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We develop quantum information processing primitives for the planar rotor, the state space of a particle on a
circle. The n-rotor Clifford group, U(1)n(n+1)/2

� GLn(Z), is represented by continuous U(1) gates generated
by polynomials quadratic in angular momenta, as well as discrete GLn(Z) gates generated by momentum
sign-flip and sum gates. Our understanding of this group allows us to establish connections between homological
rotor error-correcting codes [Vuillot, Ciani, and Terhal, Commun. Math. Phys. 405, 53 (2024)] and oscillator
quantum codes, including Gottesman-Kitaev-Preskill codes and rotation-symmetric bosonic codes. Inspired by
homological rotor codes, we provide a systematic construction of multimode rotation-symmetric bosonic codes
by making a parallel between oscillator Fock states and rotor states with fixed non-negative angular momentum.
This family of homological number-phase codes protects against dephasing and changes in occupation number.
Encoding and decoding circuits for these codes can be derived from the corresponding rotor Clifford operations.
As a result of independent interest, we show how to nondestructively measure the oscillator phase using
conditional occupation-number addition and postselection. We also outline several rotor and oscillator varieties
of the Gottesman-Kitaev-Preskill-stabilizer codes [Phys. Rev. Lett. 125, 080503 (2020).].
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I. INTRODUCTION

Quantum information processing can be done in various
quantum platforms, which can be described in the abstract
by one of only a few types of state spaces. For example,
the qudit state space describes any few-level physical system,
irrespective of the physical nature of the levels. Similarly, a
continuous-variable harmonic oscillator state space models
vibrations in ions and materials, as well as photons confined
to cavities or traveling through various media.

Conventional quantum state spaces come with a set of
primitives—canonical states and operations—that are both
physically motivated and essential for information processing
schemes. For the case of a qudit, canonical operations come
from the Pauli group as well as its normalizer, the Clifford
group; canonical states are eigenstates of the Pauli operators
[1,2]. For the case of the oscillator, the operations are the
oscillator displacements and more general quadratic Gaussian
(also known as Bogoliubov) operations, while the canonical
states are states of fixed position or momentum [3,4].

While few-level systems and harmonic oscillators have
been well studied for over 100 years, a third “angular” state
space—the planar or U(1) rotor [5–17]—has lagged in its
development. A planar rotor describes the state space of a
quantum system confined to a circle. Such systems have
been overlooked in the past due to a lack of controllable
quantum platforms amenable to a rotor description. However,

*These authors contributed equally to this work.

rotor systems are gaining traction due to recent improve-
ments in the control of superconducting circuits [18,19],
ultracold molecules [20,21], ion traps [22,23], free electrons
[24,25], and orbital angular-momentum systems [13,26–29].
The recent exciting experimental progress warrants a deeper
quantitative investigation into the rotor’s information process-
ing primitives. We perform this investigation in this work, to
obtain a firmer understanding of rotor states and operations.
We also obtain several immediate applications for quantum
error correction of both oscillator and rotor platforms.

We enumerate canonical primitives of the planar rotor and,
in particular, determine the group formed by its canonical uni-
tary operations. While the types of primitive rotor operations
have long been known [30–33], the specific group formed
by them is, to our knowledge, not yet established. We do
so by treating the rotor—whose configuration space is de-
scribed by an angle—as a subspace of the harmonic oscillator
that is defined by periodically identifying oscillator positions.
This embedding of the rotor into the oscillator allows us to
view rotor primitives as oscillator primitives that preserve the
embedded rotor subspace. Our embedded rotor treatment also
provides insight into quantum error correction, yielding a ro-
tor version of a recent class of oscillator error-correcting codes
[34] and revealing several connections between oscillator and
rotor codes.

In parallel, we focus on the oscillator itself, developing its
“polar” coordinates in terms of occupation number and phase
degrees of freedom [5,35,36] that are analogues of the angular
momentum and phase degrees of freedom on planar rotor. We
show that most of the properties of the planar rotor can be
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TABLE I. Canonical groups for oscillator, rotor, and qubit systems. The displacement group shifts the canonical variables of each system,
while the symplectic group preserves the displacement group. The passive symplectic group of the oscillator is the symmetry group of the
complex sphere formed by n-mode coherent states of the same energy, while its rotor and qubit counterparts are intersections of this group
with the respective rotor and qubit symplectic groups.

Oscillators [4,42] Planar rotors (this work) Qubits [1]

Displacement group H3(R)n (Heisenberg-Weyl) P rot
n (rotor Pauli [113]) Pn (Pauli)

Symplectic group Sp2n(R) U(1)n(n+1)/2
� GLn(Z) (rotor Clifford) Sp2n(Z2) (Clifford)

Passive symplectic group U(n) = Sp2n(R) ∩ SO(2n) Z2 � Sn Sn

transferred into oscillator Fock space, for example the sym-
plectic representation of Clifford operations. Although some
of the unitary Clifford operations on the rotor side become
channels on the oscillator side, they are still valid and useful
quantum operations.

Our development of number-phase primitives allows us
to map several classes of error-correcting codes, including
the recently developed homological rotor codes [37], into the
codes defined in oscillator Fock basis. These new oscillator
codes are polar analogues of lattice codes [34,38,39] and are
compatible with oscillator noise channels where photon loss
is present but random-rotation (i.e., dephasing) noise is dom-
inant. As such, we anticipate that these codes will be relevant
to trapped-ion systems [23,40].

A. Summary of results

Positions of a planar rotor are labeled by an angle, which
makes for a compact configuration space. The dual basis of
momentum states is labeled by the integers Z, making for
a discrete and infinite set of labels called the circle group
T ∼= U(1). A planar rotor can thus be thought of as being
“in between” the qudit and oscillator, encapsulating both the
compactness of the former and the infinite-dimensional nature
of the latter.

Rotor Clifford group. The n-qubit Clifford group consists
of all unitary operations that preserve Pauli-matrix com-
mutation relations, and we exclude the Pauli group from
this definition for simplicity [1]. Similarly, the analogous
n-oscillator group of Gaussian transformations consists of
all operations that preserve the commutation relations be-
tween position and momentum [4,41,42]. In both cases, the
commutation-preservation can be tied to preservation of a
particular symplectic form, and the two groups correspond to
the symplectic groups Sp2n(Z2) and Sp2n(R), respectively.

The rotor Clifford group is the group of unitary operations
that preserve commutation relations between rotor position
and momentum shift Pauli-type operators. It has been stud-
ied before in the context of efficient simulation [31], and its
generators have been detailed before [30,31,33,43]. However,
the structure of this group has, to our knowledge, not yet been
identified. This is, in part, because a rotor’s angular positions
and momenta are labeled by different types of numbers—
angles vs integers—which complicates analogous symplectic
formulations.

By periodically extending planar rotor wave functions such
that they form a subset of oscillator wave functions, we

observe that the rotor Clifford group can be thought of as a
subgroup of the oscillator symplectic group, Sp2n(R). Pro-
jecting this group into the state subspace of the rotor, we find
the n-rotor Clifford group to be a semi-direct product of two
groups—the Lie group U(1)n(n+1)/2 and the discrete group
GLn(Z) of unimodular integer-valued invertible matrices,

Rotor Clifford group = U(1)n(n+1)/2
� GLn(Z). (1)

The Lie group corresponds to gates generated by products of
two rotor momenta, while the discrete group is generated by
conditional momentum shifts and momentum sign flips. We
summarize our results in Table I.

Classifying homological rotor codes. Equipped with better
understanding of the rotor Clifford group and the embedded
rotor construction, we investigate the structure of the ho-
mological rotor codes [37]—a recent extension of stabilizer
codes [44] to rotors.

We classify homological rotor codes using the Smith nor-
mal form—the standard tool for homology-group calculation.
We show that the Smith normal form of a code cannot be
changed to that of another code by any rotor Clifford opera-
tion that preserves the code’s Calderbank-Steane-Shor (CSS)
structure. The different Smith normal forms thus label differ-
ent equivalence classes of homological rotor codes under such
operations. If Clifford operations are the only available oper-
ations for an encoding, this implies that such operations have
to act on a resource state within the same Smith class. These
resource states are tightly related to oscillator Gottesman-
Kitaev-Preskill (GKP) states [38].

Homological number-phase codes. Returning to the har-
monic oscillator, we study multimode extensions of the
number-phase codes [45–47]—polar analogues of bosonic lat-
tice codes that protect against occupation-number loss or gain
and dephasing, which correspond to distortions in the oscilla-
tor’s number and phase degrees of freedom, respectively. The
error-correction scheme and performance of random rotation-
symmetric codes are recently studied in Ref. [48,49].

Bosonic rotation codes are defined for a single oscillator,
and multimode extensions have not been substantially studied
[50]. We show how to map the entire class of homological
rotor codes into the oscillator, yielding a new class of polar-
like codes protecting against loss and dephasing noise.

We also show that the rotor Clifford-group encodings
of homological rotor codes can be performed by analo-
gous operations in the number-phase picture, but with some
caveats. Mapping rotor Clifford-group transformation into the
number-phase interpretation of the oscillator yields a Clifford
semigroup consisting of some nonunitary transformations. For
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FIG. 1. (b) The planar rotor describes the motion of a particle on a circle T , with said particle admitting only integer-valued angular
momenta. This phase space can be embedded into that of the harmonic oscillator by periodically identifying oscillator positions q, yielding
(a) the embedded rotor. Alternatively, interpreting oscillator Fock states as the positive-momentum states of a rotor yields (c) the number-phase
interpretation of the oscillator. Relations between these constructions allow us to identify primitives necessary for information processing as
well as develop various error-correcting codes for all three state spaces.

example, while quadratic momentum gates are mapped to a
Kerr interaction, conditional momentum shifts are mapped to
conditional photon injection—a nonunitary operation.

Nevertheless, all Clifford semigroup operations are valid
quantum channels, and the original rotor Clifford algebra is
mostly left intact after the number-phase mapping. As a re-
sult, a Clifford-based encoding of homological codes is still
possible.

On the other hand, extraction of error syndromes for
number-phase codes becomes more difficult. Nevertheless,
we show it is possible to measure the effect of an oscillator
rotation nondestructively with the help of postselection. This
provides a probabilistic error recovery alternative to Knill
telecorrection for bosonic rotation codes [51] and may be rel-
evant to metrological protocols for determining the oscillator
phase in a nondesctructive fashion.

Other new codes and relations. The relation between
planar rotors, their embeddings into the oscillator, and the
number-phase interpretation of the oscillator (see Fig. 1). al-
lows us to treat various seemingly unrelated error-correcting
codes in the same fashion.

We outline how GKP-stabilizer codes [34] can be mapped
into the number-phase degrees of freedom of the oscillator,
yielding another class of codes protecting a (possibly infinite)
logical state space against loss and dephasing noise.

The embedded rotor construction enables us to investi-
gate the underlying connections between rotor and oscillator
codes. In particular, for an embedded rotor, a single homo-
logical rotor code with torsion is equivalent to an oscillator
GKP code encoding a qudit. Moreover, rotor GKP codes
[33,38,52] can be included in the same framework as a
concatenation of homological rotor codes and modular-
qudit GKP codes [38], Sec. II] (see Example 1). While
homological number-phase codes are multimode generaliza-
tions of the original number-phase codes [45], they can
also be viewed as a rotation-symmetric generalization of
multimode GKP codes. These relations are illustrated in
Fig. 2.

B. Outline of the manuscript

In Sec. II, we introduce the generalized Pauli operators for
planar rotors. We describe a method to embed a logical planar
rotor into a single-mode harmonic oscillator, as well as the
number-phase interpretation of the oscillator.

Next, we identify its group structure in Sec. III A and
further investigate the generators of rotor Clifford group and
their symplectic representation in Sec. III B. The rotor Clif-
ford group forms the encoding unitaries of rotor codes and
motivates us to investigate the classification of rotor codes.

We then revisit the formalism of homological rotor codes
and investigate the physical implications of torsion and
Smith normal form by calculating the codes’ homology
group in Sec. IV A. In Sec. IV B, we show that the codes
with different torsion parts from different equivalent classes
which cannot be related by CSS Clifford transformations.
In Sec. IV C, we show that rotor GKP codes are concate-
nations between homological rotor codes and modular-qudit
codes.

In Sec. V, starting from an Example 3 that the codewords
of number-phase codes are rotor GKP codes after project-
ing on the non-negative angular-momentum subspace and
analogizing the rotor angular-momentum and oscillator Fock
basis, we propose the homological number-phase codes—
a multimode generalization of rotation-symmetric bosonic
codes called as number-phase codes which is inspired by the
Clifford-deformed homological rotor codes. In Proposition 1,
we provide a procedure of mapping homological rotor codes
to homological number-phase codes. In Sec. V A, we demon-
strate how to use the Clifford semigroup of number-phase
operations to encode in homological number-phase codes.

In Sec. VI, we show that GKP-stabilizer codes can be
generalized to U(1) rotor systems as well as oscillator Fock
space and compare their differences.

In the Appendixes, we collect several miscellaneous results
related to quantum applications of rotors. In Appendix A,
we show that a unitary squeezing automorphism cannot exist
for rotors, in contrast to oscillator systems. In Appendix B,
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Homological Quantum Rotor Codes

Rotor GKP

Trivial Number-phase Codes

Number-phase Codes

Single rotor

Concatenation with

qudit-to-qudit codes

Single mode

Concatenation with

qudit-to-qudit codes

Projection

Projection

Trivial rotor GKP codes 

Planar Rotor Oscillator Fock space

Homological Number-phase Codes

FIG. 2. Relations between homological rotor codes, trivial rotor GKP codes (oscillator GKP codes from the point of view of the embedded
rotor), rotor GKP codes, and homological number-phase codes.

we give the subgroup of rotor Clifford group that is also
a subgroup of the group of Gaussian transformations that
preserve the total occupation number. In Appendix C, we
study “Gaussian” states of rotors and their behavior under
Clifford group and passive subgroup, including nullifier states
(Appendix C 1) and coherent states (Appendix C 2). We also
discuss how the Clifford group transforms the Josephson-
junction Hamiltonian in Appendix C 3. In Appendix D, we
calculate the Wigner function for the rotor GKP codewords
and show they indeed have negativity. In Appendix E, we
calculate the error-correction conditions for the normalized
rotor GKP codes and discuss their relations with Jacobi ϑ

functions. In Appendix F we discuss an analogy of Gaussian
encoding no-go theorem [53] for rotors.

II. THE PLANAR ROTOR AND FRIENDS

In this section, we review the setup of the planar, or U(1),
quantum rotor and its various connections to the bosonic mode
(see Fig. 3) [31–33,54].

A. Planar rotor

The state space of a rotor is the same as that of a particle
on a circle, arising naturally from a quantum body rotating
in two dimensions. The state space admits bases of fixed
particle position and fixed particle momentum. We associate
the former with the “Pauli X -basis” of the rotor, denoting
basis elements by a phase θ ∈ [0, 2π ), Conversely, the dual
“Pauli Z-basis” is characterized by irreducible representa-
tions of U(1), which are labeled by the integers Z. The two
bases are

X -basis : |θ〉, θ ∈ T ,

Z-basis : |l〉, l ∈ Z,
(2)

where |θ〉 and |l〉 are called phase states and angular-
momentum states, respectively. The former can be expressed

in terms of the latter via the Fourier series,

|θ〉 = 1√
2π

∑
�∈Z

eiθ�|�〉, (3)

and vice versa.
The fundamental operators on a single rotor are the gener-

alized Pauli operators. The Pauli X operator is parameterized
by an integer m ∈ Z, and the Pauli Z operator is parameterized
by a phase factor φ ∈ T . Their actions on the angular position
and momentum states are as follows:

X (m)|θ〉 = eimθ |θ〉, X (m)|l〉 = |l + m〉, m ∈ Z,

Z (φ)|θ〉 = |θ − φ〉, Z (φ)|l〉 = eiφl |l〉, φ ∈ U(1).
(4)

These are natural generalizations of qudit Pauli operators,
defined on the space of a particle on the group Zq, or harmonic
oscillator displacement operators defined for R.

We would like to present the Pauli operators in terms
of the fundamental degrees of freedom phases and angu-
lar momentum. Though the angular-momentum operator l̂ is

FIG. 3. Comparison between the phase space of (a) oscillator
and (b) planar rotor systems. The dashed line denotes that the rotor
angular momenta are confined to the integers.
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well defined, we cannot define phase operator θ̂ individually
because of the ambiguity introduced by the 2π periodicity.
Nevertheless, we can still express Pauli operators as exponen-
tials of either operator

X (m) = eimθ̂ , Z (φ) = eiφ l̂ . (5)

The commutation relation between Pauli X and Z for rotor is

X (m)Z (φ) = e−imφZ (φ)X (m), (6)

where the phase factor arises from the rotor commutation
relation [l̂, eiθ̂ ] = eiθ̂ . Tensor products of these Pauli operators
generate the n-rotor Pauli group, P rot

n .

B. Embedded rotor

A planar rotor can be embedded into a harmonic oscilla-
tor by periodically identifying the oscillator’s positions [see
Figs. 1(a) and 1(b)]. It was pointed out in Ref. [37] that this
embedding can be done by restricting to the +1 eigenspace
of one of the stabilizers of the GKP code. This stabilizer,
Ŝq = exp(i2π p̂), written in terms of the oscillator momentum
p̂, shifts the oscillator position q by 2π . The stabilizer con-
straint,

Ŝq|ψ〉 =
∫

dqψ (q)|q − 2π〉 =
∫

dqψ (q)|q〉 = |ψ〉, (7)

restricts the possible oscillator wave functions to those satis-
fying ψ (q + 2π ) = ψ (q). In other words, imposing the above
stabilizer constraint is equivalent to imposing 2π periodicity
in the q representation.1

The stabilizer Ŝq shifts each oscillator position state by 2π ,
meaning that its eigenstates are superpositions of a position
state with all states related to it by a shift of a multiple of
2π . Such states are labeled by an angle and correspond to the
position states of the embedded rotor,

|θemb〉 =
∑
m∈Z

|q = 2πm + θ〉. (8)

Since they are eigenstates of a GKP stabilizer, these are of the
same comb-like form as the logical codewords of the GKP
code.

The codeword |θemb〉 can be written in terms of momentum
eigenstates via Fourier transformation

|θemb〉 ∝
∑
�∈Z

∫
d peip(2π�+θ )|p〉. (9)

The sum of phases over � ∈ Z is nonvanishing only when
the momentum p ∈ Z. Therefore, the discretized bosonic mo-
mentum p̂ is identified with the angular momentum of the
embedded rotor.

1In terms of the oscillator subsystem decomposition from Ref. [55],
the above performs the decomposition T ⊗ 2πZ = R, where T is
the embedded rotor space, and the factor 2πZ is called the gauge
space.

Pauli operators for the embedded rotor,

X (m) = eimq̂, m ∈ Z,

Z (φ) = eiφ p̂, φ ∈ R,
(10)

where q̂ is the oscillator position operator, form the subset
of oscillator displacements that preserve the embedded rotor
space. As a logical operator, X (m) must commute with sta-
bilizer Ŝq, so m can only take integer values. The oscillator
commutation relation [q̂, p̂] = i yields that of the embedded
rotor,

eimq̂eiφ p̂ = e−imφeiφ p̂eimq̂. (11)

The embedded rotor formalism helps understand various
features of the planar rotor from the harmonic oscillator per-
spective.

C. Oscillator Fock space

A different and, in this case, a sparse way to relate the
U(1) rotor to an oscillator is to associate rotor momentum
states with oscillator Fock bases, |n〉, n ∈ N. Since N ⊂ Z,
the Fock basis of harmonic oscillator shares many of the
properties of the non-negative angular-momentum subspace
of planar rotor. We can then associate rotor position states
from Eq. (3) with the Pegg-Barnett oscillator phase states
[5,35,36],

|θ〉F =
∑
n∈N

e−inθ |n〉, θ ∈ T . (12)

These states play important roles in quantum error correction
[46,51] and quantum metrology [56,57], and are relevant in
the construction of continuous-variable designs [57]. Indeed,
both |θ〉F,∀ θ ∈ T and |n〉,∀ n ∈ N form a complete (but, in
the former case, nonorthonormal) basis.

To formally connect planar rotor with non-negative angular
momentum to oscillator Fock space, we introduce projection
operator to restrict planar rotor to non-negative angular-
momentum subspace

��m =
∑
l�m

|l〉〈l|. (13)

For m = 0, this projection removes all negative momen-
tum states. We denote all projected operators and states in
the oscillator Fock space by the subscript “F”, i.e., OF =
��0O��0 for any operator O. We emphasize projection op-
erator ��0 is a mathematical treatment that bridges oscillator
Fock space and non-negative angular-momentum subspace of
planar rotor, instead of a physical operation that needs to be
implemented in the laboratory.

The Pauli operators for oscillator Fock space are

X (m)F =
{∑∞

n=0 |n + m〉〈n| m � 0∑∞
n=0 |n〉〈n + |m|| m < 0,

Z (φ)F = eiφn̂,

(14)

where n̂ =∑∞
l=0 l|l〉〈l| should be interpreted as the photon

number operator.
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In the Fock space interpretation, X (m)F performs m-photon
injection (subtraction) for positive (negative) m, and both cor-
respond to powers of the Kogut-Susskind phase operator and
its adjoint [35,58,59]. The X -type Pauli operator is proposed
and realized in cavity systems [60–62]. The Z (φ)F operator
is a single-mode rotation by φ, generated by the harmonic
oscillator Hamiltonian.

For m � 0, we have

X (m)†
FX (m)F = I, X (m)FX (m)†

F = ��m �= I. (15)

Therefore, X (m)F is not a unitary. This is because one can in-
ject and then subtract the same number of photons on arbitrary
states. But subtracting and then injecting m photons can only
be applied to states having at least m photons to begin with.

The connection between oscillator Fock space and planar
rotor with non-negative angular momentum turns out to be
quite fruitful, as much of the algebraic structure of rotors sur-
vives under this projection [54], e.g., the Pauli commutation
relation,

X (m)FZ (φ)F = e−imφZ (φ)FX (m)F. (16)

In Sec. V, we show the mathematical similarity between pla-
nar rotor and harmonic oscillator enables us to systematically
construct a new class of quantum codes for several oscillators.
This generalizes rotation-symmetric bosonic codes [45] to
multiple modes.

III. ROTOR CLIFFORD GROUP

The rotor Clifford group is a collection of operations map-
ping a tensor product of rotor Pauli operators to another tensor
product of rotor Pauli operators while preserving the commu-
tation relations among them. To be concrete, given the n-qubit
Pauli group Pn, the corresponding n-qubit Clifford group is

C(Pn) = NU(2n )(Pn)/Pn, (17)

the normalizer of the Pauli group Pn in the unitary group
U(2n), up to multiplication by elements of the Pauli group,
as well as any phases.

Operations in the Clifford group are usually regarded as
gates that can be easily implemented for quantum computa-
tion. In the theory of quantum error correction, the Clifford
group plays a fundamental role in designing and character-
izing quantum error-correcting codes [63–67], as well as the
equivalence and deformation of codes [68–71]. Investigations
of the Clifford group also yield efficient classical algorithms
for simulating Clifford circuits, guaranteed by the Gottesman-
Knill theorem [1] and its generalization to arbitrary Abelian
groups [30,31]. On the practical side, the underlying mathe-
matical structure of circuit quantization and its connections
to symplectic transformations have also recently been stud-
ied [72–76]. Therefore, to facilitate us with the discussion
of the encoding and decoding processes of the homological
rotor code in Sec. IV, and the code deformation leading to
construction of homological number-phase code in Sec. V, we
have to have an overall command of the rotor Clifford-group
structure.

A nice property of Clifford groups is that their elements
can be expressed as symplectic transformations acting on par-

ticular vectors—2n-dimensional vectors (X |Z ) ∈ Z2n
d for an

n-qudit system, and 2n-dimensional real vectors ( �q| �p) ∈ R2n

for an n-mode system. Since the domain of both quadrature
pairs are the same in both cases, it is easy to show that the
qudit and oscillator Clifford groups are Sp2n(Zd ) [77] and
Sp2n(R) [3,4], respectively. Since rotor systems are hybrid—
behaving like continuous-variable systems in the phase basis
and discrete-variable systems in the momentum basis—the
rotor Clifford group is not as easy to read off.

In this section, we identify the n-rotor Clifford group to
be the semi-direct product group U(1)n(n+1)/2

� GLn(Z). We
then present the generators of the Clifford group for n rotors.

A. Clifford-group structure

Despite the hybrid nature of rotor systems, a Pauli
Z (�φ)X ( �m) can still be represented by a vector �v [[31,78],
Lemma 2.8],

�v = ( �mT
v |�φT

v

)T
, (18)

where �mv is a n-dimensional integer-valued column vector,
and �φv is a n-dimensional T -valued column vector. The com-
mutation relation between two Pauli strings �u and �v can then
be represented as

Z (�φu)X ( �mu)Z (�φv )X ( �mv )

= e−i�uT
	�vZ (�φv )X ( �mv )Z (�φu)X ( �mu), (19)

where e−i�uT
	�v is the phase factor captured by the symplectic

inner product between �u and �v,

�uT
	�v = �mT

u
�φv − �φT

u �mv, 	 =
(

0 In×n

−In×n 0

)
. (20)

Each Clifford circuit U can be represented by a symplectic
matrix QU that transforms a Pauli string �v as

U �vU † = QU �v = ( �mT
QU v

∣∣�φT
QU v

)T
, (21)

for some quadrature transformation QU . Since U is a
Clifford circuit, �mQU v should be a n-dimensional integer-
valued column vector, and �φQU v should be a n-dimensional
T -valued column vector. Any quadrature transformation Q
also has to satisfy

QT 	Q = 	 (symplectic condition) (22)

because it preserves the rotor commutation relations. This
implies that the rotor Clifford group is a particular subgroup
of the oscillator Clifford group Sp2n(R) that preserves the
angle-integer form of the Pauli vectors �v.

Most generally, a rotor quadrature transformation can be
written as

Q =
(

QXX 0
QXZ QZZ

)
. (23)

The upper-left block is a general linear transformation over the
integers, QXX ∈ GLn(Z); all such transformations have deter-
minant ±1 (i.e., are unimodular). The upper-right block must
be zero because a sum of a continuous variable and a discrete
variable is not discrete, thereby violating the discreteness of
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�m. The lower-left block does not have to be zero since there
are no discreteness constraints on the angles �φ.

Imposing the symplectic condition (22) yields the follow-
ing constraints on the block matrices:

QT
ZZ QXX = QT

XX QZZ = In×n,

QT
XX QXZ − (QT

XX QXZ )T ≡ 0 mod 2π.
(24)

The first equality of Eq. (24) requires that QZZ = (QT
XX )−1,

indicating that the bottom-right block QZZ also has to be
unimodular. The second equality requires QT

XX QXZ to be
symmetric. These requirements are derived directly from
the definition of the rotor Clifford group. They constrain
the most general form of the rotor Clifford-group element

to be

Q =
(

QXX 0
(QT

XX )−1C (QT
XX )−1

)

=
(

QXX 0
0 (QT

XX )−1

)(
In×n 0
C In×n

)
,

(25)

in which QXX ∈ GLn(Z) and C is a T -valued symmetric ma-
trix whose addition generates U(1)n(n+1)/2.

We prove that the Rotor Clifford group has the following
structure:

Theorem III.1. Rotor Clifford group is U(1)n(n+1)/2
�

GLn(Z).
Proof. There are two obvious subgroups of symplectic

transformations,

H =
{(

A 0
0 (AT )−1

)∣∣∣∣∣, A ∈ GLn(Z)

}
,

N =
{(

In×n 0
C In×n

)∣∣∣∣∣,C is n × n T -valued symmetric matrix

}
.

(26)

The diagonal or CSS subgroup H form a reducible represen-
tation of GLn(Z). The block off-diagonal subgroup N is the
addition group of n × n symmetric matrices over T , repre-
senting the Lie group U(1)n(n+1)/2.

Any element in the form Eq. (25) is in the rotor Clifford
group. It can be generated by the two subgroups H and
N . For all g ∈ G, there exists A ∈ H and C ∈ N such that
g = AC. On the other hand, any element generated by the
subgroup H , N can also be written as the form of Eq. (25),
thus an element of G. Without loss of generality, it can
be written as g = A1C1 · · ·AnCn for some integer n, with
A1, . . . ,An ∈ H and C1, . . . , Cn ∈ G. This can be proved by
induction. The k = 1 case is obvious. Suppose for k = n, g =
A1C1 · · ·AnCn = A(n)C (n). Then g′ = A1C1 · · ·An+1Cn+1 =
A(n)C (n)An+1Cn+1 = A(n+1)C (n+1), where A(n+1) = A(n)An+1

and C (n+1) = A−1
n+1C (n)An+1Cn+1. C (n+1) ∈ N can be shown by

direct calculations

A−1
n+1C (n)An+1

=
(

A−1
n+1 0

0
(
AT

n+1

)
)(

In×n 0

C(n) In×n

)(
An+1 0

0 (AT
n+1)−1

)

=
(

In×n 0[
(AT

n+1C
(n)An+1

]
mod 2π In×n

)

=
(
In×n 0

C′ In×n

)
∈ N. (27)

In the last line of Eq. (27), since AT
n+1C

(n)An+1 is a symmet-
ric matrix, C′ ≡ [(AT

n+1C
(n)An+1] mod 2π is also a T -valued

symmetric matrix. The above derivation uses the identity

[A(C mod 2π )] mod 2π = (AC) mod 2π, (28)

where A is a unimodular matrix and C is a T -valued matrix.

Now we proceed to prove that the set generated by H and
N is indeed a group and N is the normal subgroup.

(1) Associativity. The associativity of group G follows
from the associativity of matrix multiplication.

(2) Identity. The identity element of group G is

e =
(
In×n 0

0 In×n

)
, (29)

which is the identity matrix.
(3) Inverse. The existence of the inverse of g ∈ G follows

from the existence of the group inverse of the element of A ∈
H and C ∈ N , as well as the matrix inverse. g−1 = C−1A−1 =
A−1(ACA−1) ≡ ÃC̃ ∈ G.

(4) Normality. For all Q ∈ G and for all Ch ∈ N , we can
write Q = AQCQ. So QChQ−1 = AQCQChC−1

Q A−1
Q ∈ N , fol-

lowing Eq. (27). �

B. Clifford-group generators

We now identify the generators of the rotor Clifford group
[79] and show how they transform rotor Pauli operators. All
planar rotor Clifford gates can be expressed as exponentials of
quadratic combinations of the phase and angular-momentum
operators, except for the parity-flip operation.

(1) The CNOT gate is defined as

CNOT1→2 =
∫

U(1)
Z (φ) ⊗ |φ〉〈φ|dφ =

∑
l∈Z

|l〉〈l| ⊗ X (l ),

(30a)

and it acts on Pauli operators as

CNOT1→2(X (1) ⊗ I)CNOT
†
1→2 = X (1) ⊗ X (1),

CNOT1→2(I ⊗ X (1))CNOT
†
1→2 = I ⊗ X (1),

CNOT1→2(I ⊗ Z (φ))CNOT
†
1→2 = Z (−φ) ⊗ Z (φ),

CNOT1→2(Z (φ) ⊗ I)CNOT
†
1→2 = Z (φ) ⊗ I.

(30b)
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TABLE II. The matrix description of rotor Clifford gates. The swap gate can be realized by SWAPi j = P j CNOT†
jiCNOT†

i jCNOT ji.

Matrix representation of rotor Clifford gates

Gate Left multiplication Right multiplication

SWAPi j Swap the ith row and the jth row of QX X , and swap the ith row
and the jth row of (QX Z |QZZ ).

Swap the ith column and the jth column of QX X , and swap the
ith column and the jth column of QX Z and QZZ .

CNOTi j Add the ith row of QX X to the jth row of QX X , and subtract the
jth row of QZZ from the ith row of QZZ

Add the jth column of QX X to the ith column of QX X , and
subtract the ith column of QZZ from the jth column of QZZ

Pi Multiply the ith rows of QX X , QX Z , QZZ by −1 Multiply the ith rows of QX X , QX Z , QZZ by −1
QUADϕ,i Add ϕ times the ith row of QX X to the ith row of QX Z Add ϕ times the ith column of (QT

X X )−1 to the ith row of QX Z

CPHSϕ,i j Add ϕ times the ith row of QX X to the jth row of QX Z , and add
ϕ times the jth row of QX X to the ith row of QX Z

Add ϕ times the ith column of (QT
X X )−1 to the jth column of

QX Z , and add ϕ times the jth column of (QT
X X )−1 to the ith

column of QX Z

(2) The QUAD gate, QUADϕ = eiϕ l̂ (l̂+1)/2, acts on Pauli X
operators as

QUADϕX (1)QUAD†
ϕ = Z (ϕ)X (1), (30c)

commuting with all Pauli Z operators.
(3) The CPHS gate, CPHSϕ = eiϕ l̂⊗l̂ , commutes with Z op-

erators and acts on X operators as

CPHSϕ (X (1) ⊗ I)CPHS†
ϕ = X (1) ⊗ Z (ϕ),

CPHSϕ (I ⊗ X (1))CPHS†
ϕ = Z (ϕ) ⊗ X (1).

(30d)

(4) The parity flip, P =∑� | − �〉〈�| = P†, acts as

PX (m)P = X (−m),

PZ (φ)P = Z (−φ),
(30e)

flipping the sign of both position and momentum.
All of the above operators can be generated by evolving

under quadratic interactions, with the notable exception of the
parity flip. Nevertheless, the flip is a well-defined Clifford op-
eration that can be realized in concrete systems (see Sec. C 3)
and that plays a critical role in the study of the relation
between the rotor and homological number-phase codes (see
Sec. V). It is straightforward to identify how these genera-
tors conjugate a Clifford operator defined by the symplectic
transformation Q; we tabulate their actions in Table II. The
generators of the symplectic group from Eq. (30) indeed gen-
erate any rotor Clifford-group element in the form of Eq. (25).
Specifically, the subgroup H and N are generated by2

H = 〈CNOT, P〉, N = 〈QUAD, CPHS〉. (31)

Therefore, the generators in Eq. (30) form a complete set that
generates the whole rotor Clifford group.

IV. HOMOLOGICAL ROTOR CODES

We demonstrate the role of rotor Clifford group in de-
signing and characterizing quantum error-correcting codes, as

2Although it is known that GLn(Z) can be generated by as few as
two generators for any order of n � 4, we use CNOT and P because
they are local gates that are physically preferred.

well as the equivalence and deformation of codes by investi-
gating the homological rotor codes [37]. The relationships we
discover in this section between rotor codes and bosonic codes
via the embedding rotor formalism will inspire us to design
multimode bosonic rotational-symmetric code in Sec. V.

We first review the homological rotor code. Homological
rotor codes are stabilizer codes of CSS type, meaning that the
codespace is the +1-eigenvalue eigenspace of a group of mu-
tually commuting rotor Pauli strings which are either of pure
X or pure Z types. The stabilizer generators of an n-rotor code
are described by matrices HX and HZ of integer-valued en-
tries with size rX × n and rZ × n, respectively. The stabilizer
group is

S = {X ( �mT HX )Z (�φT
HZ ) ∀ �m ∈ ZrX ,∀ �φ ∈ T rZ }. (32)

Mutual commutation imposes the condition

Z (�φT
HZ )X ( �mT HX ) = exp (i�φT

HZ HT
X �m)X

( �mT HX
)
Z
(
�φT

HZ

)
= X ( �mT HX )Z (�φT

HZ ) ⇒ HZHT
X = 0.

(33)

The matrices HX and HZ can also be viewed as maps ∂ =
HX : ZrX → Zn and σ = HT

Z : Zn → ZrZ . The above condi-
tion implies that the composition of the corresponding maps
is zero, σ ◦ ∂ = HX HT

Z = 0. This enables us to define a chain
complex over the integers, with ∂ and σ as its boundary
maps. Code properties can be equivalently stated in terms of
properties of the chain complex. The logical space is given by
the complex’s first homology group,

H1(Z) = ker
(
HT

Z

)/
im(HX ), (34)

which is formed by cosets of elements of the image of HX

im(HX ) in the kernel of HT
Z ker(HT

Z ).
Reference [37] showed that the above homology group is a

product of integer factors Z—each denoting a logical rotor—
and discrete factors Zd —each denoting a d-dimensional
logical qudit. The latter pieces yield finite-dimensional
codespaces and come from what is known as torsion. This
effect is not present in analogously defined oscillator and
Galois-qudit CSS codes.

The impact of torsion is present already in the case of a
single rotor, where one obtains a finite-dimensional codespace
that is related to both rotor and oscillator GKP codes.
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(b)

(a)

FIG. 4. (a) An oscillator GKP code that encodes a ZdN qudit is
a homological embedded rotor code with HX = dN and torsion part
ZdN . (b) A rotor GKP code can be viewed as a concatenation of a
homological rotor code with HX = dN and a modular-qudit GKP
code. We discuss both of these relations in Example 1 and Sec. IV C.

Example 1. For a single rotor homological code, there is
only one stabilizer X (dN ) = eidN θ̂ represented by a one-by-
one matrix HX = dN . The other matrix is just HZ = 0. The
codespace is finite dimensional, with the dN codewords given
by

| j〉 =
∑
m∈Z

|l = mdN + j〉 ∀ j ∈ ZdN . (35)

We can relate the above homological rotor code to the
ordinary oscillator GKP codes [see Fig. 4(a)]. Embedding this
rotor in an oscillator by thinking of the rotor momentum states
|l〉 as oscillator momentum states, we see that the codewords
correspond to those of the GKP codes. And the stabilizer for
the embedded rotor together with the HX stabilizer exactly
correspond to the pair of the stabilizers of the GKP codes.

Alternatively, if we restrict the exponent of Z-type stabi-
lizers from φ ∈ T to some subgroup φ ∈ ZN , we can observe
that the Z-type Pauli ŜZ = Z ( 2π

N ) does commute with X (dN ).
Treating this as an additional stabilizer yields the rotor GKP
codes, and adding this stabilizer can be thought of as concate-
nating the above homological rotor code with modular-qudit
GKP codes [see Fig. 4(b)].

We discuss both of the above relations in Sec. IV C.

A. Torsion and Smith normal form

To build up intuition behind torsion, we calculate the ho-
mology group from a geometric point of view, by studying the
kernels and images in the angular-momentum Hilbert space of
rotors which form a lattice Zn.

To calculate the homology, we first identify the sub-lattice
ker(HT

Z ). HZ does not contribute to the torsion part. This
is because their stabilizer set is a continuum of stabilizers
Z (�φHZ ), indexed by the real-valued vectors �φ. As long as
HZ are integer valued, their rescaled versions yield the same
stabilizer group. Therefore, we can effectively rescale each
row of HZ to obtain a vector whose components have no
nontrivial common divisor.

We then calculate im(HX ). Because the stabilizers are
X ( �mHX ) ∀ �m ∈ ZrX , as the coefficients are discrete, we are not
allowed to rescale row vectors in HX arbitrarily. These vectors
generate a lattice whose spacing is determined by their length.

If a row vector �vx is k times the unit vector in this direction,
then the image of �vx under coefficient Z will skip the grid
points in between the starting and ending points of �vx. When
we take the quotient of im(HX ), the direction of �vx becomes
a circle with k grid points, giving a k-dimensional qudit and
contributing a Zk factor to the torsion part.

The systematic method of identifying the elements in
im(HX ) that do not have unit length in one direction but are
not multiples of other vectors is to calculate the Smith nor-
mal form. For an rX × n integer-valued matrix HX , its Smith
normal form [80,81] D is given by

UHXV = D,

where D is in the diagonal form, meaning Di j = diδi j , 1 � i �
rX . Here di are positive integers and satisfy the condition that
each di is a divisor of di+1, for 1 � i < rX . U is an rX × rX

unimodular matrix and V is an n × n unimodular matrix. The
diagonal entries of D, {d1, . . . , drX }, are unique and they are
called the invariant factors.

The Smith normal form is closely related to the homology
group defined by HZ and HX . To be concrete, let the diagonal
element of D be d1, . . . , drX , then the homology group defined
by HT

Z and HX with HX HT
Z = 0 can be obtained as

ker
(
HT

Z

)/
im(HX ) =

(
rX⊕

i=1

Zdi

)
⊕ Zn−rX −rZ . (36)

The
⊕rX

i=1 Zdi is the torsion part and the Zn−rX −rZ is the free
part. If di = 1, then Zdi = 1, which is trivial.

Understanding rotor Clifford group helps us identify the
physical meanings of matrices U and V . The meaning of U
is performing linear combinations of the generators of the X
stabilizer group. It has no physical consequences to the logical
space of the code. The physical meaning of V is actually the
decoding circuit of the code. To see this, recall that a Clifford
transformation that preserves the CSS structure of the code
should not mix the l and θ quadratures [see discussions around
Eq. (C15)], it should be only an element of the CSS Clifford
subgroup H from Eq. (26). The HX and HZ matrices collect
the phase and angular-momentum operators so they should
change as Eq. (C15) under the CSS Clifford subgroup H ,

H ′
X = HX A and H ′

Z = HZ (A−1)T . (37)

Indeed, the CSS condition is preserved as H ′
X H ′T

Z = 0. So
V represents a special decoding Clifford transformation that
decouples the entangled stabilizers in HX to individual X
stabilizers on each rotor.

B. Code initialization and equivalence classes

Homological rotor encodings can be performed analo-
gously to those of Gaussian or analog stabilizer codes [82,83].
The oscillator encodings consist of a Gaussian transforma-
tion applied to an initial n-mode state, with k of the modes
storing logical information, and n − k modes initialized in
the zero-position state—the canonical nullifier state. Rotor
encodings can be defined analogously using rotor initial states
and the rotor Clifford-group circuit V , defined in the previous
subsection. A key difference is that obtaining codewords with
particular torsion cannot be done by Clifford-group operations
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and instead requires the initial state on the n − k rotors to be
of a particular form.

Applying elements from the CSS Clifford-subgroup H
from Eq. (26) to a given homological rotor code does not
change the torsion structure of the logical subspace. This
can be seen from the invariance of the Smith normal form
under unimodular transformation. Consider an X -parity check
matrix after transformation H ′

X = BHX A where A is an uni-
modular matrix representing the Clifford transformation, and
B is a change of basis of the stabilizer generators. Its Smith
normal form D′ is given by

D′ = U ′H ′
XV ′ = (UB−1)BHX A(A−1V ) = D. (38)

So the Smith normal form D is invariant under the action of
unimodular matrices A and B.

This fact implies that quantum rotor codes with distinct
Smith normal forms belong to different classes of rotor codes,
and cannot be deformed from one class to another by only
applying rotor Clifford gates and changing the basis of the
stabilizer group, which is called Clifford deformation. The
equivalence relation between phase space lattices is also stud-
ied in the context of harmonic oscillator GKP states [84–86],
[87], Thm. 2]. Quantum systems with the same Hilbert space
and the same number of fundamental degrees of freedom are
not necessarily in the same equivalence class. For example,
for a 16-dimensional Hilbert space with two quantum degrees
of freedom, Z2

⊕
Z8 and Z4

⊕
Z4 are not equivalent via uni-

modular transformations as they have different Smith normal
forms.

Since Clifford deformation does not change the invariant
torsion factors {d1, . . . , drX }, the initial state of a homological
rotor encoding with a given Smith normal form needs to be a
resource state with that form. In the embedding formalism of
rotors, these resource states become exactly GKP states, like
the code shown in Example 1.

Another observation is that the specific form of the Smith
normal form (namely, that each di is a divisor of di+1) in-
dicates that not any tensor product of qudits with arbitrary
dimensions is allowed in the torsion part. Different tensor
products may yield the same Smith normal form. Generally,
two qudits with dimensions a = cq and b = cp are equivalent
to two qudits with dimensions c and cpq, respectively, in
which gcd(a, b) = c and p, q are coprime. We provide a con-
crete example of merging two logical qudits into a combined
qudit.

Example 2. Given an X -type parity check matrix

HX =
(

2 0
0 3

)

corresponding to a composite logical system formed by a Z2

qubit and a Z3 qudit, it is equivalent to a Z6 qudit via a
sequence of unimodular transformation,

HX =
(

2 0
0 3

)
→
(

2 0
−2 3

)
→
(

2 0
1 3

)
→
(

1 −3
1 3

)

→
(

1 0
1 6

)
→
(

1 0
0 6

)
= D. (39)

A pictorial description of these transformations is shown in
Fig. 5.

FIG. 5. A sequence of unimodular transformation operations by
which the isomorphism Z2 ⊗ Z3

∼= Z6 is realized.

C. Rotor GKP codes are concatenations of homological rotor
codes and modular-qudit GKP codes

Analogously to the GKP codes in harmonic oscillators in
Eq. (35), GKP codes in rotors can be defined by definite a
discrete lattice in the rotor phase space, T × Z. The rotor
GKP code has two stabilizers ŜX = X (dN ), ŜZ = Z ( 2π

N ). The
codewords are

|ZL = ω j〉L =
∑
m∈Z

|l = jN + mdN〉, (40)

where ω = ei2π/d . Given the codewords, we have logical Pauli
operations

XL = X (N ) = Ŝ1/d
X , ZL = Z

(
2π

dN

)
= Ŝ1/d

Z . (41)

Given the similarity between oscillator and rotor GKP
codes, we observe a connection between rotor GKP codes and
homological rotor codes. We can view the two stabilizers of
the rotor GKP code as a two-step concatenation. The two steps
are shown in Fig. 4(b). Starting from a single rotor, we first
impose the stabilizer HX = dN . This is the code discussed in
Example 1 with codewords and logical operators∣∣Z = ei 2π j

dN
〉 = ∑

m∈Z
|l = j + mdN〉,

X = X (1) = eiθ̂ , Z = Z

(
2π

dN

)
= ei 2π

dN l̂ .

(42)

Then we further impose Z
d = Z ( 2π

N ) as the stabilizer for the
second step, thereby concatenating the homological code with
a modular-qudit GKP code [38], Sec. II] that encodes a logical
d-dimensional qudit into a dN-dimensional physical qudit.

The effect of the stabilizer Z
d

is to fix the angular momentum
to be a multiple of N . Hence, we obtain a d-dimensional
logical qudit Hilbert space, whose codewords are in Eq. (40)
and logical operators are in Eq. (41).

In Appendix D, we calculate the Wigner function for GKP
states in rotor space and find the function does have negativity
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which corresponds to the “magic” for continuous-variable
systems. Furthermore, in Appendix E, we calculate the error-
correction condition for regularized rotor GKP states and find
it is related to Jacobi ϑ functions.

V. HOMOLOGICAL NUMBER-PHASE CODES

In this section, we turn back to the oscillator Fock space
discussed in Sec. II and construct multimode oscillator codes
correcting photon number changes and dephasing errors.

Quantum error-correcting codes only protect certain
classes of errors. For example, the oscillator GKP codes are
designed to correct (linear) quadrature displacements, but they
underperform against (radial) dephasing errors, whose perfor-
mance was analyzed in Ref. [51]. To protect information from
these errors, we need to study bosonic codes with rotational
symmetry in phase space which can naturally correct both
photon number changes and dephasing noise. Although the
landscape of single-mode rotation-symmetric bosonic codes
is well investigated theoretically [45,46,88] and experimen-
tally [89,90], constructions of multimode rotation-symmetric
bosonic codes without concatenation remain unexplored. In
this section, we provide a systematic way to construct mul-
timode rotation-symmetric bosonic codes from homological
rotor codes, which is an algebraic construction without di-
rectly concatenating single-mode rotation-symmetric bosonic
codes with discrete-variable codes. We should emphasize that
although these codes are inspired from rotor codes, they are
constructed directly on oscillator modes, instead of constrain-
ing rotors in the non-negative angular-momentum subspace.

We draw inspiration from the fact that the codewords of
number-phase oscillator code can be obtained from the rotor
GKP code by projecting the former into the non-negative rotor
Hilbert subspace. Extending this intuition, we show that any
homological rotor code can be similarly mapped into oscilla-
tor number-phase code without changes of code parameters,
after flipping the signs of some of the rotor momenta. This
yields multimode rotation-symmetric bosonic codes which we
call homological number-phase codes for oscillators, com-
patible with noise channels where photon loss is present but
random-rotation (i.e., dephasing) noise is dominant.

We start from the correspondence between rotor GKP code
and bosonic number-phase code as the most straightforward
example.

Example 3. The number-phase code is a rotation-
symmetric bosonic code protecting against photon loss and
dephasing errors [45] (see also Ref. [91]). Its codewords are

|0〉F =
∑
k∈N

|2kN〉, |1〉F =
∑
k∈N

|(2k + 1)N〉. (43)

This code can be obtained by projecting the rotor GKP code
from Eq. (40) onto the non-negative rotor Hilbert subspace,
and identifying said subspace with the Fock space of the
oscillator.

The original rotor GKP code stabilizers, Z (2kπ/N ) and
X (2N ), become Z (2kπ/N )F and X (2N )†

F after projection, re-
spectively. The new Z-type operator is still a stabilizer of the
number-phase code, but X (2N )F is no longer a stabilizer. Nev-
ertheless, the two X - and Z-type operators form a semigroup,

and the codestates are +1-eigenvalue right eigenstates of all
semigroup elements [45,54].

Encouraged by the above single-rotor example, we can
try to take an arbitrary homological rotor code and project
its codewords onto the non-negative momentum subspace of
each rotor. However, directly this can sometimes result in
trivial codewords, as in Example 4.

Nevertheless, there is a simple remedy. The idea is to flip
the orientation of certain rotors so that each codeword has
nontrivial support on the non-negative momentum subspace
of each rotor. In the example below, we convert the four-rotor
current-mirror code [37] into its corresponding four-mode
bosonic number-phase code.

Example 4. The four-rotor current-mirror code is defined
by parity check matrices

HX =
⎛
⎝ 1 −1 0 0

0 0 −1 1
−1 −1 1 1

⎞
⎠, HZ = (1 1 1 1).

(44)

This code encodes a qubit, with logical codewords

|0̄〉 =
∑

l1,l2,l3∈Z
|l1, 2l2 − l1, l3,−2l2 − l3〉,

|1̄〉 =
∑

l1,l2,l3∈Z
|l1, 2l2 + 1 − l1, l3,−2l2 − 1 − l3〉,

(45)

and logical operators X = X2(1)†X4(1), Z = Z3(π )Z4(π ). Ap-
plying the number-phase projection prematurely by cutting off
all negative momenta, we see that the only survived codeword
is the trivial state |0, 0, 0, 0〉 where the logical qubit subspace
is eliminated. However, if we properly apply sign flips to
HX such that it becomes non-negative, then the codewords of
deformed HX can still store logical information.

For such an example, the required transformation can be
done by flipping the momenta of the second and third rotors.
The HX matrix is then

H+
X =

⎛
⎝1 1 0 0

0 0 1 1
0 2 0 2

⎞
⎠, H+

Z = (1 −1 −1 1),

(46)

and the code words become

|0̄〉+ =
∑

l1,l2,l3∈Z
|l1, 2l2 + l1, l3, 2l2 + l3〉,

|1̄〉+ =
∑

l1,l2,l3∈Z
|l1, 2l2 + 1 + l1, l3, 2l2 + 1 + l3〉.

(47)

Applying the projector �⊗4
�0 to the codewords yields

|0̄〉F = �⊗4
�0|0̄〉+ =

∑
l1,l2,l3∈N

|l1, 2l2 + l1, l3, 2l2 + l3〉,

|1̄〉F = �⊗4
�0|1̄〉+ =

∑
l1,l2,l3∈N

|l1, 2l2 + 1 + l1, l3, 2l2 + 1 + l3〉,

(48)
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which are the codewords of four-mode bosonic number-phase
code with logical operators

X = X2(1)†
FX4(1)†

F, Z = Z3(−π )Z4(π ). (49)

We called this code as current-mirror number-phase code. The
stabilizer semigroup of Eq. (48) is generated by

{X1(1)†
FX2(1)†

F, X3(1)†
FX4(1)†

F, X2(2)†
FX4(2)†

F,

Z1(φ)FZ2(φ)†
FZ3(φ)†

FZ4(φ)F}. (50)

In Example. 4, we explicitly construct the four-mode
number-phase code by flipping and projecting the four-rotor
current-mirror code. The next question would be whether
the above technique is applicable to general homological
rotor codes such that we can always construct multimode
rotation-symmetric bosonic codes by flipping and projecting
homological rotor codes. The following proposition proves
that a sequence of flipping operations that gives non-negative
HX can always be found.

Proposition 1. For a given homological n-rotor code with
matrices HX and HZ , there exists an unimodular and diagonal
matrix S, such that all logical codewords of the code defined
by H ′

X = HX S and H ′
Z = HZ (ST )−1 have support on the or-

thant where each rotor has non-negative momentum.
Proof. The code subspace is a sublattice that passes

through the origin in Zn lattice grids. So it must have support
on some certain orthants. Because code words are defined
by the quotient under Im(HX ), each code word is translation
invariant in the direction of the row vectors of HX . This means
if the ker HT

Z sub-lattice passes through an orthant, this orthant
should overlap with the support of each code word.

There always exists a series of flipping operations to trans-
form a given orthant to the orthant in which all the integers are
positive, denoted as (+,+,+, . . . ). Specifically, an orthant
labeled by (+,−,+,−,−, . . . ) is mapped to (+,+,+, . . . )
via the Zn

2 element I ⊗ P ⊗ I ⊗ P ⊗ P · · · , with the isomor-
phism + → I , − → P. �

The procedure to map a homological rotor code to its
corresponding homological number-phase code is as follows:

(1) Given a n-rotor homological rotor code with HX , we
flip the parities of part of rotors to make HX + = HX S so
that all its row vectors are in the all positive orthant. This
transformation will affect HZ as well, such that H+

Z = HZ S.
Here, S is a diagonal matrix composed of parity flips P whose
diagonal elements are ±1. The effect of S is to convert all
CNOT† gates included in the encoding circuit to CNOT gates.3

Hence, in practice, we just need to replace every CNOT† by
CNOT and eliminate pre-existing parity flips P in the encoding
circuit.

(2) Project onto non-negative angular-momentum sub-
space by applying �⊗n

�0 on each rotor to obtain a homological
number-phase code that is stabilized by a stabilizer semigroup
given by H+

X and H+
Z . The resulting homological number-

phase code is stabilized by the stabilizer semigroup

S+ = {X ( �mT H+
X )

†
FZ (�φT H+

Z )F ∀ �m ∈ NrX ,∀ �φ ∈ T rZ }. (51)

3It can be shown that P1CNOT†
1→2P1 = P2CNOT†

1→2P2 = CNOT1→2.

Similar to the single-mode case, we can assign a dis-
tance against rotation errors to the resulting homological
number-phase code. Phase states are not quite orthogonal (see
Ref. [54] for the case of a single mode), so homological
number-phase codes are not exactly error correcting. Never-
theless, the sign flipping is done by the single-rotor Clifford
operation P from Eq. (26), so the entanglement structure of
the code, and thus its intended degree of protection, both carry
over. Since configuration-space distances |(θ − φ) mod 2π |
are invariant under sign flipping, homological number-phase
codes can be described by the distances of their planar-rotor
counterparts, but protect against rotation errors in an approxi-
mate sense.

A. Number-phase Clifford encodings

Similar to our treatment in Sec. II C, we can construct
the Clifford operations in oscillator Fock basis by projecting
the rotor Clifford group onto the non-negative angular-
momentum subspace. The comparison of the generators for
both groups are shown in Table III. Since encoding circuits of
stabilizer codes are composed of Clifford operations, investi-
gating the Clifford operations for oscillator Fock space helps
us construct and understand the encoding circuit of homo-
logical number-phase code. In this subsection, we utilize this
Clifford semigroup for oscillator Fock space to encode and
decode information into homological number-phase codes.

After applying the mapping between rotor and oscillator
Fock space, we see that the rotor Clifford-group operations
QUADF,ϕ and CPHSF,ϕ are unitary operators, but CNOTF is not.
Indeed, we can show that

CNOT
†
FCNOTF = I,

CNOTFCNOT
†
F =

∞∑
n=0

|n〉〈n| ⊗ ��n.
(52)

Nevertheless, CNOTF(·)CNOT
†
F remains a valid quantum chan-

nel that can be utilized for encoding.
Analogous to Eqs. (30b), (30c), and (30d), we can de-

termine how the Clifford gates for oscillator Fock space
transform the occupation number and phase quadratures:

CNOT1→2,F(X (1)F ⊗ I)CNOT
†
1→2,F = X (1)F ⊗ X (1)F,

CNOT1→2,F(X (−1)F ⊗ I)CNOT
†
1→2,F = X (−1)F ⊗ X (−1)F,

CNOT1→2,F(I ⊗ Z (φ)F)CNOT
†
1→2,F = Z (−φ)F ⊗ Z (φ)F,

QUADF,ϕX (1)FQUAD
†
F,ϕ = Z (ϕ)FX (1)F,

CPHSF,ϕ (X (1)F ⊗ I)CPHS
†
F,ϕ = X (1)F ⊗ Z (ϕ)F,

CPHSF,ϕ (I ⊗ X (1)F)CPHS
†
F,ϕ = Z (ϕ)F ⊗ X (1)F. (53)

This shows that, despite the presence of nonunitarity, number-
phase Clifford operations can be used to perform conditional
operations and extract syndrome information for homologi-
cal number-phase codes. Notably, the number-phase Clifford
operations transforms the number-phase Pauli semigroup in
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TABLE III. Planar-rotor Clifford operations as realized by the “number-phase” interpretation of the oscillator from Sec. II; each number-
phase operator has the subscript F in the main text. These are obtained by projecting planar-rotor operators into the subspace of non-negative
momentum states and interpreting said states as oscillator Fock states |n〉. Parity flip operations are not present because they flip the sign of
the momentum states. Pauli-X rotations are mapped into powers of the nonunitary Pegg-Barnett phase operator [35,58,59], which performs
photon subtraction and injection. The CNOT gate is mapped to a nonunitary controlled photon injection operator. The Pauli and symplectic
groups become semigroups with identity (i.e., monoids), but both nonunitary operators U remain valid quantum channels because U †U = I.

Planar rotor Oscillator Fock space

Pauli X (5) Photon injection
∑∞

n=0 |m + n〉〈m|
Pauli Z (5) Rotation eiϕn̂

CNOT (30b) Controlled photon injection
∑∞

n,m=0 |n〉〈n| ⊗ |m + n〉〈m|
QUAD (30c) Kerr interaction eiϕn̂(n̂+1)/2

CPHS (30d) Cross-Kerr interaction eiϕn̂⊗n̂

the same way as the relevant part of the rotor Clifford group
transforms the rotor Pauli operators. Hence, the symplectic
representation we constructed in Sec. III is applicable to cal-
culate the Clifford transformation of Pauli operators for the
oscillator Fock basis.

Example 5. We use the same current-mirror number-phase
code as in Example 4. The initial state is stabilized by the
stabilizers

S0 = 〈X1(1)†
F, X2(2)†

F, X3(1)†
F, Z4(φ)F ∀ φ ∈ T 〉

= 〈(−1, 0, 0, 0|0)T , (0,−2, 0, 0|0)T , (0, 0,−1, 0|0)T ,

(0|0, 0, 0, φ)T ∀ φ ∈ T 〉, (54)

in which we use 0 to denote (0,0,0,0). The second rotor en-
codes logical qubit information via a single rotor code with
torsion Z2. We can explicitly write down the initial state as

|ψ0〉 =
∑

l1,l2,l3∈N
|l1〉 ⊗ (α|2l2〉 + β|2l2 + 1〉) ⊗ |l3〉 ⊗ |0〉.

(55)

The logical Pauli operators for the initial state are X = X2(1)†,
Z = Z2(π ). They admit a vector representation as

X = (0,−1, 0, 0|0)T , Z = (0|0, π, 0, 0)T . (56)

The symplectic representation of the encoding circuit is

Q+ =
(

A+
enc 0

0
(
A+T

enc

)−1

)
, A+

enc =

⎛
⎜⎜⎝

1 1 0 0
0 1 0 1
0 0 1 1
0 0 0 1

⎞
⎟⎟⎠,

(57)

which corresponds to the encoding circuit U +
enc =

CNOT1→2,FCNOT3→4,FCNOT2→4,F. The original encoding
circuit (before parity flips) of stabilizers shown in Eq. (44) is
Uenc = CNOT

†
1→2CNOT

†
3→4CNOT

†
2→4 = P2P3U +

encP2P3.
The stabilizers and logical operators of those codewords

can be calculated according to the method in Sec. III. We
then transform S0, X , Z by multiplying them by Q+, and

we obtain

S = {(−1,−1, 0, 0|0)T , (0,−2, 0,−2|0)T ,

(0, 0,−1,−1|0)T , (0|φ,−φ,−φ, φ)T } ∀ φ ∈ T ,

X = (0,−1, 0,−1|0)T , Z = (0| − π, π, 0, 0)T , (58)

which are the stabilizer semigroup and logical operators of the
codewords.

After we apply U +
enc to |ψ0〉, we can see that the codestate

is written as

|ψ〉 = U +
enc|ψ0〉 = α|0〉F + β|1〉F, (59)

where |0〉F, |1〉F are codewords shown in Eq. (48).
The main challenge of syndrome measurement of homo-

logical number-phase codes using the Clifford semigroup
is measuring X -type stabilizers. This is because the condi-
tional photon subtraction, CNOT†

np, is not a completely positive
trace-preserving (CPTP) map. However, we can construct the
following CPTP map

D : ρ → CNOT
†
FρCNOTF + P†

CρPC

= D1(ρ) + D2(ρ), (60)

where PC =∑∞
n=0 |n〉〈n| ⊗ (

∑n−1
m=0 |m〉〈m|) is a projector into

the subspace where the photon number on the second mode is
smaller than the photon number on the first mode. This CPTP
map can decomposed to two non-CPTP maps D1 and D2. The
D1 is the map we desire to implement for X -type syndrome
extraction while the D2 is undesired. Hence, the syndrome
extraction process D is a probabilistic process. Nevertheless,
the syndrome information can be obtained after postselecting
on D1.

Non-destructive but probabilistic syndrome extraction is
likely not the optimal way to readout syndromes for this
code. We anticipate that Knill’s (destructive) teleportation-
based quantum error-correction scheme [92], used to correct
rotation-symmetric quantum codes [46,51], can be general-
ized to this multimode case. We leave the investigation of this
scheme to a follow-up work on related codes.
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TABLE IV. Comparison between planar rotor GKP-stabilizer, embedded rotor GKP-stabilizer, and number-phase GKP-stabilizer codes
outlined in Sec. VI.

Planar rotor GKP-stabilizer code Embedded rotor GKP-stabilizer code Number-phase GKP-stabilizer code

Physical space Rotors Oscillators Oscillators
Logical space k rotors k rotors k oscillators
State on n − k subsystems Rotor GKP code Oscillator GKP code Number-phase code
Encoding circuit Rotor Clifford Rotor Clifford Clifford semigroup
Error Rotor Pauli (5) Oscillator displacements Photon loss and dephasing (14)

VI. GKP-STABILIZER CODES FOR ROTORS

GKP-stabilizer codes [34] have been proposed as a way to
encode logical oscillators into physical oscillators and utilize
oscillator GKP states to protect against displacement noise.
In this section, we consider rotor versions of GKP-stabilizer
codes [34], which allow one to protect an infinite-dimensional
logical space against displacement noise. The interpretation of
the harmonic oscillator number-phase basis allows us to map
such codes back into the oscillator, yielding codes protecting
against bosonic dephasing errors.

The encoding of each version consists of placing logical
information into k subsystems (either rotors or oscillators),
initializing the remaining n − k subsystems in a particular
resource state, and applying a Clifford circuit. The noise that
the code is suitable for depends on the resource state. The
ingredients for each code are summarized in Table IV.

(1) Planar rotor GKP-stabilizer codes. We encode k logi-
cal rotors into n physical rotors, with n − k rotors initialized in
rotor GKP states. This provides a way to protect logical rotors,
which are compact and infinite-dimensional, from physical
rotor Pauli X and Z errors. Although the homological rotor
code [37] can also encode logical rotors into physical rotors,
its Z-type stabilizers are continuous, as shown in Eq. (32),
while the rotor GKP-stabilizer code inherits the discrete sta-
bilizer group of the rotor GKP states on the n − k rotors. This
construction can correct the rotor Pauli X and Z error acting
on the k logical rotors.

(2) Embedded rotor GKP-stabilizer codes. This code can
be regarded as a GKP-stabilizer code whose logical space
forms rotors instead of oscillators due to the extra embedded-
rotor stabilizer constraint placed on the k logical modes. We
first encode k logical rotors into k logical oscillator modes via
the embedded rotor technique. Then, we encode the k logical
oscillator modes into n multiple oscillator modes by initial-
izing n − k modes in oscillator GKP states4 and applying a
Gaussian transformation. We can also regard this code as a
concatenation between rotor-to-oscillator code and oscillator
GKP-stabilizer code. As with the regular GKP-stabilizer code,
this code can correct position and momentum displacements.

(3) Number-phase GKP-stabilizer codes. Analogous to
the planar rotor GKP-stabilizer codes, we encode k log-

4They are concatenation between oscillator GKP codes and qudit
GKP codes (see Sec. IV C), here we still call them as oscillator GKP
codes because of its comb structure.

ical oscillators into n physical oscillators5 by initializing
n − k oscillators in single-mode number-phase codestates
and applying a Clifford semigroup circuit as encoder. Such
construction can be regarded as the polar coordinate gen-
eralization of oscillator GKP-stabilizer codes which are
formulated in the lattices of Cartesian coordinates (position
and momentum). The number-phase GKP-stabilizer codes
can protect logical oscillator modes from the photon number
changes and dephasing noise.

In the following of this section, we use the GKP-repetition
code as an example to demonstrate all three constructions.

Example 6. We would like to encode a single logical rotor
into two physical rotors while being able to detect Z-type rotor
Pauli errors. We place the logical information, denoted by the
function ψ (k) for integer k, into the first rotor, initialize the
second rotor in a rotor GKP state, and apply a CNOT gate. This
yields

|ψ〉code = CNOT2→1

⎛
⎝∑

k∈Z
ψ (k)|k〉

⎞
⎠⊗

⎛
⎝∑

�∈Z
|m�〉

⎞
⎠

=
∑

k,�∈Z
ψ (k)|m� + k〉 ⊗ |m�〉,

(61)

where all constituent states are rotor momentum states. This
code is stabilized by rotor Pauli strings X (m) ⊗ X (m) and
I ⊗ Z ( 2π

m ). The logical Pauli operator of the encoded rotor be-
comes X (l ) = X (l ) ⊗ I ∀ l ∈ Z and Z (φ) = Z (φ) ⊗ Z (−φ)
∀ φ ∈ T .

Using Eq. (30b), rotor Pauli errors propagate as

CNOT1→2(X (l ) ⊗ I) = (X (l ) ⊗ X (l ))CNOT1→2,

CNOT1→2(I ⊗ Z (φ)) = (Z (−φ) ⊗ Z (φ))CNOT1→2,
(62)

enabling us to extract error syndromes as follows.
Suppose we have a codeword corrupted by a dephasing er-

ror Z (ξZ
1 ) ⊗ Z (ξZ

2 ), the noisy codeword is written as Z (ξZ
1 ) ⊗

Z (ξZ
2 )|ψ〉code. Then we initialize an ancillary third mode in the

state

|+〉U(1) ∝
∑
n∈Z

|nm〉 =
m−1∑
n=0

∣∣∣∣θ = 2πn

m

〉
, (63)

5Note that number-phase basis is another description of the oscil-
lator, hence this construction is for oscillator-to-oscillator codes that
correct photon number changing and dephasing errors.
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where |θ〉 is a rotor position state. Finally, we apply CNOT3→1CNOT3→2. This yields

CNOT3→1CNOT3→2
(
Z
(
ξZ

1

)⊗ Z
(
ξZ

2

))|ψ〉code ⊗ |+〉U(1) (64a)

= (Z
(
ξZ

1

)⊗ Z
(
ξZ

2

)⊗ Z
(−ξZ

1 − ξZ
2

))
CNOT3→1CNOT3→2|ψ〉code ⊗ |+〉U(1) (64b)

= (Z
(
ξZ

1

)⊗ Z
(
ξZ

2

)⊗ Z
(−ξZ

1 − ξZ
2

)) ∑
k,n, f ∈Z

ψ (k)|m(n + f ) + k〉 ⊗ |m(n + f )〉 ⊗ |m f 〉 (64c)

= (Z
(
ξZ

1

)⊗ Z
(
ξZ

2

)⊗ Z (−ξZ
1 − ξZ

2 ))|ψ〉code ⊗ |+〉U(1) (64d)

= (Z(ξZ
1

)⊗ Z
(
ξZ

2

)⊗ Z
(−ξZ

1 − ξZ
2

))|ψ〉code ⊗
m−1∑
f =0

∣∣∣∣θ = 2π f

m

〉
(64e)

= (Z(ξZ
1

)⊗ Z
(
ξZ

2

)⊗ I
)|ψ〉code ⊗

m−1∑
f =0

∣∣∣∣θ = 2π f

m
+ ξZ

1 + ξZ
2

〉
. (64f)

Then, by performing a phase-basis projective measurement
on the third ancillary mode, we extract the syndrome
(ξZ

1 + ξZ
2 ) mod 2π/m. The correctable Z error would

be in the interval (ξZ
1 + ξZ

2 ) ∈ [−π/m, π/m) where (ξZ
1 +

ξZ
2 ) mod 2π/m = ξZ

1 + ξZ
2 . Then we apply the decoding uni-

tary CNOT
†
2→1 to the noisy codeword and obtain

(
Z (ξZ

1 + ξZ
2

)⊗ I
)⎛⎝∑

k∈Z
ψ (k)|k〉

⎞
⎠⊗

⎛
⎝∑

l∈Z
|ml〉

⎞
⎠. (65)

Then we perform error correction by applying
Z[−(ξZ

1 + ξZ
2 )/2] such that the logical Z variance

is Var[(ξZ
1 + ξZ

2 )/2]. In the general case, where
the X and Z errors appear simultaneously such as
X (ξX

1 )Z (ξZ
1 ) ⊗ X (ξX

2 )Z (ξZ
2 ), aside from the above analysis,

we can use another ancilla to measure the X error acting
on the second rotor by measuring stabilizer I ⊗ Z ( 2π

m ). The
error-correction procedure of this code for the general case is
to prepare two ancilla rotors in |+〉U (1) (one for the Z error and
another for the X error). For the X error, we can extract the
syndrome ξX

2 mod m by applying CNOT2→4 and measure the
angular momentum on the fourth rotor. The correctable error
X error would be in the interval ξX

2 ∈ [−m
2 , m

2 ). Sharing the
spirit of oscillator GKP-stabilizer codes [34], if we assume the
X - and Z-type errors are identical and independent random
variables and their variances are much smaller than π/m
and m, respectively, then such construction can reduce the
variance of Z-type error acting on the logical rotor to 1/2
while it does not amplify the X -type error.

We can repeat the projection procedure we discussed in
Sec. V to obtain number-phase resource states for this version
of GKP-stabilizer codes. For this number-phase version, all
ingredients are replaced by their number-phase counterparts.
The stabilizer becomes X (m)†

F ⊗ X (m)†
F and I ⊗ Z ( 2π

m )F. The
Z-type errors correspond to the dephasing channels in bosonic
systems, and X -type errors (momentum kicks) correspond to
the photon loss channel in bosonic systems.

VII. DISCUSSION AND OUTLOOK

In Sec. II, we discuss how to faithfully realize a planar
rotor, which we call the embedded rotor, inside a harmonic

oscillator. This provides a way to investigate quantum systems
described by U(1) degrees of freedom with harmonic oscilla-
tors with modular variables [93]. We then treat the Fock space
of the oscillator as the non-negative angular-momentum sub-
space of the rotor by using the analog between the rotor Pauli
operator and the Pauli semigroup of oscillator Fock basis. This
enables us to construct oscillator codes against photon number
changing and dephasing errors by adapting homological rotor
codes in Sec. V. This yields a multimode generalization of
number-phase codes [51] which we call homological number-
phase codes. The performance of homological number-phase
codes and the number-phase uncertainty relation of these
codes are left for future studies. Moreover, our treatment of
oscillator Fock space provides another approach to realize
rotor algebras in harmonic oscillator systems. Its use in quan-
tum simulation of many-body physics is also an interesting
question.

We investigate rotor Clifford operations in Sec. III. We
identify its structure and its generators. They are fundamental
for analyzing the encoding/decoding of rotor codes, as well
as code deformation, which leads us to the development of
bosonic number-phase codes. It is a practical direction to
study the realization of the whole set of rotor Clifford gen-
erators in experimental platforms.

In Sec. IV, we explain the method of calculating the logical
space of homological rotor codes via Smith normal form.
Homological rotor codes are classified by their torsion parts,
and the torsion structure is invariant under CSS rotor Clifford
transformations. This classification is tightly related to the
classification of GKP code lattices. We find a relation between
the single-rotor code with torsion and the oscillator GKP
qudit in the embedded rotor formalism. Also, we show that
rotor GKP codes can be treated as a concatenation between
homological rotor codes and modular-qudit GKP codes.

Drawing an analogy to oscillator Gaussian states, we
study the rotor nullifier states (analogues of position and
momentum eigenstates), coherent states, Josephson junction
Hamiltonians, as well as their transformations under the ro-
tor Clifford group in Appendix C. Due to the structure of
the rotor Clifford group, rotor nullifier states and coher-
ent states are not related via rotor Clifford transformations.
These problems call for a suitable definition of the Gaussian
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and non-Gaussian states for rotors, as well as a quantifica-
tion of non-Gaussianity, or “magic” [94–98], in rotor states.
It is worthwhile to continue this direction since studies of
magic and non-Gaussianity of quantum states on discrete and
continuous-variable quantum systems yield various results on
realizing fault-tolerant quantum computing [98–104], esti-
mation of quantum information resources [96,105–107], and
characterizing exotic quantum phases of matter [108].

Having quantified some of the basic computational prim-
itives for the planar rotor, we leave open the question of
the Clifford hierarchy [109–111]. We believe that, once this
hierarchy is determined for oscillator systems, projecting each
member of the hierarchy into the oscillator’s embedded rotor
should be useful in backing out the corresponding operators
for the planar rotor.

It would be theoretically important as well as practically
useful to develop analogous symplectic primitives for more
general quantum systems, such as molecules, rigid bodies and
other group-valued qudits. They may open the possibilities of
utilizing other physical platforms, as well as providing better
candidates for the study of holographic gravity. This would be
an interesting direction to pursue in the future.
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APPENDIX A: NO SQUEEZING FOR PLANAR ROTORS

In this Appendix, we recap that (unitary) squeezing is not
a Clifford operation for rotors because it is an automorphism
of Rn but not of T n or Zn.

The squeezing of a single-mode harmonic oscillator
squeezes one quadrature and dilates its conjugate pair, q̂ →
erq̂ and p̂ → e−r p̂ for some real parameter r. It is a symplectic
automorphism in R so is an element of the oscillator Clifford
group. Notably, squeezing preserves the spectrum of both the
position and momentum operators, which is all of the reals.

For rotor systems, a map multiplying the angular position
by a constant c, θ → cθ , can only be an automorphism for c =

±1. Hence, squeezing a rotor is impossible. The squeezing we
defined is analogous to the quadrature squeezing of harmonic
oscillator: q̂ → cq̂ such that Var(q) → cVar(q). In the context
of quantum metrology, the spin squeezing is usually defined
as Var(Sz ) → cVar(Sz ) without requiring Ŝz → cŜz, the inter-
plays between squeezed rotor states [112] in the context of
quantum metrology and rotor Clifford operations will be left
for future investigation.

For multiple rotors, the automorphism of T n is GLn(Z).
Because any matrix of GLn(Z) has determinant ±1, there
should not exist an overall squeezing in the phase basis. Be-
cause a GLn(Z) matrix can be diagonalized via unimodular
matrices, and unimodular matrices have determinant ±1, this
implies that the resulting diagonal matrix should also have
determinant ±1. Since the entries of it should be integers, the
eigenvalues can only be ±1. This means for multiple rotor
modes, there does not exist an automorphism that squeezes
one collective mode while stretches another collective mode
under the phase basis.

The angular-momentum basis has group structure Zn and
its group automorphism group is GLn(Z) as well. The same
argument shows that squeezing is not an automorphism of this
basis either.

Not having unitary squeezing is a generic feature in other
systems as well, e.g., modular-qudit systems whose states are
valued in Zd . More generally, if one of the quadratures is
valued in a compact group, squeezing should not be able to
be realized via a unitary operation, as it cannot be an auto-
morphism of the group.

APPENDIX B: PASSIVE SYMPLECTIC SUBGROUP

The oscillator symplectic group has an important
subgroup—the group of passive transformations that preserve
the total energy (i.e., photon number) of the oscillators [4].
The passive symplectic group for rotor systems can be simi-
larly defined as preserving the total energy of the rotors. For
n identical rotors, the total energy should be proportional to
the sum of angular momentum squared of each rotor,

∑
i l2

i .
This yields the corresponding passive symplectic group of the
rotor.

The passive symplectic group of the oscillator preserves
the total photon number,

∑
i â†

i âi = n/2 +∑i(q̂
2
i + p̂2

i ). Col-
lecting positions and momenta into a 2n-dimensional vector
�v, we see that passive transformations have to preserve the
inner product �vT �v. This constraint defines a 2n-dimensional
real sphere in phase space, meaning that any passive transfor-
mation has to be an element of the sphere’s proper-rotation
symmetry group, SO(2n). Taking the intersection of this
group with the symplectic group yields Sp2n(R) ∩ SO(2n) ∼=
U(n), the n-dimensional unitary group.

The real 2n-dimensional sphere can equivalently be
thought of as a complex n-dimensional sphere, whose cor-
responding constraint can be formulated using the vector
of annihilation operators, �a = (â1, â2, . . . , ân). Passive trans-
formations form that sphere’s symmetry group, U(n). Since
coherent states are eigenstates of annihilation operators, they
can be thought of as points on said sphere. Passive trans-
formations rotate these points, preserving the tensor product
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structure of coherent states on different modes,

U |α1〉 ⊗ · · · |αn〉 = |α̃1〉 ⊗ · · · |α̃n〉, (B1)

where α̃i =∑ j Ui jα j .
In the symplectic representation, a general passive sym-

plectic element can be written as

S =
(

A B
−B A

)
, where

{
ABT − BAT = 0,

AAT + BBT = In×n.
(B2)

In the rotor case, according to the analysis in Sec. III A, A
should be in GL(n,Z) and the upper-right block B must be
empty. Hence, rotor passive transformations are written as

S =
(

A 0
0 A

)
, where

{
AAT = In×n,

A ∈ GLn(Z).
(B3)

In words, to preserve the square of the total angular mo-
mentum,

∑
i l2

i , a passive transformation should be an element
of O(n). In the meantime, li are integers, so the transforma-
tion should take value in GLn(Z). These conditions fix the
rotor passive transformation group to be the signed symmetric
group (also known as the hyperoctahedral group),

O(n) ∩ GLn(Z) = Z2 � Sn, (B4)

generated by SWAP and parity flip P (where � is the wreath
product).

While the oscillator group is a rich and complex amal-
gamation of SU(2) mode-mixing transformations (beam
splitters) and U(1) single-mode rotations (phase shifters) [4],
its rotor counterpart consists of only permutations and mo-
mentum parity flips. A parity flip is inherited from the π -phase
shift, while a SWAP is passed down from the 50-50 beam
splitter.

In passing, we note that the lack of beam-splitters
and squeezing precludes us from mapping any interesting
Gaussian bosonic channels [3] into the rotor state space.

APPENDIX C: ROTOR GAUSSIAN STATES

Gaussian states play a fundamental role in many aspects
of quantum physics of harmonic oscillator systems. They are
a class of states with non-negative Wigner functions which
can be described just by their first and second moments.
The evolution of bosonic Gaussian states under symplectic
unitaries can be efficiently simulated by classical algorithms
via tracking the changes of their first and second moments
[41,114]. The definition of rotor Gaussian states are the rotor
states with non-negative Wigner functions. In the cases of
planar rotor, the symplectic representation of Clifford circuits
also gives us a classically efficient simulation algorithm [31].

The oscillator nullifier states, coherent states, squeezed
states, as well as thermal states of free Hamiltonians, are
all important examples of oscillator Gaussian states. We
wish to enumerate the counterparts of nullifier, coherent, and
squeezed coherent states of the rotor system with similar
properties to oscillator Gaussian states.

In this Appendix, we discuss the analogy of nullifier states
and coherent states in rotor systems and compare them to their
counterparts in oscillator systems. We also discuss the trans-

formation of Josephson-junction rotor Hamiltonians under the
rotor Clifford group.

1. Rotor nullifier states

For oscillator systems, the position and momentum eigen-
states are called nullifier states [83]. They are δ functions
localized at given position or momentum values and can
thought of as infinitely squeezed coherent states. Oscil-
lator nullifier states are an important class of oscillator
Gaussian states and have been studied in the context of
continuous-variable quantum computing and error correction
[53,83,115–118].

Single-rotor nullifier states are the angle phase states
and the angular-momentum eigenstates. However, only rotor
angular-momentum eigenstates, whose Wigner functions are
delta functions corresponding to the limit of sharp Gaussian
with variance closed to zero, are proper Gaussian states for
rotors while the phase states are not Gaussian [27]. One way to
understand this is to project oscillator Gaussian states into the
embedded rotor subspace and look for those states that remain
Gaussian after projection. Only momentum states satisfy this
constraint, as rotor position states—an infinite superposition
of periodically identified oscillator position states—are no
longer Gaussian.

A multirotor nullifier state is defined by a vector �l =
(l1, . . . , ln)T denoting the momentum of each rotor,

|�l〉 =
n⊗

j=1

|l̂ j = l j〉. (C1)

We show that rotor nullifier states are closed under the Clifford
operation.

If we apply a rotor Clifford circuit U on |�l〉, the evolution
of the eigenoperator is

l̂ → U l̂U †. (C2)

This can be represented by multiplying symplectic matrices
on the quadrature vector. Importantly, we only need to track
the changes of angular-momentum operators since the rotor
Clifford group does not mix in (continuous) positions into
(integer) momenta. In other words, since the group has a
semidirect product structure, we can always write an element
as g = gH gN , where gH ∈ H , gN ∈ N , and Eq. (C2) becomes

U l̂U † = gH gN l̂ = gH l̂ = A−1
U l̂. (C3)

Here we use gN l̂ = l̂, because QUAD and CPHS gates (block
off-diagonal gates) all commute with l̂.

Re-expressing the above in the Schrodinger picture, any
nullifier state |�l〉—an eigenstate of l̂ with eigenvalues �l—
transforms into the state U |�l〉—an eigenstate of A−1

U l̂ with
eigenvalues A−1

U
�l . This new state is still a tensor product

of angular-momentum eigenstates. Therefore, rotor nullifier
states are closed under the action of rotor Clifford group and
this evolution is fully captured by symplectic transformations.

2. Coherent states

In this Appendix, we review rotor coherent states [9] and
show that they arise from projecting oscillator coherent states
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into the embedded rotor subspace. Although, unlike to the
oscillator case, it is shown that rotor coherent states do not
have non-negative Wigner functions [27], we can discussed
some the the properties of rotor coherent states such as the dis-
placed coherent states and the closed orbits of rotor coherent
states under the action of passive symplectic subgroup. Per the
discussion from Sec. A, squeezing such coherent states cannot
be implemented unitarily. However, we show that squeezed
rotor states previously introduced in Ref. [112] are equivalent
to applying an adjustable regularizer e−�l̂2/2 to a fiducial co-
herent state. This “regularization” is similar to the manner of
realizing finite-energy GKP states [119].

Oscillator coherent states are (right) eigenstates of the os-
cillator annihilation operator. A class of rotor coherent states
[9] can be defined analogously by the equation

eiâ|ξ 〉 = ei(θ̂+il̂)|ξ 〉. (C4)

Above, â can be thought of as an effective lowering operator
for the rotor. It has to be in the exponent because θ̂ is not
well defined as a standalone operator. Using the commutation
relation between θ̂ and l̂ ,

eiâ = eiθ̂ e−l̂− 1
2 = X (1)e−l̂− 1

2 . (C5)

Expressing rotor coherent states in the momentum basis
yields

|ξ 〉 =
∑
l∈Z

ξ−l e−l2/2|l〉,

eiâ|ξ 〉 = ξ |ξ 〉, ξ ∈ C − {0}, (C6)

e−(ln χ )l̂ |ξ 〉 = |χξ〉, χ > 0.

Note that |ξ = 0〉 is not allowed because its wave function
diverges. In this form, we can see that rotor coherent-state
coefficients are evaluations of the momentum Gaussian wave
function of the oscillator coherent state at integer momenta.
Contrary to the oscillator case, the (rotor) Wigner functions of
coherent states |ξ 〉 have negative parts [27].

One can define a rotor displacement operator D(α) as

D(α) = exp

(
α

2
â† − α∗

2
â

)
= exp [i(d θ̂ − cl̂ )],

= e−icd/2X (d )Z (−c)

where α = c + id, c ∈ T , d ∈ Z.

(C7)

Because of the discrete nature of the angular-momentum
basis, we can only apply discrete displacement along the
angular-momentum direction. Displacement operators are an
alternative way to express the rotor Pauli group P rot

n . The
difference between the displacement operators of rotors and
oscillators is that α ∈ C for oscillator systems, whereas
Im(α) ∈ Z in rotors.

Conjugating eiâ by D(α) performs a displacement transfor-
mation on eiâ:

D(α)eiâD(α)† = X (d )Z (−c)eiâZ (−c)†X (d )†

= ei(â−α).
(C8)

When the displacement operator D(α) acts on a rotor coherent
state |ξ 〉, we have

D(α)|ξ 〉 = (ξeα/2)d |eiαξ〉, (C9)

giving rise to another coherent state, up to a constant factor. In
contrast to oscillator coherent states, here the displaced state
has to be renormalized relative to the initial state when d is
nonzero.

As discussed in Appendix B, the transformations that leave
the direct product structure of rotor coherent states invariant
form the group P rot

n � (Z2 � Sn). The action of the Pauli part
P rot

n is shown in Eq. (C9). The action of the permutation group
Sn swaps the order of the rotors in the direct product sequence.
The action of the Z2 part, generated by parity P, acts on a rotor
coherent state as

P|ξ 〉 = |ξ−1〉. (C10)

Rotor coherent states cannot be used to approximate ro-
tor nullifier states by applying a squeezing operator, because
squeezing is not a unitary operation for rotor systems (see
Sec. A). However, one can still introduce one more parameter
to the rotor coherent state to “simulate” squeezing,

|ξ = 1〉� ∝ E�|θ = 0〉 =
∑
l∈Z

e− �l2

2 |l〉, (C11)

where E�(l̂ ) = exp(−�l̂2/2) is called a regularizer, and � ∈
[0,∞) is a regularization parameter.

The above states simulate squeezing by smoothly inter-
polating between states of fixed position and momentum. If
we take � → 0, then the “squeezed” rotor coherent state ap-
proaches the phase state as |ξ = 1〉�→0 → |θ = 0〉. If we take
� → ∞, then the squeezed rotor coherent state approaches
the angular-momentum state |ξ = 1〉�→∞ → |l = 0〉.

Following the finite-energy approach in Refs.
[84,119,120], we define the finite-energy version of Pauli
operators via

X (m)� = E�(l̂ )X (m)E−1
� (l̂ ) = X (m)E�(l̂ + m)E−1

� (l̂ ),

Z (φ)� = E�(l̂ )Z (φ)E−1
� (l̂ ) = Z (φ). (C12)

Though the finite-energy version of operators are nonunitary,
they follow the same Pauli algebra as regular Pauli oper-
ators. The Pauli Z component is unaffected by the energy
regularizer. We only need to apply regulator in l bases as
exp(−�l̂2/2) because the phase states are un-normalizable
while angular-momentum states are normalized. This regular-
izer can also be regarded as an unnormalized thermal state
density operator whose Hamiltonian is quadratic in angular
momentum.

3. Clifford-group orbits of the Josephson junction

In this Appendix, we discuss how the Josephson junction
Hamiltonian [121,122] transforms under the action of the
rotor Clifford group (without performing the cosine expansion
and approximating all rotors as oscillators). Rotor Clifford op-
erations perform a unique mixture of oscillator-like Gaussian
manipulations and qubit-like Clifford conjugations.

The Josephson junction allows for tunneling of supercon-
ducting paired electrons called Cooper pairs between the two
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islands that the junction connects. The planar rotor angu-
lar momentum l̂ can be associated with the difference of
Cooper pairs l̂ = n̂R − n̂L across the junction, where n̂L/R is
the Cooper-pair number operator of the left and right island.
In such a case, the parity flip transformation P corresponds to
swapping the definition of the two islands.

The Josephson junction Hamiltonian is

H = −2EJ cos θ̂ − ECl̂2 = −EJ (eiθ̂ + e−iθ̂ ) − ECl̂2,

(C13)

which includes a quadratic kinematic term ECl̂2 and a periodic
potential EJ cos θ̂ . If we consider this Hamiltonian in the pic-
ture of embedded rotor where θ̂ → q̂, l̂ → p̂, it is equivalent
to a boson with quadratic dispersion relation p̂2 that moves
in a one-dimensional periodic potential cos q̂. This can be
regarded as a GKP Hamiltonian [38,123,124] with only θ

variable periodic while leaving l variable noncompact.
Suppose we have n decoupled Josephson junctions, where

the total Hamiltonian is written as

Htot =
n∑

j=1

[−EJ (eiθ̂ j + e−iθ̂ j ) − ECl̂2
j

]

=
n∑

j=1

−EJ [Xj (1) + Xj (1)†] − EC�lT�l. (C14)

To see how the above Hamiltonian transforms under a rotor
Clifford transformation, we recall that in Eq. (21) how the
symplectic matrix acts on the coefficient vector. Instead of
directly transforming the momentum-position coefficients in
a Pauli string, we use the Heisenberg picture and act on the
position-momentum operators. We abuse the notation and
suppose θ̂ could be defined without exponentiation and write
the collection of them as a vector θ̂ = (θ̂1, . . . , θ̂n)T . The
symplectic matrix acting on the operators can be written as

(θ̂
T |l̂T )

(
A 0

CA (AT )−1

)
= [(AT θ̂)

T + (AT C l̂)
T |(A−1 l̂)

T
].

(C15)

The position-operator part of the Hamiltonian becomes
mixture of position and momentum Paulis,

n∑
j=1

(eiθ̂ j + H.c.) →
n∑

j=1

(
ei
∑n

k=1 Ak j θ̂k ei
∑n

k=1(AT C) jk l̂k + H.c.
)
.

(C16)

The Z part of Pauli operators comes in because of the off
diagonal matrix QXZ = CA, corresponding to CPHS and QUAD

gates. If we only applied an element of the CSS subgroup H
from Eq. (26), then the original Xj (1) only transforms into a
product of Pauli X operators of rotors.

On the other hand, the angular-momentum part of the
Hamiltonian always transforms as

l̂T l̂ → l̂T (A)−1(AT )
−1

l̂, (C17)

remaining a quadratic form after any symplectic
transformation.

The difference between the transformation behaviours of
the θ and l variables illustrates the difference between pe-

riodic bounded variables and unbounded variables. For an
unbounded variable l , the quadratic term in the Hamiltonian
remains a quadratic term. This is the same as in the oscillator
system where a quadratic Hamiltonian remains quadratic after
Gaussian transformation.

However, for periodic variable θ , if we start from a triv-
ial Hamiltonian H =∑n

j=1 Xj and apply a Clifford circuit,
we get a stabilizer Hamiltonian Ĥ ′ =∑n

j=1 Ŝ j , where Ŝ j are
Pauli strings of multiple rotors. This behavior resembles the
Clifford transformation of Pauli operators for qudits. This
is due to the exponential required to properly express the
periodic rotor position.

APPENDIX D: WIGNER FUNCTION OF ROTOR
GKP CODES

In the oscillator cases, GKP states are non-Gaussian states
that have Wigner negativity and infinite Stellar rank [97,100–
102,125,126]. The studies of the phase space structure and
non-Gaussianity of bosonic modes yield various discoveries
of classical simulability and quantum magic of bosonic sys-
tems [97,102,103,126–132].

In this Appendix, we calculate the Wigner function of rotor
GKP code as an example, and show its Wigner function has a
similar form as the Wigner function of oscillator GKP states,
and indeed, the rotor GKP states have Wigner negativity and
can be written as a sum of Kronecker and Dirac delta func-
tions. The presence of Kronecker delta functions is because
of the discrete-variable nature of angular momentum, while,
in contrast, both position and momentum are continuous vari-
ables in harmonic oscillators.

The studies of the Wigner function of the planar rotor are
initialized in the context of orbital angular-momentum states
of light [13,26–29], which is also described by planar rotor.
The modular Wigner function is also studied in the context
of oscillator GKP codes, considering the modular nature of
position and momentum variables [133].

The definition of Wigner function of planar rotor is
written as

Wρ (l, φ) = 1

2π

∫ π

−π

〈
φ − φ′

2

∣∣∣∣ρ
∣∣∣∣φ + φ′

2

〉
eiφ′l dφ′, (D1)

where the Wigner function has two canonical variable: phase
φ and angular momentum l . This function is defined on a
infinite cylinder T × Z as shown in Fig. 3.

Here we consider ρ = |0〉L〈0|L and calculate its Wigner
function

Wρ (l, φ) = 1

2π

∫ π

−π

N−1∑
m,m′=0

〈
φ − φ′

2

∣∣∣∣ 2πm

N

〉

×
〈

2πm′

N

∣∣∣∣φ + φ′

2

〉
eiφ′l dφ′

= 1

2π

∫ π

−π

N−1∑
m,m′=0

δ2π

(
φ − φ′

2
− 2πm

N

)

× δ2π

(
φ + φ′

2
− 2πm

N

)
eiφ′l dφ′. (D2)

022402-19



YIJIA XU, YIXU WANG, AND VICTOR V. ALBERT PHYSICAL REVIEW A 110, 022402 (2024)

Here the δ2π (x) represents periodic delta function, which is

δ2π (x) =
{

δ(0) if x mod 2π = 0

0 otherwise.
(D3)

Hence, we can rewrite Eq. (D2) as

Wρ (l, φ) = 1

2π

∫ π

−π

∑
m,m′∈Z

δ

(
φ − φ′

2
− 2πm

N

)

× δ

(
φ + φ′

2
− 2πm′

N

)
eiφ′l dφ′

∝ 1

2π

∑
m,m′∈Z

δ

(
2φ − 2π

N
(m + m′)

)
eil (−2φ+ 4πm′

N )

= 1

2π

∑
c,d∈Z

δ
(
φ − πc

N

)
(−1)cdδl,Nd/2. (D4)

Similarly, the Wigner function of |1〉〈1| is

W|1〉〈1|(l, φ) ∝ 1

2π

∑
c,d∈Z

δ

(
φ − π (c + 1)

N

)
(−1)cdδl,Nd/2.

(D5)

The Wigner function of rotor GKP states shows strong neg-
ativity relative to its oscillator counterparts. The difference
between the Wigner functions of oscillator and rotor GKP
states is that the former is a sum of products of Dirac delta
functions in both position and momentum, while the latter
is a sum of products of Dirac delta functions in phase and
Kronecker deltas in angular momentum.

Another interesting phenomenon is that, in the rotor case,
the angular-momentum eigenstates |l〉, l ∈ Z are the only nor-
malizable states with non-negative Wigner function [27]. This
statement matches our understanding of oscillator systems
with discrete translational symmetry in position direction
Sq = ei2

√
π p̂. The oscillator system with spatial periodicity

will have quantized angular momentum defined on Z, and it
can be regarded as a rotor (mathematically). In this picture,
the angular-momentum eigenstates of the rotor correspond to
the momentum eigenstates of a periodic oscillator, which are
Gaussian states with non-negative Wigner functions.

APPENDIX E: QUANTUM ERROR-CORRECTION
CONDITION FOR NORMALIZED ROTOR GKP CODES

For the ideal oscillator GKP states, the codewords are
equal-weight superpositions of infinite numbers of Delta
functions which are un-normalizable and require unbounded
energy to prepare. In practice, we typically impose various
regularizers to impose the normalization and finite-energy
conditions, and the Gaussian regularizer can be implemented
experimentally in trapped-ion, superconducting-circuit, and
optical platforms [40,84,134–137]. In this section, we study
the quantum error-correction conditions [138,139] for normal-
ized rotor GKP states that are regularized by the Gaussian
regularizer E�(l̂ ).

The un-normalizable codeword of rotor GKP code is

|0〉L =
∑
k∈Z

|l = kN〉, |1〉L =
∑
k∈Z

(−1)k|l = kN〉. (E1)

To normalize them, we impose a Gaussian envelope e−�l̂2

such that

|0〉� =
∑
k∈Z

e−�(kN )2 |l = kN〉,

|1〉� =
∑
k∈Z

e−�(kN )2
(−1)k|l = kN〉.

(E2)

The error operator is written as Em(θ ) = Z (θ )X (m).
Hence, we can calculate the quantum error-correction condi-
tion for the normalized rotor GKP states

〈φi|Em′ (θ ′)†Em(θ )|φ j〉
= ei(θ−θ ′ )m〈φi|X (m − m′)Z (θ − θ ′)|φ j〉. (E3)

We have

X (m − m′)Z (θ − θ ′)|0〉�
=
∑
k∈Z

e−�(kN )2
ei(θ−θ ′ )kN |l = kN + m − m′〉,

X (m − m′)Z (θ − θ ′)|1〉�
=
∑
k∈Z

(−1)ke−�(kN )2
ei(θ−θ ′ )kN |l = kN + m − m′〉. (E4)

Then we calculate Eq. (E3) utilizing Jacobi theta functions

(a) ei(θ−θ ′ )m〈0|�X (m − m′)Z (θ−θ ′)|0〉� = ei(θ−θ ′ )m
∑

k,k′∈Z
δk′N,kN+m−m′e−�N2(k2+k′2 )ei(θ−θ ′ )kN

= ei(θ−θ ′ )m
∑
k∈Z

e−�N2[k2+(k+ m−m′
N )

2
]ei(θ−θ ′ )kNδm−m′modN,0

= ei(θ−θ ′ ) m+m′
2 e−�

(m−m′ )2

2

∑
k∈Z

e−2�N2(k+ m′−m
2N )

2

ei(θ−θ ′ )N (k+ m′−m
2N )δm−m′modN,0

=
{

ei(θ−θ ′ ) m+m′
2 e−� (m−m′ )2

2 δm−m′modN,0ϑ2
(
z = (θ−θ ′ )N

2 , q = e−2�N2)
if m′−m

N is odd
ei(θ−θ ′ ) m+m′

2 e−�
(m−m′ )2

2 δm−m′modN,0ϑ3
(
z = (θ−θ ′ )N

2 , q = e−2�N2)
if m′−m

N is even.

(b) ei(θ−θ ′ )m〈1|�X (m−m′)Z (θ−θ ′)|1〉� =
⎧⎨
⎩−ei(θ−θ ′ ) m+m′

2 e−�
(m−m′ )2

2 δm−m′modN,0ϑ2
(
z = (θ−θ ′ )N

2 , q = e−2�N2)
if m′−m

N is odd

ei(θ−θ ′ ) m+m′
2 e−�

(m−m′ )2

2 δm−m′modN,0ϑ3
(
z = (θ−θ ′ )N

2 , q = e−2�N2)
if m′−m

N is even.
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(c) ei(θ−θ ′ )m〈1|�X (m − m′)Z (θ−θ ′)|0〉� =
⎧⎨
⎩−ei(θ−θ ′ ) m+m′

2 e−�
(m−m′ )2

2 δm−m′modN,0ϑ1
(
z = (θ−θ ′ )N

2 , q=e−2�N2)
if m′−m

N is odd

ei(θ−θ ′ ) m+m′
2 e−�

(m−m′ )2

2 δm−m′modN,0ϑ4
(
z= (θ−θ ′ )N

2 , q=e−2�N2)
if m′−m

N is even. (E5)

APPENDIX F: DISCUSSIONS ON THE NO-GO THEOREM
FOR OSCILLATOR

In Ref. [53], authors proved a no-go theorem for Gaussian-
stabilizer codes. The statement is for mode-to-mode codes,
if the encoding, error correction, and decoding all consist
of only Gaussian operations, then these codes cannot correct
Gaussian quadrature displacement errors. Suppose the logical
quadrature errors follow a Gaussian distribution N (0, σ 2

q/p),
then σ 2

qL
σ 2

pL
= σ 2

q σ 2
p after encoding and decoding. This no-go

theorem indicates that Gaussian stabilizer codes can only ro-
tate or squeeze Gaussian errors, but will never reduce variance
on both quadratures.

In this section, we will briefly review the derivation of
Gaussian no-go theorem and its limitation, then we will com-
ment its relevance to homological rotor codes.

We first state the conditions for the no-go theorem to
be true:

(1) Encoding unitary is a Gaussian operation (symplectic
transformation), and ancilla states are all initialized in in-
finitely squeezed states (Gaussian states).

(2) The error correction is adding linear combina-
tions of nullifiers onto logical quadratures. For exam-
ple, the maximum-likelihood error correction is adding
−CGT (GGT )−1G onto the logical quadrature C.

(3) Quadratures are defined on R.
The derivation utilizes the linearity and orthogonality of

symplectic vectors. Although the analog rotor codes also share
a symplectic structure, their phase quadrature is a modular
quadrature which doesn’t have linearity. The lack of linearity
in rotor systems provides an obstruction to generalizing the
Gaussian no-go theorem for oscillators to rotor systems.

For a [[n, k, d]] Gaussian stabilizer codes, the Gaussian
unitary encoders Uenc are symplectic transformations

Uenc�rU †
enc = Uenc(q̂1, . . . , q̂n, p̂1, . . . , p̂n)T U †

enc = A�r. (F1)

We can decompose the symplectic matrix A as [53]

A =

⎛
⎜⎜⎜⎜⎝

Q

G

P

D

⎞
⎟⎟⎟⎟⎠. (F2)

The syndrome �z is given by following equation:

�z = G�ξ, (F3)

where �ξ is a 2n-dimensional noise vector. The error-corrected
logical quadrature can be written as

C′ = C − CGT (GGT )−1G = C + 	G. (F4)

And the covariance matrix of error-corrected logical quadra-
tures can be diagonalized

K (C′C′T )K−1 =
(

diag
(
σ 2

q, j

)
0

0 diag
(
σ 2

p, j

)
)

. (F5)

This no-go theorem is applicable once Eqs. (F3) and (F4)
are linear. However, in rotor case, Eq. (F3) is no longer linear,
the rotor syndrome has modular structure,

�zrotor = R2π (G�ξ ), (F6)

where R2π is a rounding function that rounds the input to the
nearest multiplicity of 2π . The modular structure is nonlinear,
hence, the no-go theorem will not hold true in rotor systems.
However, if we drop the modularity by assuming the vari-
ance of syndrome is much smaller than 2π , the rotors will
be reduced to regular oscillators where the Gaussian no-go
theorems holds true.
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[60] D. K. L. Oi, V. Potoček, and J. Jeffers, Nondemolition mea-
surement of the vacuum state or its complement, Phys. Rev.
Lett. 110, 210504 (2013).

[61] J. C. Radtke, D. K. Oi, and J. Jeffers, Linear quantum optical
bare raising operator, J. Phys. B: At., Mol. Opt. Phys. 50,
215501 (2017).

[62] S. Li, Z. Ni, L. Zhang, Y. Cai, J. Mai, S. Wen, P. Zheng, X.
Deng, S. Liu, Y. Xu et al., Autonomous stabilization of Fock
states in an oscillator against multi-photon losses, Phys. Rev.
Lett. 132, 203602 (2024).

[63] J. Haah, Commuting Pauli Hamiltonians as maps between free
modules, Commun. Math. Phys. 324, 351 (2013).

[64] J. Haah, Algebraic methods for quantum codes on lattices,
Rev. Colomb. Mat. 50, 299 (2016).

[65] J. Haah, Clifford quantum cellular automata: Trivial group
in 2D and Witt group in 3D, J. Math. Phys. 62, 092202
(2021).

[66] J. Haah, Topological phases of unitary dynamics: Classifica-
tion in clifford category, arXiv:2205.09141.

[67] J. Haah, L. Fidkowski, and M. B. Hastings, Nontrivial quan-
tum cellular automata in higher dimensions, Commun. Math.
Phys. 398, 469 (2023).

[68] Y.-A. Chen, Y. Xu et al., Equivalence between fermion-to-
qubit mappings in two spatial dimensions, PRX Quantum 4,
010326 (2023).

[69] J. P. Bonilla Ataides, D. K. Tuckett, S. D. Bartlett, S. T.
Flammia, and B. J. Brown, The XZZX surface code, Nat.
Commun. 12, 2172 (2021).

[70] A. Dua, A. Kubica, L. Jiang, S. T. Flammia, and M. J. Gullans,
Clifford-deformed surface codes, PRX Quantum 5, 010347
(2024).

[71] E. Huang, A. Pesah, C. T. Chubb, M. Vasmer,
and A. Dua, Tailoring three-dimensional topological
codes for biased noise, PRX Quantum 4, 030338
(2023).

[72] I. L. Egusquiza and A. Parra-Rodriguez, Algebraic canonical
quantization of lumped superconducting networks, Phys. Rev.
B 106, 024510 (2022).

[73] A. Parra-Rodriguez and I. L. Egusquiza, Quantum fluctua-
tions in electrical multiport linear systems, Phys. Rev. B 106,
054504 (2022).

[74] A. Parra-Rodriguez and I. Egusquiza, Geometrical descrip-
tion and Faddeev-Jackiw quantization of electrical networks,
arXiv:2304.12252.

[75] M. Rymarz and D. P. DiVincenzo, Consistent quantization
of nearly singular superconducting circuits, Phys. Rev. X 13,
021017 (2023).

[76] A. Osborne, T. Larson, S. Jones, R. W. Simmonds, A. Gyenis,
and A. Lucas, Symplectic geometry and circuit quantization,
PRX Quantum 5, 020309 (2024).

[77] E. Hostens, J. Dehaene, and B. De Moor, Stabilizer states and
clifford operations for systems of arbitrary dimensions and
modular arithmetic, Phys. Rev. A 71, 042315 (2005).

[78] A. Prasad and M. Vemuri, Decomposition of phase space and
classification of Heisenberg groups, arXiv:0806.4064.

[79] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and
Systems (Prentice Hall, Upper Saddle River, 1997), Vol. 2.

[80] J.-G. Dumas, F. Heckenbach, D. Saunders, and V. Welker,
Computing simplicial homology based on efficient smith nor-
mal form algorithms, in Algebra, Geometry and Software
Systems (Springer, 2003), pp. 177–206.

[81] O. A. Camarena, Using the Smith normal form to com-
pute homology (2017), https://www.matem.unam.mx/∼omar/
mathX27/smithform.html.

[82] S. Lloyd and J.-J. E. Slotine, Analog quantum error correction,
Phys. Rev. Lett. 80, 4088 (1998).

[83] M. Gu, C. Weedbrook, N. C. Menicucci, T. C. Ralph, and
P. van Loock, Quantum computing with continuous-variable
clusters, Phys. Rev. A 79, 062318 (2009).

[84] B. Royer, S. Singh, and S. M. Girvin, Stabilization of finite-
energy Gottesman-Kitaev-Preskill states, Phys. Rev. Lett. 125,
260509 (2020).

[85] J. Wu, A. J. Brady, and Q. Zhuang, Optimal encoding of
oscillators into more oscillators, Quantum 7, 1082 (2023).

[86] M. Lin, C. Chamberland, and K. Noh, Closest lattice point de-
coding for multimode Gottesman-Kitaev-Preskill codes, PRX
Quantum 4, 040334 (2023).

[87] J. Conrad, J. Eisert, and F. Arzani, Gottesman-Kitaev-Preskill
codes: A lattice perspective, Quantum 6, 648 (2022).

[88] V. V. Albert, K. Noh, K. Duivenvoorden, D. J. Young, R. T.
Brierley, P. Reinhold, C. Vuillot, L. Li, C. Shen, S. M. Girvin
et al., Performance and structure of single-mode bosonic
codes, Phys. Rev. A 97, 032346 (2018).

[89] N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas, B.
Vlastakis, Y. Liu, L. Frunzio, S. M. Girvin, L. Jiang et al.,
Extending the lifetime of a quantum bit with error correction
in superconducting circuits, Nature (London) 536, 441 (2016).

[90] Z. Ni, S. Li, X. Deng, Y. Cai, L. Zhang, W. Wang, Z.-B. Yang,
H. Yu, F. Yan, S. Liu et al., Beating the break-even point with a
discrete-variable-encoded logical qubit, Nature (London) 616,
56 (2023).

[91] Y. Ouyang and E. T. Campbell, Trade-offs on number and
phase shift resilience in bosonic quantum codes, IEEE Trans.
Inf. Theory 67, 6644 (2021).

[92] E. Knill, Quantum computing with realistically noisy devices,
Nature (London) 434, 39 (2005).

[93] Y. Aharonov, H. Pendleton, and A. Petersen, Modular vari-
ables in quantum theory, Int. J. Theor. Phys. 2, 213 (1969).

[94] S. Bravyi and A. Kitaev, Universal quantum computation
with ideal Clifford gates and noisy ancillas, Phys. Rev. A 71,
022316 (2005).

[95] M. G. Genoni, M. G. A. Paris, and K. Banaszek, Measure of
the non-Gaussian character of a quantum state, Phys. Rev. A
76, 042327 (2007).

022402-23

https://arxiv.org/abs/2211.05714
https://doi.org/10.1103/PhysRevLett.125.040501
https://doi.org/10.1103/PhysRevX.14.011013
https://doi.org/10.1016/0003-4916(91)90037-9
https://doi.org/10.1103/PhysRevA.65.052316
https://doi.org/10.1103/PhysRevLett.110.210504
https://doi.org/10.1088/1361-6455/aa8e69
https://doi.org/10.1103/PhysRevLett.132.203602
https://doi.org/10.1007/s00220-013-1810-2
https://doi.org/10.15446/recolma.v50n2.62214
https://doi.org/10.1063/5.0022185
https://arxiv.org/abs/2205.09141
https://doi.org/10.1007/s00220-022-04528-1
https://doi.org/10.1103/PRXQuantum.4.010326
https://doi.org/10.1038/s41467-021-22274-1
https://doi.org/10.1103/PRXQuantum.5.010347
https://doi.org/10.1103/PRXQuantum.4.030338
https://doi.org/10.1103/PhysRevB.106.024510
https://doi.org/10.1103/PhysRevB.106.054504
https://arxiv.org/abs/2304.12252
https://doi.org/10.1103/PhysRevX.13.021017
https://doi.org/10.1103/PRXQuantum.5.020309
https://doi.org/10.1103/PhysRevA.71.042315
https://arxiv.org/abs/0806.4064
https://www.matem.unam.mx/~omar/mathX27/smithform.html
https://doi.org/10.1103/PhysRevLett.80.4088
https://doi.org/10.1103/PhysRevA.79.062318
https://doi.org/10.1103/PhysRevLett.125.260509
https://doi.org/10.22331/q-2023-08-16-1082
https://doi.org/10.1103/PRXQuantum.4.040334
https://doi.org/10.22331/q-2022-02-10-648
https://doi.org/10.1103/PhysRevA.97.032346
https://doi.org/10.1038/nature18949
https://doi.org/10.1038/s41586-023-05784-4
https://doi.org/10.1109/TIT.2021.3102873
https://doi.org/10.1038/nature03350
https://doi.org/10.1007/BF00670008
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.76.042327


YIJIA XU, YIXU WANG, AND VICTOR V. ALBERT PHYSICAL REVIEW A 110, 022402 (2024)

[96] M. Howard and E. Campbell, Application of a resource theory
for magic states to fault-tolerant quantum computing, Phys.
Rev. Lett. 118, 090501 (2017).

[97] U. Chabaud, D. Markham, and F. Grosshans, Stellar represen-
tation of non-Gaussian quantum states, Phys. Rev. Lett. 124,
063605 (2020).

[98] Z.-W. Liu and A. Winter, Many-body quantum magic, PRX
Quantum 3, 020333 (2022).
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