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Phase-factor-optimized topological transmission in a dimerized lattice with long-range hopping
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We show that both the efficiency and robustness of the topological excitation transmission can be optimized
by the phase factor of the long-range hopping in the dimerized lattice. This phenomenon can be explained
as the fact that the phase factor in the hopping can widen the minimal energy space around the gap closing
point. By redesigning the configuration of long-range hopping, we implement the perfect topological excitation
transmission assisted by the phase factor from the left edge to the right edge. We demonstrate that the present
optimized topological excitation transmission essentially originates from the phase transition induced by the
phase factor, in which the existence of the phase transition leads to the decreasing of the gap closing points.
Furthermore, we also investigate the generalized cases with longer-range hopping and find that the optimized
topological excitation transmission is determined by the order of long-range hopping. Our investigation shows
the significant effect of the phase factor of hopping strength on the topological excitation transmission, which is
usually overlooked in relevant work.
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I. INTRODUCTION

Topological pumping [1–25], that is, implementing exci-
tation transmission by a topological insulator [26–29], has
recently been drawing increasing attention. Based on the
global protection of the topology, the topological pumping can
resist certain local disorder, providing potential applications
in quantum information processing [12]. Two typical exam-
ples of topological pumping are quantized bulk transmission
and nonquantized edge transmission. The former, specifically,
Thouless pumping [1], reveals the intrinsic connection be-
tween the transport property and topological invariant, while
the latter can realize the robust excitation transmission be-
tween two remote nodes along the boundary, for example,
the robust topological edge transmissions in quasicrystals [9],
dipolar arrays [11], linear networks [12], and superconducting
circuit lattices [15]. The topological transmissions along the
boundary state usually need to satisfy the adiabatic condition
to avoid the evolution entering the bulk around the gap closing
point. Thus, accelerated topological transmission schemes are
implemented based on Landau-Zener tunneling [17], adia-
batic passage [18], long-range hopping [20], and coupling
engineering [22,24,25].

We note that the phase factor in the hopping strength
shows unique effects on topological properties [30–36]. One
of the most well-known examples is the Haldane model [30],
in which the phase factor originating from staggered mag-
netic flux in the hopping can induce the topological phase
transition. In addition to inducing the phase transition, the
phase factor can also induce a topological flat band [37–42]
and high-order topological state [43,43–49]. For example, a
series of topological flat bands with higher Chern numbers
has been shown by introducing the distant-neighbor hopping
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terms with staggered magnetic fluxes into the monolayer star
lattice [42]. Furthermore, in Ref. [49] some of the present
authors showed that the Chern insulator and higher-order
topological insulator states can appear by considering the
nearest-neighbor (NN) hopping with a suitable phase factor
and the next-nearest-neighbor hopping terms simultaneously.
We note that, although the relevant explorations of the phase
factor in hopping on topological properties have been widely
investigated, whether the topology affected by the phase factor
can change the topological excitation transmission seems to
be an open problem. In particular, current topological trans-
mission schemes are mostly focused on the design of the
hopping amplitude; thus the exploration of the direct impact
of the phase factor on topological transmission will be an
interesting topic.

In this paper we investigate the effects of the phase factor in
long-range hopping on the topological excitation transmission
and find that the phase factor can enhance the efficiency and
robustness of the transmission in certain cases. We reveal that
the enhanced transmission originates from the widened mini-
mal energy space around the gap closing point, in which the
widened gap space can relax the restrictions of the adiabatic
condition. Together with optimizing the configuration of long-
range hopping, we show the perfect topological excitation
transmission enhanced by the phase factor. We demonstrate
that, by the phase diagram, the transmission enhanced by the
phase factor is essentially induced by the phase transition
caused by the phase factor, in which the phase transition can
decrease the number of gap closing points. We also investigate
the effects of the phase factor in longer-range hopping on
the topological excitation transmission and we find that the
order of the long-range hopping can affect the effects of the
phase factor. Our investigation reveals the potential connec-
tions among the phase factor, phase transition, and topological
excitation transmission, which can provide different views on
the effects of the phase factor.
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FIG. 1. Schematic diagram of the dimerized lattice chain with
long-range hopping when (a) r =1 and l =1 and (b) r =2 and l =1.

The paper is organized as follows. In Sec. II we show
the phase-factor-enhanced topological excitation transmission
and reveal the intrinsic physical mechanisms. A summary is
given in Sec. III.

II. TOPOLOGICAL TRANSMISSION ENHANCED BY THE
PHASE FACTOR IN LONG-RANGE HOPPING

A. Model and Hamiltonian

We consider a dimerized lattice chain with long-range hop-
ping, which can be described by the Hamiltonian

H =
∑

n

(J1a†
nbn + J2a†

n+1bn + H.c.)

+
∑
n=r

(Ja†
nbn+l + J∗b†

n+l an). (1)

Here Jj = 1 + (−1) j cos θ ( j = 1, 2 and θ ∈ [0, 2π ]) is the
real NN hopping, J = |J|eiγ (amplitude |J| and phase factor
γ ) is the complex long-range hopping between sites an and
bn+l , l is the length between two unit cells, and r represents
the initial location of adding the long-range hopping. Fig-
ure 1 shows two different lattice structures for different r and
l , specifically, r = l = 1 in Fig. 1(a) and r = l + 1 = 2 in
Fig. 1(b). When the amplitude of long-range hopping satisfies
|J| = 0, the present lattice becomes a standard Su-Schrieffer-
Heeger (SSH) chain, in which the odd-sized SSH chain has
a zero-energy mode, as shown in Fig. 2(a). The special lo-
calization properties of the zero-energy mode [Fig. 2(b)] are
widely used to implement the topological excitation transmis-
sion [15], i.e., the excitation initially prepared at the left edge
with |L〉 = |1, 0, 0, . . . , 0, 0, 0〉 can be transmitted to the right
edge via the Schrödinger equation i ∂

∂t |L〉 = H (θt )|L〉. Here
θt = �t is the time-dependent version of the parameter θ , with
� the varying rate and t time.

Usually, one of the main themes in topological excitation
transmission is how to realize the fast and efficient excitation
exchange using the topological channel. According to the
adiabatic theory, the minimal energy space between the gap
and bulk states [�E in Fig. 2(a)] determines the speed of
transmission, i.e.,

√
� < �E [15], which suggests that we can

implement the efficient topological excitation transmission
by designing a larger energy space �E . The minimal energy
space �E , when r = 1 and l = 1, versus the amplitude and
phase factor of the long-range hopping is shown in Fig. 2(c).
Obviously, when γ = 0, the minimal energy space �E de-
creases with increasing amplitude |J|. In contrast, the minimal
energy space �E can be enlarged for a certain value of |J|
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FIG. 2. Energy spectra, distribution of state, and minimal energy
space. (a) Energy spectrum versus periodic parameter θ when J = 0.
The minimal energy space around the gap closing point is denoted
by �E . (b) Distribution of the zero-energy mode in (a). (c) Minimal
energy space �E versus phase factor γ and amplitude |J| in long-
range hopping. (d) Energy spectrum versus periodic parameter θ

when J = −1.328. The size of the lattice is set as L = 21.

when γ �= 0, e.g., the system has a maximal �E when |J| =
1.328 and γ = −π . The energy spectrum for the maximal �E

is shown in Fig. 2(d), in which the minimal energy space �E

indeed becomes much larger than in Fig. 2(a).

B. Phase-factor-accelerated topological excitation transmission

The enlarged energy space �E may lead to accelerated
topological excitation transmission. To estimate the effects
of the amplitude |J| and phase factor γ of long-range
hopping on the topological excitation transmission, we can
define the transmission fidelity F = |〈R|� f 〉|. Here |R〉 =
|0, 0, 0, . . . , 0, 0, 1〉 is the ideal right edge state and |� f 〉
denotes the evolved final state obtained from the Schrödinger
equation i ∂

∂t |L〉 = H (θt )|L〉. In this way, if the excitation ini-
tially prepared at the left edge is transmitted to the right edge
successfully, we have F = 1. The fidelity versus the amplitude
of long-range hopping |J| and varying rate � is shown in
Fig. 3(a). We find that, for a given evolution speed �, the
increased hopping amplitude |J| can suppress the topological
excitation transmission, e.g., when |J| > 1, the transmission
cannot be implemented even if the evolution speed satisfies
� = 10−4. Significantly, we find that the phase factor of the
long-range hopping can promote topological excitation even
when |J| �= 0. The fidelity versus the phase factor γ and evo-
lution speed � when |J| = 1 is shown in Fig. 3(b). The results
clearly reveal that the nonvanishing phase γ can promote
the topological excitation. Specific examples of topological
excitation transmission when γ = π and γ = 0 are plotted in
Figs. 3(c) and 3(d). Obviously, the excitation can be transmit-
ted to the right edge with high fidelity when γ �= 0. Note that,
when γ �= 0, the transmission probability of excitation to the
right edge cannot reach F ∼ 1, i.e., the present topological
transmission assisted by phase γ corresponds to an imperfect
topological transmission.
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FIG. 3. Fidelity, evolutions of excitation, energy spectrum, and
distribution of state when r = 1 and l = 1. (a) Fidelity F versus
evolution speed � and amplitude of long-range hopping |J| when
γ = 0. (b) Fidelity F versus evolution speed � and phase factor
of long-range hopping γ when |J| = 1. Evolutions of excitation
for (c) γ = π and (d) γ = 0 when |J| = 1 and � = 10−4. The
insets show the distributions of excitation at the final time. (e) En-
ergy spectrum versus the parameter θ when |J| = 1 and γ = π .
(f) Distribution of the zero-energy mode in (a). The inset shows the
zero-energy mode now cannot be localized at the left edge com-
pletely when θ = 0. The lattice size is L = 21.

The reason originates from the effects of large long-range
hopping on the left edge state. The long-range hopping in the
present lattice model cannot destroy the chiral symmetry, i.e.,
the present odd-sized lattice still has a zero-energy mode in
the gap. According to the eigenequation of energy, under the
basis of lattice sites, the zero-energy mode satisfies

ψa2 = −J1/J2ψa1 ,

ψa3 = −J1/J2ψa2 − J/J2ψa1 ,

ψa4 = −J1/J2ψa3 − J/J2ψa2 ,

... (2)

and

ψb2 = −J1/Jψb1 ,

ψb3 = −J1/Jψb2 − J2/Jψb1 ,

ψb4 = −J1/Jψa3 − J2/Jψa2 ,

...

ψbN = −J1/J2ψbN−1 ,

J2ψbN = 0. (3)

Here ψan (ψbn ) denotes the probability amplitude of the zero-
energy mode at site an (bn). Obviously, we have ψbn = 0
for n ∈ [1, N], i.e., the zero-energy mode only occupies the
a-type sites. If we have |J1| 	 |J2| (e.g., θ ∼ 0) and ψa1 = 1,
we find that the zero-energy mode is localized at site a1 when
|J| = 0. In contrast, the zero-energy mode can also occupy
the site a3 now (−J/J2 tends to a finite value) if the am-
plitude of long-range hopping is large enough. In this way,
the probability amplitude of the zero-energy mode at site a1

will be decreased after the normalization. Thus, the initial
state |L〉 = |1, 0, 0, . . . , 0, 0, 0〉 cannot match the zero-energy
mode precisely, leading to the excitation not being able to be
transmitted to the right edge completely. For further verifica-
tion, the energy spectrum and distribution of the zero-energy
mode are shown in Figs. 3(e) and 3(f). The distribution of
the zero-energy mode clearly shows the nonzero distribution
at site a3 when θ = 0. Actually, this phenomenon can also
be comprehended from the lattice structure. As shown in
Fig. 1(a), the long-range hopping has a larger effect on the
left edge state due to the existence of the long-range hopping
between sites a1 and b2.

To implement the perfect topological excitation transmis-
sion assisted by phase γ , we now consider removing the
hopping between sites a1 and b2 [see Fig. 1(b)]. After that, the
probability amplitude of the zero-energy mode at site a3 now
becomes a3 = −J1/J2a2, i.e., the zero energy mode is still
mainly localized at the left edge site when θ ∼ 0. In Figs. 4(a)
and 4(b) we plot the energy spectrum and distribution of the
zero-energy mode when r = 2 and l = 1 [model in Fig. 1(b)].
Obviously, the zero-energy mode can be localized at the
left edge site completely when θ = 0, meaning that we may
implement the perfect topological excitation transmission as-
sisted by the phase γ . The minimal energy space �E versus
the hopping amplitude |J| and phase γ when r = 2 and l = 1
is plotted in Fig. 4(c). We find that, in this case, the phase
γ can still extend the energy space �E for a certain finite
hopping amplitude |J|. For example, as shown in Figs. 4(d)
and 4(e), the system has a maximal value of �E , which
implies the possible accelerated transmission. To further es-
timate the transmission efficiency when r = 2 and l = 1, the
fidelity versus the hopping amplitude and evolution speed is
shown in Fig. 4(f). The pattern shows a conclusion similar
to the case in Fig. 3(a), i.e., the topological excitation trans-
mission can be implemented when |J| < 1 and the increased
hopping amplitude |J| can tighten the adiabatic condition.
In contrast, when we consider the phase γ , the unsuccessful
topological transmission now can be implemented with F ∼ 1
and the evolution speed can be increased [Fig. 4(g)]. The
specific transmission processes when γ = −0.5π and γ = 0
are shown in Figs. 4(h) and 4(i), which further verify the above
conclusions.

C. Robustness and analysis

In addition to promoting the efficiency of topological ex-
citation transmission, the phase factor γ also can enhance
the robustness of the transmission process. This is a natural
inference since the phase factor γ can extend the mini-
mal energy space �E for a given amplitude of long-range
hopping. To verify the above inference, we can calculate the
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FIG. 4. Topological and transmission properties when r = 2 and l = 1. (a) Energy spectrum and (b) distribution of the zero-energy mode
when |J| = 1, γ = π , r = 2, and l = 1. (c) Minimal energy space �E versus the parameters γ and |J|. (d) Energy spectrum and (e) distribution
of the zero-energy mode when |J| = 0.968 and γ = −0.359π . The inset in (d) shows the complete localization of the zero-energy mode when
θ = 0. (f) Fidelity versus the evolution speed � and hopping amplitude |J|. (g) Fidelity versus the evolution speed � and hopping phase γ .
(h) Perfect topological excitation transmission when |J| = 1, γ = −0.5π , r = 2, and l = 1. (i) Invalid topological transmission when |J| = 1,
γ = 0, r = 2, and l = 1. The lattice size is L = 21.

average fidelity F̄ = 1
N

∑
Fi after considering the massive

disorder samples, e.g., N = 100. Here Fi = |〈R|� f ,i〉| rep-
resents the fidelity when the disorder in NN hopping Hd =
W

∑
[(δan a†

nbn + δbn a†
n+1bn) + H.c.] (W is the disorder ampli-

tude and δkn ∈ [−0.5, 0.5], with k = a, b, is a small random
quantity) is introduced into the system one time. The aver-
age fidelity versus the disorder amplitude W and parameter
|J| when the evolution speed satisfies � = 10−3 is shown
in Fig. 5(a). The results indicate that the topological trans-
mission can resist large disorder only when |J| < 0.5, and
the increased parameter |J| can decrease the robustness of
transmission. However, the phase factor γ can enhance the
robustness of topological transmission, as shown in Fig. 5(b).
For example, when γ = −π , we find that the topological
transmission can be realized even when W = 0.5 and |J| = 2.

In the following, we briefly discuss why the phase factor γ

can enhance the efficiency and robustness of the topological
excitation transmission. Note that the transmission efficiency
and robustness actually depend on the minimal energy space
�E at the gap closing point for the finite lattice. Thus, the
phase transition related to the gap closing point may be the
essential regime to enhance the efficiency and robustness of
topological excitation transmission. For the case of r = 2 and

l = 1 in long-range hopping, the translational symmetry is
broken, leading to the phase transition being able to be es-
timated by the winding number defined in real space [50–53],
i.e.,

ν = T {QBA[X, QAB]}. (4)

Here QBA = CBQCA (QAB = CAQCB), CB (CA) is the projec-
tion to sublattice b (a), Q = P+ − P− is the matrix defined by
the projection operators P± of the positive and negative bands,
X is the position operator, and T denotes the trace per volume.

The phase diagram versus the hopping amplitude |J| and
parameter θ is shown in Fig. 5(c). The results indicate that
the increased hopping amplitude |J| can induce a new topo-
logical phase with ν = −1, e.g., when |J| = 1, the system
experiences a phase transition between ν = 1 and ν = −1 first
and then enters the trivial phase ν = 0 with variation of the
parameter θ ∈ [0, π ]. The phase transition usually means the
closing of the gap, which indicates that the topological excita-
tion transmission experiences two gap closing points within
θt ∈ [0, π ]. In contrast, if we introduce the phase factor γ

now, the nonvanishing phase factor can destroy the topological
phase with ν = −1, as shown in Fig. 5(d). For example, when
γ = −π and |J| = 1, we find that the system only experiences
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FIG. 5. Robustness, phase diagrams, energy spectra, and distributions of states when when r = 2 and l = 1. (a) Fidelity versus hopping
amplitude |J| and disorder strength W when L = 21. (b) Fidelity versus hopping amplitude |J| and phase factor γ when W = 0.5 and L = 21.
(c) Phase diagram versus the parameters θ and |J| when L = 300. The white line represents |J| = 1. (d) Phase diagram versus the parameters
θ and γ when |J| = 1 and L = 300. The white line represents γ = 0. (e) Energy spectra when |J| = 1, γ = 0, and L = 100. (f) Energy spectra
when |J| = 1, γ = −0.8π , and L = 100. (g) Energy spectrum and (h) distribution of the zero-energy mode when |J| = 1, γ = 0, and L = 101.
(i) Energy spectrum and (j) distribution of the zero-energy mode when |J| = 1, γ = −0.8π , and L = 101. (k) Fidelity versus phase factor and
lattice size when |J| = 1 and � = 10−3. (l) Fidelity versus lattice size when |J| = 0, γ = 0, and � = 10−3.

one phase transition from ν = 1 to ν = 0 within θ ∈ [0, π ],
meaning that one of the two original gap closing points may
be reopened.

Note that the phase diagram can also be obtained by
defining the winding number in momentum space since the
boundary effect cannot affect the bulk topology (see Ap-
pendix A). Thus, the possible reopening of the gap mentioned
above can be estimated analytically via the Hamiltonian in
momentum. The Hamiltonian in Eq. (1) in the momentum
space can be written as

h(k) = hxσx + hyσy, (5)

where σ j ( j = x, y) is the Pauli matrix and hx = J1 +
J2 cos k + |J| cos(γ + k) and hy = J2 sin k − |J| sin(γ + k)
are the corresponding amplitudes. Obviously, the gap of

the system is closed when � = 2
√

h2
x + h2

y = 0, at which

point the system may experience the phase transition. As
shown in Fig. 5(c), when |J| = 1 and γ = 0, the system
experiences two phase transitions within θ ∈ [0, π ], while a
certain value of the phase factor γ can eliminate the topo-
logical phase with ν = −1 [see Fig. 5(d)]. The vanishing
of the topological phase with ν = −1 means that the corre-
sponding gap closing point may be reopened by the phase
factor γ . In the following, we take γ = 0 and γ �= 0 as
two examples to clarify the vanishing of the gap closing
point. When k = π , we have hx = J1 − J2 − |J| cos γ and

hy = |J| sin γ , meaning that the corresponding gap satisfies

� = 2
√

4 cos2 θ + 4|J| cos γ cos θ + |J|2. Obviously, when
γ = 0, the gap is closed under the parameter regime of

cos θ = −|J|
2

, (6)

which just corresponds to the phase transition point between
the nontrivial phase with ν = −1 and the trivial phase with
ν = 0 (θ = 2/3π and 4/3π ). In contrast, if γ �= 0, we have
� �= 0 for the same condition of cos θ = −|J|/2, implying
that the gap closing point now may be opened by the phase
factor γ . In this way, the phase factor γ can decrease the
number of gap closing points for a certain |J|, which further
promotes the topological excitation transmission.

To further verify the above analysis, we plot the energy
spectra for different |J| and γ when L = 100 in Figs. 5(e)
and 5(f). The energy spectra agree well with the phase dia-
grams and clearly show the decreasing of gap closing points
induced by nonzero γ . The decreasing of gap closing points
naturally can affect the topological channel of excitation trans-
mission, as shown in Figs. 5(g)–5(j). More specifically, the
zero-energy mode (topological channel) experiences two gap
closing points around θ ∼ 0.5π [Fig. 5(g)] when γ = 0 and
|J| = 1, which leads to the zero-energy mode being able to
enter the bulk (generating band crossing and bulk diffusion)
around θ ∼ 0.5π in the evolution process [Fig. 5(h)]. In this
way, the topological excitation transmission may be invalid
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FIG. 6. Extended cases for topological excitation transmission
assisted by the phase factor. (a) Fidelity versus evolution speed �

and the structure parameter r when l = 1, |J| = 1, and γ = −π .
(b) Fidelity versus evolution speed � and the parameter |J| when
r = 1, l = 2, and γ = 0. (c) Fidelity versus evolution speed � and
phase γ when r = 1, l = 2, and |J| = 1. (d) Fidelity versus evolution
speed � and phase γ when r = 2, l = 2, and |J| = 1. (e) Phase
diagram versus the parameters θ and |J| when r = 2, l = 2, and
γ = 0. The white line denotes |J| = 1. (f) Phase diagram versus the
parameters θ and γ when r = 2, l = 2, and |J| = 1.

due to the bulk diffusion. However, when γ = −0.8π and
|J| = 1, the gap closing point becomes once again around
θ ∼ 0.5π [Fig. 5(i)] and the system corresponds to a large
minimal energy space �E . The decreasing of the gap closing
point and enlarged �E ensures the transmission efficiency and
robustness. Furthermore, we also investigate the finite-size ef-
fects on the phase-factor-optimized topological transmission
and find that the phase-factor-optimized topological transmis-
sion is much more robust to the finite-size effect [Fig. 5(k)]
compared with the topological transmission in the standard
SSH model [Fig. 5(l)].

D. Generalization and discussion

Before concluding, we further discuss the cases of r � 2
or l > 1. We first focus on the case of r � 2 and l = 1. In
Fig. 6(a) we plot the transmission fidelity versus the parameter
r and evolution speed �. We find that the enlarged r will
weaken the transmission efficiency first and enhance the trans-
mission again. The transmission fidelity when r = 1 and l = 2
(longer-range hopping) is shown in Fig. 6(b), which reveals
that a certain hopping amplitude |J| in longer-range hopping
can weaken the transmission and a large enough amplitude
|J| can even destroy the transmission. For example, when

|J| = 1, we find that the excitation cannot be transmitted to
the right edge completely and the large phase factor γ (e.g.,
γ = ±π ) now can inhibit the topological transmission, as
shown in Fig. 6(c). To improve the transmission fidelity, we
still can perform a similar operation via removing the hopping
between sites a1 and b3, i.e., r = 2. The fidelity versus the
phase factor γ and evolution speed when r = 2 and l = 2 is
plotted in Fig. 6(d), which shows that the excitation can be
transmitted to the right edge completely only when the phase
factor γ is not around γ = ±π .

The reason why the large phase factor cannot promote the
transmission when l = 2 can still be explained by the phase
transition, as shown in Figs. 6(e) and 6(f). We find that, when
r = 2, l = 2, and |J| = 1, the system experiences only one
phase transition within θ ∈ [0, π ] [see white line in Fig. 6(e)],
which is different from the case shown in Fig. 5(c). In partic-
ular, the small phase factor γ also cannot induce a new phase
transition [see Fig. 6(e)], making the optimized transmission
scheme induced by the phase factor invalid. However, when
the phase factor γ is large enough, e.g., γ = ±π , the large
enough phase factor now can induce a new phase transition,
meaning that the system experiences two closing gap points
when γ = ±π . In this way, the large phase factor γ will
inhibit the topological excitation transmission. Thus, when we
implement the phase-factor-optimized topological excitation
transmission, we need to make a reasonable choice of the
order of long-range hopping, i.e., the value of the parameter l .

We stress that all of the conclusions on the phase-factor-
optimized topological excitation transmission are obtained
when the long-range hopping is added between sites of bn+l

and an, which may become different when the long-range
hopping has different forms, e.g., the long-range hopping is
added between two sites of the same type or between sites of
an+l and bn (see Appendix B). Furthermore, we also stress that
the phase-factor-optimized topological transmission scheme
may not be suitable to an arbitrary one-dimensional lattice,
e.g., the Kitaev model (see Appendix C).

III. CONCLUSION

We have shown the effects of the phase factor in long-range
hopping on the topological excitation transmission. We found
that the phase factor can enhance the topological excitation
transmission weakened by the finite amplitude of long-range
hopping. This enhanced topological transmission can be com-
prehended by the widened minimal energy space around the
gap closing point, which reveals the important effects of
the phase factor on the topological excitation transmission.
Furthermore, we showed the perfect topological excitation
transmission enhanced by the phase factor of long-range
hopping by optimizing the configuration of long-range hop-
ping. In particular, we found that the enhanced topological
transmission originates from the decreasing of the gap clos-
ing point induced by the phase factor, which confirms the
non-negligible role of the phase factor in the phase transi-
tion. Our investigation has revealed the effects of the phase
factor in long-range hopping on the topological excitation
transmission, which may provide different perspectives on
the importance of the phase factor in terms of the hopping
strength.
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FIG. 7. Phase diagrams in momentum space. (a) Phase diagram
in momentum space versus the parameters θ and |J| when l = 2
and γ = 0. The white line denotes |J| = 1. (b) Phase diagram in
momentum space versus the parameters θ and γ when l = 2 and
|J| = 1.
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APPENDIX A: PHASE DIAGRAMS IN MOMENTUM SPACE

In Figs. 5(c) and 5(d) we show the phase diagrams in real
space since the lack of long-range hopping between sites a1

and b2 destroys the translational symmetry of the lattice. We
stress that when the size of the lattice is large enough, the
boundary effect induced by the lack of long-range hopping
between sites a1 and b2 can be regarded as a perturbation
compared with bulk, resulting in the phase diagram defined
by the winding number in real space having the same pat-
tern as the phase diagram defined by the winding number
in momentum space. In Fig. 7 we plot the phase diagrams
defined by the winding number in momentum space, i.e., ν =

1
2π

∫ π

−π

hx∂khy−hy∂khx

h2
x+h2

y
dk. Here hx = J1 + J2 cos k + |J| cos(γ +

k) and hy = J2 sin k − |J| sin(γ + k) are the corresponding
components after rewriting the Hamiltonian in momentum
space as h(k) = hxσx + hyσy. The results clearly show the
same phase diagrams compared as in Figs. 5(c) and 5(d),
meaning that we can also estimate the bulk topology via the
winding number in momentum space. In this way, we can cal-
culate the variation of the gap closing point (phase transition
point) analytically via the Hamiltonian in momentum space.

APPENDIX B: DIFFERENT FORMS
OF LONG-RANGE HOPPING

We have shown that the phase factor can optimize the topo-
logical transmission when the long-range hopping is added
between sites of bn+l and an, which may become different
when the forms of long-range hopping are different. For
example, we now consider a SSH model with multifold long-
range hopping, i.e.,

H =
∑

n

[J1a†
nbn + J2a†

n+1bn + |J3|eiφ (a†
n+l an + b†

n+l bn)

+ |J4|eiγ (b†
n+l an + a†

n+l bn)] + H.c. (B1)

0 1 2

-2

0

2

(a)

0 1 2

-2

0

2

(b)

0 1 2

-2

0

2

(c)

0 1 2

-2

0

2

(d)

-4 -2 0
0

2

4

0

0.5

1
(e)

-4 -2 0
-1

0

1

0

0.5

1
(f)

FIG. 8. Energy spectra and fidelities when |J3| �= 0 and |J4| = 0.
The energy spectra are shown for (a) |J3| = 0.2 and (b) |J3| = 0.8
when φ = 0 and l = 2 and (c) |J3| = 0.2 and (d) |J3| = 0.8 when
φ = π and l = 2. (e) Transmission fidelity versus the parameter |J3|
and varying speed when φ = 0. The white line denotes |J3| = 1. (f)
Transmission fidelity versus the parameter φ and varying speed when
|J3| = 1. The size of the lattice is L = 21.

In the momentum space, the above Hamiltonian can be rewrit-
ten as

h(k) = h0I + hxσx + hyσy, (B2)

where I is the unit matrix and h0 = 2|J3| cos(φ + kl ), hx =
J1 + J2 cos k + 2|J4| cos(γ − kl ), and hy = J2 sin k are the
corresponding amplitudes. Note that the existence of the term
h0I only moves the energy bands and cannot change the cor-
responding eigenstates, implying that the above Hamiltonian
h(k) has the same bulk topology with the Hamiltonian h′(k) =
hxσx + hyσy, i.e., the existence of the long-range hopping of
|J3|eiφ (a†

n+l an + b†
n+l bn) cannot affect the phase transition. We

stress that, although the long-range hopping between the same
type of sites cannot induce the phase transition, it can deform
the corresponding energy spectrum. For example, Figs. 8(a)–
8(d) show the energy spectra for different |J3| and φ when
|J4| = 0. Obviously, both the parameters |J3| and φ can affect
the energy spectrum, implying that they may have effects on
the topological transmission. To further explore the possi-
ble effects of long-range hopping between the same type of
sites on topological transmission, we plot the corresponding
transmission fidelities, as shown in Figs. 8(e) and 8(f). The
results reveal that although the parameter |J| can affect the
transmission, the phase factor φ cannot optimize the affected
transmission. It can be easily understood by the fact that
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FIG. 9. Phase diagrams and energy spectra when |J3| = 0 and
|J4| �= 0. (a) Phase diagram in momentum space versus the pa-
rameters θ and |J| when l = 2 and γ = 0. (b) Phase diagram in
momentum space versus the parameters θ and γ when l = 2 and
|J4| = 0.5. Also shown are the energy spectra for (c) |J4| = 0.5 and
γ = 0, (d) |J4| = 1.5 and γ = 0, (e) |J4| = 0.5 and γ = 0.5π , and
(f) |J4| = 0.5 and γ = π when L = 20.

neither of the parameters |J| and φ can induce a new phase
transition.

Now we focus on the case of |J3| = 0 and |J4| �= 0. We
consider first the possible phase transition induced by the
parameters |J4| and γ . The corresponding phase diagrams are
plotted in Figs. 9(a) and 9(b). The results indicate that the pa-
rameters |J4| and γ can only change the range of the nontrivial
phase but cannot induce a new topological phase transition,
which is different from the cases shown in Figs. 5(c) and 5(d).
To further verify the above analysis, we also plot the energy
spectra for different |J4| and γ in Figs. 9(c)–9(f). Obviously,
the energy spectra agree well with the phase diagram. To
further investigate the effects of |J4| and γ on the topological
transmission, we plot in Fig. 10 the energy spectra, distribu-
tions of the zero-energy mode, and transmission fidelities for
different |J4| and γ when the lattice size is an odd number. The
results reveal that the large amplitude of long-range hopping
can totally destroy the topological channel of excitation trans-
mission, as shown in Figs. 10(a) and 10(b). Meanwhile, the
nonzero phase factor γ in the long-range hopping now can-
not optimize the destroyed topological channel [Figs. 10(c)
and 10(d)], implying that the phase-factor-optimized trans-
mission scheme may not be implemented in such a model.
The results of fidelities [Figs. 10(e) and 10(f)] further verify
the above inference, in which the phase factor γ now cannot
optimize the transmission efficiency for the finite parameter
|J4|. Thus, to implement the robust topological transmission
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FIG. 10. Energy spectra, distributions of the gap state, and
fidelities when |J3| = 0 and |J4| �= 0. (a) Energy spectra and (b) dis-
tribution of the gap state when |J4| = 1, γ = 0, and l = 2. (c) Energy
spectra and (d) distribution of the gap state when |J4| = 1, γ = π ,
and l = 2. (e) Transmission fidelity versus the parameter |J4| and
varying speed when γ = 0 and l = 2. (f) Transmission fidelity versus
the parameter γ and varying speed when |J3| = 1 and l = 2. The size
of the lattice is L = 21.

optimized by the phase factor of long-range hopping, the form
of long-rang hopping needs to be well designed.

APPENDIX C: APPLICABILITY TO THE KITAEV MODEL

Note that, according to the equivalence between the SSH
model and Kitaev model, the Kitaev model with the long-
range hopping may implement similar phase-factor-optimized
topological transmission. Actually, we can prove that the Ki-
taev model with long-range hopping is equivalent to the model
shown in Eq. (B1), implying that the long-range hopping
in the Kitaev model cannot implement the phase-factor-
optimized transmission scheme. For example, for the Kitaev
model with long-range hopping, i.e.,

H =
∑

j

μc†
j c j +

∑
j

[t (c†
j+1c j + c†

j+1c†
j + H.c.)

+ |J|eiγ c†
j+l c j + |J|e−iγ c†

j c j+l ], (C1)

it can be rewritten based on the Majorana basis, with

H = 1

4

∑
j

[iμξ1, jξ2, j + 2itξ1, jξ2, j+1

+ i|J| sin γ (ξ1, j+lξ1, j + ξ2, j+lξ2, j )

+ i|J| cos γ (ξ1, j+lξ2, j + ξ1, jξ2, j+l )] + H.c., (C2)
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where ξ1, j = c j + c†
j and ξ2, j = i(c†

j − c j ) are the Majorana operators. Obviously, the above Hamiltonian is equivalent to a SSH
chain with long-range hopping after replacing the symbols ξ1, j and ξ2, j with bn and an, i.e.,

H = 1

4

∑
n

[−iμa†
nbn + 2ita†

n+1bn + i|J| sin γ (a†
n+l an + b†

n+l bn) + i|J| cos γ (b†
n+l an − a†

n+l bn)] + H.c. (C3)

The Hamiltonian in Eq. (C3) obviously has the same form as Eq. (B1), indicating that the phase-factor-optimized topological
transmission cannot be implemented in the Kitaev model with long-range hopping.

[1] D. J. Thouless, Quantization of particle transport, Phys. Rev. B
27, 6083 (1983).

[2] S. Nakajima, T. Tomita, S. Taie, T. Ichinose, H. Ozawa,
L. Wang, M. Troyer, and Y. Takahashi, Topological Thou-
less pumping of ultracold fermions, Nat. Phys. 12, 296
(2016).

[3] Y. Ke, X. Qin, Y. S. Kivshar, and C. Lee, Multiparticle Wannier
states and Thouless pumping of interacting bosons, Phys. Rev.
A 95, 063630 (2017).

[4] L. Lin, Y. Ke, and C. Lee, Interaction-induced topological
bound states and Thouless pumping in a one-dimensional op-
tical lattice, Phys. Rev. A 101, 023620 (2020).

[5] S. Hu, Y. Ke, and C. Lee, Topological quantum transport and
spatial entanglement distribution via a disordered bulk channel,
Phys. Rev. A 101, 052323 (2020).

[6] M. Jürgensen, S. Mukherjee, and M. C. Rechtsman, Quantized
nonlinear Thouless pumping, Nature (London) 596, 63 (2021).

[7] R. Citro and M. Aidelsburger, Thouless pumping and topology,
Nat. Rev. Phys. 5, 87 (2023).

[8] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg,
Topological states and adiabatic pumping in quasicrystals,
Phys. Rev. Lett. 109, 106402 (2012).

[9] M. Verbin, O. Zilberberg, Y. Lahini, Y. E. Kraus, and Y.
Silberberg, Topological pumping over a photonic Fibonacci
quasicrystal, Phys. Rev. B 91, 064201 (2015).

[10] M. Bello, C. Creffield, and G. Platero, Long-range doublon
transfer in a dimer chain induced by topology and ac fields, Sci.
Rep. 6, 22562 (2016).

[11] C. Dlaska, B. Vermersch, and P. Zoller, Robust quantum state
transfer via topologically protected edge channels in dipolar
arrays, Quantum Sci. Technol. 2, 015001 (2017).

[12] N. Lang and H. P. Büchler, Topological networks for quantum
communication between distant qubits, npj Quantum Inf. 3, 47
(2017).

[13] M. P. Estarellas, I. D’Amico, and T. P. Spiller, Topologically
protected localised states in spin chains, Sci. Rep. 7, 42904
(2017).

[14] J. L. Tambasco, G. Corrielli, R. J. Chapman, A. Crespi, O.
Zilberberg, R. Osellame, and A. Peruzzo, Quantum interference
of topological states of light, Sci. Adv. 4, eaat3187 (2018).

[15] F. Mei, G. Chen, L. Tian, S.-L. Zhu, and S. Jia, Robust quantum
state transfer via topological edge states in superconducting
qubit chains, Phys. Rev. A 98, 012331 (2018).

[16] M. I. N. Rosa, R. K. Pal, J. R. F. Arruda, and M. Ruzzene, Edge
states and topological pumping in spatially modulated elastic
lattices, Phys. Rev. Lett. 123, 034301 (2019).

[17] S. Longhi, G. L. Giorgi, and R. Zambrini, Landau–Zener
topological quantum state transfer, Adv. Quantum Technol. 2,
1800090 (2019).

[18] S. Longhi, Topological pumping of edge states via adiabatic
passage, Phys. Rev. B 99, 155150 (2019).

[19] L. Qi, G. L. Wang, S. Liu, S. Zhang, and H.-F. Wang, Con-
trollable photonic and phononic topological state transfers in a
small optomechanical lattice, Opt. Lett. 45, 2018 (2020).

[20] F. M. D’Angelis, F. A. Pinheiro, D. Guéry-Odelin, S. Longhi,
and F. Impens, Fast and robust quantum state transfer in a
topological Su-Schrieffer-Heeger chain with next-to-nearest-
neighbor interactions, Phys. Rev. Res. 2, 033475 (2020).

[21] P. Gao and J. Christensen, Topological sound pumping of zero-
dimensional bound states, Adv. Quantum Technol. 3, 2000065
(2020).

[22] N. E. Palaiodimopoulos, I. Brouzos, F. K. Diakonos, and G.
Theocharis, Fast and robust quantum state transfer via a topo-
logical chain, Phys. Rev. A 103, 052409 (2021).

[23] Y. X. Shen, L. S. Zeng, Z. G. Geng, D. G. Zhao, Y. G. Peng, and
X. F. Zhu, Acoustic adiabatic propagation based on topological
pumping in a coupled multicavity chain lattice, Phys. Rev. Appl.
14, 014043 (2020).

[24] J. X. Han, J. L. Wu, Y. Wang, Y. Xia, Y. Y. Jiang, and J.
Song, Large-scale Greenberger-Horne-Zeilinger states through
a topologically protected zero-energy mode in a superconduct-
ing qutrit-resonator chain, Phys. Rev. A 103, 032402 (2021).

[25] J. N. Zhang, J. L. Wu, J. X. Han, S. Tang, J. Song, and Y. Y.
Jiang, Small admixture of nonadiabaticity facilitating topolog-
ically protected splitters and routers via optimizing coupling
engineering, Phys. Rev. B 109, 094303 (2024).

[26] M. Z. Hasan and C. L. Kane, Colloquium: Topological insula-
tors, Rev. Mod. Phys. 82, 3045 (2010).

[27] X. L. Qi and S. C. Zhang, Topological insulators and supercon-
ductors, Rev. Mod. Phys. 83, 1057 (2011).

[28] C. K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Classifica-
tion of topological quantum matter with symmetries, Rev. Mod.
Phys. 88, 035005 (2016).

[29] A. Bansil, H. Lin, and T. Das, Colloquium: Topological band
theory, Rev. Mod. Phys. 88, 021004 (2016).

[30] F. D. M. Haldane, Model for a quantum Hall effect with-
out Landau levels: Condensed-matter realization of the “parity
anomaly”, Phys. Rev. Lett. 61, 2015 (1988).

[31] D. Sticlet and F. Piéchon, Distant-neighbor hopping in graphene
and Haldane models, Phys. Rev. B 87, 115402 (2013).

[32] A. Rüegg, J. Wen, and G. A. Fiete, Topological insulators on the
decorated honeycomb lattice, Phys. Rev. B 81, 205115 (2010).

[33] X. Hu, M. Kargarian, and G. A. Fiete, Topological insulators
and fractional quantum Hall effect on the ruby lattice, Phys.
Rev. B 84, 155116 (2011).

[34] J. H. Jiang, Tunable topological Weyl semimetal from simple-
cubic lattices with staggered fluxes, Phys. Rev. A 85, 033640
(2012).

022401-9

https://doi.org/10.1103/PhysRevB.27.6083
https://doi.org/10.1038/nphys3622
https://doi.org/10.1103/PhysRevA.95.063630
https://doi.org/10.1103/PhysRevA.101.023620
https://doi.org/10.1103/PhysRevA.101.052323
https://doi.org/10.1038/s41586-021-03688-9
https://doi.org/10.1038/s42254-022-00545-0
https://doi.org/10.1103/PhysRevLett.109.106402
https://doi.org/10.1103/PhysRevB.91.064201
https://doi.org/10.1038/srep22562
https://doi.org/10.1088/2058-9565/2/1/015001
https://doi.org/10.1038/s41534-017-0047-x
https://doi.org/10.1038/srep42904
https://doi.org/10.1126/sciadv.aat3187
https://doi.org/10.1103/PhysRevA.98.012331
https://doi.org/10.1103/PhysRevLett.123.034301
https://doi.org/10.1002/qute.201800090
https://doi.org/10.1103/PhysRevB.99.155150
https://doi.org/10.1364/OL.388835
https://doi.org/10.1103/PhysRevResearch.2.033475
https://doi.org/10.1002/qute.202000065
https://doi.org/10.1103/PhysRevA.103.052409
https://doi.org/10.1103/PhysRevApplied.14.014043
https://doi.org/10.1103/PhysRevA.103.032402
https://doi.org/10.1103/PhysRevB.109.094303
https://doi.org/10.1103/RevModPhys.82.3045
https://doi.org/10.1103/RevModPhys.83.1057
https://doi.org/10.1103/RevModPhys.88.035005
https://doi.org/10.1103/RevModPhys.88.021004
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1103/PhysRevB.87.115402
https://doi.org/10.1103/PhysRevB.81.205115
https://doi.org/10.1103/PhysRevB.84.155116
https://doi.org/10.1103/PhysRevA.85.033640


ZHENG, ZHANG, HE, AND QI PHYSICAL REVIEW A 110, 022401 (2024)

[35] A. L. He, L. R. Ding, Y. Zhou, Y. F. Wang, and C. D. Gong,
Quasicrystalline Chern insulators, Phys. Rev. B 100, 214109
(2019).

[36] Y. Han, Y. Zhou, and A. L. He, Cn-symmetric quasi-periodic
Chern insulators, New J. Phys. 26, 033003 (2024).

[37] M. Kargarian and G. A. Fiete, Topological phases and phase
transitions on the square-octagon lattice, Phys. Rev. B 82,
085106 (2010).

[38] K. Sun, Z. Gu, H. Katsura, and S. Das Sarma, Nearly flatbands
with nontrivial topology, Phys. Rev. Lett. 106, 236803 (2011).

[39] R. Liu, W. C. Chen, Y. F. Wang, and C. D. Gong, Topological
quantum phase transitions and topological flat bands on the
kagomé lattice, J. Phys.: Condens. Matter 24, 305602 (2012).

[40] W. C. Chen, R. Liu, Y. F. Wang, and C. D. Gong, Topological
quantum phase transitions and topological flat bands on the star
lattice, Phys. Rev. B 86, 085311 (2012).

[41] X. P. Liu, W. C. Chen, Y. F. Wang, and C. D. Gong, Topological
quantum phase transitions on the kagomé and square–octagon
lattices, J. Phys.: Condens. Matter 25, 305602 (2013).

[42] Z. Y. Lan, A. L. He, and Y. F. Wang, Flat bands with high Chern
numbers and multiple flat bands in multifold staggered-flux
models, Phys. Rev. B 107, 235116 (2023).

[43] Y. Otaki and T. Fukui, Higher-order topological insulators in a
magnetic field, Phys. Rev. B 100, 245108 (2019).

[44] Z. R. Liu, C. B. Hua, T. Peng, R. Chen, and B. Zhou, Higher-
order topological insulators in hyperbolic lattices, Phys. Rev. B
107, 125302 (2023).

[45] B. Wang, X. Zhou, H. Lin, and A. Bansil, Higher-order topolog-
ical insulator phase in a modified Haldane model, Phys. Rev. B
104, L121108 (2021).

[46] A. L. He, W. W. Luo, Y. Zhou, Y. F. Wang, and H. Yao, Topo-
logical states in a dimerized system with staggered magnetic
fluxes, Phys. Rev. B 105, 235139 (2022).

[47] A. L. He, X. Zhang, and Y. Liu, Topological states in a dimer-
ized square-octagon lattice with staggered magnetic fluxes,
Phys. Rev. B 106, 125147 (2022).

[48] D. H. Guan, L. Qi, X. Zhang, Y. Liu, and A. L. He, Staggered
magnetic flux induced higher-order topological insulators and
topological flat bands on the ruby lattice, Phys. Rev. B 108,
085121 (2023).

[49] A. L. He, X. H. Yan, L. Qi, Y. Liu, and Y. Han, Topological
states and flat bands on the maple leaf lattice, Phys. Rev. B 109,
075118 (2024).

[50] I. Mondragon-Shem, T. L. Hughes, J. Song, and E. Prodan,
Topological criticality in the chiral-symmetric AIII class at
strong disorder, Phys. Rev. Lett. 113, 046802 (2014).

[51] J. Song and E. Prodan, AIII and BDI topological systems at
strong disorder, Phys. Rev. B 89, 224203 (2014).

[52] D. W. Zhang, L. Z. Tang, L. J. Lang, H. Yan, and S. L.
Zhu, Non-Hermitian topological anderson insulators, Sci. China
Phys. Mech. Astron. 63, 267062 (2020).

[53] L. Lin, Y. Ke, and C. Lee, Real-space representation of the
winding number for a one-dimensional chiral-symmetric topo-
logical insulator, Phys. Rev. B 103, 224208 (2021).

022401-10

https://doi.org/10.1103/PhysRevB.100.214109
https://doi.org/10.1088/1367-2630/ad2cc5
https://doi.org/10.1103/PhysRevB.82.085106
https://doi.org/10.1103/PhysRevLett.106.236803
https://doi.org/10.1088/0953-8984/24/30/305602
https://doi.org/10.1103/PhysRevB.86.085311
https://doi.org/10.1088/0953-8984/25/30/305602
https://doi.org/10.1103/PhysRevB.107.235116
https://doi.org/10.1103/PhysRevB.100.245108
https://doi.org/10.1103/PhysRevB.107.125302
https://doi.org/10.1103/PhysRevB.104.L121108
https://doi.org/10.1103/PhysRevB.105.235139
https://doi.org/10.1103/PhysRevB.106.125147
https://doi.org/10.1103/PhysRevB.108.085121
https://doi.org/10.1103/PhysRevB.109.075118
https://doi.org/10.1103/PhysRevLett.113.046802
https://doi.org/10.1103/PhysRevB.89.224203
https://doi.org/10.1007/s11433-020-1521-9
https://doi.org/10.1103/PhysRevB.103.224208

