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Multimode advantage in continuous-variable quantum batteries
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We provide an architecture for a multimode quantum battery based on the framework of continuous-variable
systems. We examine the performance of the battery by using a generic class of multimode initial states whose
parameters can be tuned to produce separable as well as entangled states and that can be charged locally as
well as globally by Gaussian unitary operations. Analytical calculations show that a separable state is equally
advantageous as an entangled one for two- and three-mode batteries when taking the figures of merit as the
second moments of the change in energy. In order to produce a stable quantum battery consisting of an arbitrary
number of modes, we derive compact analytical forms of the energy fluctuations and prove that for a multimode
separable Gaussian initial state, fluctuations decrease as the number of modes increases, thereby obtaining a
scaling analysis. Moreover, we demonstrate that local displacement as a charger is better for minimizing the
fluctuations in energy than that involving the squeezing unitary operation.
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I. INTRODUCTION

Small-scale energy-storing devices like batteries are nec-
essary due to the growing trend of miniaturizing electronic
devices, especially at the molecular and subatomic levels.
Batteries typically store chemical energy and convert it into
electrical energy through well-known reduction-oxidation re-
actions. Although these batteries play a crucial role in our
daily lives, ranging from medical instruments to household
appliances, navigation, and also transportation systems, they
have several significant constraints at the microscopic level.
The principles of quantum mechanics have been shown to
modify the laws of thermodynamics [1,2] and improve the
performance of a variety of devices, including that of quantum
thermal machines [3,4].

A quantum battery (QB) is a device that can store energy
and from which the energy can be extracted via unitary op-
erations. It typically consists of a collection of d-dimensional
quantum systems governed by a Hamiltonian having a non-
degenerate energy spectrum [5]. In the past few years, a
series of QB models, charged via global and local unitary
operators, have been proposed, which include many-body
quantum batteries [6–11], interacting spin chains [12], the
Dicke quantum battery [13,14], a quantum battery based on
superconducting qubits [15], and batteries formulated with the
Sachdev-Ye-Kitaev [16] and Lipkin-Meshkov-Glick models
[17–19]. Numerous investigations have also been conducted
to analyze the detrimental impact on the performance of the
QB by taking into account the inevitable interaction of the
system with the environment [20–24]. Going beyond these
distinguishable systems, the modeling of energy-storing de-
vices with indistinguishable particles, with ultracold atomic
setups in the test bed of bosons and fermions, has also
been addressed in recent times [25]. Despite the tremendous
progress in the field of quantum batteries, it is still unclear how
nonclassicality, like quantum entanglement [26] or quantum
coherence [27], affects the performance of quantum thermal

machines. In particular, global entangling operations are
found to be more beneficial than the local operations, which
are further supported by a recent work [28], although it may
not generate entanglement between the subsystems [29–31].

All the aforementioned QBs are designed on systems
having discrete and finite degrees of freedom. Interesting
studies on QBs in infinite-dimensional systems are limited.
Variables like the position and momentum of a particle pos-
sess a continuous spectrum and are used to characterize
continuous-variable (CV) systems. Prominent examples in-
clude the harmonic oscillator, through which many physical
systems having an important role in quantum optics [32] have
been realized and which also provide significant benefits in
the fields of quantum error correction and several quantum
information processing tasks [33–43]. As a thermal machine,
harmonic oscillators are also used as a charger to deposit
energy in a two-level system [44,45], while non-Gaussian
charging is shown to be optimal [46] to charge a QB made of
infinite-dimensional bosonic systems under the constraint of
low environmental temperature and in the presence of strong
squeezing [47]. All these proposals for CV batteries involve a
few modes or a single mode.

In this paper we go beyond this restriction and explore
the question of whether the battery’s efficiency increases if
it is constructed with several modes and if so is multimode
entanglement required for this improvement. We report here
that although the second answer is negative, the first one is af-
firmative. Specifically, we present a design of a QB composed
of an arbitrary number of noninteracting Gaussian systems.
These systems are charged using local Gaussian operations,
such as squeezing and displacement [48], to demonstrate a
quantum advantage in terms of increasing number of modes
(see Fig. 1 for a schematic representation of our model). To
analyze the performance, the second moments in the energy
change, known as charging precision [46], i.e., determining
the stability of the battery and the work fluctuation, quantify-
ing how accurately the battery can be charged, are computed
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FIG. 1. Schematic diagram depicting the functioning of a multimode continuous-variable quantum battery. Initially, it is uncharged and
has a minimum amount of energy in each mode which is shown as filled in light blue. The phase-space description of each mode is taken to
be the same and is shown as light green ellipses. The local charging operations are considered to be either displacement D̂c or squeezing Ŝc.
The dark blue represents the increment in the energy of the charged battery from the dotted line. The charged modes are either squeezed or
displaced, which are depicted as dark green ellipses in phase space.

after optimizing the parameters involved in the charging pro-
cess and the initial state of the battery. Specifically, we choose
a class of generic states comprising two and three modes with
varying degrees of entanglement, as the initial states of the
QB, thereby representing both separable and entangled states.
We highlight that when charging is carried out using global
and local operations, and the energy to be stored is fixed to
a given amount, fully separable and entangled states provide
an identical level of stability in the QB. Note here that our
findings counter the established result that applying global
unitary operations generally reduces work precision [49,50].
This deviation arises partly because we focus on a restricted
set of operations and initial states that, while experimentally
feasible, yield these counterintuitive outcomes. Furthermore,
our investigation is strictly limited to the Gaussian regime
and thus we do not explore the potential advantages of en-
tanglement in the non-Gaussian domain. It should also be
noted that the implementation of non-Gaussian operations is
highly probabilistic in practice. Our results demonstrate that
the modeling proposed here definitely lowers the experimental
cost of the CV battery.

By charging the system with local squeezing and
displacement operations, we also demonstrate the multimode
advantage of the stability of the CV battery. In particular, our
analyses, supplemented with numerical data, show that by
considering initial separable states with an arbitrary number of
modes, the fluctuation during discharging decreases sharply
with the increase of modes, when squeezing unitaries are
used as the charging operation. Although the work fluctuation
does not vary with the number of modes in the case of local

displacement, the fact that the charging precision decreases
as the number of modes grows once more emphasizes the
constructive role played by the multiple modes present in
the battery. The minimum values attained by both figures of
merit are lower in the case of local displacement as charging
operations than those provided through squeezing. Such
modal superiority has a twofold implication: First, it boosts
the stability of the battery against fluctuations in energy,
and second, storing more energy in the battery is possible,
since charging a single mode is restricted by experimental
limitations (especially in the case of squeezing). Therefore,
a higher number of modes directly implies a more perfectly
functioning CV quantum battery.

The paper is organized as follows. In Sec. II we introduce
the basic notions of a CV quantum battery and its charging
operations along with the figures of merit. The importance
of considering the entangled state as the initial state and
the role of global as well as local charging are reported in
Sec. III for effectively small system size. Motivated by the
results obtained in Sec. III, a scaling analysis is performed
by considering a fully separable initial state consisting of an
arbitrary number of modes, and the multimodal advantage is
reported in Sec. IV. We summarize our results in Sec. V.

II. CONTINUOUS-VARIABLE QUANTUM
BATTERY AND ITS FIGURES OF MERIT

A quantum battery consists of an arbitrary number of quan-
tum systems, in which energy can be stored and extracted
via quantum operations. The internal energy is described by
the battery Hamiltonian ĤB. To store (charging) or extract
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(discharging) work from the system, the battery is evolved
by a charging Hamiltonian ĤC , which must be noncommuting
with respect to ĤB. The choice of the battery Hamiltonian and
the charging Hamiltonian depends on the system of interest
[7,8,10,12,20,23].

Design of the CV battery

Instead of working in finite dimensions, we propose a
quantum battery built of infinite-dimensional systems, specif-
ically CV systems. We choose the initial state of the battery
as an N -mode Gaussian state which can be described by
its first and second moments in the phase space. The un-
derlying Hamiltonian describing the energy of the system
is ĤB = ∑N

j=1 ω j N̂ j , where N̂j = â†
j â j denotes the number

operator. In other words, we consider the system consisting of
N harmonic oscillators, each of frequency ω j in the mode j.
We choose the initial state as both correlated and uncorrelated,
which, e.g., can be prepared through the application of beam
splitters on an N -mode product state with alternate squeezing
r,−r, . . . in consecutive modes [51]. Hence, the class of cor-
related states can be characterized by an (N − 1)-parameter
family {τ j} j=1,2,...,N−1, where τ j represents the transmittivity
of the jth beam splitter. Note that most of the well-known
entangled states can be constructed in this way, as we will
describe later.

1. Battery operation

The objective of the charging operation is to augment the
energy of the system by considering the work stored, particu-
larly in the case of closed dynamics, whereas the discharging
operation is intended to extract the stored energy. This evo-
lution changes the state of the system to another state, which
in turn creates an energy difference �EUC , where UC denotes
the charging unitary. We analyze the stability of the battery
during both charging and discharging. We also provide the
most efficient modal distribution of the energy �EU j

C
in an

arbitrary mode j such that
∑

j �EU j
C

= �EUC . As charging
operations, local squeezing and displacement unitaries act on
each mode, while global squeezing operations are performed
on the entire system. Both pictures address the question of
whether entanglement in the initial state or entangling charg-
ing operations can help to achieve optimal figures of merit.

Squeezing operation. The squeezing operator acting on
the mode j is given by Ŝ j (ζ j ) = exp[ 1

2 (ζ j â
†2

j − ζ ∗
j â2

j )], where
ζ j = δ jeiθ j is the squeezing parameter, with δ j and θ j the
squeezing degree and the squeezing angle, respectively. Here
i = √−1 and the asterisk denotes complex conjugation. The
total local squeezing operator for the N -mode battery is given
by Ŝc = Ŝ1(ζ1) ⊗ · · · ⊗ ŜN (ζN ). We refer to θ j as the phase
of the charging operation.

Displacement operation. If the battery is charged via local
displacements, the charging operator on the N modes reads
D̂c = D̂1(α1) ⊗ · · · ⊗ D̂N (αN ), where D̂ j (α j ) = exp(α j â

†
j −

α∗
j â j ) is the local displacement operator characterized by α j =

|α j |eiφ j , with φ j being the phase of the charging unitary.

2. Performance indicators

Instead of studying the usual work output of the battery,
which is typically studied in spin systems [52], we are in-

terested in quantifying the stability of the quantum battery.
Precisely, the charging process can be designed in such a way
that at the time of discharge, it can produce the same amount
of energy that is stored during charging. This is quantified by
a parameter known as the charging precision [46], which is
defined for an N -mode system as

�σ (N ) =
√

V (ρ1) −
√

V (ρ0), (1)

where V (ρk ) stands for the variance, given by

V (ρk ) = tr
(
Ĥ2

Bρk
) − [tr(ĤBρk )]2. (2)

Here ρk , with k = 0, 1, corresponds to the initial and final
states of the battery, respectively, and ρ1 = UCρ0U

†
C .

If the charging strength is γ j ∈ {δ j, |α j |} and its corre-
sponding phase is ν j ∈ {θ j, φ j} for the jth mode of the battery,
we have

�σ (N ) = f1(s, {ω j}, {γ j}, {ν j}) (3)

for some function f1. Here s represents multiple parame-
ters, consisting of the initial-state parameters, e.g., the initial
squeezing r and beam-splitter transmittivities τi (i.e., s =
{r, τ1, . . . , τN−1}), and ω j are the parameters of the battery
Hamiltonian. Note that {x j} is a collection of N elements, i.e.,
{x j} = {x1, . . . , xN }, with x being ω, γ , or ν. For the mode
j, we can invert the expression for a fixed energy increment
�EU j

C
to obtain γ j , i.e.,

�EU j
C

= f2(s, ω j, γ j, ν j ) for an invertible function f2,

⇒ γ j = f3
(
s, ω j,�EU j

C
, ν j

)
. (4)

Using Eq. (4), we can obtain the charging precision as a
function of the increased energy of the different modes, i.e.,

�σ (N ) = f (N )
U

(
s, {ω j},

{
�EU j

C

}
, {ν j}

)
, (5)

with U being S (or, D) for squeezing (or, displacement) op-
eration. By fixing the initial-state parameters s and the total
energy increment �EUC = ∑N

j=1 �EU j
C
, our task is to mini-

mize �σ (N ) over the set of the charging phases {ν j} and the
energy distribution {�EU j

C
}. This minimum value is denoted

by �σ
(N )
min . Although a general battery Hamiltonian includes

arbitrary ω j , for ease of calculation, we assume that they are
all equal to unity. Consequently, the average energy and mean-
square energy for the jth mode are given by EU j

C
= 〈N̂U j

C
〉 and

E2
U j

C

= 〈N̂2
U j

C

〉, respectively, where N̂U j
C

is the number operator

for mode j after the application of U j
C . However, the conclu-

sions remain the same even under this assumption, since the
overall behavior is qualitatively similar when one considers
arbitrary ω j . In particular, the difference in taking arbitrary ω j

would be reflected in the optimal energy distribution {�EU j
C
}

of the charging process and the optimal charging phases {ν j},
although the effect of the number of modes as well as the ex-
isting correlations among them on the figures of merit remains
unchanged.

Another indicator of the performance of the battery is
the energy fluctuation during the charging process. Towards
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defining it, let us first rewrite �EUC as

�EUC = tr(ĤBρ1) − tr(ĤBρ0)

= tr(ĤBUCρ0U
†

C ) − tr(ĤBρ0)

= tr[(Ĥ ′
B − ĤB)ρ0]

= tr[(�ĤB)ρ0], (6)

where Ĥ ′
B = U †

C ĤBUC . To store the amount of energy �EUC

in the battery by the corresponding charging process UC , the
deviation of stored energy for an N -mode system is quantified
by a quantity called work fluctuation [46], which is defined as

�W (N ) =
√

tr
(
�Ĥ2

Bρ0
) − [tr(�ĤBρ0)2]

=
√

V (ρ1) + V (ρ0) − 2 Cov(Ĥ ′
B, ĤB), (7)

where Cov(Ĥ ′
B, ĤB) = 1

2 〈{Ĥ ′
B, ĤB}〉ρ0

− 〈Ĥ ′
B〉ρ0

〈ĤB〉ρ0
and

the expectation value is taken with respect to the initial
state ρ0. Note that 〈ĤB〉ρ0

= E (N )
0 and 〈Ĥ ′

B〉ρ0
= E (N )

1 are
the energies of the uncharged and charged states of the
battery, respectively, which give �EUC = E (N )

1 − E (N )
0 .

We use �W (N ) as an indicator to check the stability of
the QB during the charging process. The optimization
of the work fluctuation �W (N ) proceeds along the same
line as that of �σ (N ) as elucidated through Eqs. (4)
and (5), where the work fluctuation can be obtained as
�W (N ) = g(N )

U (s, {ω j}, {�EU j
C
}, {ν j}) for some function

g(N )
U with ω j being unity, as mentioned before. For a given

initial-state parameter s and total energy increment �EUC , the
minimum work fluctuation will be denoted by �W (N )

min .
For a well-functioning battery, we are required to minimize

both the energy fluctuation and charging precision to make the
battery stable during the charging and discharging processes,
which in turn implies the minimization of both �σ (N ) and
�W (N ), thereby achieving �σ

(N )
min and �W (N )

min . In general,
these quantities are not identical at finite temperatures and
also cannot be optimized simultaneously [46,53]. In this con-
text, we aim to optimize work fluctuation during the charging
process, achieving �W (N )

min . On the other hand, we focus on
optimizing charging precision during the discharging phase,
leading to �σ

(N )
min . Hence, our objective is to increase the

energy of the battery by an amount �EUC , which is distributed
among the different modes, and check whether it is helpful
to increase the number of modes of the QB and to estimate
�σ

(N )
min and �W (N )

min independently.

III. NECESSITY OF ENTANGLEMENT
FOR MULTIMODE BATTERIES

In order to analyze the performance of the battery con-
sisting of N modes, it is natural to investigate whether
entanglement is necessary for the proper functioning of a
multimode quantum battery. Unlike several finite-dimensional
systems [29], we report that entanglement does not provide
any additional benefit in the setup considered here. Note that
both entangled and product states can be prepared from the
ground state of the battery Hamiltonian by global and local
operations, respectively. Specifically, we compare the trends
of �σ (N ) and �W (N ) obtained from two- and three-mode

entangled states with those from squeezed separable states as
initial states.

A. Two-mode CV battery: Entangled vs product states

To design the initial state of a two-mode battery, we use
a beam splitter BS12 with transmittivity τ , where 0 � τ � 1.
Two squeezed vacuum modes, one squeezed in the position
quadrature and the other squeezed in the momentum quadra-
ture with the same strength r, are impinged on the beam
splitter, and an entangled output state, characterized by τ

and r, is generated. Though the transmittivity (i.e., the state
parameter) can take a value up to 1, the entanglement content
of the output state is symmetric with τ = 0.5. It can be shown
that the entanglement of the output state increases with τ up to
τ = 0.5, which leads to the well-known two-mode squeezed
vacuum state, the maximally entangled state for a given en-
ergy, while τ = 0 and 1 correspond to a separable state. The
representation of the state in the phase-space formalism is
provided in Appendix B.

Note that, initially, the energy of the uncharged battery is
E (2)

0 = 2 sinh2 r. Such a choice of the initial state can help us
probe entangled states having different entanglement content,
as well as the product state. Squeezing and displacement
operations on each mode and the global two-mode squeez-
ing operator are applied to store energy in the battery. In
each case, we aim to determine the optimal value of τ , and
therefore the entanglement, for which charging in both modes
yields the minimum values of �σ (2) and �W (2).

1. Charging with local squeezing

The charging operator for the two-mode battery consists
of local squeezing operators acting on the individual modes,
given by Ŝc = Ŝ1(ζ1) ⊗ Ŝ2(ζ2), with the local squeezing oper-
ators Ŝ j (ζ j ) defined in Sec. II A. Upon charging, the increase
in the total energy of the battery is �EŜc

= ∑2
j=1 �EŜ j

c
, where

�EŜ1
c
= sinh δ1(sinh δ1 cosh 2r

+ (2τ − 1) cosh δ1 cos θ1 sinh 2r),

�EŜ2
c
= sinh δ2(sinh δ2 cosh 2r

+ (1 − 2τ ) cosh δ2 cos θ2 sinh 2r) (8)

represent the increase in energy of the two modes. We
can similarly calculate the second moments of the en-
ergy and hence can obtain the charging precision �σ (2) =
f (2)
S (r,�EŜ j

c
, θ j, τ ) for a fixed squeezing strength of the initial

state r. We distribute the total energy �EŜc
as k�EŜc

and
(1 − k)�EŜc

in the two modes and find that the charging
precision is minimum at k = 1

2 after optimizing over k, θ j ,
and τ . Now, while finding the optimum entanglement content
of the battery, i.e., the optimal value of τ for a given �EŜc

, at

�EŜ1
c
= �EŜ2

c
= �EŜc

/2, �σ
(2)
min turns out to be independent

of τ (and hence independent of the entanglement content)
such that θ1 + θ2 = π for a fixed r, as depicted in Fig. 2(a).
This is true irrespective of the initial squeezing strength (ini-
tial energy of the uncharged battery) and the energy provided
to the battery via the charging process.

In order to calculate the work fluctuation �W (2) as de-
scribed in Eq. (7), we need to compute the variance of ĤB
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FIG. 2. Behavior of the optimal charging precision �σ
(N )
min for two- and three-mode entangled initial states. The trends of �σ

(2)
min (ordinate)

are depicted by varying transmittivity τ (abscissa) of the beam splitter for charging through (a) squeezing and (b) displacement unitaries. The
net energy increase of the battery is �ED̂c

(�EŜc
) = 10 for r = 1 (dark blue) and �ED̂c

(�EŜc
) = 20 for r = 0.5 (light orange). Also plotted

are �σ
(3)
min (z axis) against τ1 (x axis) and τ2 (y axis) for (c) squeezing and (d) displacement chargers of the three-mode initial states. The energy

specifications in this case correspond to r = 0.5 and �ED̂c
(�EŜc

) = 15 (dark blue) and r = 1 and �ED̂c
(�EŜc

) = 24 (light orange). All the
axes are dimensionless.

in the states ρ0 and ρ1 and the covariance term Cov(Ĥ ′
B, ĤB)

in the state ρ0. Henceforth, our main task is to calcu-
late 〈{Ĥ ′

B, ĤB}〉ρ0 . For charging with local squeezing, Ĥ ′
B =

Ŝ†
c ĤBŜc. Using the relation Ŝ†

j (ζ j )â j Ŝ j (ζ j ) = â cosh δ j +
â†

j e
iθ j sinh δ j , we obtain

Ĥ ′
B =

∑
j=1,2

(N̂j cosh 2δ j + Â j sinh 2δ j + sinh2 δ j ),

with Â j = (â2
j e

−iθ j + â†2
j eiθ j )/2. Leveraging the Wigner func-

tion formalism (see Appendix A), we finally obtain

〈{Ĥ ′
B, ĤB}〉ρ0 = 2[(1 + 2 cosh 2r)(cosh 2δ1 + cosh 2δ2) − 2]

× sinh2 r + (1 − 2τ )(sinh 2r − sinh 4r)

× (cos θ1 sinh 2δ1 − cos θ2 sinh 2δ2).

Substituting the values of 〈{Ĥ ′
B, ĤB}〉ρ0 and 〈ĤB〉ρi=0,1 in the

expression of Cov(Ĥ ′
B, ĤB) and using Eq. (8), we obtain

�W (2) = g(2)
S (r, τ,�EŜ j

c
, θ j ) for some function g(2)

S . If we fix
the initial squeezing r and total energy increment �EŜc

for a
given τ , the minimization of �W (2) is achieved at the optimal
phase θ1 = π (or 0) and θ2 = 0 (or π ) for 0 � τ � 1 with
equal energy distribution. The variation of �W (2)

min with respect
to the state parameter τ is illustrated in Fig. 3(a) for different
values of r and �EŜc

. Noticeably, �W (2)
min increases with entan-

glement, highlighting the detrimental impact of entanglement.

Remark 1. For the fully separable state (τ = 0), when
charged via squeezing operation, we find that the value of
�σ

(2)
min is independent of θ j . This indicates that, for a two-mode

separable battery, the optimal stability is solely determined
by the squeezing strength of the charging operation in each
mode, regardless of the values of θ1 and θ2. In contrast, for
an entangled system used as a battery, �σ

(2)
min is a function of

θ1 and θ2. This suggests that separable states provide greater
flexibility in selecting the optimal configuration compared to
entangled states.

2. Charging via displacement

Instead of the squeezing unitary operation, let us find
whether a change of unitary, i.e., when the battery is charged
via local displacements in each mode, can lead to a more
stable QB or not. In particular, the charging operator reads
D̂c = D̂1(α1) ⊗ D̂2(α2), where D̂ j (α j ) are the local displace-
ment operators (see Sec. II A). The energy gained by the
battery upon charging has a much simpler form than the one
in the case of the local squeezer and depends only on the
parameters |α j |,

�ED̂c
= �ED̂1

c
+ �ED̂2

c
= |α1|2 + |α2|2. (9)

Again, similar to the previous case, we can calculate �σ (2) =
f (2)
D (r, |α j |, φ j, τ ) and since α j = √

�ED̂ j
c

[from Eq. (9)], we

022226-5



KONAR, PATRA, GUPTA, GHOSH, AND SEN(DE) PHYSICAL REVIEW A 110, 022226 (2024)

FIG. 3. Behavior of the optimal work fluctuation �W (N )
min for two- and three-mode entangled initial states. All specifications are the same

as in Fig. 2. All the axes are dimensionless.

obtain �σ (2) in terms of r, �ED̂ j
c
, φ j , and τ . By fixing the

value of r, we again find that �ED̂1
c
= �ED̂2

c
= �ED̂c

/2 leads
to minimal fluctuation. Moreover, the optimal charging pre-
cision turns out to be independent of τ [see Fig. 2(b)]. Thus,
for every value of τ , we obtain a particular set of (φ1, φ2)
(e.g., for τ = 0, φ1 = π/2, and φ2 = 0) which yields the same
minimum value of �σ (2).

To estimate the work fluctuation, here we need to compute
Ĥ ′

B = D̂†
cĤBD̂c. By employing the relation D̂†

j (α j )â j D̂ j (α j ) =
â + α, we derive

Ĥ ′
B =

∑
j=1,2

N̂j + α∗
j â j + α j â

†
j + |α j |2.

Since the Wigner function corresponding to the state ρ0

is symmetric in its arguments, the odd moments of the
field operators vanish. This results in 〈{Ĥ ′

B, ĤB}〉ρ0 = 4(α2
1 +

α2
2 + 2 cosh 2r) sinh2 r. Consequently, we obtain �W (2) =

g(2)
D (r, τ,�ED̂ j

c
, φ j ). For a specific value of r, we find that

the minimal work fluctuation is achieved with equal charging
via each mode at the optimal phase configuration. Like the
charging precision, the optimal phase configuration to achieve
minimal work fluctuation is also τ dependent (e.g., for τ =
0, φ1 = 0, and φ2 = 3π/2 or for τ = 1

2 and φ1 + φ2 = π ).
However, the value of �W (2)

min is again independent of τ [see
Fig. 3(b)].

B. Entangled three-mode battery

Let us now move to the initial state of the QB as a
three-mode entangled state, typically prepared using a tritter
[35,54], which consists of two beam splitters. This class of

three-mode entangled states can be described by the trans-
mission coefficients τ1 and τ2 of the two beam splitters BS12
and BS23, which operate on the mode pairs (1,2) and (2,3),
respectively. In this setup, the first and third input modes of
the tritter are the squeezed vacuum in the momentum quadra-
ture, while the second input mode is the squeezed vacuum
in the position quadrature, all with a squeezing strength r.
This configuration results in the specified class of three-mode
entangled states. A detailed parametrization of the state in
terms of its displacement vector and covariance matrix can
be found in Appendix B.

The energy of such an uncharged battery is
E (3)

0 = 3 sinh2 r. Again, local displacement and squeezing
unitaries are applied individually on the three modes to charge
the battery.

Charging with local squeezing and displacement

When local squeezing unitaries are applied to three modes,
each with a degree δ j and angle θ j ( j = 1, 2, 3), the increases
in the energy of the individual battery modes are given by

�EŜ1
c
= sinh δ1[(2τ1 − 1) cosh δ1 cos θ1 sinh 2r

+ sinh δ1 cosh 2r], (10)

�EŜ2
c
= sinh δ2[cosh δ2 cos θ2 sinh 2r(1 − 2τ1τ2)

+ sinh δ2 cosh 2r], (11)

�EŜ3
c
= 1

4 e−2r{(e4r − 1) sinh 2δ3 cos θ3[2τ1(τ2 − 1) + 1}
+ 2(e4r + 1) sinh2 δ3}, (12)
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with total energy increment �EŜc
= ∑3

j=1 �EŜ j
c
. Considering

that we distribute the energy �EŜc
as k1�EŜc

, k2�EŜc
, and

(1 − k1 − k2)�EŜc
in the three modes such that k1 + k2 � 1,

we observe that both �W (3)
min and �σ

(3)
min occur at k1 = k2 = 1

3 ,
i.e., �EŜ j

c
= �EŜc

/3. Further analysis proceeds in a manner
similar to the two-mode case. In this scenario, the minimum
charging precision is obtained, for any initial squeezing r and
�EŜc

, when θ j = π/2 and is independent of τ1 and τ2 [see
Fig. 2(c)]. This implies that the genuinely entangled state, the
biseparable configuration (obtained with τ2 = 0), and the fully
separable state (obtained by setting τ1 = 0) perform equally
well. Furthermore, when the battery comprises fully separa-
ble modes, �σ

(3)
min is independent of the squeezing angles θ j ,

thereby providing more freedom during the charging process.
On the other hand, �W (3) can be computed similarly as

described in the two-mode scenario. Although, for the sake
of brevity, we refrain from writing the exact expression of
〈{Ĥ ′

B, ĤB}〉ρ0 , using Eqs. (10)–(12), it can be shown that we
end up with �W (3) = g(3)

S (r,�EŜ j
c
, θ j, τ j ) for some function

g(3)
S . When the initial energy (determined by r) and total en-

ergy increment �EŜc
are held constant for a given state, the

minimal work fluctuation can be attained by optimizing the
phase configuration. However, the optimal phase configura-
tion depends on τ1 and τ2; e.g., in the case of τ1 = τ2 = 0,
optimality is achieved at θ1 = π and θ2 = θ3 = 0, whereas
for τ1 = τ2 = 1 it is θ2 = π and θ1 = θ3 = 0. Figure 3(c)
illustrates how �W (3)

min varies with the state parameters τ1 and
τ2. It shows that the minimum value is attained at τ1 = 0,
regardless of the value of τ2.

In the case of charging via local displacements, having
parameters α j = |α j |eiφ j , the increase in the energy of the
battery is given as

�ED̂c
=

3∑
j=1

�ED̂ j
c
=

3∑
j=1

|α j |2, (13)

where �ED̂ j
c

is the energy change in mode j. Given an initial
squeezing strength r and an energy change �ED̂c

, the charging
precision attains a minimum at some set of values of τ j with
some optimal choice of φ j when all the modes are equally dis-
charged [see Fig. 2(d)]. Specifically, at τ1 = 0, we find that the
optimal choice of phases, which yields the minimum charging
precision �σ

(3)
min, is φ1 = π and φ2 = φ3 = π/2. Furthermore,

at τ1 = 0, �σ
(3)
min is independent of τ2, implying that we can

dispense with the beam splitters altogether, thereby dealing
with three separate squeezed modes.

The work fluctuation �W (3) has a much simpler form.
In particular, following the same prescription provided in
the two-mode scenario, we obtain 〈{Ĥ ′

B, ĤB}〉ρ0 = 3(2α2
1 +

2α2
2 + 2α2

3 + 5 cosh 2r − 1) sinh2 r. By replacing |α j | with√
�ED̂ j

c
, we can write �W (3) = g(3)

D (r, τ,�ED̂ j
c
, φ j ). At an

initial squeezing strength r and for a fixed energy increment
�ED̂c

, the work fluctuation becomes minimum at some opti-
mal choice of φ j when equally charged through each mode.
The optimal choice of φ j depends on the state parameters;
e.g., for fully separable states (i.e., τ1 = 0) optimal phases
are φ1 = 0 and φ2 = φ3 = π/2, whereas for maximally gen-
uinely entangled state (i.e., τ1 = 1

2 and τ2 = 1
2 ), optimality is

attained at φ1 = φ2 = φ3 = 3π/2. Observing Fig. 3(d), it is

evident that both fully separable states (τ1 = 0) and certain
entangled states exhibit minimal work fluctuation.

The results obtained for the two- and three-mode batteries
can be consolidated as follows.

Observation 1. For two-mode and three-mode batteries
charged in all the modes through local squeezing and dis-
placement unitaries, entanglement plays no role in the optimal
performance as quantified by the charging precision �σmin

and the work fluctuation �Wmin.
Remark 2. Instead of using an entangled state as the initial

state, we can do the reverse operation as well, i.e., we take a
two-mode separable state (2SMSV), i.e., the product of two
single-mode squeezed vacuum (SMSV) states, as the initial
state and charge the battery by a global squeezing operation
where entanglement can in principle be generated through
the evolution of the system. We show in Appendix C that
entanglement generation through time evolution does not pro-
vide any advantage over local squeezing operation. This kind
of scenario may appear in any general physical system as
entanglement generation is neither a necessary nor a sufficient
criterion to achieve quantum advantage [29].

Observation 2. In the cases of both the two-mode and the
three-mode batteries, charging via displacement operation is
favorable over charging with local squeezing, since �σmin

and �Wmin are much lower in the case for charging via local
displacement.

Remark 3. It has been well established that entanglement
plays a crucial role in the performance of quantum bat-
teries comprising finite-dimensional systems. However, the
dynamics of systems comprising modes with a continuous
spectrum is very different from that of batteries built with
discrete-variable qudits. In our work, we have considered two
paradigmatic Gaussian processes as charging operations, viz.,
displacement and squeezing, which are easily realizable in ex-
periments. Our conjecture is that entanglement in the battery
or the charging operation would not prove to be more efficient
even when other charging processes are used. This is because
all Gaussian operations can be composed of displacements,
squeezing, phase shifters (which cannot increase the energy
and are thus not considered as chargers), and beam splitters.
Although beam splitters can induce entanglement between the
involved modes and have not been considered in this work,
the fact that displacement operations (which can never create
entanglement) offer the best figures of merit motivates us to
conclude that local operations are the best method to operate
a continuous-variable battery. Instead of using Gaussian oper-
ations, non-Gaussian operations, e.g., photon subtraction, may
play an advantageous role in the case of an entangled state, but
the implementation of such non-Gaussian operation is highly
probabilistic. This further makes our results more intriguing.
Our work suggests that using continuous-variable systems as
batteries as well as the usage of Gaussian unitaries is more
economical since entangling operations need not be used for
better performance.

IV. N -MODE SEPARABLE BATTERY

Observation 1 allows us to argue that the unentangled state
is the appropriate choice as an initial state, which is influenced
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by the results obtained in the preceding section. Analyzing the
results of the preceding section, we also notice the following.

(i) The phase parameters involved in the charging process
(i.e., squeezing or displacement angles) play a crucial role in
the optimization of the charging precision.

(ii) It turns out that equal charging in all the modes corre-
sponds to the best charging configuration.

It is thus natural to take an N -mode separable state with all
the modes having equal initial squeezing r as the initial state
of an N -mode battery and consider the charging operations as
local. The initial state in this case can be represented by the
displacement vector and covariance matrix as

d(N )
0 = (0, 0, . . . , 0)T

1×2N , (14)

�
(N )
0 = 1

2 diag(e2r, e−2r, . . . , e2r, e−2r )2N×2N . (15)

The initial average energy of this system is E (N )
0 = N sinh2 r,

while the average of the squared energy takes the form

E2(N )
0 = 1

2N sinh2 r[2 + (N + 2) cosh(2r) − N ]. (16)

The corresponding second moment of the energy turns out
to be V (ρ0) = N cosh2 r sinh2 r. By applying local squeezing
and displacement unitaries in each mode, the variation of the
figures of merit of the battery, against the number of modes,
can be obtained. Before presenting the results, let us state a
lemma, which will be frequently applied.

Lemma 1. For any multivariate function f (x1, x2, . . . , xn)
which is symmetric with respect to permutations of its argu-
ments, the global extremum occurs at x1 = x2 = · · · = xn.

Proof. Since f is a symmetric function of its argu-
ments, we have f (x1, x2, . . . , xn) = f (x2, x1, . . . , xn) = · · ·
and all possible permutations of x j . Suppose that fmin(max) =
f (x0

1, x0
2, . . . , x0

n ). Then all possible permutations of x0
j as the

argument of f would still yield fmin(max). Since the extremum
is a global one, this implies that x0

1 = x0
2 = · · · = x0

n . �
A direct consequence of this lemma is that the figures of

merit considered here, being symmetric functions of the
increment in mode energies �EU j

C
, can be minimized by dis-

tributing the entire energy �EUC equally in each mode, i.e.,
by choosing �EU j

C
= �EUC /N ∀ j. This has been extensively

verified for all the models under consideration.

A. Charging with local squeezing

The charging of an N -mode battery by applying local
squeezing in each mode is performed with the modal squeez-
ing parameter ζ j = δ jeiθ j . Hence the total charging operator
becomes Ŝc = Ŝ1(ζ1) ⊗ Ŝ2(ζ2) ⊗ · · · ⊗ ŜN (ζN ). Upon charg-
ing, the total energy is given by

E (N )
Ŝc

=
N∑
j=1

(
�EŜ j

c
+ sinh2 r

) =
N∑
j=1

〈
N̂Ŝ j

c

〉
, (17)

where 〈N̂Ŝ j
c
〉 denotes the average photon number (hence the

average energy since ω j = 1 ∀ j) of the mode j after charging
and �EŜ j

c
is the corresponding energy increment in that mode,

given by

�EŜ j
c
= sinh δ j (cosh δ j cos θ j sinh 2r + sinh δ j cosh 2r).

(18)

Hence, the total increase in energy after charging reads

�E (N )
Ŝc

=
N∑
j=1

�EŜ j
c
= E (N )

Ŝc
− E (N )

0 . (19)

On the other hand, the average of the squared energy for the
N -mode system is given by

E2(N )
Ŝc

= 〈
N̂2(N )

Ŝc

〉 =
N∑
j=1

〈
N̂2

Ŝ j
c

〉 + 2
N−1∑
j=1

N∑
k> j

〈
N̂Ŝ j

c

〉〈
N̂Ŝk

c

〉
, (20)

with 〈N̂2
Ŝ j

c
〉 the mean of the squared energy of the mode j,

which takes the form〈
N̂2

Ŝ j
c

〉 = 1
32 [3 cosh 4δ j + 4 sinh 2δ j sinh 2r

× (3 sinh 2δ j cos 2θ j sinh 2r − 4 cos θ j )

+ 12 sinh 4δ j cos θ j sinh 4r − 16 cosh 2δ j cosh 2r

+ (9 cosh 4δ j + 3) cosh 4r + 1].

Having the expressions for the averages of the energy and
the squared energy, one can find the standard deviation in the
energy before and after the charging process. Thereafter, from
Eqs. (1) and (2) we can find the charging precision �σ

(N )
Ŝc

as a

function of charging parameters, i.e., {δ j, θ j}Nj=1 and the initial
squeezing strength r of the N -mode battery.

Note that we can also write �σ
(N )
Ŝc

in terms of
{�EŜ j

c
, θ j}Nj=1 and r by replacing δ j as

δ j = 1

2

⎡
⎢⎣ln

⎛
⎜⎝

√
4�EŜ j

c

(
�EŜ j

c
+ cosh 2r

) + cos2 θ j sinh2 2r + 2�EŜ j
c
+ cosh 2r

cos θ j sinh 2r + cosh 2r

⎞
⎟⎠

⎤
⎥⎦. (21)

In order to calculate the work fluctuation, we first need to find 〈{ĤB, Ĥ ′
B}〉ρ0

with respect to the initial state of the battery ρ0.
Using some operator algebra, we can obtain the expectation value of the above-mentioned anticommutator as

〈{ĤB, Ĥ ′
B}〉ρ0

=
N∑
j=1

(
2

N
(
E2(N )

0

)
cosh 2δ j + 2E (N )

0 sinh2 δ j + 1

2
cos θ j sinh 2r(3 cosh 2r − 1) sinh 2δ j

+ N − 1

N E (N )
0 sinh 2r cos θ j sinh 2δ j

)
, (22)
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and using Eqs. (7) and (21), we can obtain the expression of
�W (N )

Ŝc
in terms of {�EŜ j

c
, θ j}Nj=1 and r.

Advantage of multiple modes in the battery
for charging with local squeezing

According to Lemma 1, the minimum for both figures of
merit are obtained when each mode has its energy raised by
�EU j

C
= �EUC /N . An interesting point to note is that for

a fixed initial squeezing r of the battery modes, an equal
energy increment in each mode implies that all the modes have
equal charging parameters. In other words, we have δ1 = δ2 =
· · · = δN = δ and θ1 = θ2 = · · · = θN = θ . This simplifies
our analysis considerably since we only need to optimize over
a single parameter, i.e., θ , in this charging scenario.

Charging precision. In the optimal charging configuration
(i.e., �EŜ j

c
= �E (N )

Ŝc
/N ), we see that there is no phase de-

pendence in the �σ (N ). In particular, we have the following
observation.

Observation 3. For an N -mode separable battery undergo-
ing equal charging in all the modes via squeezing operations,
the charging precision �σ (N ) is independent of the squeezing
angles θ j .

On taking the derivative of �σ (N ) with respect to θ j ,

it is observed that
∂�σ (N ) (r,�E

Ŝ
j
c
,θ j )

∂θ j
= 0 ∀ j when �EŜ j

c
=

�EŜc
/N . The minimum charging precision �σ

(N )
min as a func-

tion of the total increase in energy of the battery �E (N )
Ŝc

is
depicted against the number of modes N in Fig. 4(a). Clearly,

�σ
(N )
min decreases with N . Precisely, from Fig. 4(a) we can see

that �σ
(N )
min is roughly proportional to N−0.49, which indicates

that there exists an advantage with the increase in the number
of modes which scales as approximately 1√

N .

Work fluctuation. In the case of �W (N ), unlike the charg-
ing precision, we note that �W (N ) is phase dependent in
the optimal charging configuration. The minimum work fluc-
tuation �W (N )

min is achieved when all the squeezing angles
vanish. In Fig. 4(b) we plot �W (N )

min with N while keeping
�E (N )

Ŝc
fixed at two different values. We demonstrate that

with an increase in the number of modes, the optimal work
fluctuation decreases, and hence the efficiency of the battery
enhances. We can also see that �W (N )

min can be approximated
by a function proportional to N−0.49 which matches exactly
with the charging precision.

B. Local displacement as charging operation

Let us now move to a situation where charging is achieved
via local displacements in each mode. In this case, the
entire charging unitary can be represented as D̂ =
⊗N

j=1D̂ j (α j ), where α j = |α j |eiφ j as defined before. In
this case, the change in energy of the battery upon charging
is given by �ED̂c

= ∑N
j=1 |α j |2, where �ED̂ j

c
= |α j |2 is

the energy gained by the battery mode j. The average
energy and the mean-square energy for the jth mode are

FIG. 4. Scaling analysis. (a) and (c) Variation of the minimum charging precision �σ
(N )
min (ordinate) against the number of modes N .

(b) and (d). Work fluctuation �W (N )
min (ordinate) vs N (abscissa). When local squeezing unitaries in (a) and (b) act as chargers, we choose

r = 1 and �EŜc
= 5 (dark blue) and r = 1 and �EŜc

= 10 (light orange). The charging process is taken to be local displacement operations
in (c) and (d). The initial squeezing r and the energy increment �ED̂c

are considered as r = 1 and �ED̂c
= 5 (dark blue) and r = 0.5 and

�ED̂c
= 10 (light orange). All the axes are dimensionless.
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expressed as 〈
N̂D̂ j

c

〉 = sinh2 r + |α j |2, (23)

〈
N̂2

D̂ j
c

〉 = α2
j

(
α2

j − 1 + cos 2φ sinh 2r
) + (

2α2
j − 1

2

)
cosh 2r

+ 1
8 (3 cosh 4r + 1). (24)

Therefore, the average energy and the mean-square energy for
the N -mode system can be computed as

E (N )
D̂c

=
N∑
j=1

〈
N̂D̂ j

c

〉
, (25)

E2(N )
D̂c

=
N∑
j=1

〈
N̂2

D̂ j
c

〉 + 2
N−1∑
j=1

N∑
l> j

〈
N̂D̂ j

c

〉〈
N̂D̂l

c

〉
. (26)

Consequently, the variance of energy in the state after the
charging operation via displacement, V (ρ1) can be determined
using Eq. (2). Further, as described in Eq. (1), we can
calculate the charging precision as �σ (N ) =
f (N )
D (r,�ED̂ j

c
, φ j ) for some function f (N )

D .
The expression for �W (N ) can also be computed by noting

that, for charging via displacement, we have

〈{Ĥ ′
B, ĤB}〉ρ0

= 2
N∑
j=1

|α j |2E (N )
0 + 2E2(N )

0 , (27)

from which we can obtain the work fluctuation using Eq. (7).

Multimodal advantage for charging with local displacement

Akin to the case of charging via local squeezing, here too
an equal charging in all the modes, i.e., |α j | = |α| and φ j =
φ ∀ j, corresponds to the optimal charging configuration and
yields the best figures of merit according to Lemma 1. In this
situation, we find that both �σ

(N )
min and �W (N )

min are determined
by the phase factors of the charging unitaries φ.

Charging precision. At φ = π/2, we obtain that the least
charging precision steadily decreases with N for a fixed r and
�E (N )

D̂c
. Interestingly, the scaling with N is found to be 1

N 3/2

[see Fig. 4(c)].
Observation 4. The displacement unitary can provide bet-

ter stability of the quantum battery with the increase of the
number of modes, in terms of the charging precision, in com-
parison with the squeezing one.

Work fluctuation. The work fluctuation also attains its low-
est value when we fix φ = π/2. However, our numerical
studies show that �W (N ) is independent of the number of
modes, and in the optimal charging configuration it remains
the same for all N , as shown in Fig. 4(d), at a fixed value of
the initial squeezing r and the energy change �E (N )

D̂c
. Thus an

increase in the number of modes has no effect on the work
fluctuation for charging via local displacement operations, al-
though the multimode advantage is evident from the behavior
of �σ (N ).

V. CONCLUSION

In recent years, different designs of quantum batteries
have been proposed either to increase the storage capacity

and stabilize their energy extraction or to take care of their
implementations in certain physical systems. Until now, the
majority of works on quantum batteries have dealt with dis-
crete spin systems, although CV quantum systems can be
a potential candidate for energy storage devices. In the im-
plementation of quantum information processing tasks, such
systems have been demonstrated to have some advantages
over finite-dimensional systems, including the stability of
QBs. In CV systems, the fluctuation in the extraction (storage)
of energy from (in) the QB during discharging (charging) can
also be quantified.

We considered a class of pure multimode Gaussian states
as the initial state of the CV quantum battery, in which tun-
ing of the parameters leads to both entangled and separable
states. To charge the battery, local squeezing and displacement
operations as well as entangling squeezing operations were
carried out. We established that increasing the number of
modes contributes positively to the stability of the system by
conducting the whole analysis in the phase-space description
and taking into account the second moments in the change
of energy. One of the counterintuitive results was that after
optimizing the relevant parameters, entanglement between the
modes did not turn out to be a prerequisite for creating a stable
quantum battery. In sharp contrast, multimodal entanglement
is required for quantum advantage in quantum communication
protocols including cryptography and metrological problems.
However, our results immediately imply that such a QB is
economically less expensive to create than a QB requiring
entanglement since separable multimode states turn out to
be the optimal ones with local unitary operations, especially
displacements.

Furthermore, we established that while the strengths of the
squeezing and displacement operations of the charger deter-
mine the energy to be stored in the battery, the behavior of
the considered figures of merit, namely, the optimal charging
precision and the work fluctuation, is purely dictated by the
corresponding phases. This demonstrates that, in contrast to
standard CV protocols like dense coding, teleportation, and
quantum illumination, which primarily rely on the magnitude
of the squeezing or displacement present in the resource state,
the QB requires other features for good stability. This possibly
indicates that quantum communication or quantum sensing
protocols do not require the same resources as thermodynamic
tasks like storing energy in batteries. Moreover, the modal ad-
vantage in the stability of the battery provides the theoretical
groundwork for developing effective thermal storage devices
in the future.
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APPENDIX A: CONTINUOUS-VARIABLE FORMALISM

As the name suggests, CV systems are those whose rel-
evant degrees of freedom admit a continuous spectrum. We
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need an infinite-dimensional Hilbert space to describe the sys-
tem. The Hamiltonian description of the energy of an N -mode
system can be represented as

Ĥ =
N∑
j=1

Ĥj, (A1)

where Ĥj = h̄ω j (â
†
j â j + 1

2 ), with ω j the frequency of the

mode j. Here â j (â†
j ) is the annihilation (creation) operator

(together, field operators) for the corresponding mode and
they follow the bosonic commutation rule [â j, â†

j ] = 1. In
terms of position operators x̂ j and momentum operators p̂ j

(together, quadrature operators), we have

x̂ j = â†
j + â j√

2
, p̂ j = â j − â†

j

i
√

2
. (A2)

Including all the modes, we can group together the canonical
operators in the vector form

R̂ = (x̂1, p̂1, . . . , x̂N , p̂N )T (A3)

such that the commutation rules can be rewritten as

[R̂k, R̂†
l ] = iMkl with M =

N⊕
j=1

� j, (A4)

where i = √−1. Here M is the N -mode symplectic form and
� j is given by

� j =
(

0 1
−1 0

)
. (A5)

Now we are interested in Gaussian states ρ which are all
the ground and thermal states of the second-order (quadratic)
Hamiltonian. Such states can be fully described by their first
and second moments known as the displacement vector d and
covariance matrix � in the phase space, given by

dk = 〈R̂k〉ρ (A6)

and

�kl = 1
2 〈R̂kR̂l + R̂l R̂k〉ρ − 〈R̂k〉ρ〈R̂l〉ρ, (A7)

where � is a real, symmetric, and positive-definite matrix. Its
elements are the two-point correlation functions between the
2N canonical variables. The displacement vector and the co-
variance matrix can also be redefined in terms of the moments
of the creation and annihilation operators of the different
modes, as was discussed in Ref. [55]. This greatly simplifies
the calculation of the means and variances of N̂j , which will
be necessary for our analytical calculations. Note that there
exists a mapping between the two parametrizations of dk and
�kl . In the phase-space formalism, the evolution operator of
the state can be represented by a symplectic matrix S in terms
of which we can derive the first and second moments of the
evolved state as

d → d′ = Sd,

� → �′ = S�ST . (A8)

Alternatively, in the phase-space formalism of CV systems,
the states can equivalently be characterized by the Wigner
function which accounts for the quasiprobability distribution

of the quadrature variables. For an N -mode Gaussian state
with displacement vector d and covariance matrix �, the
Wigner function can be represented as

W (R) = exp[− 1
2 (R − d)T �−1(R − d)]

(2π )N
√

det(�)
. (A9)

Note that the Wigner function corresponding to a valid state
is normalized, i.e.,

∫
R2N W (R)dR = 1. For a symmetrically

ordered function of the field operators Ô = f (â j, â†
j ) we have

tr(ρÔ) =
∫
R2N

Wρ (R) f̃ (R)dR, (A10)

where f̃ (R) = f (Rj + iR j+1, Rj − iR j+1), with j = 1, . . . ,

N . For a given Gaussian state (i.e., d and � are specified),
Eqs. (A9) and (A10) can be used to find the moments of the
field operators, i.e., 〈âmâ†n〉 for that state.

APPENDIX B: CLASS OF TWO- AND THREE-MODE
ENTANGLED STATES

A generic two-mode state belonging to the one-parameter
family with varying entanglement content, as discussed in
Sec. III A, may be conveniently represented in the phase-space
picture by the displacement vector and covariance matrix

d(2)
0 =

⎛
⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎠, �

(2)
0 =

⎛
⎜⎜⎝
A 0 C 0
0 B 0 −C
C 0 B 0
0 −C 0 A

⎞
⎟⎟⎠, (B1)

where

A = 1
2 (e−2r + 2τ sinh 2r),

B = 1
2 (e2r − 2τ sinh 2r),

C =
√

τ (1 − τ ) sinh 2r. (B2)

Note that at τ = 1
2 , we obtain the well-known two-mode

squeezed vacuum state.
On the other hand, the state used in Sec. III B can be

characterized by [51]

d(3)
0 = (0, 0, 0, 0, 0, 0)T , (B3)

�
(3)
0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A 0 R 0 T 0
0 B 0 −R 0 −T
R 0 C 0 −S 0
0 −R 0 D 0 S
T 0 −S 0 E 0
0 −T 0 S 0 F

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B4)

where

A = 1
2 e−2r[(e4r − 1)τ1 + 1],

B = 1
2 [e−2rτ1 + e2r (1 − τ1)],

C = 1
2 [sinh 2r(1 − 2τ1τ2) + cosh 2r],

D = 1
2 e−2r[(e4r − 1)τ1τ2 + 1],

E = 1
2 {sinh 2r[1 − 2τ1(1 − τ2)] + cosh 2r},
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F = 1
2 e−2r[1 + τ1(e4r − 1)(1 − τ2)],

R =
√

τ1τ2(1 − τ1) sinh 2r,

S = τ1

√
τ2(1 − τ2) sinh 2r,

T =
√

τ1(1 − τ1)(1 − τ2) sinh 2r. (B5)

Note that by setting τ1 = 1
3 and τ2 = 1

2 , we can prepare the
Basset-Hound state [54,56,57].

APPENDIX C: CHARGING THROUGH
THE ENTANGLING SQUEEZER

Let us investigate the reverse scenario where the initial
state is a 2SMSV while the global squeezing operation is
applied in both modes together to charge the battery and study
the role of entanglement generation in the battery. Mathe-
matically, the two-mode product state, in the phase space, is
expressed as

�2SMSV = �1 ⊕ �2, (C1)

where � j denotes the covariance matrix corresponding to a
SMSV,

�1 =
(

e2r 0
0 e−2r

)
= �2. (C2)

In the phase space, the symplectic matrix representation of the
global squeezing operation [58] reads

Ŝc =

⎛
⎜⎜⎜⎝
C 0 A B
0 C B −A
A B C 0
B −A 0 C

⎞
⎟⎟⎟⎠, (C3)

where A = cos θ sinh δ, B = sin θ sinh δ, and C = cosh δ,
with δ and θ the squeezing strength and the squeezing angle,
respectively. Here the change in energy �EŜc

is a function
of δ, θ , and r, i.e., �EŜc

= f (δ, θ, r). In this case, storing
energy in a single mode is not possible due to the global
charging operation, although we can quantify how much en-
ergy is incorporated in each mode. We find that �EŜc

=
2 sinh2 δ cosh 2r and �EŜ1

c
= �EŜ2

c
= �EŜc

/2, i.e., the total
energy increment is divided between two modes equally. We
proceed to check the behavior of �σ (2) with the variation
of total energy �EŜc

to find if there is any advantage due
to quantum correlations developed while storing the energy.
By optimizing �σ (2) with respect to the charging parameter
θ , we obtain �σ

(2)
min at θ = π/2. However, when the energy

increments �EŜi
c

and the initial squeezing strength r are taken
to be the same as in the case of charging the entangled state
with local squeezing, this minimum value exceeds the value
obtained in the latter scenario. This implies that the stability
of the QB obtained via local operations is higher than that via
global ones. Therefore, entangling operations cannot enhance
the stability of the battery beyond than that obtained from the
separable initial states with local chargers.
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