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While there exist theories that have states more strongly entangled than quantum theory, in the sense that
they show Clauser-Horne-Shimony-Holt (CHSH) values above Tsirelson’s bound, all known examples of such
theories have a strictly smaller set of measurements. Therefore, in tasks that require both bipartite states and
measurements, they do not perform better than quantum mechanics. One of the simplest information processing
tasks involving both bipartite states and measurements is that of entanglement swapping. In this paper, we study
entanglement swapping in generalized probabilistic theories (GPTs). In particular, we introduce the iterated
CHSH game, which measures the power of a GPT to preserve nonclassical correlations, in terms of the largest
CHSH value obtainable after n rounds of entanglement swapping. Our main result is the construction of a
GPT that achieves a CHSH value of 4 after an arbitrary number of rounds. This addresses a question about
the optimality of quantum theory for such games recently raised by Weilenmann and Colbeck. One challenge
faced when treating this problem is that there seems to be no general framework for constructing GPTs in which
entanglement swapping is a well-defined operation. Therefore, we introduce an algorithmic construction that
turns a bipartite GPT into a multipartite GPT that supports entanglement swapping, if consistently possible.
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I. INTRODUCTION

Finding a set of operationally motivated axioms that single
out quantum mechanics (QM) has been a longstanding prob-
lem in the field of foundations of quantum mechanics. Such an
undertaking requires a mathematical framework that allows us
to compare QM with other theories, such as classical theory.
Arguably the most general framework is that of generalized
probabilistic theories (GPTs) [1–9].

Within this framework, a large number of axioms have
been proposed over the years [10–16]. One of the main foci
of many investigations is the behavior of bipartite theories.
In particular, explaining why Clauser-Horne-Shimony-Holt
(CHSH)-type experiments [17,18] in nature are bounded by
2
√

2, which Tsirelson [19] famously showed to be the largest
value allowed by quantum theory. But, as it stands, we still
have no definitive axiom singling out quantum theory based
on this property.

In their recent work [20], Weilenmann and Colbeck turn
to multipartite theories to possibly explain 2

√
2. The argu-

ment hinges on a well-known tension between the set of
states and measurements in a theory: Expanding state space
to include more correlations requires one to shrink the set
of measurements in order to avoid the emergence of negative
probabilities.

For example, bipartite boxworld [8,9,21] state space is the
biggest possible bipartite state space one could make. But, as a
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consequence, the bipartite effect space (the space from which
the measurements are constructed) has only product effects.
This in turn, is the smallest possible bipartite effect space.

Therefore, by adding a step of entanglement swapping
before playing the CHSH game, the set of possible corre-
lations achievable in theories with such state spaces shrink
(see Refs. [22,23]). Quantum theory seems to strike the op-
timum between these competing notions, in that the CHSH
violation of 2

√
2 is preserved under entanglement swapping.

And indeed, Weilenmann and Colbeck show that, for the
adaptive CHSH game [24], the winning probability of any the-
ory whose unipartite state and effect spaces are characterized
by regular polygons [25] is upper bounded by the winning
probability of quantum theory.

Naturally, the question arises whether quantum theory is
optimal, in the sense that no GPT can sustain a CHSH vi-
olation greater than 2

√
2 through entanglement swapping.

To investigate this, we introduce the iterated CHSH game,
which is an extension of the adaptive CHSH game to multiple
rounds. The main result of this paper is to answer this question
in the negative, with the construction of a GPT, which sustains
the maximal possible value of 4 over arbitrarily many rounds
in the iterated CHSH game. Along the way, we also discuss
a simpler construction, which sustains a CHSH violation of 4
only for a finite number of rounds.

A. Generalized probabilistic theories

The main idea of GPTs is to model experiments as a
two-step process. A preparation step, which produces a state,
and a measurement step, which probabilistically maps states
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FIG. 1. Diagrammatic representation of the measurement of a
bipartite state by two local observers. Here, the bipartite state ρ is
represented by a circle with two arrows emerging from it, one for
each subsystem. The unipartite effects e and f on the other hand, are
represented by boxes with one port each. The full diagram represents
the probability that, on measuring ρ, Alice and Bob get the outcome
corresponding to effect e and f , respectively.

to outcomes. Associated to each outcome of a measurement,
comes an effect.

Mathematically, states are modeled as members of a
convex set (convexity corresponding operationally to prob-
abilistic mixtures). Effects can be viewed as positive linear
functionals on states. The pairing between a state ρ and an
effect e is interpreted as the probability of obtaining the out-
come corresponding to the effect e, given that we prepared the
state ρ.

It is useful to represent these operations diagrammatically.
For example, the CHSH experiment consists of a bipartite
state measured locally by two parties. The resulting contrac-
tion can be diagrammatically represented as in Fig. 1. This
diagram corresponds to the joint probability obtained by con-
tracting the two-tensor representing the state with the tensor
product of the local unipartite effects, i.e., the pairing

〈ρ12, e1 ⊗ f2〉 (1)

(see also Sec. II).

B. Entanglement swapping

Contractions of the type depicted in Fig. 1, whose result is
a probability, are called full contractions. It is also possible to
define partial contraction of states and effects.

FIG. 2. Operational depiction of various partial contractions on
the level of a bipartite theory. (a) depicts partial contraction of a
unipartite effect and a bipartite state, (b) depicts partial contraction
of a bipartite effect and a unipartite state, (c) depicts entanglement
swapping, and (d) depicts dual entanglement swapping

Note for example the situation in Fig. 2(a), where a bipar-
tite state ρ is measured only on subsystem 1 and the outcome
corresponding to the effect e is obtained. We will interpret the
resulting object as a (not necessarily normalized) conditional
state, which acts on effects f on the second subsystem as

〈ρ12, e1 ⊗ 12〉 : f2 �→ 〈ρ12, e1 ⊗ f2〉. (2)

Here 1 is the identity channel, which operationally corre-
sponds to “do nothing.”

Similarly, one can pair a bipartite effect with a unipartite
state. This situation is depicted in Fig. 2(b) and mathemati-
cally corresponds to

〈ρ1 ⊗ 12, e12〉 : σ2 �→ 〈ρ1 ⊗ σ2, e12〉. (3)

We can also extend these notions to the case of several
bipartite objects. Consider the situation where two bipar-
tite states are partially contracted with a bipartite effect,
as depicted in Fig. 2(c). This is the generalization of the
quantum-mechanical notion of entanglement swapping to
GPTs. These operations will occur so frequently that we in-
troduce a compact notation: For bipartite states ρ, σ and a
bipartite effect e, we denote the conditional bipartite state
resulting from an entanglement swapping procedure as

�
ρ

e
σ

�
:= 〈ρ12 ⊗ σ34,11 ⊗ e23 ⊗ 14〉. (4)

Similarly, we can instead contract two bipartite effects, par-
tially, with a bipartite state, as depicted in Fig. 2(d). This
situation we call dual entanglement swapping, and as before,
for bipartite effects e, f and a bipartite state ρ, we denote it by

�
e
ρ

f
�

:= 〈11 ⊗ ρ23 ⊗ 14, e12 ⊗ f23〉. (5)

In the following, we generally drop subscripts labeling sys-
tems in contractions, if the system an object belongs to is clear
from context.

C. Outline

This paper is structured as follows. In Sec. II we state our
axioms for a theory under which entanglement swapping is
well defined. We also present an algorithm to either show
that a given bipartite theory is inconsistent or extend it to
a multipartite theory in a consistent manner. In Sec. III we
discuss the iterated CHSH game. In Sec. IV we discuss the
notion of composite GPTs, which can swap PR-box correla-
tions for a finite number of steps. Finally, in Sec. V we present
a GPT, which sustains a maximal violation of Tsirelson’s
bound indefinitely under entanglement swapping, and provide
an optimal strategy for the iterated CHSH game.

II. DEFINITION OF A THEORY

The main goal of this paper is to analyze the phenomenon
of entanglement swapping in the general context of GPTs. To
this end, it is necessary to specify the conditions on a theory
under which entanglement swapping is well defined.

There are a few choices we make therein. First, we will
choose the fundamental objects of our theory to be convex
cones rather than starting with the state or effect spaces. This
is because it is sufficient (and more convenient) to work with
cones in the present context, i.e., describing notions such as
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entanglement swapping and partial contractions. The state and
effects spaces of the theory are obtained as derived objects, in
the usual way, as specified below.

Second, we find it a more natural construction to reinter-
pret the effects as the primal objects and the states as linear
functionals on the effects. The two formulations are clearly
equivalent. For a detailed exposition of such a construction
refer to the review [9].

Definition 1. A theory in which entanglement swapping is
well defined is specified by the following:

(i) A finite-dimensional vector space V ;
(ii) An element 1 ∈ V , called the unit effect;
(iii) A collection of convex cones {P (n)}n∈N, P (n) ⊂ V ⊗n,

representing (unnormalized) effects, subject to:
(a) 1 ∈ P (1).
(b) Closure under tensor products, i.e., If e ∈ P (n), f ∈

P (m), then e ⊗ f ∈ P (n+m);
(iv) A collection of convex cones {D(n)}n∈N, D(n) ⊂

(V ⊗n)∗, representing (unnormalized) states, subject to:
(a) Positivity, i.e., D(n) ⊂ (P (n) )′, the polar dual of

P (n).
(b) Closure under tensor products, i.e., If ρ ∈ D(n), σ ∈

D(m), then ρ ⊗ σ ∈ D(n+m);
(v) Closure under partial contractions, i.e., For e ∈

P (n), ρ ∈ D(m):
(a) If n > m, then 〈ρ, e〉 ∈ P (n−m)

(b) If n < m, then 〈ρ, e〉 ∈ D(m−n)

(c) (for completeness) If n = m, then 〈ρ, e〉 ∈ R+, is
the canonical pairing;
(vi) Invariance under permutations of systems, i.e., for ev-

ery n ∈ N and π ∈ Sn, we have π (D(n) ) = D(n) and π (P (n) ) =
P (n). Where, for ρ1···n ∈ D(n)

π (ρ1···n) := ρπ (1)···π (n).

From the above definition, we can derive the following: For
an effect e ∈ P (n), define the negation

¬e := 1⊗n − e. (6)

Define the n-partite effect space as

E (n) := P (n) ∩ ¬(P (n) ). (7)

Define the n-partite state space as

S (n) := {ρ ∈ D(n) | 〈ρ, 1⊗n〉 = 1}. (8)

Define the set of unipartite correlators as

X (1) := {e − ¬e | e ∈ E (1)}. (9)

For every choice A0, A1, B0, B1 ∈ X (1), we define the CHSH
observable as

CHSH(A0, A1; B0, B1)

:= A0 ⊗ B0 + A0 ⊗ B1 + A1 ⊗ B0 − A1 ⊗ B1. (10)

The CHSH value corresponding to the above choice of corre-
lators and some choice of ρ ∈ S (2) is the expectation value of
the CHSH observable with respect to ρ, i.e.,

〈ρ, CHSH(A0, A1; B0, B1)〉. (11)

We can associate with every theory a CHSH value defined to
be the supremum over all possible choices ρ, A0, A1, B0, B1.

sup
A0,A1,B0,B1∈X (1)

ρ∈S (2)

|〈ρ, CHSH(A0, A1; B0, B1)〉|. (12)

Another important notion in the discussion that follows, is
that of closure under entanglement swapping. Given a theory
with bipartite cones P (2) and D(2), we say D(2) is closed under
entanglement swapping if

�
D(2)

P (2)

D(2)

� ⊂ D(2). (13)

Further, we say D(2) is stable under entanglement swapping if

conv
(�D(2)

P (2)

D(2)�) = D(2). (14)

The same notions apply to dual entanglement swapping.

A. Consistent bipartite theory

In this section, we are concerned with the following ques-
tion. Given:

(i) A finite-dimensional vector space V ,
(ii) a nonzero element 1 ∈ V ,
(iii) a convex cone P ⊂ V ⊗ V ,
(iv) a convex cone D ⊂ (V ⊗ V )∗,
is it possible to produce a multipartite theory that has the

same unit effect, for which P (2) = P and D(2) = D?
We answer this question by constructing an algorithm that,

for an input n ∈ N, either produces n-partite cones P (n) and
D(n) by extending P and D, if consistently possible, or detects
the inconsistency. The algorithm can be split into two parts.
First, a consistency check on the objects 1, P, and D, followed
by an explicit construction of P (n) and D(n) for every n ∈ N.
The algorithm is as follows:

In the presentation of Algorithm 1, ⊗̇ stands for the min-
imal tensor product, defined as the conal hull over the tensor
product of the respective sets:

P (n)⊗̇P (m) := cone(P (n) ⊗ P (m) ). (15)

Additionally, we have not specified in which format inputs
such as V or P are to be supplied, or how the checks should
be performed. In this sense, it is a template for a concrete
algorithm that depends on the mathematical properties of the
input data. For example, if P, D are polyhedral cones in Rd ,
then V can be represented by the integer d and the cones by
the facet inequalities. In this case, all tests in Algorithm 1 are
linear programs. But more general situations also make sense,
e.g., cones defined in terms of semidefinite constraints.

Lemma 1. Given the input data V, 1, P, D, Algorithm 1 ei-
ther detects inconsistency, or returns consistent n-partite cones
P (n) and D(n) induced by the data, for any n ∈ N, in a finite
number of steps.

Proof. If the function “check consistency” of Algorithm 1
returns “inconsistent,” then one of the axioms in Definition 1
is violated already at the level of bipartite objects and so there
is no consistent extension of the input.

We will now verify that if “check consistency” returns
“consistent,” then there exists a theory as advertised. In-
deed, the objects whose existence is posited by Axioms 1
and 2 are part of the problem data. Axiom 6 holds by con-
struction given that the bipartite cones are invariant under
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ALGORITHM 1. Induced theory.

1: input: (V, 1, P, D, n ∈ N)
2: if CHECK CONSISTENCY (V, 1, P, D) = “Inconsistent”
3: return “Inconsistent”
4: else
5: D(1) ← cone〈D, 1〉 � partial contractions
6: P (1) ← cone〈D(1), P〉
7: P (2) ← P
8: D(2) ← D
9: if n is even then

10: P (n) ← Sn · (P (2)⊗̇n/2 )

11: D(n) ← Sn · (D(2)⊗̇n/2 )
12: else

13: P (n) ← Sn · (P (1)⊗̇P (2)⊗̇�n/2� )

14: D(n) ← Sn · (D(1)⊗̇D(2)⊗̇�n/2� )
15: end if
16: return P (n),D(n)

17: end if
1: function CHECK CONSISTENCY V, 1, P, D
2: D(1) ← cone〈D, 1〉 � partial contractions
3: P (1) ← cone〈D(1), P〉
4: if
5: 1 �∈ P (1) � Axiom 3(a)
6: or
7: 〈D(1),P (1)〉 < 0 � positivity, unipartite
8: or
9: 〈D, P〉 < 0 � positivity, bipartite

10: or
11: ∀ π ∈ S2, π (P) �= P � Axiom 6, bipartite
12: or
13: ∀ π ∈ S2, π (D) �= D
14: or
15: P (1) ⊗ P (1) �⊂ P � Axiom 3(b), unipartite
16: or
17: D(1) ⊗ D(1) �⊂ D � Axiom 4(b), unipartite
18: or

19:
�

D
P

D

�
�⊂ D � Axiom 5(b), bipartite

20: or

21:
�

P
D

P
�

�⊂ P � Axiom 5(a), bipartite

22: then
23: return “inconsistent”
24: else
25: return “consistent”
26: end function

permutations. Axiom 3(a) is checked directly. The n-partite
cones are constructed only using the unipartite and bipartite
cones. Therefore, Axioms 5(a) and 5(b) follow from Ax-
iom 6 and closure under partial contractions, entanglement
swapping and dual entanglement swapping, at the bipartite
level. Axiom 4(a) follows from Axioms 5(a) and 5(b) plus the
positivity of the unipartite and bipartite cones, since tensor
products preserve positivity. Axioms 3(b) and 4(b) follow by
construction. �

III. ITERATED CHSH GAME

The iterated CHSH game, as previously alluded to, is an
extension of the adaptive CHSH game from Ref. [24], to

FIG. 3. Diagrammatic representation of the structure of the iter-
ated CHSH game. A and C stand for Alice and Charlie, respectively.
The first and the last Bob are shown as B1 and Bn, respectively.
The other Bobs are similarly iterated in order. Each of the nearest
neighbors shares a bipartite resource. The local effect space of all the
Bobs is bipartite, and that of Alice and Charlie is unipartite.

include multiple rounds of entanglement swapping. The game
can be viewed as implementing a CHSH test after the use
of a GPT repeater, the generalization of a quantum repeater
to GPTs, in order to probe the capacity of the repeater to
propagate entanglement.

The iterated CHSH game is parameterized by n, referring
to the number of repeater units between the start and end
nodes. The players of the game are Alice (A), a collection of n
Bobs ({Bi}i=1,··· ,n), and Charlie (C). Alice corresponds to the
start node, Charlie to the end node, and the Bobs to repeaters.
The diagramatic representation of the structure thus produced
is shown in Fig. 3.

Each round of the game proceeds as follows. First, each
of the Bobs performs a bipartite measurement on the sub-
systems available to him, effectively leading to n rounds of
entanglement swapping. They subsequently broadcast their
outcomes. Alice and Charlie are then allowed to implement
local corrections based on the outcomes of the Bobs. Finally,
Alice and Charlie perform a CHSH test. In addition to shared
randomness among all parties, each of the nearest neighbors
depicted in Fig. 3 may share a bipartite resource, but no other
multipartite resource. (The adaptive CHSH game of Ref. [24],
depicted in Fig. 4, is the iterated CHSH game for n = 1.)

To calculate the resulting CHSH value between Alice
and Charlie in the general case, we simply sum over the
CHSH value corresponding to each outcome vector �b =
(b1, · · · , bn) ∈ (Zk )n (for a k-outcome measurement) pro-
duced by the Bobs, weighted by the respective probabilities.
That is, if β�b and p�b are the CHSH value and probability cor-
responding to the outcome vector �b, respectively, the CHSH

FIG. 4. Diagrammatic representation of the structure of the adap-
tive CHSH game. A, B, and C stand for Alice, Bob, and Charlie,
respectively. Bob shares a bipartite resource ρAB with Alice and ρBC

with Charlie.
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value of the game is calculated as

β =
∑

�b∈(Zk )n

p�bβ�b. (16)

In the case of quantum mechanics, it is trivial to describe
an optimal strategy for the iterated CHSH game: Choose all
the shared states to be the Bell state |�+〉. The Bobs perform
a Bell basis measurement each. Conditioned on the outcomes,
the state shared by Alice and Charlie is then one of four
elements of the Bell basis, all of which are equiprobable. A
local Pauli operation, performed by either of them, can map
it to |�+〉. Hence, it follows that quantum theory retains a
CHSH value of 2

√
2 for all n.

IV. COMPOSITE GPTs

Here we discuss a family of constructions that can each
swap PR-box correlations for a fixed number of iterations m.
That is, for all n � m they have a CHSH value of 4 in the
iterated CHSH game. But, as we will also show, for all n > m
they have a CHSH value of 2.

The main idea of this construction is to use particles
with multiple internal degrees of freedom (DOFs). Roughly
speaking, we assign to some DOFs the task of carrying the
entanglement, and to others the task of supporting entangled
measurements. As described below, this way, we can circum-
vent the tension between state and effect space sizes. We
call these particles composites, as they can be viewed as a
composite of particles from smaller GPTs.

A. An example

Consider the following example. Say we have particles
with two DOFs, labeled 1 and 2. Each DOF supports the same
local effects and local states as a unipartite boxworld theory
([9]). That is, if P and D are the unipartite boxworld state and
effect cones, then the effects measurable on each composite
particle are

Pc = P1⊗̇P2. (17)

Physically, this says that we do not allow for entangled
measurements between the DOFs within each composite par-
ticle. We define the joint state space within each particle in the
same way:

Dc = D1⊗̇D2. (18)

We now define the effects and states realisable between two
composite particles. The n-partite theory then results from this
input data via the general construction of Sec. II A.

Let

D̂ = D⊗̂D (19)

be the cone of bipartite boxworld states. Here, ⊗̂ is the maxi-
mal tensor product. Mathematically, it is the polar dual to the
minimal tensor effects:

D⊗̂D := (P⊗̇P )′. (20)

Physically it gives rise to the maximally entangled boxworld
states that achieve CHSH values of 4 [8,9,21].

FIG. 5. Caricature of PR-box entanglement swapping using
composite particles. The red dot signifies DOF 1, the blue dot DOF
2. The green lines signify entangled states. The blue rectangle sig-
nifies an entangled measurement, the red squares signify product
measurements.

In our theory, in addition to product states, we allow for
maximally entangled boxworld states between the first DOFs
of any two composite particles, and between the first DOF of
one and the second DOF of the other. We thus arrive at the
following cone of composite bipartite states

Dc := cone
(
D̂1A,1B ⊗ D2A ⊗ D2B ∪ D̂1A,2B ⊗ D̂2A,1B

)
, (21)

where we have indicated the tensor factors that any object
acts on in the superscripts: Letters A, B refer to the first and
second composite particle, respectively; and numbers 1, 2 to
the internal degrees of freedom.

Finally, the bipartite effects are just the minimal tensor
product of the local ones, except that we allow for maximally
entangled measurements between the second DOFs of any
two composite particles (this is consistent because no entan-
glement exists between these particular DOFs). As in the case
of states, denote the cone of maximally entangled bipartite
effects as

P̂ = P⊗̂P . (22)

Then, for the composite bipartite effects we get:

Pc := cone
(
P1A ⊗ P1B ⊗ P̂2A,2B

)
. (23)

One can now check that Pc, Dc consistently define a theory.
This theory allows for a CHSH value of 4 after one round of
entanglement swapping, according to the scheme visualized
in Fig. 5.

B. General construction

In the example just treated, by adding an additional DOF,
we managed to move a PR-box past one round of entangle-
ment swapping. It is reasonable to conjecture that with access
to more DOFs one may be able to find a way to sustain
entanglement longer, maybe even indefinitely.

To investigate this, we generalize the previous example to
m degrees of freedom. Each DOF supports unipartite box-
world states and effects. Now, for each DOF k we have to
specify the two disjoint subsets of DOFs that form entangled
states and entangled effects with k. This amounts to specifying
two symmetric bipartite graphs as follows:

Start with a collection of 2m vertices, two per DOF

V = {v1, · · · , vm,w1, · · · ,wm}
= {vi}i=1,··· ,m ∪ {wi}i=1,··· ,m. (24)

On this vertex set, define two symmetric bipartite graphs,
G = (V, E ) and H = (V, F ) (with the same bipartition over
the above indicated subsets), such that they lie in each other’s
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complement. The elements of edge sets E and F therefore,
are ordered pairs of vertices, one from each of the subsets
{vi}i=1,··· ,m and {wi}i=1,··· ,m. Indeed, the edges of graph G
specifies those pairs of DOFs that can support entangled
states, whereas the edges of graph H give those pairs that can
support entangled measurements.

The entire construction can be summarized by the follow-
ing rules imposed on the edge sets E and F :

(i) If (vi,w j ) ∈ E then (v j,wi ) ∈ E , by symmetry. Same
for F .

(ii) If (vi,w j ) ∈ E then (vi,w j ) �∈ F , because they lie in
each other’s complements.

(iii) If (vi,w j ), (vk,wl ) ∈ E and (v j,wk ) ∈ F then, we
can concatenate edges via entanglement swapping as follows:

(vi,w j ) ◦ (v j,wk ) ◦ (vk,wl ) ≡ (vi,wl ) ∈ E .

(iv) If (vi,w j ), (vk,wl ) ∈ F and (v j,wk ) ∈ E then, we
can concatenate edges via dual entanglement swapping as
follows:

(vi,w j ) ◦ (v j,wk ) ◦ (vk,wl ) ≡ (vi,wl ) ∈ F.

Lemma 2. Given a composite particle with m boxworld
DOFs, there exists l ∈ N such that ∀ n � l the CHSH value of
the composite GPT in the iterated CHSH game parametrized
by n, is 2.

Proof. In order to sustain entanglement indefinitely under
entanglement swapping with a finite number of DOFs, we
must have a closed cycle. That is, there is some chain of
concatenations, alternating edges from E and F (starting and
ending with E ) that reproduces the first edge. In equations:

(v1,w2) ◦ (v2,w3) ◦ · · ·
· · · ◦ (vk−1,wk ) ◦ (vk,w2) ≡ (v1,w2) ∈ E , (25)

with (vi,wi+1) belongs to E for odd i and F for even i. Since
the second and penultimate edge belong to F , we can use Rule
4 to simplify the above chain to

(v1,w2) ◦ (v2,wk ) ◦ (vk,w2) ≡ (v1,w2). (26)

The above equation implies that (v1,w2), (vk,w2) ∈ E ,
and (v2,wk ) ∈ F . But, by Rule 1 we get (vk,w2) ∈ F , which
contradicts Rule 2. This then means, each time we do an
additional round of entanglement swapping, we have to add
a new degree of freedom (if not more). This implies, given
access to m DOFs, the maximum number of entanglement
swapping rounds such that the output is still entangled is less
than or equal to m − 1. Therefore, for any n � m we end up
with only product states in the iterated CHSH game, meaning
the CHSH value is no more than 2. �

V. OBLATE STABILIZER THEORY

In this section we present our main result. That is, we
construct the oblate stabilizer theory, which not only achieves
a CHSH value of 4 but is also stable under entanglement
swapping. In other words, it can sustain this CHSH value
indefinitely under entanglement swapping. We also show that,
given the resources described by this theory, there is an opti-
mal strategy by which we get a CHSH value of 4 in the iterated
CHSH game.

A. Setup

The theory can be obtained by slightly deforming the set
of quantum-mechanical stabilizer states. For this reason, we
will use objects from the mathematical description of quantum
mechanics to construct it.

Consider the one-qubit stabilizer polytope, i.e., the convex
hull of the following states on the Bloch sphere

|x±〉〈x±| := 1
2 (1 ± σ1),

|y±〉〈y±| := 1
2 (1 ± σ2), (27)

|z±〉〈z±| := 1
2 (1 ± σ3),

where σ1, σ2, σ3 are the Pauli matrices. Now perform a uni-
form stretch in the equatorial plane of the Bloch sphere, i.e.,
for some r > 1, set

|x̃±〉〈x̃±| := 1
2 (1 ± rσ1),

|ỹ±〉〈ỹ±| := 1
2 (1 ± rσ2), (28)

|z̃±〉〈z̃±| := |z±〉〈z±| = 1
2 (1 ± σ3).

These will be the building blocks for the unipartite state space.
The Bell state is defined as usual as:

|�+〉〈�+| := 1
4 (σ0 ⊗ σ0 + σ1 ⊗ σ1 − σ2 ⊗ σ2 + σ3 ⊗ σ3).

(29)

It satisfies the standard identities

(A ⊗ B)|�+〉 = (1 ⊗ BAt )|�+〉 (30)

and

tr1(|�+〉〈�+|) = tr2(|�+〉〈�+|) = 1
21. (31)

Where At stands for the matrix transpose of A, and

|�+〉 = 1√
2
(|00〉 + |11〉). (32)

From the Bell state, we can generate the Bell basis as:

|�+
μ 〉〈�+

μ | := (σμ ⊗ 1)|�+〉〈�+|(σμ ⊗ 1), μ ∈ Z4.

(33)
In keeping with the quantum formalism, effects will also be

represented by 2 × 2 matrices and the pairing between states
and effects by the trace inner product. Additionally, partial
contractions between states and effects are realized as partial
traces. For example, for a unipartite effect e1 and bipartite
state ρ12, the partial contraction is

〈ρ12, e1〉 := tr1[ρ12(e1 ⊗ 1)]. (34)

Similarly, for a bipartite effect e and bipartite states ρ and σ ,
the entanglement swapping map is

�ρ
e
σ � := tr23[ρ12 ⊗ 1⊗2(1 ⊗ e23 ⊗ 1)1⊗2 ⊗ σ34]. (35)

B. Unipartite theory

Let R = e−i π
8 σ3 be the unitary, which, by conjugation

[R( · )R†], implements a π/4-rotation of the Bloch sphere
about the z axis. Let � be the stretched stabilizer states, for
some choice of r > 1:

� := {|x̃±〉〈x̃±|, |ỹ±〉〈ỹ±|, |z̃±〉〈z̃±|}. (36)
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FIG. 6. Caricature of the geometry of the unipartite oblate stabi-
lizer theory. The black outlines represent a Bloch sphere with a scaled
up equatorial plane. The rays formed by vertices of the red polytope
(what used to be the stabilizer states) represent the extremal rays of
the state cone. The rays formed by vertices of the rotated (about the z
axis, by π/4) blue polytope represent the extremal rays of the effect
cone.

Definition 2 (Unipartite oblate stabilizer theory). Choose

r = ( cos( π
4 ))

− 1
2 = 4

√
2, and define the following:

(i) The unit effect, 1 := 1, the 2 × 2 identity matrix;
(ii) The effect cone, P (1) := cone(R�R†);
(iii) The state cone, D(1) := cone(�).
Indeed, we get the following derived objects: the negation

of an effect is

¬e = 1 − e. (37)

The state space is simply

S (1) = conv(�). (38)

Similarly, the effect space is

E (1) = conv({0,1} ∪ R�R†). (39)

It is easily verified that we have a well-defined unipartite
theory as: (i) The effect space is closed under negations

¬E (1) = E (1). (40)

(ii) The states are normalized

ρ ∈ S (1) ⇒ tr(ρ1) = 1. (41)

(iii) Pairing a state and an effect gives a probability, i.e.,

ρ ∈ S (1), e ∈ E (1) ⇒ tr(ρe) ∈ [0, 1]. (42)

It suffices to check (42) for the extremal vertices. Additionally,
due to (40) only the upper bound needs to be checked. From
Fig. 6, the inner product on the z axis is unchanged from
quantum theory and hence bounded between 0 and 1. On
the equatorial plane the largest inner product is between two
nearest neighbors. By construction, the angle enclosed by the
corresponding Bloch vectors is π/4, meaning

sup
ρ,e

tr(ρe) = 1
2 [1 + r2 cos(π/4)] = 1. (43)

C. Bipartite theory

To construct the bipartite theory we first interpret the bi-
partite states as maps from the unipartite effect cone to the
unipartite state cone, via partial contraction. Similarly for

bipartite effects [refer to Figs. 2(a) and 2(b)]. Then, we use
the following properties of the unipartite theory:

(i) Both the state and effect cones are invariant under
conjugation by Pauli matrices. In the Bloch picture, these
correspond to reflections about the x, y, and z axes.

(ii) Both state and effect cones are invariant under matrix
transpose. In the Bloch picture, this corresponds to reflections
about the xz plane.

(iii) Both the state and effect cones are invariant under
conjugation by Rm for m ∈ {0, 2, 4, 6}. In the Bloch picture
this corresponds to a mπ/4 rotation about the z axis.

(iv) On the other hand, conjugation by Rm for m ∈
{1, 3, 5, 7} maps the state cone to the effect cone and vice
versa.

Therefore, for μ ∈ Z4, m ∈ Z8 define the projections

|�+
μ,m〉〈�+

μ,m| := (σμRm)† ⊗ 1|�+〉〈�+|(σμRm) ⊗ 1. (44)

Further, define the set

� := {|�+
μ,m〉〈�+

μ,m| | μ ∈ Z4, m ∈ Z8, m odd}. (45)

Definition 3 (Oblate stabilizer theory). In the sense of
Sec. II A, oblate stabilizer theory is the theory specified by
the following data:

(i) V , the set of 2 × 2 Hermitian matrices,
(ii) 1 = 1, the 2 × 2 identity matrix,
(iii) P = cone(R�R† ⊗ R�R† ∪ �),
(iv) D = cone(� ⊗ � ∪ �).
Lemma 3. The data specified in Definition 3 can be consis-

tently extended to a theory using Algorithm 1.
Proof. We verify that Algorithm 1 accepts the data, which

is thus consistent by Lemma 1.
The partial trace of all entangled states introduced is 1

21.
Partial contractions of entangled effects with unipartite states
can be viewed as conjugation by a odd rotation, and then
by a Pauli matrix. This, as discussed before, maps the uni-
partite state cone to the unipartite effect cone. Therefore, by
construction, the D(1) and P (1) assigned by the algorithm are
the same D(1) and P (1) as in Definition 2. Hence, we already
have 1 ∈ P (1) and 〈D(1),P (1)〉 � 0. Since the entangled states
and effects are projectors taken from quantum theory without
modification, the trace inner product between them is non-
negative.

We have verified above that pairing unipartite states and ef-
fects leads to positive outcomes, and this property is preserved
under tensor products. Using identities (30) and (31), it can be
easily shown that

tr(|�+
μ,m〉〈�+

μ,m|e ⊗ f ) = 1
2 tr[ f σμRmet (Rm)†σμ], (46)

which is just 1
2 times the pairing between a unipartite state

and effect, and hence, is positive. The same argument extends
to entangled effects and product states. Therefore, we have
〈D, P〉 � 0.

For invariance under permutation of systems, we need only
check S2 invariance for the set of entangled states and effects,
since everything else is permutation invariant by construction.
This is readily verified by using identity (30) since |�+〉〈�+|
is already S2 invariant. The tensor products of the unipartite
cones, P (1) ⊗ P (1) and D(1) ⊗ D(1) are subsets of, respec-
tively, P and D by construction.
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It remains to be shown that the theory is closed under
entanglement swapping and dual entanglement swapping. We
only treat the first case explicitly. The dual version follows
in complete analogy. We separate the entanglement swapping
contractions into four types.

(i) The effect factorizes, i.e., �•e⊗ f •�. In this case the result
is an element of D(1) ⊗ D(1), because the contraction splits as
follows:

(ii) Both states are product states, i.e., �ρ1⊗ρ2
•
ρ3⊗ρ4�. In this

case the result is again an element of D(1) ⊗ D(1), because the
central objects can be grouped as:

(iii) There is one entangled state and one entangled effect,
i.e., ��

�
ρ⊗σ � for example. In this case the result is once

again an element of D(1) ⊗ D(1), because we can split up the
contraction as:

(iv) All three objects are entangled. This leads to a simple
but lengthy calculation, which we have deferred to Ap-
pendix A 2. The result is

��
�

�� ⊂ 1
4�. (47)

Therefore, none of the conditions required to detect incon-
sistency in Algorithm 1 are met and hence, it does not return
inconsistent. �

D. Iterated CHSH game

The theory exhibits a CHSH value of 4 for the observable
(10) and the choices

ρ = |�+
0,1〉〈�+

0,1|,
A0 = R|x̃+〉〈x̃+|R† − R|x̃−〉〈x̃−|R† = rRσ1R†,

A1 = R|ỹ+〉〈ỹ+|R† − R|ỹ−〉〈ỹ−|R† = rRσ2R†,

B0 = R|x̃+〉〈x̃+|R† − R|x̃−〉〈x̃−|R† = rRσ1R†,

B1 = R|ỹ+〉〈ỹ+|R† − R|ỹ−〉〈ỹ−|R† = rRσ2R†.

(48)

Since this is the maximum possible value, the CHSH value
associated with this theory, as defined in Eq. (12), is also 4.

Also, ∀ ρ ∈ D(2) we have (refer to Appendix A 1)

�|�+
0,1〉〈�+

0,1|
|�+

0,1〉〈�+
0,1|

ρ� ∝ ρ (49)

Therefore, we not only have closure but also stability un-
der both entanglement swapping and dual entanglement
swapping.

Remark 1. It is worth pointing out here that the choice of
correlators being only on the xy plane is no coincidence. For
any situation with a z measurement, oblate stabilizer theory
no longer has such a strong CHSH violation.

The general strategy for the iterated CHSH game for oblate
stabilizer theory is the same as the optimal strategy for quan-
tum theory discussed in Sec. III. Alice and Charlie have
access to two-setting two-outcome measurement machines.
The Bobs have access to four-outcome bipartite measurement
machines. In each run of the experiment, nearest neighbors
share a bipartite oblate stabilizer state. Each Bob performs a
bipartite measurement on the subsystems available to him and
broadcasts his outcome. Based on this, either Alice or Charlie
apply a correction locally and perform a CHSH test.

Theorem 1. Oblate stabilizer theory reaches a value of β =
4 in the iterated CHSH game.

Proof. Build the two-setting two-outcome measurement
machines of Alice and Charlie out of the correlators

A0 = rRσ1R†, A1 = rRσ2R†,

C0 = rRσ1R†, C1 = rRσ2R†.
(50)

As we have noted in (48), the above are valid correlators of
the theory. For the four-outcome measurements, choose

MBi = {|�+
μ,1〉〈�+

μ,1| | μ ∈ Z4}, ∀ i. (51)

From (33) it follows that MBi is a measurement. For the
shared bipartite states, choose

ρAB1 = ρB1B2 = · · · = ρBnC = |�+
0,1〉〈�+

0,1|. (52)

Given these choices one can verify (refer to Appendix A 2)
that the four output states obtained after each consecutive
entanglement swap are the same. Each state is also equiprob-
able. The output state after n rounds depends solely on the
multiplicity of each of the four outcomes of MBi , in the vec-
tor �b = (b1, · · · , bn) ∈ (Z4)n. Therefore to obtain the proper
correction one can convert the outcomes to binary and perform
a bitwise XOR (equivalent to finding the resultant element of
the Klein four-group). The output state and correction corre-
sponding to each μ ∈ Z4 is tabulated in Table I.

The correction maps each output state back to |�+
0,1〉〈�+

0,1|,
which gives a CHSH value of 4 with the above choice of
correlators as was stated earlier. And therefore, we have

β =
∑

�b∈(Z4 )n

pbβb =
∑

�b∈(Z4 )n

(
1
4

)n
4 = 4. (53)

�

TABLE I. The output state and correction corresponding to each
outcome of Bob’s measurement.

μ ∈ Z4 State Correction

0 |�+
0,1〉〈�+

0,1| σ0 ⊗ 1

1 |�+
1,−1〉〈�+

1,−1| σ1 ⊗ 1

2 |�+
2,−1〉〈�+

2,−1| σ2 ⊗ 1

3 |�+
3,1〉〈�+

3,1| σ3 ⊗ 1
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VI. CONCLUSION AND OUTLOOK

We have constructed a GPT in which a CHSH violation of
4 can be sustained indefinitely under entanglement swapping.
As a consequence, the iterated CHSH game is insufficient to
single out QM among GPTs. In the process of obtaining this
result, we have also set up a framework to turn bipartite theo-
ries into multipartite theories in which entanglement swapping
is consistently defined.

As an outlook to future work, Ref. [20] suggests that theo-
ries should satisfy stronger symmetry conditions, i.e., “for any
state and set of local measurements, if the local outcome prob-
abilities are permuted, then there is a state that achieves these
permuted correlations under the same measurements.” If this
is interpreted as an invariance under permutation of subsys-
tems, then oblate stabilizer theory satisfies this requirement.
If instead we interpret this as a symmetry under permutation
of local extremal effects, then our construction fails to satisfy
this requirement. In particular, our construction breaks the

symmetry between z observables and those on the equatorial
plane. This raises two complementary questions for further
work: (i) Are there natural, stronger conditions on multipartite
correlations for which QM is indeed optimal? (ii) Can one find
a theory that beats QM in the iterated CHSH game and that is
isotropic in the sense of having a transitive symmetry group
action on all extremal effects?
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APPENDIX

The Bell state can be written concisely as

|�+〉〈�+| = 1

4

3∑
μ=0

(−1)δ2μσμ ⊗ σμ. (A1)

1. Stability of OST

To verify that oblate stabilizer theory is stable under entanglement swapping we show that
�

|�+
0,1〉〈�+

0,1|
|�+

0,1〉〈�+
0,1|•

�
: σμ ⊗ σν �−→ 1

4σμ ⊗ σν. (A2)

To this end, note that�
|�+

0,1〉〈�+
0,1|

|�+
0,1〉〈�+

0,1|
σμ⊗σν

�

= tr23((R† ⊗ 1)12|�+〉〈�+|12(R ⊗ 1)12(R† ⊗ 1)23|�+〉〈�+|23(R ⊗ 1)23(σμ ⊗ σν )34)

= tr23((1 ⊗ R−1)12|�+〉〈�+|12(R−1R ⊗ 1⊗2)123|�+〉〈�+|23(R ⊗ 1)23(σμ ⊗ σν )34)

= tr3

(
1

16

3∑
α,β=0

(−1)δ2α+δ2β tr(R−1σασβR)(σα ⊗ σβ )13(σμ ⊗ σν )34

)

= 1

8

3∑
α=0

tr(σασμ)(σα ⊗ σν ) = 1

4
σμ ⊗ σν. (A3)

Every ρ ∈ D(2) is a linear combination of σμ ⊗ σν for μ, ν ∈ Z4, hence the claim follows.

2. Iterated entanglement swapping

In order to find the result of ��
�

��, let us first calculate the following identity: for some operators A, B,C, D

tr23[(A ⊗ 1)12|�+〉〈�+|12(B ⊗ 1⊗2)123|�+〉〈�+|23(1⊗2 ⊗ C)234|�+〉〈�+|34(1 ⊗ D)34]

= 1

64

3∑
μ,ν,λ=0

((−1)δ2μ+δ2ν+δ2λ tr(σμσν )tr(σνσλ)AσμB ⊗ CσλD)

= 1

16
(A ⊗ C)

(
3∑

μ=0

(−1)δ2μσμ ⊗ σμ

)
(B ⊗ D)

= 1

4
(A ⊗ C)|�+〉〈�+|(B ⊗ D) = 1

4
(ACt ⊗ 1)|�+〉〈�+|(Dt B ⊗ 1). (A4)
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Using this we can now compute

tr23((A† ⊗ 1)12|�+〉〈�+|12(A ⊗ 1)12(B† ⊗ 1)23|�+〉〈�+|23(B ⊗ 1)23(C† ⊗ 1)34|�+〉〈�+|34(C ⊗ 1)34)

= tr23((A† ⊗ 1)12|�+〉〈�+|12(BA ⊗ 1⊗2)123|�+〉〈�+|23(1⊗2 ⊗ CB)234|�+〉〈�+|34(1 ⊗ Ct )34)

= 1
4 (A†(CB)t ⊗ 1)|�+〉〈�+|((Ct )t BA ⊗ 1)

= 1
4 (CBA)† ⊗ 1|�+〉〈�+|(CBA) ⊗ 1. (A5)

Therefore, the entanglement swapping map
�

|�+
μ,m〉〈�+

μ,m|
|�+

ν,m′ 〉〈�+
ν,m′ ||�+

λ,m′′ 〉〈�+
λ,m′′ |

� = tr23([(σμRm)† ⊗ 1]12|�+〉〈�+|12[(σμRm) ⊗ 1]12[(σνRm′
)† ⊗ 1]23|�+〉〈�+|23[(σνRm′

)

⊗ 1]23[(σλRm′′
)† ⊗ 1]34|�+〉〈�+|34[(σλRm′′

) ⊗ 1]34) (A6)

reduces to (A5) with

A = σμRm, B = σνRm′
, C = σλRm′′

.

which gives

CBA = σλRm′′
σνRm′

σμRm = (±i)σξ Rm∗
, (A7)

with ξ ∈ Z4 and m∗ ∈ Z8 and odd. Therefore, it follows that�
�

�
�

� = 1
4�. (A8)

Finally, we can specialize to the case of the optimal strategy for the iterated CHSH game. For n = 1:

A = σ0R, B = σμR, C = σ0R ⇒ CBA = Rσμ

We can calculate the output of n = 2 by entering the output of the first round into the second round, i.e.,

A = Rσμ, B = σνR, C = σ0R ⇒ CBA = σ0RσνRRσμ = Rσνσμ.

These are the same four states as n = 1 up to scaling and factors of ±i, which are eliminated since they come in complex
conjugate pairs. This means that the set of output states is closed. Moreover, each time we have conjugation by an additional
Pauli matrix. The final result therefore depends only on the number of time each Pauli matrix occurs. That is, it depends on the
multiplicity of each member of Z4 in the outcome vector �b = (b1, · · · , bn).
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