It is evident that circuits comprising 40 gates fail to achieve
the optimal solution. Notably, the gap between the minimal
energy found and the ground state energy is already very
close to the chemistry accuracy threshold of 0.0016 in the case
of the six-qubit BeH2 problem. Upon increasing the number
of gates to 50, optimal solutions are achieved in all three
problems with the combination of the TeleGate and TeleData
method. Even when only TeleGate or TeleData is utilized and
the optimal solution is not immediately found, the gap has
significantly diminished. With the number of gates increasing
to 60, using the TeleGate method and the TeleData method
alone are capable of finding the optimal solutions, leading to
an increase in the number of successful circuits. The minimal
costs of ebits remains relatively consistent across different
methods. For the BeH2 problem using the TeleData method,
and the Heisenberg problem using either the TeleGate or Both
method, the consumed ebits decrease from four to two when
the number of gates increases from 50 to 60. This points
toward the possibility that increasing the number of gates may
help discover circuits that consume fewer ebits.

We also compare the results obtained from dis-
tributed QAS with those from the hardware efficient
Ansatz (HEA), commonly used in VQAs. The HEA
circuits are constructed by alternately placing odd and
even layers. An odd layer is constructed as Vodd =
CNOT

q1
q2 CNOT

q3
q6 CNOT

q7
q8 Uq1 Uq2 Uq3 Uq6 Uq7 Uq8 , while an even layer

is constructed as Veven = CNOT
q2
q3 CNOT

q6
q7 Uq1 Uq2 Uq3 Uq6 Uq7 Uq8 .

For instance, the circuit HEA-3 has 3 layers, constructed as
VoddVevenVodd. The nonlocal CNOT

q3
q6 can be implemented using

the TeleGate method at the cost of one ebit. The comparison
results in terms of the number of ebits, the number of
parameters and the number of CNOT gates are presented in
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TABLE I. Simulation results for the six-qubit BeH2 molecule, Heisenberg model, and TFIM. “#Solution” indicates the number of candidate
circuits that achieve the optimal solution. “Gap” denotes the difference between the minimal energy found and the ground-state energy. “#Ebit”
indicates the minimum number of ebits used in the circuits that achieves the optimal solutions.

Ng = 40 Ng = 50 Ng = 60

#Solution Gap #Solution Gap #Ebit #Solution #Ebit

TeleGate 0 0.0030 13 3 79 3
BeH2 TeleData 0 0.0019 10 4 78 2

Both 0 0.0020 8 3 82 2
TeleGate 0 0.2114 2 4 35 2

Heisenberg TeleData 0 0.3768 0 0.0095 29 3
Both 0 0.0720 2 4 35 2

TeleGate 0 0.0704 0 0.0128 5 3
TFIM TeleData 0 0.0647 0 0.0108 3 3

Both 0 0.0464 1 3 2 3

Table II. For each problem, we first list the optimal circuits
discovered by distributed QAS using the TeleGate, TeleData,
and Both methods, followed by the optimal HEA circuit.
The differences between the lowest energy achieved by these
optimal circuits and the ground state energy are less than the
chemical accuracy threshold of 0.0016. Additionally, the HEA
circuit with the same number of ebits as the circuits found
by distributed QAS and a comparable number of parameters
is also listed, along with the gap between the lowest energy
achieved and the ground state energy. From Table II, we
can see that, compared with HEA circuits, the circuits found
by distributed QAS achieve optimal solutions using only
40%–60% of the ebits, 44%–57% of the parameters, and a
comparable number of CNOT gates. This demonstrates that
distributed QAS has a clear advantage in saving ebits, which
are the most expensive resources in the context of distributed
quantum computing.

TABLE II. Comparison results between distributed QAS and
HEA Ansätze. HEA-l indicates hardware efficient Ansätze with l
layers. “#Ebit,” “#Parameter,” and “#CNOT” indicate the number of
ebits, the number of parameters, and the number of CNOT gates used
in the circuits, respectively. “Gap” denotes the difference between
the minimal energy found and the ground-state energy.

#Ebit #Parameter #CNOT Gap

TeleGate 3 72 19
TeleData 2 90 24

BeH2 Both 2 90 25
HEA-9 5 162 23
HEA-6 3 108 15 0.0122

TeleGate 2 84 26
TeleData 3 96 23

Heisenberg Both 2 90 24
HEA-10 5 180 25
HEA-6 3 108 15 0.3538

TeleGate 3 93 24
TeleData 3 84 24

TFIM Both 3 78 20
HEA-9 5 162 23
HEA-6 3 108 15 0.0402

V. DISCUSSION

A major challenge in training PQCs is the barren plateau
phenomenon [39]. When a PQC encounters a barren plateau,
its optimization landscape becomes mostly flat as the size
of the system increases. This causes the gradients to vanish
exponentially, necessitating an exponentially large number
of measurements to determine the parameter update direc-
tion. A fundamental relationship between expressibility and
trainability has been derived [40], indicating that highly ex-
pressive Ansätze exhibit flatter cost landscapes and therefore
will be harder to train. In the proposed distributed QAS, the
two-stage filtering process chooses circuits with best express-
ibility. These circuits are then trained to optimize the loss
function of the specific problem. However, due to the impact
of barren plateaus, circuits with poor trainability may con-
verge to nonoptimal solutions or have their training suspended
once the number of training iterations reaches a predefined
threshold. To mitigate this, we use multiple initializations
of parameters when training a PQC, similar to the approach
taken in Ref. [21], thus increasing the likelihood that at least
one initialization will avoid barren plateaus. A more effective
solution is to consider trainability during the filtering process.
Therefore, in future work, we plan to design a training-free
proxy capable of reflecting the trainability of a PQC. This will
help filter out circuits with poor trainability, thereby avoiding
the waste of time on training such circuits.

Our distributed QAS framework adopts a training-free
approach, utilizing low-computation-cost metrics to evalu-
ate quantum circuits. This approach enables us to explore
a greater number of quantum circuits compared to training-
based methods, thereby increasing the likelihood of finding
optimal circuits. To better address larger-scale quantum circuit
search problems, we can incorporate elements of the VAns
method [25] into our framework. Specifically, by following
the gate insertion rule of VAns, we can add blocks of gates
to expand the circuit during the quantum circuit generation
process, rather than inserting one quantum gate at a time.
This enables the generation of larger-scale quantum circuits
without increasing computational costs. Additionally, placing
blocks of quantum gates reduces the need to select qubit
positions for each individual gate, thereby controlling the size
of the search space and preventing exponential growth in the
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required number of circuit samples as the number of qubits
increases. Meanwhile, the gate simplification rule of VAns
can be employed to remove unnecessary or redundant gates,
or gates with minimal impact on cost, thereby managing the
growth in the number of gates.

Two commonly used nonlocal gate implementation meth-
ods are incorporated into our distributed QAS framework.
In general, the TeleGate method may benefit the effective
utilization of ebits. When a qubit enters control mode, mul-
tiple nonlocal or local CNOT gates using it as the control
can be implemented, until the qubit becomes the target of
certain gate and exits control mode. On the other hand, the
TeleData method may reduce the number of nonlocal gates.
After a qubit is teleported to another QPU, all gates acting
on it and the native qubits of that QPU become local gates.
Allowing both methods increases the flexibility of distributed
quantum circuits. As shown in Table II, for each problem,
the ebit consumption using both methods is no more than the
consumption when using only the TeleGate method or only
the TeleData method.

VI. CONCLUSION

In distributed quantum computing, the entire distributed
system is composed of all qubits of multiple interconnected
QPUs, and nonlocal gates across different QPUs can be im-
plemented by methods like TeleGate or TeleData. Although
various aspects of QAS have been investigated in recent years,
how to design distributed quantum circuit structures auto-
matically remained unexplored. This problem poses a more
complex challenge because it requires optimization not only
of gate types and positions, but also of the implementation
method for nonlocal gates.

In this work, we have proposed a distributed QAS frame-
work for multiple interconnected QPUs with specific qubit
connectivity. The integration of TeleGate and TeleData, as
well as the qubit assignment from logical to physical qubits,
makes our QAS framework very flexible in exploring diverse
circuit structures. The training-free evaluation methodology
also benefits the exploration of huge amount of quantum
structures, enhancing the likelihood of discovering resource-
efficient circuits. Considering the qubit connectivity of two
IBM quantum processors, we use the proposed framework to
find distributed quantum circuits for computing the ground
state energy of the BeH2 molecule, the Heisenberg model and
the transverse-field Ising model. The optimal solutions have
been achieved for these problems, although only a small set
of circuits are trained during the entire QAS workflow.
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APPENDIX: THE CAT-ENTANGLER AND
CAT-DISENTANGLER

In this Appendix, we provide a detailed description of the
cat-entangler and cat-disentangler primitive operations [34],
which support the TeleGate method described in Sec. III B 1.

The quantum state before the cat-entangler operation is

|ψ〉(|00〉 + |11〉)ab = (|0〉c|ψ0〉 + |1〉c|ψ1〉)(|00〉 + |11〉)ab.

(A1)

The cat-entangler comprises (1) a CNOTc
a, (2) a measurement

on qubit a, and (3) a conditional X gate on qubit b based on the
measurement outcome. Following the first step, the quantum
state transforms to

CNOTc
a|ψ〉(|00〉 + |11〉)ab

= |0〉c|ψ0〉(|00〉 + |11〉)ab + |1〉c|ψ1〉(|10〉 + |01〉)ab.

(A2)

Afterwards, qubit a is measured in the computational basis. If
the measurement outcome is zero, the state collapses to

|00〉cb|ψ0〉 + |11〉cb|ψ1〉, (A3)

otherwise it collapses to

|01〉cb|ψ0〉 + |10〉cb|ψ1〉. (A4)

In the third step, a X gate is applied to qubit b only if the
measurement outcome is one. Therefore, regardless of the
measurement outcome, the state after the cat-entangler opera-
tion is always

|00〉cb|ψ0〉 + |11〉cb|ψ1〉. (A5)

The cat-disentangler comprises (1) a Hadamard gate H on
qubit b, (2) a measurement on qubit b, and (3) a conditional Z
gate on qubit c based on the measurement outcome. After the
first step, the quantum state becomes

|0〉c(|0〉 + |1〉)b|ψ0〉 + |1〉c(|0〉 − |1〉)b|ψ1〉. (A6)

Then qubit b is measured in the computational basis. If the
measurement outcome is zero, the state collapses to

|0〉c|ψ0〉 + |1〉c|ψ1〉, (A7)

otherwise it collapses to

|0〉c|ψ0〉 − |1〉c|ψ1〉. (A8)

In the third step, a Z gate is performed on qubit c only if
the measurement outcome is one. Thus, regardless of the
measurement outcome, the state after the cat-disentangler is
always

|0〉c|ψ0〉 + |1〉c|ψ1〉. (A9)
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