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Quantum distinguishability measures: Projectors versus state maximization
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The distinguishability between two quantum states can be defined in terms of their trace distance. The
operational meaning of this definition involves a maximization over measurement projectors. Here we introduce
an alternative definition of distinguishability which, instead of projectors, is based on maximization over
normalized states (density matrices). It is shown that this procedure leads to a distance (between two states) that
in contrast to the usual approach based on a 1-norm, is based on an infinite-norm. Properties such as convexity,
monotonicity, and invariance under unitary transformations are fulfilled. Equivalent operational implementations
based on maximization over classical probabilities and hypothesis-testing scenarios are also established. When
considering the action of completely positive transformations, contractivity is only granted for unital maps. This
feature allows us to introduce a measure of the quantumness of nonunital maps that can be written in terms of
the proposed distinguishability measure and corresponds to the maximal possible deviation from contractivity.
Particular examples sustain the main results and conclusions.
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I. INTRODUCTION

Measuring the distinguishability between two quantum
states is a central ingredient when evaluating the performance
of any quantum information protocol. A solid basis of pro-
posals and results have been developed in recent years [1–5].
Nevertheless, due to its relevance, this issue has been period-
ically reviewed and still remains as an active area of research
[6–14].

A usual and standard definition of distinguishability relies
on the following expressions [1–5]. Given two quantum states
ρA and ρB in an arbitrary Hilbert space, their distinguishability
is defined as

D�(ρA, ρB) ≡ max
{�}

|Tr[�(ρA − ρB)]|. (1)

Here, Tr[·] is the trace operation. Maximization is performed
over arbitrary projectors, � = �n. In general, these projectors
may have an arbitrary rank (equal or greater than one). It is
well known that the operational definition of D�(ρA, ρB) is
equivalent to the expression [1]

D�(ρA, ρB) = 1
2 Tr|ρA − ρB|. (2)

Hence, D�(ρA, ρB) corresponds to the trace distance between
the states ρA and ρB.

Motivated by recent advances in the definition of envi-
ronment quantumness in open quantum systems [15–24], the
main goal of this paper is to introduce an alternative definition
of quantum distinguishability, providing, in addition, a full
characterization of its properties. While the standard approach
(1) relies on maximization over projectors, here we propose
to replace projectors with normalized states, that is, density
matrices.

We find that this alternative definition can be related to
a distance based on an infinite-norm. In contrast, the trace
norm is related to a 1-norm [2]. In addition, we prove that
some general properties hold in the alternative approach. The
proposed distinguishability measure is a metric on the space
of density matrices. Furthermore, it is convex on both entries.
Monotonicity and invariance under unitary transformations
are also fulfilled. Complementarily, we show that equivalent
implementations can be defined in terms of maximization over
classical probabilities and hypothesis-testing scenarios [5,25].
We also find the conditions under which the state-based and
projector-based distinguishability measures are equal.

Added to the intrinsic theoretical and practical interest of
the previous results, we find that the alternative definition, in
contrast to the standard approach [Eqs. (1) and (2)], allows
one to quantify departures from classicality of open quantum
dynamics. This quantum-classical border [15–24] is studied
by considering the action of completely positive maps. Con-
sistent with the results of Ref. [26], we find that in general,
contractivity does not hold here. Hence, the distance between
the output states could increase with respect to the distance
between the input states. The specific states and maps that
lead to maximal violation of contractivity are explicitly stated.
These results provide the basis for defining a measure that
quantifies the quantumness of dissipative (nonunital) open
system dynamics. Furthermore, a close relationship with re-
cently proposed measures of environment quantumness [24]
emerges from these analyses.

The manuscript is outlined as follows. In Sec. II, we
introduce the distinguishability measure based on maximiza-
tion over states. Its relationship with an infinite norm is
demonstrated. Equivalent operational implementations such
as maximization over classical probabilities and hypothesis-
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testing scenario are established. Furthermore, we compare the
projector and state-based measures, establishing the condi-
tions under which they are equal. In Sec. III, we study its
properties when considering the action of completely positive
maps. In Sec. IV, we study some specific examples of distance
between states and quantum maps. In Sec. V, we provide
the conclusions. Extra related results are provided in the
Appendices.

II. DISTINGUISHABILITY MEASURE BASED
ON MAXIMIZATION OVER STATES

Here, we introduce an alternative definition of distin-
guishability. In contrast to a maximization over projectors
[Eq. (1)], it emerges from a maximization over states. Given
two quantum states ρA and ρB (Tr[ρA] = Tr[ρB] = 1), it reads

Dρ (ρA, ρB) ≡ max
{ρ}

|Tr[ρ(ρA − ρB)]|, (3)

where ρ is an arbitrary density matrix, Tr[ρ] = 1. We notice
that being a state, ρ has positive eigenvalues in the interval
[0,1]. Furthermore, similarly to D�, Dρ is also a dimension-
less quantity.

The definition (3) can be read as a maximization over
states ρ of the expectation value of the “Hermitian operator”
(ρA − ρB). In Appendix A, we provide a general solution to
this problem (arbitrary operator A). Introducing the eigenval-
ues and eigenvectors associated to (ρA − ρB),

(ρA − ρB)|i〉 = ζi|i〉, (4)

the maximization in Eq. (3) leads to [see Eq. (A5)]

Dρ (ρA, ρB) = max
{i}

{|ζi|}. (5)

Hence, Dρ (ρA, ρB) corresponds to the eigenvalue of (ρA −
ρB) with maximal absolute value. In contrast, notice that
the projector-based definition [Eq. (2)] can be written as
D�(ρA, ρB) = (1/2)

∑
i |ζi|. On the other hand, the state ρ

that solves the maximization in Eq. (3), while in general not
unique (see Appendix A), can always be chosen as

ρ = |imax〉〈imax|, (6)

where |imax〉 is the eigenstate of (ρA − ρB) associated to the
eigenvalue with maximal absolute value, that is, max{i}{|ζi|}.

In order to understand the difference between Dρ (ρA, ρB)
and D�(ρA, ρB), we notice that Eq. (5) can be written in the
alternative way,

Dρ (ρA, ρB) = lim
α→∞

α
√

Tr|ρA − ρB|α. (7)

This expression allows one to read Dρ (ρA, ρB) as a distance
between states based on a infinite-norm, while D�(ρA, ρB)
[Eq. (2)] is a distance based on a 1-norm [given an operator A,
its α-norm (α � 1) is given by |A|α = α

√
Tr|A|α].

The proposed distinguishability measure is defined by
Eq. (3), whose explicit calculation is solved by Eq. (5). In
Appendix B, we demonstrate that Dρ (ρA, ρB) fulfills some
general properties. In particular, it is shown that it defines
a metric in the space of states, it is convex in both entries
and monotonicity for bipartite systems, and invariance under
unitary transformations are also corroborated.

A. Equivalent operational interpretations

Below we study different equivalent operational interpre-
tations of Dρ .

1. Maximization in terms of probabilities

Let {|k〉} be the basis where an arbitrary state ρ is diagonal,
ρ = ∑

k pk|k〉〈k|. Given two quantum states ρA and ρB, define
p(k)

A ≡ 〈k|ρA|k〉, and p(k)
B ≡ 〈k|ρB|k〉. Then, the distinguisha-

bility measure [Eq. (3)] can alternatively be written as

Dρ (ρA, ρB) = max
{ρ}

Dc(pA, pB), (8)

where the maximization is over all possible states {ρ}. With
pA ≡ {p(k)

A } and pB ≡ {p(k)
B }, we denote both sets of probabil-

ities. Their distinguishability is

Dc(pA, pB) ≡ max
{k}

{∣∣p(k)
A − p(k)

B

∣∣}. (9)

We notice that Eq. (8) implies that Dρ (ρA, ρB) is the dis-
tinguishability Dc(pA, pB) between probabilities maximized
over all possible states ρ. A similar result is valid for
D�(ρA, ρB) [1], but where the probabilities are defined in
terms of an arbitrary positive operator value measure [27].

Demonstration. Below we demonstrate the validity of the
operational representation defined by Eqs. (8) and (9). By
using the explicit expressions of p(k)

A and p(k)
B , it is possible

to rewrite Dc(pA, pB) as

Dc(pA, pB) = max
{k}

{|〈k|(ρA − ρB)|k〉|}. (10)

From Eq. (4), we write

(ρA − ρB) =
∑

i

ζi |i〉〈i|, (11)

where {|i〉} is the basis where (ρA − ρB) is a diagonal matrix.
Hence, the previous expression becomes

Dc(pA, pB) = max
{k}

{∣∣∣∣∣
∑

i

ζi |〈k|i〉|2
∣∣∣∣∣
}

� max
{k}

{∑
i

|ζi| |〈k|i〉|2
}

�
(

max
{i}

{|ζi|}
)

max
{k}

∑
i

|〈i|k〉|2

= max
{i}

{|ζi|} = Dρ (ρA, ρB),

which demonstrates Eq. (8). In fact, the equality is achieved
when the basis {|k〉}, where the state ρ is diagonal, is the same
basis {|i〉}, where (ρA − ρB) is a diagonal operator.

2. Hypothesis-testing scenario

Here we demonstrate that under an appropriate constraint,
Dρ plays the same role as D� in a “hypothesis-testing sce-
nario” [5,25]. Let Alice prepare two quantum states ρ1 and ρ0,
each one with probability 1/2. Bob can perform a binary “pos-
itive operator value measure” with elements � = {�1,�0}
to distinguish the two states. Central for the following argu-
ments, here �1 is restricted to be a 1-rank projector, while �0
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is its complement, �1 + �0 = I. For example,

�1 = |ψ1〉〈ψ1|, �0 = I − |ψ1〉〈ψ1| =
∑
i �=1

|ψi〉〈ψi|, (12)

where {|ψi〉} is a complete basis.
When the outcome 1 or 0 is obtained, Bob guesses the state

ρ1 or ρ0, respectively. Thus, the probability psucc(�) for this
hypothesis-testing scenario is

psucc(�) = Tr[�1ρ1] 1
2 + Tr[�0ρ0] 1

2 (13a)

= 1
2 {1 + Tr[�1(ρ1 − ρ0)]}, (13b)

where we have used that �1 + �0 = I. Now, we assume
that Bob can freely choose the projectors {�1,�0} such that
psucc(�) is maximized. The success probability with respect
to all measurements, under the constraint (12), can then be
defined as

psucc(�)= 1

2
max

{
1 + max{�1} Tr[�1(ρ1 − ρ0)]

1 − min{�1} Tr[�1(ρ1 − ρ0)].
(14)

This expression can be rewritten as

psucc(�) = 1

2

{
1 + max

{�1}
|Tr[�1(ρ1 − ρ0)]|

}
. (15)

Using that �1 is a one-dimensional projector [Eq. (12)] and
given that the states ρ that maximize Dρ can always be chosen
as pure states [Eq. (6)], it follows that

max
{�1}

|Tr[�1(ρ1 − ρ0)]| = Dρ (ρ1, ρ0), (16)

which implies that

psucc(�) = 1
2 [1 + Dρ (ρ1, ρ0)]. (17)

Consequently, the proposed distinguishability measure Dρ is
related to the maximum success probability in distinguishing
two quantum states in a quantum hypothesis-testing experi-
ment. We notice that when the rank of �1 can be greater than
one, the success probability psucc(�), instead of Dρ (ρ1, ρ0), is
defined in terms of D�(ρ1, ρ0) [5].

B. Comparison between metrics

From the previous analysis, one can conclude that
D�(ρA, ρB) and Dρ (ρA, ρB) [Eqs. (1) and (3), respectively] are
intrinsically different distinguishability measures. Here, we
establish when they are equal and how they differ in general.

Both distinguishability measures always coincide when the
Hilbert space dimension dim(H) is equal to two and three,

Dρ (ρA, ρB) = D�(ρA, ρB), dim(H) = 2, 3. (18)

Furthermore, when dim(H) � 4, the inequalities

Dρ (ρA, ρB) � D�(ρA, ρB) � NDρ (ρA, ρB) (19)

are fulfilled, where the constant N is

N = Int[dim(H)/2]. (20)

Int[a] denotes the integer part of real number a.
The conditions under which the equalities in Eq. (19)

are satisfied [higher-dimensional spaces, dim(H) � 4] are

also well defined. Dρ (ρA, ρB) = D�(ρA, ρB) when the eigen-
value of (ρA − ρB) with maximal absolute value is not
degenerate. Equivalently, this occurs when (ρA − ρB) has a
unique positive (or negative) eigenvalue. On the other hand,
D�(ρA, ρB) = NDρ (ρA, ρB) when the eigenvalue of (ρA −
ρB) with maximal absolute value has degeneracy N .

Demonstration. Below we demonstrate the validity
of Eqs. (18) and (19). By using Eq. (11), (ρA −
ρB) = ∑

i ζi |i〉〈i|, the projector-based measure [Eq. (2)],
D�(ρA, ρB) = (1/2)Tr|ρA − ρB|, can be written in terms of
the eigenvalues {ζi} of (ρA − ρB) as

D�(ρA, ρB) = 1

2

∑
i

|ζi| = 1

2

⎛
⎝ n+∑

i=1

ζ
(+)
i +

n−∑
j=1

|ζ (−)
j |

⎞
⎠.

(21)
In the second equality, we split the addition in positive and
negative eigenvalues, {ζ (+)

i } and {ζ (−)
j }, respectively. Further-

more, n+ and n− count their quantity, respectively, n+ + n− =
dim(H) [28]. Given that Tr[(ρA − ρB)] = 0, it is fulfilled that∑n+

i=1 ζ
(+)
i = ∑n−

j=1 |ζ (−)
j |. Hence, straightforwardly, it follows

that

D�(ρA, ρB) =
n+∑
i=1

ζ
(+)
i =

n−∑
j=1

|ζ (−)
j |. (22)

On the other hand, Eq. (5) tells us that Dρ (ρA, ρB) =
max{i}{|ζi|}. Consequently, when the number n+ or n− of pos-
itive and negative eigenvalues is equal to one, both measures
coincide, that is,

n+ = 1 or n− = 1 ⇔ Dρ = D�. (23)

In fact, in this situation, the unique positive (or negative)
eigenvalue, due to the equality

∑n+
i=1 ζ

(+)
i = ∑n−

j=1 |ζ (−)
j |, is

also the eigenvalue with maximal absolute value, which, in
turn, is not degenerate. This condition can be rephrased as
follows: when (ρA − ρB) has a unique positive (or negative)
eigenvalue, then Dρ (ρA, ρB) = D�(ρA, ρB).

The previous condition [Eq. (23)] is always fulfilled when
dim(H) = 2, where n+ = n− = 1. The same occurs when
dim(H) = 3 because it can only occur that n+ = 2, n− = 1
or, complementarily, n+ = 1, n− = 2. The same occurs if
there is a null eigenvalue, which implies n+ = 1, n− = 1.
Consequently, Eq. (18) is established.

For Hilbert spaces with dim(H) � 4, the equality of
Dρ (ρA, ρB) and D�(ρA, ρB) is not valid in general, but acci-
dentally it occurs when n+ = 1 or n− = 1. On the other hand,
from Eq. (22), it follows that D�(ρA, ρB) � ns max{i}{|ζi|} =
nsDρ (ρA, ρB), where ns is the number of positive or negative
eigenvalues and s = ±1 gives the sign of the eigenvalue with
maximal absolute value. Given that

∑n+
i=1 ζ

(+)
i = ∑n−

j=1 |ζ (−)
i |,

the maximal possible value of ns is N = Int[dim(H)/2] [29].
These results lead to the upper constraint in Eq. (19). It is
achieved when the eigenvalue with maximal absolute value
has degeneracy N . Thus, the conditions under which the
equalities in Eq. (19) are fulfilled are established.

III. CONTRACTIVITY UNDER QUANTUM OPERATIONS

Here, we characterize the behavior of Dρ under quantum
operations. Since it is based on an infinite norm [see Eq. (7)],
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from Ref. [26], we can anticipate that contractivity is not ful-
filled here. The alternative analysis developed below allows us
to establish the states and maps that lead to maximal violation
of contractivity, which further leads to the formulation of a
quantumness measure for nonunital maps.

First, we notice that given a trace-preserving com-
pletely positive map, ρ → E (ρ), the projector-based measure
[Eqs. (1) and (2)] always satisfies contractivity [1],

D�(E[ρA], E[ρB]) � D�(ρA, ρB). (24)

Hence, the distance between two states can never increase
under the action of the map E . For the state-based mea-
sure [Eqs. (3) and (5)], when the Hilbert space dimension is
dim(H) = 2 and dim(H) = 3, we find that

Dρ (E[ρA], E[ρB]) � Dρ (ρA, ρB). (25)

This result follows straightforwardly because, with this
dimensionality, Dρ (ρA, ρB) = D�(ρA, ρB) [Eq. (18)]. In addi-
tion, contractivity [Eq. (25)] is always satisfied if E is a unital
map, that is, when E[I] = I (I is the identity operator). For
nonunital maps, E[I] �= I , and for higher-dimensional spaces
[dim(H) � 4], it is possible to obtain

Dρ (E[ρA], E[ρB]) � CDρ (ρA, ρB). (26)

The constant C is bounded as

1 < C � dim(H), (27)

implying that standard contractivity is not fulfilled in general
(C �= 1). Furthermore, C can be written as

C = max
{ρ}

Tr[VEρ] = max
{k}

{vk}. (28)

The positive definite operator VE reads

VE ≡ E[I] =
∑

α

VαV †
α =

∑
k

vk|k〉〈k|, (29)

where {vk} and {|k〉} are the corresponding eigenvalues and
eigenbasis. Thus, C is the largest eigenvalue of the operator
VE . On the other hand, the set of operators {Vα} defines the
Kraus representation [1] of the map E and its dual E#, the
latter being defined by the relation Tr[AE[ρ]] = Tr[ρE#[A]].
Explicitly,

E[ρ] =
∑

α

VαρV †
α , E#[ρ] =

∑
α

V †
α ρVα. (30)

Notice that trace preservation implies
∑

α V †
α Vα = I .

Demonstration. First, we notice that VE = E[I] =
dim(H)E[I/ dim(H)]. Consequently, Tr[VE ] = dim(H) =∑

k vk , which, for nonunital maps, supports the inequality
(27). Furthermore, considering unital maps, VE → I (which
implies vk = 1 ∀k) leading to C → 1.

Based on the definition (3), we write

Dρ (E[ρA], E[ρB]) =max
{ρ}

|Tr[ρ(E[ρA] − E[ρB])]|
= max

{ρ}
|Tr[ρE[ρA − ρB]]|

= max
{ρ}

|Tr[E#[ρ](ρA − ρB)]|

= max
{ρ}

(Tr[E#[ρ]]|Tr[ρE (ρA−ρB)]|), (31)

where we have used that Tr[E#[ρ]] > 0 and defined the state

ρE = ρE [ρ] ≡ E#[ρ]

Tr[E#[ρ]]
. (32)

Given that ρE is a positive definite operator with unit trace, the
second factor in the last line of Eq. (31) fulfills |Tr[ρE (ρA −
ρB)]| � Dρ (ρA, ρB), leading to the inequality

Dρ (E[ρA], E[ρB]) � (max
{ρ}

Tr[E#[ρ]]) Dρ (ρA, ρB). (33)

From here, we recover Eq. (26) with

C = max
{ρ}

Tr[E#[ρ]]. (34)

Using the Kraus representation [Eq. (30)], the cyclic prop-
erty of the trace operation, and the maximization defined in
Appendix A, this last expression recovers Eq. (28).

A. Maximal departure from contractivity

Given a nonunital map E , the inequality (26) implies that
there may (or may not) exist states ρA and ρB such that the
usual contractivity is violated. Taking into account that the
states that maximize the definition of Dρ [Eq. (3)] can always
be chosen as pure states [see Eqs. (6) and (16)], we expect that
contractivity is not fulfilled for states (ρA and ρB) whose purity
is increased by the map. Nevertheless, this relation is not valid
in general (over the complete set of possible input states). On
the other hand, here we analyze the conditions under which
maximal departure could be achieved, Dρ (E[ρA], E[ρB]) =
CDρ (ρA, ρB).

Taking into account the last line of Eq. (31), the equality
in Eq. (26) is fulfilled when the state ρmax that maximizes
the definition of Dρ (ρA, ρB) can be written as ρmax = ρE [ρv]
where ρv is the state that maximizes Eq. (34). The state ρv

can always be chosen as the projector (or mixed state) as-
sociated to the space spanned by the eigenstate of VE with
maximal eigenvalue [Eq. (28)] (Appendix A). Due to the
action of E# [Eq. (32)], ρE is, in general, a mixed state.
Consequently, maximal departure can be reached under the
following conditions: (i) The eigenvalue of (ρA − ρB) with
maximal absolute value must be degenerate such that ρmax

can be chosen as an arbitrary statistical superposition (mixed
state) of the corresponding eigenvectors (Appendix A). (ii)
The equality ρmax = ρE [ρv] must be fulfilled.

B. Witnessing maximal violation of contractivity

For an arbitrary map E , the previous conditions could not
be fulfilled. In such a case, maximal violation of contractivity
is not observed. In contrast, here we demonstrate that by
adding a passive ancillary system, maximal departure from
contractivity is always achieved.

For simplicity, the ancilla is taken as a two-level system
with associated basis of states {|±〉}. The map is extended to
the “system-ancilla” Hilbert space as

Ẽ = E ⊗ Ia, (35)
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where Ia is the identity operator for the ancilla system. Fur-
thermore, we consider the states

ρA = I

dim(H)
⊗ |+〉〈+|, ρB = I

dim(H)
⊗ |−〉〈−|. (36)

Therefore, it is simple to obtain

Ẽ[ρA] − Ẽ[ρB] = 1

dim(H)
VE ⊗ (|+〉〈+| − |−〉〈−|), (37)

where we have used that E[I] = VE . From the previous
two expressions, it follows that Dρ (ρA, ρB) = 1/ dim(H)
and Dρ (Ẽ[ρA], Ẽ[ρB]) = C/ dim(H), where C is defined by
Eq. (28). Consequently,

Dρ (Ẽ[ρA], Ẽ[ρB]) = CDρ (ρA, ρB). (38)

Consistently, the previously defined conditions (i) and (ii)
are satisfied. Furthermore, in agreement with the quali-
tative argument based on the purity of the states, here
Tr[(Ẽ[ρA])2] + Tr[(Ẽ[ρB])2] > Tr[ρ2

A] + Tr[ρ2
B]. On the other

hand, for the same states [Eq. (36)], we have D�(ρA, ρB) = 1
and D�(Ẽ[ρA], Ẽ[ρB]) = Tr[VE ]/ dim(H) = 1.

It is important to notice that the states ρA and ρB that
lead to the previous result are not unique. In fact, un-
der the replacements ρA → (1 − w)�sa + wρA and ρB →
(1 − w)�sa + wρB, where 0 < w � 1 and �sa is an arbitrary
system-ancilla state, one again arrives at the equality (38).

C. Quantumness of nonunital maps

The classicality, or complementarily the quantumness, of
a given open system evolution can be tackled from different
perspectives [15–24]. Consistent with Refs. [15,24], here a
map ρ → E (ρ) with the structure

E (ρ) =
∑

c

pcUcρU †
c , (39)

where Uc is a unitary transformation and whose weigh is pc,
is read as a classical one. In fact, this structure can always
be implemented without involving any quantum feature of
the environment. Notice that all maps that admit this classi-
cal interpretation are also unital (the inverse implication in
general is not true; see, for example, [30]). Consequently, in
contrast with D�, the lack of contractivity of Dρ witnesses
the nonclassicality of nonunital maps. This property allows
us to introduce a degree of map quantumness MQ, which
gives one the main supports of the present approach. Given
that the constant C measures the maximal departure from
contractivity, MQ is defined as

MQ ≡ C − 1 = max
{ρ}

|Tr[E#[ρ]] − 1|, (40)

where the equality is based on Eq. (34). Furthermore, it is
bounded as 0 � MQ � dim(H) − 1.

Using the relation between a map and its dual, Eq. (40) can
equivalently be rewritten as

MQ

dim(H)
= Dρ (E[ρI], ρI ), (41)

where ρI ≡ I/ dim(H) is the maximal mixed state. This equal-
ity explicitly shows the role of Dρ in the present definition.
Furthermore, it allows one to understand the scheme that

permits its determination [Eq. (38)]. In fact, the states (36)
involve the (system) maximally mixed state. They lead to
maximal departure from contractivity but, in addition, they
lead to MQ = 0 [Eq. (41)] when the map is unital.

Even when Dρ is contractive when dim(H) = 2 and
dim(H) = 3, MQ can be determined in these cases because
the extra ancilla leads to a higher-dimensional space (see
Sec. IV C). With this dimensionality, the constant C must be
read from the general expression (28). On the other hand, we
remark that MQ also applies to time-dependent open system
dynamics after identifying the map E with the propagator of
the system density matrix. Equation (41) also recovers the
degree of environment quantumness introduced in Ref. [24]
when studying continuous-in-time evolutions characterized
by a unique stationary state [see analysis below Eq. (48)].

IV. EXAMPLES

Here we characterize the proposed distinguishability mea-
sure for some particular quantum states. In addition, its
behavior under different completely positive maps is studied
in detail.

A. Particular cases

(a) When both states are pure, ρA = |ψA〉〈ψA|, ρB =
|ψB〉〈ψB|, from Eq. (3) we get,

Dρ (ρA, ρB) = max
{ρ}

|〈ψA|ρ|ψA〉 − 〈ψB|ρ|ψB〉|. (42)

This expression can be solved after calculating the eigen-
values ζ defined by (ρA − ρB)|ψ〉 = ζ |ψ〉, where |ψ〉 =
a|ψA〉 + b|ψB〉. We get ζ = ±

√
1 − |〈ψA|ψB〉|2. The rest of

the eigenvalues, ζ = 0, correspond to eigenvectors that are
perpendicular to the plane spanned by |ψA〉 and |ψB〉. Thus,
from Eq. (5), it follows that

Dρ (ρA, ρB) =
√

1 − |〈ψA|ψB〉|2. (43)

Given that D�(ρA, ρB) =
√

1 − |〈ψA|ψB〉|2 [1], Dρ (ρA, ρB) =
D�(ρA, ρB). In fact, (ρA − ρB) has a unique positive (nega-
tive) eigenvalue [see Eq. (23)].

For orthogonal states, Eq. (43) leads to

〈ψA|ψB〉 = 0,⇒ Dρ (ρA, ρB) = 1. (44)

Nevertheless, the inverse implication is not valid, that is,
Dρ (ρA, ρB) = 1 does not imply that ρA and ρB are pure states.
Take, for example, ρA = |ψA〉〈ψA| and ρB = ∑

k wk|ψk
B〉〈ψk

B|,
where the positive weights are normalized,

∑
k wk = 1, and

〈ψk
B|ψA〉 = 0 ∀k.
In general, it is simple to realize that Dρ (ρA, ρB) = 1 if and

only if ρA and ρB have support on orthogonal subspaces and
ρA or ρB is a pure state. Instead, D�(ρA, ρB) = 1, whenever
ρA and ρB have support on orthogonal subspaces.

(b) Here we consider two qubit states,

ρA = (1/2)(I + α · σ ), ρB = (1/2)(I + β · σ ), (45)

where α and β are the Bloch vectors and σ is the
vector of Pauli matrices. Then, ρA − ρB = (1/2)(α − β ) ·
σ =(1/2)|α − β|(n · σ ), where n =(α − β )/|α − β|. Given
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that the eigenvalues of (n · σ ) are ±1, it follows that

Dρ (ρA, ρB) = 1
2 |α − β|. (46)

In an alternative way, this result explicitly confirms that when
dim(H) = 2, both measures coincide: in fact, Dρ (ρA, ρB) =
D�(ρA, ρB) = (1/2)|α − β| [1].

(c) Now we consider that one of the density matrices is
the maximally mixed state. Under the replacements ρA →
�, where � is an arbitrary density matrix, and ρB → ρI =
I/ dim(H), from Eq. (5), we get

Dρ (�, ρI ) = max
{i}

{∣∣∣∣λi − 1

dim(H)

∣∣∣∣
}
, (47)

where {λi} are the eigenvalues of �. This expression can be
rewritten as

Dρ (�, ρI ) = 1

dim(H)
max

(
Dmax

ρ ,Dmin
ρ

)
, (48)

where the coefficients are

Dmax
ρ ≡ dim(H) max{λi} − 1, (49a)

Dmin
ρ ≡ 1 − dim(H) min{λi}. (49b)

Here, max{λi} and min{λi} are the maximal and mini-
mal eigenvalues of �. These expressions recover the degree
of environment quantumness DQ introduced in Ref. [24].
With the present notation, it can be written as DQ =
dim(H)Dρ (ρ̃∞, ρI ), where ρ̃∞ = limt→∞ ρt (disregarding a
technical time-inversion operation) is the system stationary
state. Under the identification ρ̃∞ → E[ρI], this last expres-
sion for DQ assumes the structure of Eq. (41).

(d) Take both density matrices as diagonal ones, with

ρA = (1/10)diag{5, 2, 2, 1},
ρB = (1/4)diag{1, 1, 1, 1}.

Given that ρB is the maximally mixed state, ρA can be read
as an arbitrary quantum state written in its eigenbasis. We
notice that (ρA − ρB) only has one positive eigenvalue. This
eigenvalue is not degenerate and coincides with the eigenvalue
with maximal absolute value. Thus, both measures [Eqs. (2)
and (5)] coincide. In fact,

Dρ (ρA, ρB) = D�(ρA, ρB) = 0.25. (50)

(e) Instead, taking

ρA = (1/10)diag{5, 3, 1, 1},
ρB = (1/4)diag{1, 1, 1, 1},

it follows that ρA − ρB has two positive and two negative
eigenvalues. In this case, both measures differ [Eqs. (2) and
(5)]. We get

Dρ (ρA, ρB) = 0.25 < D�(ρA, ρB) = 0.3. (51)

(f) In this example,

ρA = (1/10)diag{4, 4, 1, 1},
ρB = (1/4)diag{1, 1, 1, 1}.

Hence, ρA − ρB has two degenerate positive eigenvalues, as
well as two degenerate negative eigenvalues. In this case,
both measures differ [Eqs. (2) and (5)]. It is fulfilled that

FIG. 1. Distances between the quantum states defined by
Eq. (53). The full lines correspond to Dρ (ρA, ρB ), the dashed lines
to D�(ρA, ρB ), while the dotted lines correspond to 2Dρ (ρA, ρB ).
The figures show the dependence with the parameter s associated
to ρB. The left and right panels correspond to r = 0.1 and r = 0.5,
respectively, where r is the parameter associated to ρA.

0.15 = Dρ (ρA, ρB) < D�(ρA, ρB) = 0.3. In addition, the
eigenvalue with maximal absolute value has degeneracy equal
to two. Consistently with Eq. (19), it is fulfilled that

D�(ρA, ρB) = 0.3 = 2Dρ (ρA, ρB). (52)

(g) Here we take the quantum states

ρA = 1
2 (I2 + rσz ) ⊗ 1

2 (I2 + rσz ), (53a)

ρB = 1
4 (I4 + sσx ⊗ σx ), (53b)

where the parameters are constrained as 0 � r � 1 and 0 �
s � 1. The dimensionality of the identity matrix I is denoted
with its subindex. Furthermore, σi are the Pauli matrices.
We notice that while ρA (a separable state) is diagonal in
the natural basis, ρB is diagonal in the Bell basis. The four
eigenvalues of (ρA − ρB) are {ζi} = (1/4){(±s − r2), (r2 ±√

4r2 + s2)}. Hence, Dρ (ρA, ρB) and D�(ρA, ρB) follow from
Eqs. (5) and (22), respectively. After some algebra, we find
that Dρ (ρA, ρB) = D�(ρA, ρB) if s � r2. In Fig. 1, we plot
both distinguishability measures as a function of s for two
different values of r. Consistently, the behaviors confirm both
the inequalities (N = 2) and equalities defined by Eq. (19).

B. Depolarizing maps

Depolarizing maps (in any Hilbert space dimension) can be
defined as

ρ → Ew[ρ] = wρ + (1 − w)
I

dim(H)
, (54)

where 0 � w < 1. Given that this map is unital [1], our
previous analysis guarantees that contractivity is fulfilled
[Eq. (25)]. In fact, by writing ρA − ρB = ∑

ξi|i〉〈i|, it follows
that E[ρA] − E[ρB] = w(ρA − ρB) = w

∑
ξi|i〉〈i|. Given that

w|ξi| < |ξi| ∀i, using Eq. (5), it follows that

Dρ[Ew(ρA), Ew(ρB)] < Dρ (ρA, ρB), (55)

where Dρ[Ew(ρA), Ew(ρB)] = w max{i}{|ζi|}, while Dρ

(ρA, ρB) = max{i}{|ζi|}.

C. Zero-temperature qubit map

A qubit system coupled to a zero-temperature reservoir can
be described by the map E[ρ] = V0ρV †

0 + V1ρV †
1 , with Kraus
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operators

V0 =
(√

1 − γ 0
0 1

)
, V1 =

(
0 0√
γ 0

)
, (56)

where γ ∈ [0, 1]. The action over an arbitrary state ρ is

ρ =
(

p c
c∗ q

)
→ E[ρ] =

(
(1 − γ )p

√
1 − γ c√

1 − γ c∗ q + γ p

)
, (57)

where p and q denote populations, while c denotes coherence.
Notice that the parameter γ gives the probability for a transi-
tion from the upper to the lower level, |+〉 → |−〉.

Consistent with the trace-preservation property, it is ful-
filled that V †

0 V0 + V †
1 V1 = I. On the other hand,

E[I] = V0V
†

0 + V1V
†

1 =
(

1 − γ 0
0 1 + γ

)
�= I. (58)

Thus, the map is not unital (also nonclassical). Nevertheless,
given the system dimensionality, dim(H) = 2, contractivity
must be fulfilled [Eq. (25)]. This property is corroborated in
Appendix C.

Here we study the two qubits map,

E = Ea ⊗ Eb, (59)

where the maps Ea and Eb are defined by the Kraus operators
(56) under the replacements γ → γa and γ → γb, respec-
tively.

Instead of proposing a set of states ρA and ρB, we write
their difference (ρA − ρB) in its proper eigenbasis as

� = ρA − ρB =

⎛
⎜⎜⎝

x 0 0 0
0 y 0 0
0 0 z 0
0 0 0 −(x + y + z)

⎞
⎟⎟⎠. (60)

Under appropriate constraints on these parameters [eigenval-
ues x, y, z and −(x + y + z)],

|x| � 1, |y| � 1, |z| � 1, |x + y + z| � 1, (61a)

jointly with

|x + y| � 1, |x + z| � 1, |y + z| � 1, (61b)

the matrix � represents a difference of two arbitrary density
matrices (see derivation in Appendix D). From its defini-
tion (5), the distance between the input states [Dρ (ρA, ρB) =
Dρ (�)] is

Dρ (�) = max{|x|, |y|, |z|, |x + y + z|}. (62)

In order to solve the action of the map on the difference
of states, �, we need to explicitly specify the basis where it
is diagonal. For simplicity, we take the same basis where the
Kraus operators are defined, {| + +〉, | + −〉, | − +〉, | − −〉}.
In this case, the application of the map (59) over � leads to a
diagonal matrix E[�], whose four elements are

E[�]++ = (1 − γa)(1 − γb)x, (63a)

E[�]+− = (1 − γa)(xγb + y), (63b)

E[�]−+ = (1 − γb)(xγa + z), (63c)

E[�]−− = −(1 − γaγb)x − (1 − γa)y − (1 − γb)z. (63d)

FIG. 2. Witness W [Eq. (65)] for the two qubit map (59) as a
function of (x, y) and fixed z [Eq. (60)]. The map parameters are γa =
1/2 and γb = 1/4. The horizontal full line corresponds to the level
curve W = 0. The gray plane corresponds to the domain of (x, y)
given that here, z = 0.5.

We notice that here the symmetry under interchange of sub-
systems, a ↔ b, is consistently fulfilled under the parameter
changes γa ↔ γb and y ↔ z. The distance between the output
states, from (5), can be written as

Dρ (E[�]) = max
{s,s′}

{|E[�]ss′ |}, s = ±1, s′ = ±1. (64)

Both Dρ (�) and Dρ (E[�]) [Eqs. (62) and (64)] depend
on (x, y, z). This dependence labels different possible states
ρA and ρB. In order to quantify the violation of (standard)
contractivity [Eq. (26)], we introduce the (dimensionless) wit-
ness,

W ≡ Dρ (ρA, ρB) − Dρ (E[ρA], E[ρB])

Dρ (ρA, ρB)(C − 1)
. (65)

If W � 0, the usual contractivity is fulfilled. Whenever W <

0, the usual contractivity is not fulfilled. When W = −1, the
maximal violation of contractivity is achieved. In fact, in this
case, Dρ (E[ρA], E[ρB]) = CDρ (ρA, ρB). Furthermore, notice
that W = W (x, y, z) where Dρ (ρA, ρB) = Dρ (�) [Eq. (62)]
and Dρ (E[ρA], E[ρB]) = Dρ (E[�]) [Eq. (64)].

For the bipartite map (59), the constant C, from Eqs. (28)
and (58), is

C = (1 + γa)(1 + γb) � 4. (66)

Consistent with our definitions [MQ = C − 1; see Eq. (40)],
classicality is only achieved when γa = γb = 0, which re-
duces the map [Eq. (59)] to the identity.

In Figs. 2 and 3, we plot the contractivity witness W as a
function of (x, y) and fixed z. Given z, the domain of the (x, y)
variables corresponds to the surface defined by z = const in
the three-dimensional body defined by Eq. (61) (see Fig. 4 in
Appendix D).

In Fig. 2, the map parameters [Eqs. (57) and (59)] are γa =
1/2 and γb = 1/4. Furthermore, we take z = 0.5. Depending
on the values of (x, y), we observe a transition between con-
tractivity (W > 0) and its violation (W < 0). Furthermore, we
observe that the limit of maximal departure from contractivity
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FIG. 3. Witness W [Eq. (65)] for the two qubit map (59) as a
function of (x, y) and fixed z [Eq. (60)]. The map parameters are
γa = 1/2 and γb = 0. The horizontal full line corresponds to the level
curve W = 0. The gray plane corresponds to the domain of (x, y)
given that here, z = 0.3.

is not achieved (W �= −1). We checked that these properties
remain the same when considering other possible values of z.

In general, the dependence of W on (x, y, z) defines a
complex landscape. It may include regions where W is con-
stant or even develops nonsmooth nonderivable behaviors.
These features are inherited from the expressions for the input
and output distances, Eqs. (62) and (64), which involve a
maximization associated to the definition of Dρ . Given this
feature, in general, it is not easy or even possible to infer
(analytically) general properties of W as a function of the
underlying parameters, here γa and γb. Nevertheless, for this
example, it is possible to check the following properties.

Assuming that γb � γa, the witness W = W (x, y, z) as-
sumes its minimal value,

Wmin = 1 − 2γa

(γa + γb + γaγb)
, (67)

when x = z, y = −z and arbitrary z in its domain. For this
choice, its domain is |z| � 1/2 [see Eq. (61)]. From the ex-
pression of Wmin, it follows that when

γb <
γa

(1 + γa)
, (68)

there exist input states [values (x, y, z) = (z,−z, z), with z �=
0] where contractivity is not fulfilled (Wmin < 0). The param-
eters of Fig. 2 are in this regime, where Wmin

∼= −0.14 at
x = 0.5, y = −0.5, z = 0.5.

From Eq. (67), it follows that maximal departure (Wmin =
−1) can only be achieved when γb = 0. Hence, the subsystem
b can be read as the passive ancillary system associated to
the scheme of Sec. III B, which allows one to determine the
quantumness of the two-dimensional qubit map [Eq. (57)],

C = (1 + γa), MQ = γa. (69)

In Fig. 3, we check this regime. The map parameters are
γa = 1/2, γb = 0. Furthermore, z = 0.3. Consistently, when
x = 0.3, y = −0.3, W = −1 is achieved. Here, the degen-
eracy of the value of z for getting W = −1 [(x, y, z) =
(z,−z, z)] can straightforwardly be related to the nonunique-

ness of the states that achieve maximal departure in the
proposed scheme (Sec. III B). Explicitly, here the states can
be taken as ρA = (1 − 2|z|)�ab + |z|(I2 ⊗ |+〉〈+|) and ρB =
(1 − 2|z|)�ab + |z|(I2 ⊗ |−〉〈−|), where �ab is an arbitrary
density matrix for two qubits. Hence, ρA − ρB (jointly with
ρB − ρA) recovers Eq. (60) with x = −y = z.

V. SUMMARY AND CONCLUSIONS

We have introduced an alternative distinguishability mea-
sure between quantum states. In contrast to the standard
definition based on maximization over projectors, the pro-
posed measure relies on a maximization over states [Eq. (3)].
This operation can be explicitly performed [Eq. (5)], which
allowed us to demonstrate that the proposed measure is a
metric in the space of density matrices based on an operator-
infinite-norm. In addition, it was shown that properties such
as convexity, monotonicity in bipartite Hilbert spaces, and
invariance under unitary transformations are also fulfilled.

Similarly to the usual projector-based definition, different
operational interpretations of the proposed distinguishability
measure have been established. It can be read as a maxi-
mization over states of a distance between probabilities, each
one being associated to each input state [Eq. (8)]. The distin-
guishability measure also defines the probability of success
in a hypothesis-testing scenario [Eq. (17)] where a state is
guessed in terms of a measurement process consisting of a
1-rank projector and its complement [Eq. (12)].

The projector- and state-based definitions are equal when
the Hilbert space dimension is two or three [Eq. (18)].
For higher-dimensional spaces [Eq. (19)], the relationship
between both objects depends on the eigenvalues of the dif-
ference of states. When the eigenvalue with maximal absolute
value is not degenerate, both measures coincide. When this
eigenvalue has maximal degeneracy, the state-based definition
achieves its minimal value with respect to the projector-based
definition.

In contrast to other distances in Hilbert space, we demon-
strated that the proposed measure is able to quantify the
quantum character of dissipative open system dynamics. This
result relies on the contractivity properties of the proposed
measure. For unital maps, contractivity is always satisfied,
while for nonunital maps, violation of contractivity is ex-
pected, meaning that there could be states such that their
distance increases after application of the map. It was shown
that maximal violation of contractivity is always achieved
when expanding the map to an extra ancillary Hilbert space
without dynamics [Eqs. (35) and (38)]. The quantumness
measure for nonunital maps is defined by the constant asso-
ciated to this scheme which, in turn, can be written in terms of
the proposed distinguishability measure [Eqs. (40) and (41)].

We have studied some particular cases and examples that
sustain the main results and conclusions. The proposed mea-
sure may find applications in quantum information tasks
as well as in the characterization of open quantum system
dynamics. In particular, given that dissipative nonclassical
(quantum) system-environment interactions lead to nonunital
dynamics, the present measure plays a central role when char-
acterizing this quantum-classical border.
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APPENDIX A: MAXIMIZATION OVER STATES
OF AN OPERATOR EXPECTATION VALUE

Let A be an arbitrary Hermitian operator, A = A†. Define
its maximized expectation value by

〈A〉max ≡ max
{ρ}

|Tr[ρA]|, (A1)

where the maximization is performed over positive-definite
normalized density matrices, Tr[ρ] = 1. Introducing the
eigenbasis {|i〉} of the operator A,

A|i〉 = λi|i〉, (A2)

where {λi} are the corresponding eigenvalues, it follows that

〈A〉max = max
{ρ}

∣∣∣∣∣
∑

i

λi〈i|ρ|i〉
∣∣∣∣∣ = max

{Pi}

∣∣∣∣∣
∑

i

λiPi

∣∣∣∣∣. (A3)

Here, Pi ≡ 〈i|ρ|i〉, 0 � Pi � 1. Using the triangular inequal-
ity (|a + b| � |a| + |b|), it follows that∣∣∣∣∣

∑
i

λiPi

∣∣∣∣∣ �
∑

i

|λiPi| � max
{i}

(|λi|)
∑

i

Pi, (A4)

where max{i}(|λi|) is the eigenvalue of A with maximal abso-
lute value. Using that

∑
i Pi = 1, we obtain

〈A〉max = max
{i}

(|λi|). (A5)

Hence, 〈A〉max is the eigenvalue of the operator A with maxi-
mal absolute value. On the other hand, we notice that 〈A〉max =
0 ⇔ A = 0. Both implications follow straightforwardly from
Eqs. (A1) and (A5), respectively.

The state ρ that achieves the maximal value in the defi-
nition (A1) can always be chosen as ρ = |imax〉〈imax|, where
|imax〉 is the eigenstate associated to max{i}(|λi|). If this eigen-
value (with a given sign) is degenerate, ρ can be taken as an
arbitrary mixed state over the corresponding subspace. On the
other hand, if there exists a subspace with null eigenvalues,
{λk = 0}, the demonstration remains the same because

∑
i Pi

can always be normalized to one on the subspace with non-
null eigenvalues.

APPENDIX B: GENERAL PROPERTIES OF Dρ

The distinguishability measure Dρ (ρA, ρB) fulfills some
general properties whose formulation and demonstration are
provided below.

(a) Dρ (ρA, ρB) is positive and bounded,

0 � Dρ (ρA, ρB) � 1. (B1)

This results follows from Eq. (5) after noticing that
Eq. (4) implies that 〈i|(ρA − ρB)|i〉 = 〈i|ρA|i〉 − 〈i|ρB|i〉 = ζi,
which is a difference between two populations leading to
−1 � ζi � 1.

(b) Dρ (ρA, ρB) is null if and only if ρA = ρB,

Dρ (ρA, ρB) = 0 ⇔ ρA = ρB. (B2)

Both implications follow from Eqs. (3) and (5).
(c) Dρ (ρA, ρB) is a distance or metric in the space of den-

sity operators, that is, in addition it satisfies

Dρ (ρA, ρC ) � Dρ (ρA, ρB) + Dρ (ρB, ρC ), (B3)

the triangular inequality.
Demonstration. By its definition [Eq. (3)], there exists a

state ρmax such that

Dρ (ρA, ρC ) = |Tr[ρmax(ρA − ρC )]|
= |Tr[ρmax(ρA − ρB)] + Tr[ρmax(ρB − ρC )]|
� |Tr[ρmax(ρA − ρB)]| + |Tr[ρmax(ρB − ρC )]|
� Dρ (ρA, ρB) + Dρ (ρB, ρC ),

establishing that Dρ (ρA, ρB) is a metric. The inequality in the
third line relies on the usual triangular inequality (|a + b| �
|a| + |b|).

(d) Given a set of positive normalized weights,
∑

i pi = 1,
convexity is

Dρ

( ∑
i

piρi,
∑

i

piσi

)
�

∑
i

piDρ (ρi, σi ), (B4)

where the sets of states {ρi} and {σi} are arbitrary ones. In the
case in which σi → σ , it follows that

Dρ

( ∑
i

piρi, σ

)
�

∑
i

piDρ (ρi, σ ). (B5)

Thus, Dρ is convex in both entries.
Demonstration. By its definition, there exists a state ρmax

such that

Dρ

( ∑
i

piρi,
∑

i

piσi

)
=

∣∣∣∣∣Tr

[
ρmax

∑
i

pi(ρi − σi )

]∣∣∣∣∣
=

∣∣∣∣∣
∑

i

piTr[ρmax(ρi − σi )]

∣∣∣∣∣
�

∑
i

pi|Tr[ρmax(ρi − σi )]|

�
∑

i

pi max
{ρ}

|Tr[ρ(ρi − σi )]|

=
∑

i

piDρ (ρi, σi ),

where the triangular inequality was used in the third line. The
demonstration of Eq. (B5) is the same as that before, replacing
σi → σ and using that

∑
i pi = 1.

(e) In a bipartite Hilbert space with subparts a and b,
monotonicity is

Dρ (ρa, σa) � Dρ (ρab, σab), (B6)

where ρa = Trb[ρab] and σa = Trb[σab].
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Demonstration. There exists a state ρmax
a that leads to max-

imization,

Dρ (ρa, σa) = ∣∣Tra
[
ρmax

a (ρa − σa)
]∣∣

= ∣∣Trab
[(

ρmax
a ⊗ Ib

)(
ρab − σab

)]∣∣
� max

{ρ}
|Trab[ρ(ρab − σab)]|

= Dρ (ρab, σab),

where, consistently, ρ (in the third line) is an arbitrary bipar-
tite state.

(f) Invariance under unitary rotations,

Dρ (UρAU †,UρBU †) = Dρ (ρA, ρB), (B7)

where UU † = I . This result straightforwardly follows from
the definition (3) after using the cyclic property of the trace
and noting that U †ρU is also an arbitrary state.

APPENDIX C: CONTRACTIVITY OF THE
ZERO-TEMPERATURE QUBIT MAP

Given two arbitrary states ρA and ρB, their difference is
denoted as (see, also, Appendix D)

� ≡ ρA − ρB =
(

δp δc
δc∗ −δp

)
. (C1)

The eigenvalues of � are ±
√

δp2 + |δc|2. Consequently,

Dρ[�] =
√

δp2 + |δc|2. (C2)

The action of the map on the difference of states �, from
Eq. (57), is

E[�] =
(

(1 − γ )δp
√

1 − γ δc√
1 − γ δc∗ −(1 − γ )δp

)
. (C3)

The eigenvalues of E[�] are ±
√

(1 − γ )2δp2 + (1 − γ )|δc|2.
Consequently,

Dρ[E[�]] =
√

(1 − γ )
√

(1 − γ )δp2 + |δc|2. (C4)

From Eqs. (C2) and (C4), it follows that

Dρ[E[�]] � Dρ[�]. (C5)

As expected, the usual contractivity [Eq. (25)] is fulfilled for
any input state.

APPENDIX D: SPACE ASSOCIATED TO DIFFERENCE
OF QUANTUM STATES

Here we establish how to parametrize, in a general way, the
difference between two density matrices. Given two states ρA

and ρB, define

� ≡ ρA − ρB. (D1)

Hence, instead of ρA and ρB, the goal is to parametrize � in an
independent way. Written in terms of the eigensystem (ρA −
ρB)|i〉 = ζi|i〉, it follows that

� =
∑

i

ζi|i〉〈i|. (D2)

Thus, � can be characterized in terms of an arbitrary ba-
sis {|i〉} and the eigenvalues {ζi}. Given that Tr[�] = 0, the
addition of the eigenvalues must vanish. Furthermore, each
eigenvalue must be in the interval [−1, 1], that is,

|ζi| � 1,

dim(H)∑
i=1

ζi = 0, (D3)

where dim(H) is the dimension of the Hilbert space. Added to
these conditions, the sum of an arbitrary number of eigenval-
ues also must be in the interval [−1, 1]. This condition can
be explicitly written by introducing the vector of eigenval-
ues ζ = (ζ1, ζ1, . . . , ζn) and the vector b = (b1, b2, · · · , bn),
whose components are bi = 0 or bi = 1. Thus, it must be
satisfied that for all vectors b [b �= (1, 1, . . . , 1)],

|ζ · b| =
∣∣∣∣∣∣
dim(H)∑

k=1

ζkbk

∣∣∣∣∣∣ � 1. (D4)

We notice that the condition |ζi| � 1 is recovered when b
is the canonical basis, bk = δki. On the other hand, the con-
dition

∑dim(H)
i=1 ζi = 0 can be written as |ζ · b| = 0, where

b = (1, 1, . . . , 1).
Demonstration. The previous conditions [Eqs. (D3)

and (D4)] can be derived as follows. Straightforwardly,
the condition Tr[�] = 0 implies that the eigenvalues
fulfill

∑
i ζi = 0. On the other hand, given �, there must

exist states ρ and σ such that � + σ = ρ. Taking matrix
elements in the basis {|i〉} associated to �, it follows that
〈i|�|i〉 + 〈i|σ |i〉 = 〈i|ρ|i〉. Given that 0 � 〈i|ρ|i〉 � 1 and
0 � 〈i|σ |i〉 � 1, using that 〈i|�|i〉 = ζi, it follows that |ζi| �
1 [Eq. (D3)]. Furthermore, the addition of an arbitrary number
of diagonal components must be less than one. For example,
〈i|�|i〉 + 〈k|�|k〉 + 〈i|σ |i〉 + 〈k|σ |k〉 = 〈i|ρ|i〉 + 〈k|ρ|k〉 �
1. In general,

∑dim(H)
k=1 bk〈k|�|k〉 + ∑dim(H)

k=1 bk〈k|σ |k〉 =∑dim(H)
k=1 bk〈k|ρ|k〉 � 1, which leads to Eq. (D4).

FIG. 4. Domain of the parameters (x, y, z) that set the eigenval-
ues of the difference of states � = ρA − ρB defined by Eq. (D5)
(four-dimensional Hilbert space). The constraints on (x, y, z) are
defined by Eqs. (D6) and (D7).
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Four-dimensional case. Below, we characterize the dif-
ference of states, �, in a four-dimensional space. The basis
where it is diagonal remains unspecified. Thus, we write

� = ρA − ρB = diag{x, y, z,−(x + y + z)}. (D5)

The condition Tr[�] = 0 is automatically fulfilled. Further-
more, the condition Eq. (D3) on the eigenvalues, here denoted

as x, y, z, and −(x + y + z), is satisfied under the conditions

|x| � 1, |y| � 1, |z| � 1, |x + y + z| � 1. (D6)

In addition, Eq. (D4) leads to the extra constraints,

|x + y| � 1, |x + z| � 1, |y + z| � 1. (D7)

The inequalities (D6) and (D7), in the space defined by
(x, y, z), define a three-dimensional body with 14 faces. It is
plotted in Fig. 4.
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