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Wigner function properties for electromagnetic systems
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Using the Wigner-Vlasov formalism, an exact three-dimensional solution of the Schrödinger equation for a
scalar particle in an electromagnetic field is constructed. Electric and magnetic fields are nonuniform. According
to the exact expression for the wave function, the search for two types of Wigner function is conducted. The
first function is the usual Wigner function with a kinetic momentum. The second Wigner function is constructed
on the basis of the Weyl-Stratonovich transform [Javanainen et al., Phys. Rev. A 35, 2791 (1987); Nedjalkov
et al., Phys. Rev. B 99, 014423 (2019)]. It turns out that the second function, unlike the first one, has areas
of negative values for wave functions with the Gaussian distribution (Hudson’s theorem). An example of an
electromagnetic quantum system described by a non-Gaussian wave function has successfully been found. The
second Wigner function is positive over the whole phase space for the non-Gaussian wave function. This result
is analogous to the Hudson theorem for the gauge invariant Wigner function. On the one hand, knowing the
Wigner functions allows one to find the distribution of the mean momentum vector field and the energy spectrum
of the quantum system. On the other hand, within the framework of the Wigner-Vlasov formalism, the mean
momentum distribution and the magnitude of the energy are initially known. Consequently, the mean momentum
distributions and energy values obtained according to the Wigner functions can be compared with the exact
momentum distribution and energy values. This paper presents this comparison and describes the differences.
The Vlasov-Moyal approximation of average acceleration flow has been built in phase space for a quantum
system with an electromagnetic field. The obtained approximation makes it possible to cut the Vlasov chain off
at the second equation and also to analyze the Boltzmann H-function evolution. By averaging the Vlasov-Moyal
approximation over momentum space we can derive an expression for the electromagnetic force of the classical
system. This averaging makes the high-order quantum terms disappear from the “motion equation.”
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I. INTRODUCTION

The basic concept of the Vlasov theory [1] is presented
by the distribution function f∞(�ξ, t ), defined in infinite-
dimensional phase space �∞ of kinematical quantities of
all orders, �ξ = {�r, �v, �̇v, �̈v, · · ·}T ∈ �∞. Kinematical quanti-
ties �r, �v, �̇v, �̈v, · · · in a general case are independent variables.
Each point �ξ0 ∈ �∞ corresponds to a one-parameter Lie
group, which determines the phase trajectory evolution �ξ (t ) =
exp[t D̂]�ξ0, where D̂�ξ def= �uξ

def= {�v, �̇v, �̈v, · · ·}T
is the tangent ve-

locity vector for trajectory �ξ (t ) in generalized phase space
(GPS) �∞. Trajectory �ξ (t ) actually contains the Taylor series
for kinematical quantities �r, �v, �̇v, �̈v, · · · . In such case kine-
matical quantities have differential dependencies �v = �̇r, �̇v =
�̈r, · · · and the physical system is described by a determin-
istic motion trajectory �η(t ). The distribution function for
such a system can be represented in the following form,

*Contact author: pevgeny@jinr.ru

f∞(�ξ, t ) = δ(�ξ − �η(t )), where δ is the Dirac delta function.
In statistical systems the kinematical quantities �r, �v, �̇v, �̈v, ...

are independent, and function f∞ represents the probability
density (normalization condition) or is the distribution func-
tion (number of particles). The first Vlasov principle is the
probability conservation law in GPS for function f∞:

∂

∂t
f∞ + divξ ( f∞�uξ ) = 0, (1.1)

where divξ = divr + divv + divv̇ + · · · . The functional inte-
gration of Eq. (1.1) over phase subspaces �n GPS �∞ =
�1 × �2 × · · · , yields the infinite self-linked Vlasov equation
chain:

∂

∂t
f1 + divr ( f1〈�v〉) = 0, (1.2)

∂

∂t
f2 + divr ( f2�v) + divv ( f2〈�̇v〉) = 0, (1.3)

∂

∂t
f3 + divr ( f3�v) + divv ( f3 �̇v) + divv̇ ( f3〈�̈v〉) = 0,

· · ·
(1.4)
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where

1 =
∫
R3

f1(�r, t )d3r =
∫
R3

∫
R3

f2(�r, �v, t )d3rd3v,

f1(�r, t )〈�v〉(�r, t ) =
∫
R3

f2(�r, �v, t )�vd3v,

f1(�r, t )〈〈�̇v〉〉(�r, t ) =
∫
R3

f2〈�̇v〉d3v,

f2(�r, �v, t )〈�̇v〉(�r, �v, t ) =
∫
R3

f3(�r, �v, �̇v, t )�̇vd3v̇. (1.5)

The physical meaning of equation chain (1.2)–(1.4) be-
comes transparent when we rewrite it as follows [2]:

π̂nSn = −Qn, n ∈ N, (1.6)

where

π̂n = ∂

∂t
+ �v · ∇r + �̇v · ∇v + · · · + 〈�ξ n+1〉 · ∇ξ n , (1.7)

Sn
def= Ln fn, Qn

def= divξ n〈�ξ n+1〉. (1.8)

The complex function Ln is defined as Ln f
def= ln | f | +

i Arg f , where Arg f
def= arg f + 2πk, k ∈ Z. Operator (1.7)

is the total derivative over time along the phase trajectory
in GPS. Quantities Qn (1.8) define the density of dissipation
sources of kinematic values. The initial equation (1.1) does
not contain dissipation sources since Q∞ = divξ �uξ = 0. As
a result the probability density is constant, f∞ = const, along
the phase trajectory �ξ (t ) since π̂∞ f∞ = ∂t f∞ + �uξ∇ξ f∞ = 0.
The absence of dissipation sources Q∞ = 0 in �∞ comes
from the uniqueness of the Taylor expansions of the trajec-
tory �ξ (t ) = exp[t D̂]�ξ0; that is, there is only one generalized
phase trajectory matching each point �ξ0 ∈ �∞. Kinematic
information “drops out” with the averaging of (1.5) over
phase subspaces �n, resulting in the appearance of dissipation
sources Qn �= 0 in Eqs. (1.2)–(1.4) for functions fn or Eq. (1.6)
for functions Sn. Thus the total derivative over time π̂nSn along
the phase trajectory in phase subspace �n (1.6) might be not
zero. Therefore, a change in probability density fn along the
phase trajectory is due to the presence of dissipation sources
Qn. Similar considerations can be applied to the Boltzmann
Hn functions, for which the Vlasov chain yields the following
evolutional equations:

π̂0[ f0Hn] = − f0〈· · · 〈Qn〉 · · ·〉, n ∈ N, (1.9)

Hn(t )
def= 1

f0

∫
�1

· · ·
∫

�n

fn(�ξ n, t )Sn

n∏
s=1

d3ξ s=〈· · · 〈Sn〉 · · ·〉(t ),

(1.10)

where f0 corresponds to the particle quantity in the sys-
tem or to the normalization condition for probability density,
and π̂0 = d/dt . To facilitate understanding for the readers it
should be noted that the most known Boltzmann H function
is the H2 function, related to the system entropy as well as the
H theorem associated with it. From Eq (1.9) it follows that
the change in the Boltzmann Hn function is described by the
mean dissipation sources.

Let us consider in detail the first two equations from the
Vlasov chain, (1.2) and (1.3). The mean kinematic quantity

〈�v〉 determines the probability flow velocity, and 〈�̇v〉 the prob-
ability flow acceleration. The integration over the velocity
space of the second Vlasov equation (1.3) results in the first
Vlasov equation (1.2). When we multiply the second equation
(1.3), by the velocity vk and integrate it over the velocity space
then we get the following motion equation in a hydrodynamic
approximation [3]:

π̂1〈vk〉 =
(

∂

∂t
+ 〈vλ〉 ∂

∂xλ

)
〈vk〉 = − 1

f1

∂Pkλ

∂xλ
+ 〈〈v̇k〉〉,

Pkλ =
∫

�2

f2(vk − 〈vk〉)(vλ − 〈vλ〉)d3v, (1.11)

where Pkλ is the pressure tensor. The quantity m〈〈v̇k〉〉 stands
for the external force, and − 1

f1

∂Pkλ

∂xλ for the pressure force.
Let us keep in mind that the Vlasov chain is self-linked;

that is, to find function f1 we need to know the field 〈�v〉, which
can be obtained by the function f2 from the second Vlasov
equation (1.3) according to (1.5). To solve the Vlasov chain,
it is necessary to cut it off at some of its equations. The longer
the chain the more kinematic information of the system can
be obtained. To cut the chain off the means kinematic quantity
〈�ξ n+1〉 needs to be approximated. Let us cut the chain off at the
first equation. According to the Helmholtz theorem the vector
field 〈�v〉 allows a decomposition into a potential component
−α∇r
 and a vortex component γ �A,

〈�v〉 = −α∇r
 + γ �A, (1.12)

where α, γ are constant values; 
, �A are some functions.
Since the probability density f1 is a positive function then
f1 = |�|2 � 0, where � ∈ C. The authors of [4] used de-
composition (1.12) from the first Vlasov equation (1.2) and
obtained the following equations:

i

β

∂�

∂t
= −αβ

(
p̂ − γ

2αβ
�A
)2

� + U�, (1.13)


(�r, t )
def= iLn

(
�

�̄

)
= 2ϕ(�r, t ) + 2πk, k ∈ Z, (1.14)

− 1

β

∂ϕ

∂t
= − 1

4αβ
|〈�v〉|2 + V

def= H, V = U + Q,

Q = α

β

�r |�|
|�| , (1.15)

π̂1〈�v〉 = d

dt
〈�v〉 = −γ ( �E + 〈�v〉 × �B), (1.16)

�E def=−∂ �A
∂t

− 2αβ

γ
∇rV, �B def= 1

γ
curlr〈�v〉=curlr �A, (1.17)

where p̂
def= − i

β
∇r and β �= 0; β ∈ R is a constant; U (�r, t ) ∈

R is some function. It should be noted that �B = curlr �A is only
true in the case of a smooth scalar potential 
, for which
curlr∇r
 = �θ . If the constants α, β, γ are assumed to be

α = − h̄

2m
, β = 1

h̄
, γ = − q

m
, (1.18)

then Eq. (1.13) can be transformed into the Schrödinger
equation for a scalar particle in the electromagnetic field;
Eq. (1.15) takes the form of the Hamilton-Jacobi equation,
and Eq. (1.16) corresponds to a charged particle motion in
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the electromagnetic field (1.17). Potential Q (1.15) is known
as quantum potential in the de Broglie–Bohm “pilot wave”
theory [5,6]. Scalar potential 
 (1.14) is actually the phase ϕ

of the wave function � = √
f1 exp(iϕ).

Let us note that from the first Vlasov equation (1.2) we can
derive an equation of Pauli and Dirac in the Lorentz gauge [7].
When the systems q f1 = ε0divr �E are self-consistent then the
Maxwell system can be constructed [4,7]. All these results are
mathematically rigorous and are based on only one principle,
namely, the probability conservation law (1.1).

Thus the first Vlasov equation (1.2) can be used for both
classical and quantum systems.

Let us consider the second Vlasov equation (1.3) for
the function f2(�r, �v, t ) in phase space. Equation (1.3) has
been widely used in statistical physics, astrophysics, plasma
physics, and accelerator physics [8–14]. Equation (1.3), as a
rule, is usually utilized in the form of (1.6) with dissipation
sources Q2:

∂

∂t
f2 + �v · ∇r f2 + 〈�̇v〉 · ∇v f2 = − f2divv〈�̇v〉 = − f2Q2.

(1.19)

To cut off the Vlasov chain on the second equation (1.19)
it is necessary to introduce dynamic approximation for the
vector field 〈�̇v〉. Vlasov proposed phenomenologically two
approximations for statistical and plasma physics:

〈�̇v〉(�r, �v, t ) = − 1

m
∇rU (�r, t ), (1.20)

〈�̇v〉(�r, �v, t ) = q

m
[ �Ec(�r, t ) + �v × �B(�r, t )], (1.21)

where field �Ec differs from field �E from (1.17) by the absence
of quantum pressure force −∇rQ. Field 〈�̇v〉 is determined in
the phase space and depends upon velocity (momentum). The
right part of the approximation (1.20) does not contain any
velocity dependency. The Lorentz force only depends upon
velocity in the second approximation (1.21). Both approxima-
tions (1.20) and (1.21) obviously have no dissipation sources
Q2 = 0. It should be noted that dissipation sources Q2 �= 0
will have to be taken into consideration for relativistic cases
in plasma physics (1.21).

When there are no dissipation sources, Q2 = 0, then the
second Vlasov equation (1.19) transforms into an analog of
the Liouville equation, conserving the probability density
along the phase trajectory.

With no magnetic field influence the second approximation
(1.21) transforms into the first approximation (1.20). The av-
eraging of approximation (1.21) over velocity space yields the
expression for external electromagnetic force (1.16) without
quantum pressure.

Presently there are a lot of literature sources that report
on both directly and indirectly considered approximations 〈�̇v〉
with dissipation sources Q2 �= 0 [15–19].

The validity of phenomenological approximations 〈�̇v〉
(1.20) and (1.21) can be confirmed from the quantum me-
chanics point of view. As the first Vlasov equation is related
with quantum mechanics (1.13)–(1.17), it would be logical
to consider such relation for the second equation (1.19). Due
to the Heisenberg uncertainty principle the consideration of
quantum systems in the phase space may seem to be strange.

Nevertheless, in the early 1930s Wigner [20] and Weyl [21]
proposed phenomenologically a function for quasiprobability
density (presently known as the Wigner function) for coherent
states and its expansion for mixed states:

W (�r, �p, t )= 1

(2π h̄)3

∫
R3

〈
�r+ �s

2

∣∣∣∣ρ̂
∣∣∣∣�r− �s

2

〉
e− i

h̄ �s· �pd3s, (1.22)

where ρ̂ is the density matrix. The function (1.22) is dis-
tinguished by its negative values that explains its name,
“quasiprobability” density. The Hudson theorem [22] for
one-dimensional (1D) cases and its generalization for three-
dimensional (3D) cases [23] state that the function (1.22) is
only positive for wave functions with the Gauss distribution.

Using the von Neumann equation for the density matrix or
the Schrödinger equation for the wave function we can derive
the Moyal equation for function (1.22) without a magnetic
field [24]:

∂W

∂t
+ 1

m
�p · ∇rW − ∇rU · ∇pW

=
+∞∑
l=1

(−1)l (h̄/2)2l

(2l + 1)!
U (

←
∇r · �∇p)

2l+1
W . (1.23)

The Moyal equation (1.23) makes it possible to derive
the second Vlasov equation by introducing the Vlasov-Moyal
approximation [25]:

f2〈v̇k〉 =
+∞∑
l=0

(−1)l+1(h̄/2)2l

m2l+1(2l + 1)!

∂U

∂xk
(

←
∇r · �∇v )

2l
f2. (1.24)

Substituting the approximation (1.24) into the second
Vlasov equation (1.19) or (1.3) we obtain the Moyal equation
(1.23) for the Wigner function f2(�r, �v, t ) = m3W (�r, �p, t ). It
should be noted that no condition was implied for the distribu-
tion function to be positive while obtaining the Vlasov chain
(1.1). That is why negative values of the Wigner function do
not contradict the Vlasov chain.

The first summand in approximation (1.24) matches the
phenomenological Vlasov approximation (1.20). The sub-
sequent summands have coefficients h̄2l and depend upon
velocity. This fact confirms the left part of expression (1.20).
The approximation integration (1.24) over velocity (momen-
tum) space leads to the Vlasov approximation of the external
force from the motion equarion (1.11)

〈〈v̇k〉〉 = − 1

m

∂U

∂xk
. (1.25)

The approximation (1.25) in contrast to (1.24) is indepen-
dent of quantum corrections represented by terms with h̄2l

coefficients. Since both the (1.11) and (1.16) motion equations
result from the Vlasov chain, they are equivalent. Comparing
Eqs. (1.11), (1.16), and approximation (1.25) in the case with-
out a magnetic field the following expression can be derived,

1

m

∂Q

∂xk
= 1

f1

∂Pkλ

∂xλ
; (1.26)

that is, the quantum potential gives birth to quantum pressure.
Let us note that exact solutions of the first Vlasov equation

(1.2) allow us to obtain exact solutions of the Schrödinger
equations (1.13) and the Moyal equations (the second Vlasov
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equations), and to construct the Wigner functions. The reverse
way is also possible to construct solutions for the classical
systems by the exact solution of the quantum systems [26–28].

To make sure the approximation (1.21) is valid we have to
consider a system with electromagnetic interaction in phase
space. There are two ways possible. The first one is to con-
struct an evolution equation for the Wigner function (1.22)
taking the electromagnetic field into consideration. Such a
way was earlier investigated in [16,29–31]. The function
(1.22) appeared to not possess a gauge invariance for elec-
tromagnetic fields. Thus, the second way seems to be more
promising, which use the Weyl-Stratonovich transformation
[32–36] to construct a new Wigner function fw:

fw(�r, �P, t ) = 1

(2π h̄)3

∫
R3

e− i
h̄ �s·[ �P+ q

2

∫ 1
−1

�A(�r+τ �s
2 ,t )dτ ]

× ρ

(
�r + �s

2
, �r − �s

2
, t

)
d3s, (1.27)

where �P = �p − q �A and ρ(�r+, �r−, t ) = �̄(�r−, t )�(�r+, t ).
At this point several ways come up to proceed with the

investigation.
First of all, a comparison of the Wigner functions (1.22)

and (1.27) on exact model solutions for quantum systems with
electromagnetic interaction, and preferably with nonuniform
fields, seems to be interesting. Such comparison can reveal
peculiarities of each function. For instance, the function (1.22)
is simpler than the function (1.27). On the other hand, the
function (1.27) is gauge invariant, but how crucial this can
be for calculating average kinematical quantities is an open
question. There is the Hudson theorem that might be useful
for the function (1.22) but it is not clear if this theorem is also
valid for (1.27).

Another interesting direction for investigation is to obtain
an extended Vlasov-Moyal approximation (1.24) for electro-
magnetic systems. This type of approximation can help to
validate expression (1.21) and its possible quantum correc-
tions. In our paper we clarify the following questions. Does
the magnetic field have an influence on the quantum pressure?
Will the quantum corrections be kept after the averaging of
the new approximation over the velocity space? The Vlasov-
Moyal approximation for electromagnetic systems will allow
average dissipation sources Q2 to be found and the Boltzmann
H2 function (1.9) evolution to be estimated. To construct
the Vlasov-Moyal approximation taking the electromagnetic
field into account we need to obtain evolution equations for
functions (1.22) and (1.27). Evolution equations known from
the literature are quite sophisticated and different from the
second Vlasov equation. Therefore we have to derive another
formulation similar to the second Vlasov equation (1.3).

The paper has the following structure. In Sec. II, based
on the Wigner-Vlasov formalism, a 3D solution � of the
Schrödinger equations (1.13)–(1.17) is constructed from the
known distribution density f1 and the vector field of proba-
bility flow 〈�v〉. Functions f1 and 〈�v〉 satisfy the first Vlasov
equation (1.2). Using representations (1.22) and (1.27), the
distribution functions W and fw are found. It turns out that
in contrast to function W , function fw has regions of negative
values for the wave function with the Gaussian distribution
(Hudson’s theorem).

Moreover, an example has been found of the electro-
magnetic quantum system described by a non-Gauss wave
function, whose function fw is positive over the whole phase
space. This result resembles the Hudson theorem for the func-
tion fw.

Knowing functions W and fw, one can calculate momen-
tum fields 〈 �p〉, 〈 �P〉 and the mean value of the energy, and
compare them with the exact distribution and the exact value
of the energy.

The functions W and fw are shown to produce different
densities of momentum distribution.

In Sec. III, an evolution equation is constructed for the
Wigner function W , taking into account the electromagnetic
interaction. In contrast to the equation for function fw, the
resulting equation for function W has a compact notation
similar to Eq. (1.3).

The main difference between the equation constructed for
function W and the previous known equations is that it re-
sembles the second Vlasov equation (1.3). This resemblance
has allowed the Vlasov-Moyal approximation (1.24) to be
extended on the quantum systems with an electromagnetic
field. Some limit cases of the Vlasov-Moyal approximations
have been considered both for classical and quantum systems
in detail. Quantum corrections in the external forces have
been shown to disappear when averaging the Vlasov-Moyal
approximation over momentum space, and quantum potential
Q in motion equations (1.11) and (1.16) has proved to contain
information about the quantum nature of the system. If the
Vlasov-Moyal approximation is used then the quantum po-
tential Q itself does not explicitly depend upon the magnetic
field.

The Appendix section contains proofs of theorems and
intermediate mathematical transforms.

II. EXACT SOLUTION OF THE SCHRÖDINGER
EQUATION

An analysis of properties of the Wigner functions (1.22)
and (1.27) is done using exact model solutions of the
Schrödinger equation for quantum systems with an electro-
magnetic field. Previously, as shown in [26], a class of exact
solutions (� model) of the Schrödinger equation (1.13) was
constructed, whose scalar potential (1.14) had the following
form,

ϕ = kφ + nθ + c0t, n, k ∈ Z (or n, k ∈ R), (2.1)

where φ, θ are the azimuth and polar angle, respectively, in
the spheric coordinate system, and с0 = −E/h̄. Since phase
(2.1) is not a continuum function, the potential fraction ∇r


in the expansion (1.12) contains a vortex component k
r sin θ �eφ

(that is, curlr∇r
 �= �θ ):

〈�v〉 = h̄

m
∇rϕ = h̄

m

(
k

r sin θ
�eφ + n

r
�eθ

)
, �A = �θ, (2.2)

or

〈�v〉 = h̄

m
∇rϕ

′ − q

m
�A′, ϕ′ = nθ − E

h̄
t, �A′ = − h̄k

qr sin θ
�eφ.

Thus the field 〈�v〉 might be represented in two ways within
the framework of the � model. The first one can be done using
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only a nonsmooth scalar potential ϕ (2.1), which results in
a vortex field (2.2). The second one is when we introduce a
smooth scalar potential ϕ′ and a nonsmooth vector potential
�A′. Substituting (2.2) in expressions (1.12) and (1.17), we can
get the following expression,

�B = −m

q
curlr〈�v〉 = curlr �A′,

�B = −q(W b)
m

2π
δ′(ρ)�ez, q(W b)

m q = 2π h̄k, ρ = r sin θ,

(2.3)

where δ′(ρ) is the generalized derivative of the Dirac delta
function and q(W b)

m corresponds to the magnetic charge and
meets the quantization rule [37]. Let us note that magnetic
field (2.3) meets the Maxwell classical equation divr �B = 0.
Intrinsic magnetic moment of a quantum system has the fol-
lowing form, �μs = μBk�ez, which coincides with the intrinsic
magnetic moment of the electron with spin s = ± 1

2 when
k = ±1. The solution of Eq. (1.13) can be represented as

�(�r, t ) = 1√
sin θ

F0

(
r, φ + k

n

[
cot θ − cot

(
θ + 2αn

r2
t

)]
,

θ + 2αn

r2
t

)
ei(nθ− E

h̄ t ), (2.4)

f (r, φ, θ, t )|t=0 = F0(r, φ, θ )

sin θ
= f0(r, φ, θ ), (2.5)

where F0 is some function, defining the class of solutions
of the � model. The function F0 (2.4) is constant along the
characteristic curves illustrated in Fig. 1. These characteristic
curves in Fig. 1 are given for three different radius r values at
k = 1, n = 4.

Let us consider a particular case of decomposition (2.1)
with n = 0, k = 1 for a time-independent function F0:

f (�r) = 1

(2π )3/2σ 3
r

exp

(
−ρ2 + z2

2σ 2
r

)
, (2.6)

〈 �pc〉 = m〈�v〉 = h̄

2
∇r
 = h̄∇rϕ = h̄∇rφ = −q �A1 = h̄

ρ
�eφ,

(2.7)

FIG. 1. Characteristic curves.

where �A1 = �A′ with k = 1. The field 〈�v〉 (1.12) might be
represented in two ways (2.2): either with a nonsmooth scalar
potential ϕ = φ − Et/h̄ ( �A = �θ), or with a smooth scalar
potential ϕ′ = −Et/h̄ and nonsmooth vector potential �A1 =
− h̄

qρ �eφ .
Constant value σr is a free parameter. Function (2.6) sat-

isfies the normalization condition
∫

f d3r = 1 and the first
Vlasov equation. Thus, solutions (2.6) and (2.7) of the first
Vlasov equation (1.2) correspond to “two quantum systems”
in a mathematical sense or, in other words, to two math-
ematical models—but, of course, in a physical sense we
consider only one quantum system. The first quantum system
(mathematical model) has only electrical interaction 〈 �pc〉 =
h̄∇rϕ, and the second one has only electromagnetic interac-
tion 〈 �pc〉 = −q �A1.

As it will be shown below both systems are gauge invari-
ant and allow both Wigner functions (1.22) and (1.27) to be
compared. The following theorem is true.

Theorem 1. The following wave functions,

� (E)(ρ, φ, z, t ) = 1

(2π )3/4σ
3/2
r

exp

(
−ρ2 + z2

4σ 2
r

+ iφ − i
E

h̄
t

)
,

(2.8)

� (EM)(�r, t ) = 1

(2π )3/4σ
3/2
r

exp

(
− r2

4σ 2
r

− i
E

h̄
t

)
, (2.9)

are the exact solutions of the Schrödinger equations:

ih̄
∂� (E)

∂t
= p̂2

2m
� (E) + U1�

(E), (2.10)

ih̄
∂� (EM)

∂t
= 1

2m
( p̂ − q �A1)

2
� (EM) + U1�

(EM), (2.11)

where

U1(�r) = h̄2

8mσ 4
r

(
r2 − 4σ 4

r

r2sin2θ

)
,

q �A1(�r) = − h̄

r sin θ
�eφ, E = 3h̄2

4mσ 2
r

. (2.12)

With that, for both systems (2.8) and (2.9) the Hamilton-
Jacobi equation (1.15) is satisfied:

−h̄
∂ϕ

∂t
= 1

2m
|〈 �pc〉|2 + V, V = U + Q, (2.13)

where the quantum potential (1.15) has the form

Q(�r) = h̄2

4mσ 2
r

(
3 − r2

2σ 2
r

)
. (2.14)

The proof of Theorem 1 is given in Appendix A.
Figure 2 shows the graph of potential U1 (2.12) at z = 0.

Potential U1 has the shape of a “quadratic funnel.” In the
vicinity of axis OZ there is the second-order pole U1 ∼ 1/ρ2,
and at infinity there is a quadratic dependence U1 ∼ r2. In the
absence of a magnetic field, solution � (EM) corresponds to the
wave function of the ground state of a harmonic oscillator with
quadratic potential U1 ∼ r2.

Let us construct a solution of the Schrödinger equation
(2.11) for a modified field (2.7)

〈 �pc〉 = m〈�v〉 = −q �A2 = h̄η

2σ 2
r

ρ�eφ, (2.15)
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FIG. 2. “Quadratic funnel” potential.

where η ∈ R is some coefficient. The potential (2.15) de-
termines a homogeneous magnetic field �B, which takes
the following form at η = k ∈ Z [see in comparison
with (2.3)]:

�B2 = −q(W b)
m η

2πσ 2
r

�ez. (2.16)

We can propose the following theorem.
Theorem 2. Wave function (2.9) is an exact solution of

the Schrödinger equation (2.11) with vector potential (2.15),
quantum potential (2.14), and potential energy

ih̄
∂� (EM)

∂t
= 1

2m
( p̂ − q �A2)

2
� (EM) + U2�

(EM),

U2(�r) = h̄2

8mσ 4
r

[(1 − η2)ρ2 + z2]. (2.17)

The proof of Theorem 2 is given in Appendix A.
In contrast to potential energy U1 (2.12) the expression for

U2 (2.17) does not have a pole on the OZ axis. The expression
(2.17) becomes independent from polar radius ρ at η = 1. The
quantum system (2.9) is “confined” along the radial direction
�eρ at the expense of the magnetic field (2.16). The coefficient
1 − η2 is negative in the expression (2.17) at η > 1. The
expansion of the quantum system (2.9) with potential U2 in
the radial direction �eρ is compensated by reinforcement of the
external magnetic field (2.16). A similar situation occurs at
0 < η < 1, when the redundant confinement with potential
(2.17) is compensated by weakening the external magnetic
field (2.16). Thus, any change of coefficient η does not affect
the balance between the potential energy (2.17) and the vector
potential (2.15), which keep the quantum system balanced
and the wave function (2.9) unchanged. The quantum pressure
(2.14) stays unchanged at any η value.

Let us prove the following theorem about the Wigner func-
tion (1.22), which will be used to analyze the properties of

the Wigner functions (1.22) and (1.27) on solutions (2.8) and
(2.9) with potentials (2.12) and (2.17).

Theorem 3. If the vector field of probability flow 〈�v〉 is the
potential and allows the Helmholtz decomposition (1.12) to
be made,

〈�v〉 = h̄

2m
∇r
, (2.18)

then the function f2(�r, �p, t ) can be represented as

f2(�r, �p, t ) = 1

(2π h̄)3

∫
R3

�(�r+, t )�̄(�r−, t )e−i �p·�s
h̄ d3s, (2.19)

where �r± = �r ± �s/2.
The proof of Theorem 3 is given in Appendix A.
The form of function (2.19) totally coincides with the

known Wigner function (1.22) at the coherent state. It should
be noted that the Wigner function was initially obtained by a
phenomenological method. Now we have managed to derive
it as a result of the Helmholtz decomposition (2.18) from
Theorem 3.

Knowing the expressions for wave functions (2.8) and (2.9)
allows us to find the Wigner functions. The classical Wigner
function (1.22) corresponds to wave function � (E). This clas-
sical Wigner function was obtained in [25] in the form

W (E)(ρ, z, �p) = ρ2

2π4h̄3σ 2
r

e
− ρ2+z2

2σ2
r

− 2σ2
r

h̄2 p2
z

∫ 2π

0
dφ′

s

×
∫ +∞

0
e
−ρ2 ρ′2

s
2σ2

r
+iϑ (ρ,pρ ,pφ,ρ ′

s,φ
′
s )
ρ ′

sdρ ′
s,

(2.20)

where

ϑ (ρ, pρ, pφ, ρ ′
s, φ

′
s)

= arctan(k1 sin φ′
s) − 2

ρρ ′
s

h̄
(pρ cos φ′

s + pφ sin φ′
s),

k1(ρ ′
s) = 2ρ ′

s

1 − ρ ′2
s

.

The integral in expression (2.20) cannot be taken explicitly,
since it reduces to an elliptic integral. Note that function (2.20)
satisfies the Moyal equation (1.23).

For wave function � (EM), two Wigner functions can be
found: classical function W (EM) (1.22) and function fw with
gauge invariance (1.27). Function W (EM) can be found explic-
itly (see Appendix C):

W (EM)(�r, �p) = 1

(π h̄)3 exp

(
− r2

2σ 2
r

− 2σ 2
r

h̄2 p2

)
. (2.21)

Note that function W (EM) does not satisfy the Moyal equa-
tion (1.23), since it was obtained for the Schrödinger equation
(2.11). In Sec. III, we construct an analog of the Moyal equa-
tion (1.23) for systems with electromagnetic interaction.

To find the function fw, we need the following lemma.
Lemma 1. Let us assume the vector potential q �A1(�r) =

− h̄
r sin θ �eφ (2.12); then the expression for the Wigner function

022224-6



WIGNER FUNCTION PROPERTIES FOR … PHYSICAL REVIEW A 110, 022224 (2024)

fw (1.27) of the system (2.9) can be represented as

fw(�r, �P) = 1

(2π h̄)3

e
− r2

2σ 2
r

(2π )3/2σ 3
r

∫
R3

e
− s2

8σ2
r

− i
h̄ �s· �P

ei(φ+−φ− )d3s,

(2.22)

where φ± = arctan y±ys/2
x±xs/2 , �s = {xs, ys, zs}.

The proof of Lemma 1 is given in Appendix A.
Using the assertion of the lemma, we can prove the follow-

ing theorem.
Theorem 4. The Wigner function fw for the quantum

system (2.11) and (2.12) with electromagnetic interaction co-
incides with the Wigner function W (E) (2.20) for the quantum
system (2.10) and (2.12), only with the electric interaction,
i.e.,

fw(�r, �P) = W (E)(ρ, z, �P). (2.23)

The proof of Theorem 4 is given in Appendix A.
Remark. From a physical point of view, statement (2.23)

of Theorem 4 shows the “equivalence” of two quantum sys-
tems (2.8) and (2.9) having the same probability quasidensity
function (2.20). This result is expected, since both systems are
obtained from the same initial distributions (2.6) and (2.7) in
the framework of the Wigner-Vlasov formalism. The differ-
ence between distributions fw and W (E) is the replacement of
canonical momentum �p with kinetic momentum �P.

From the mathematical point of view the wave functions
(2.8) and (2.9) and the associated Schrödinger equations
(2.10) and (2.11) are interrelated with the gauge invariance.
The following is actually true,

� (EM)(�r, t ) = � (E)(�r, t ) exp (−iφ), (2.24)

where

−∇rφ = − 1

r sin θ
�eφ = q

h̄
�A1(�r),

∂φ

∂t
= 0. (2.25)

Therefore, as for the “two quantum systems” (or math-
ematical models) mentioned above, we can say that the
first “electromagnetic quantum system” with potentials
U1/q, �A1(�r) is invariant with respect to the second “system
with only electric field” U1 − ∂φ

∂t = U1. Here we should men-
tion again that from the physical point of view we consider
only one quantum system whose wave functions satisfy the
gauge transformation (2.24). Since function fw possesses the
gauge invariance it has the same form (2.22) and (2.23) for
both representations (2.8) and (2.9).

Corollary 1. The Wigner function for a quantum system
with electromagnetic interaction fw (1.27) has regions of
negative values for the wave function with the Gaussian dis-
tribution (2.9).

As is known, the Wigner function (1.22) is a quasidensity
of probabilities of a quantum system, since it has regions
of negative values [20,21]. According to the Hudson’s the-
orem [22] and its generalization for 3D systems [23], the
Wigner function (1.22) is positive only for a wave function
with the Gaussian distribution. Expression (2.20) for function
fw(�r, �P) = W (E)(ρ, z, �P) was obtained for the wave function
(2.9) in the form of the Gaussian distribution, but function
fw has regions of negative values (see Fig. 3). The regions
of negative values of function W (E) are described in [25].

FIG. 3. Regions of negative values of function fw .

Figure 3 shows the distribution of function fw in plane (ρ, Pφ )
at z = 0, Pρ = Pz = 0.

Corollary 2. Wave function (2.8) is a solution for the
Schrödinger electromagnetic equation,

ih̄
∂�

∂t
= 1

2m
( p̂ − q �A3)

2
� + U1�, q �A3(�r) = h̄

r sin θ
�eφ,

(2.26)

and the Wigner function fw, associated with it, is positive
within the whole phase space and has the following form:

fw(r, P) = 1

(π h̄)3 exp

(
− r2

2σ 2
r

− 2σ 2
r

h̄2 P2

)
. (2.27)

The proof of Corollary 2 is given in Appendix A.
Let us note that the magnetic field of quantum system

(2.26) differs from that of system (2.12) only by its sign.
Corollary 2 is analogous to the Hudson theorem for the

Wigner function fw. Unlike the usual Wigner function W
(1.22), which is only positive for the Gauss distribution, the
function fw (1.27) is positive for the electromagnetic system
(2.26), described by non-Gaussian wave function (2.8). Ac-
cording to Corollary 1 the function fw has negative regions
for the Gaussian wave function.

If function fw can be represented in the form of the Wigner
function Wnew then it is obvious that the question of the posi-
tiveness of function fw reduces to the question of positiveness
of this Wigner function Wnew with the following expression
under the integral sign:

Wnew(�r, �P, t ) = 1

(2π h̄)3

∫
R3

e− i
h̄ �s· �Pρnew(�r+, �r−, t )d3s

= fw(�r, �P, t ), (2.28)
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ρnew(�r+, �r−, t ) = ρ(�r+, �r−, t ) exp

[
−i

q

h̄

∫ �r+

�r−

�A(�r′, t )d�r′
]
,

ρnew(�r+, �r−, t ) = �̄new(�r−, t )�new(�r+, t ), (2.29)

ρ(�r+, �r−, t ) = �̄(�r−, t )�(�r+, t ),

where the integral term in (2.29) is taken along the straight line
connecting the points �r±=�r ± �s/2. According to the Hudson
theorem and its generalization for the 3D case, the quantity
(2.29) must conform to the Gauss distribution. Since the pos-
itive Wigner function (1.22) has the same form as (2.27), the
expression ρnew(�r+, �r−, t ) must also conform to the Gauss
distribution (the Fourier transform of the Gauss function is
the Gauss function itself). Expressions (2.8) and (2.27) reduce
ρnew(�r+, �r−, t ) to the Gauss distribution (Corollary 2). We
should keep in mind that quantum system (2.26) is a particular
case of the � model.

Let us calculate the mean values of momenta 〈 �p〉 and 〈 �P〉
from the Wigner functions fw and W (EM). In [25], 〈 �p〉 was
found from the function W (E):

〈 �p〉(�r) = 1

|� (E)|2
∫
R3

�pW (E)(�r, �p)d3 p = −q �A(�r) = 〈�pc〉(�r).

(2.30)

It follows from result (2.30) and Theorem 4 (2.23) that

〈 �P〉(�r) = 1

|� (EM)|2
∫
R3

�P fw(�r, �P)d3P

= 1

|� (E)|2
∫
R3

�PW (E)(�r, �P)d3P = 〈�pc〉(�r). (2.31)

In [35,36], kinetic momentum �P is represented as �P =
�p − q �A; therefore, 〈 �P〉 = 〈 �p〉−q �A = −q �A; hence 〈 �p〉 = 0. A
similar result 〈 �p〉 = 0 is obtained when averaging over the
function W (EM):

〈 �p〉(�r) = 1

|� (EM)|2
∫
R3

�pW (EM)(�r, �p)d3 p = 0. (2.32)

Therefore, for a system with electromagnetic interaction,
the mean kinetic momentum is determined by 〈 �P〉, and for
a system with only electrical interaction, it is 〈 �p〉, and both
of these values coincide with the exact value of 〈 �pc〉 (2.7).
For the electromagnetic system (2.9), the vortex field (2.7) is
caused by magnetic field 〈 �P〉 = −q �A, and the potential part is
vortex free (〈 �p〉 = 0). The system (2.8) has no magnetic field
�A = �θ , so the vortex field (2.7) is determined by the potential
part ∇rϕ (the phase of the wave function), i.e., 〈 �p〉 = h̄

ρ �eφ .

Note that averaging �P = �p − q �A over the function W (EM)

gives the correct result:

〈 �P〉(�r) = 1

|� (EM)|2
∫
R3

�PW (EM)(�r, �p)d3 p

= 1

|� (EM)|2
∫
R3

�pW (EM)(�r, �p)d3 p − q �A = −q �A.

(2.33)

Let us calculate the energy of state E (2.12). For both
Wigner functions fw and W (EM) we are going to average the
expression E (�r, �P) = P2

2m + U1(�r). Direct calculations give the

following result (see Appendix C):

〈〈E〉〉 =
∫
R3

∫
R3

[
1

2m
( �p − q �A)

2 + U1

]
W (EM)(�r, �p)d3rd3 p

=
∫
R3

∫
R3

(
P2

2m
+ U1

)
fw(�r, �P)d3rd3P = E = 3h̄2

4mσ 2
r

.

(2.34)

It follows from expression (2.34) that energy E averaged
〈〈E〉〉 over both Wigner functions fw and W (EM) has the same
value, which coincides with the energy of quantum system E
(2.12).

It should be noted that the results (2.31)–(2.33) can be
expanded to the general case of functions fw(�r, �P) and
W (�r, �p, t ). The following lemma can be formulated.

Lemma 2. The average kinetic momentum field 〈 �P〉 calcu-
lated by the Wigner functions fw(�r, �P, t ) or W (�r, �p, t ) can be
represented as the Helmholtz decomposition (1.12), (1.14),

〈 �P〉(�r, t ) = 1

|�|2
∫
R3

�P fw(�r, �P, t )d3P

= 1

|�|2
∫
R3

�PW (�r, �p, t )d3 p

= h̄

2
∇r
 − q �A, (2.35)

or

�J (�r, t ) = |�|2〈 �P〉 = − ih̄

2
(�̄∇r� − �∇r�̄ ) − q�̄ �A�,

(2.36)

where �P = �p − q �A.
The proof of Lemma 2 is given in Appendix A.
Let us compare the momentum representations for quan-

tum systems (2.8), (2.9), and (2.17). The following expres-
sions are known to be valid for the Wigner function (1.22):∫

R3
W (�r, �p, t )d3 p = |�(�r, t )|2,∫

R3
W (�r, �p, t )d3r = |�̃( �p, t )|2, (2.37)

where �̃ is the momentum representation of the wave function
(�̃ = F[�] is the Fourier transform of the wave function
�). Would the following expressions (2.37) be valid for the
function fw(�r, �P)?

Corollary 3. For quantum systems (2.9) and (2.15), (2.17)
the function fw(�r, �P) has the following properties:∫

R3
fw(�r, �P, t )d3P = |�(�r, t )|2, (2.38)

for an arbitrary vector potential �A. The momentum probability
densities for �A1 (2.12) and �A2 (2.15) have the following forms,
respectively:

Fw( �P) =
∫
R3

fw(�r, �P)d3r, F 1
w ( �P) = |�̃ (E)|2

= 32σ 5
r

π (2π )3/2h̄5 P2
ρ e−2 σ2

r
h̄2 P2

z

(∫ π/2

0
e− σ 2

r

h̄2 P2
ρ cos2φcos2φdφ

)2

,

(2.39)
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FIG. 4. Momentum distribution for the system with potential �A1.

F 2
w ( �P) = 2σ 2

r e− 2σ 2
r

h̄2 P2

π2h̄3(1 + η2)

⎡
⎣σr

√
2π − 4σ 2

r η

h̄
√

1 + η2
Pρ

×
∫ π/2

0
e

2σ 2
r η2P2

ρ sin2φ

h̄2(1+η2 ) erf

(
− σrη

√
2

h̄
√

1 + η2
Pρ sin φ

)

× sin φdφ

⎤
⎦; (2.40)

that is,

Fw( �P) �= |�̃ (EM)( �P)|2 =
(

σr

√
2π

π h̄

)3

e− 2σ2
r

h̄2 P2 = F ( �P).

(2.41)

The proof of Corollary 3 is given in Appendix A.
Thus the function fw satisfies (2.38) and in the general case

the following is fulfilled:
∫
R3 fwd3r �= |�̃|2. The wave func-

tion � (EM) (2.9) is the same for both quantum systems with
vector potentials �A1 and �A2. The momentum representation
�̃ (EM) (2.41) of the wave function (2.9) is also the same for
both quantum systems. Consequently, the probability density
|�̃ (EM)|2 (2.41) is the same for both systems, and the same
probability density result from the Wigner W (1.22) function
according to (2.37).

The Wigner function (1.22) does not explicitly contain any
dependency upon the vector potential �A, and it is only defined
by the wave function. If the wave function � (EM) is the same,
then function W is also the same for two systems.

Let us note that quantum systems considered in Corollary
3 are not gauge invariant. That is why they correspond to
different functions fw and different momentum distributions
(2.39) and (2.40). On the other hand, a system with potentials
�A1,U1/q is gauge invariant with a system with potentials
�A = �θ,U1/q [see (2.24) and (2.25)], which is confirmed by
the equality (2.39) F 1

w ( �P) = |�̃ (E)|2.
Figure 4 shows the momentum distribution density (2.39)

and |�̃ (EM)|2 on the Pz = 0 plane. On the left of Fig. 4 the

distribution (2.39) is shown of the system with vector potential
�A1, and distribution |�̃ (EM)|2 is on the right. Comparing these
distributions in Fig. 4 we can see their essential difference.

Figure 5 illustrates distributions along the axial axis Pz and
radial axis Pρ . The red curve stands for the radial (ρ) dis-
tribution, and the blue curve corresponds to the longitudinal
(z) distribution. The distribution (2.40) for vector potential �A2

is represented by the solid line, and distribution |�̃ (EM)|2 is
shown with the dashed line. The distribution (2.41) is sym-
metric along Pρ and Pz; therefore, the red and blue dashed
lines totally coincide in Fig. 5. The distribution (2.40) is not
symmetric, so the red and the blue dashed lines differ in Fig. 5.
If we compare the distribution (2.40) and (2.41) in Fig. 5 then
their essential difference will clearly be seen, which conforms
with the inequality (2.41).

Let us note that the distribution |�̃ (EM)|2 corresponds to the
canonical momentum operator p̂ (1.11), and the distributions
(2.39) and (2.40) are constructed by function fw. The follow-
ing question may arise: Which distribution can be physically
reasonable? The Wigner function W (1.22) was phenomeno-
logically obtained but meeting the relationships (2.37). The
function fw (1.27) is derived on the W basis, but it meets
the conditions (2.38), (2.41). Is it possible that the kinetic

FIG. 5. Momentum distribution for the system with potential �A2.
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momentum operator P̂ = p̂ − q �A(�r, t ) possesses eigenfunc-
tions ψ : P̂ψ = �λψ, by which the wave function � (EM) should

be decomposed? As a result, can we obtain ˜̃�
(EM)

( �P, t ) meet-

ing | ˜̃�
(EM)|

2
= ∫

fwd3r? Let us construct function ψ and
obtain

P̂ψ = −ih̄∇rψ − q �A(�r, t )ψ = �λψ,

�λ = −ih̄∇rLnψ − q �A(�r, t ), (2.42)

where �λ does not depend on �r. Expression (2.42) coincides
with the Helmholtz decomposition (1.12) under condition
(1.14). Field q �A(�r, t ) is a vortex, and −ih̄∇rLnψ is a potential
field. Vortex and potential fields cannot compensate each other
and produce field �λ independent of �r. This “compensation” is
possible in special cases for nonsmooth potentials, for exam-
ple, (2.25).

From a comparison of (2.42), (1.12), and (1.14), the solu-
tion follows:

�λ = m〈�v〉 = 〈 �p〉(�r, t ), ψ(�r, t ) = exp [iϕ(�r, t )]. (2.43)

In the special case at �A = �θ , phase (action) h̄ϕ may be
selected as

h̄ϕ(�r, t ) = �r · �p − Et ;

that is, the eigenfunctions (2.43) will correspond to the eigen-
functions ψ = exp(i �p·�r

h̄ ) of canonical momentum operator p̂.

III. MOTION EQUATIONS

In papers [16,29–36], analogs of the Moyal equations for
the Wigner functions (1.22) and (1.27) were obtained taking
into account the electromagnetic field. The resulting equations
for the evolution of the Wigner function have a form that does
not coincide with the form of the second Vlasov equation
(1.3). In order to construct the Vlasov-Moyal approximation
taking the electromagnetic field for 〈�̇v〉 into account it is
necessary that the evolution equation of the Wigner function
coincide with the second Vlasov equation.

Based on expressions (2.30) and (2.33)–(2.35), the use of
the Wigner function (1.22) in the analysis of systems with
electromagnetic interaction makes sense. Also, the expression
for the function (1.22) is much simpler than expression (1.27).

Let us construct an evolution equation for the function
(1.22), reducible to the second Vlasov equation (1.3).

Theorem 5. Wigner function W (�r, �p, t ) of a pure state for
quantum systems with electromagnetic interaction (1.13) sat-
isfies the evolutionary equation

∂

∂t
W + 1

m
( �p − q �̂A) · ∇rW − (∇pW · ∇r )

×
[

1

2m
( �p − q

←

Â)
2

+
↼

Û
]

= 0, (3.1)

or

∂

∂t
W + 1

m
divr[W

←

P̂] + divp

[
−W �∇r

(
1

2m

←

P̂
2

+
←

Û
)]

= 0,

(3.2)

where

�̂P def= m �̂V def= �p − q �̂A, (3.3)

←

Û def=
+∞∑
l=0

(−1)l (h̄/2)2l

(2l + 1)!
(

←
∇ p · �∇r )

2l
U ,

�̂A def=
+∞∑
k=0

(−1)k (h̄/2)2k

(2k)!
�A(

←
∇r · �∇p)

2k
, (3.4)

�̂U def=
+∞∑
l=0

(−1)l (h̄/2)2l

(2l + 1)!
U (

←
∇r · �∇p)

2l
,

←

Â def=
+∞∑
k=0

(−1)k (h̄/2)2k

(2k)!
(

←
∇ p · �∇r )

2k �A, (3.5)

and the arrow above the operator shows the direction of its
action.

The proof of Theorem 5 is given in Appendix B.
Remark. Operators (3.4) and (3.5) correspond to the scalar

and vector potentials of the electromagnetic field. In the “clas-
sical limit” for h̄ → 0, series (3.4) and (3.5) contain only one
summand, the first summand, which coincides with the classi-
cal potential (U/q or �A). A similar situation occurs when the
potentials U/q and �A are linearly dependent on coordinate �r
(uniform electromagnetic field). Even for h̄ �= 0 all derivatives
(∇r )2k, k > 0 in series (3.4) and (3.5) are equal to zero.

In the general case, when h̄ �= 0 and the potentials are non-
linear, there are other terms of the series containing factor h̄2k

and formally corresponding to the “quantum” contributions
[25].

The expression on the right (the last or third summand) in
Eq. (3.2) can be considered as the electromagnetic Hamilto-

nian operator
←

Ĥ = 1
2m

←

P̂
2

+
↼

Û , leading to the operator analog
of the Hamilton-Jacobi equation (1.15).

Equation (3.2) has a form similar to the second Vlasov
equation (1.3), but by virtue of Theorem 4, it is convenient
to go from canonical momentum �p to kinetic momentum
�P = �p − q �A.

Theorem 6. Equation (3.1) for the Vlasov function
fV (�r, �P, t ) = m3W (�r, �p, t ) has the form

∂ fV
∂t

+ 1

m
�̂P · ∇r fV + �̂F · ∇P fV = 0, (3.6)

or

∂ fV
∂t

+ divr ( �̂V fV ) + divP

⎡
⎣q fV

⎛
⎝←

Ê +
←

V̂ ×
←

B̂ +
←
d

dt

←

Â
(h̄)

⎞
⎠

⎤
⎦

= 0, (3.7)

where

�̂F = �̂F
(EM)

+ �̂F
(h̄)

,

�̂F
(EM) def= q

(
�̂E + 1

m
�̂P × �̂B

)
, (3.8)

�̂F (h̄) def= q
�d

dt
�̂A(h̄),

022224-10



WIGNER FUNCTION PROPERTIES FOR … PHYSICAL REVIEW A 110, 022224 (2024)

�̂A
(h̄) def=

+∞∑
k=1

(−1)k (h̄/2)2k

(2k)!
�A(

←
∇r · �∇P )

2k
,

�d
dt

def= ∂

∂t
+ �̂V · �∇r,

�̂B def= curlr
�̂A, (3.9)

�̂E def= − ∂

∂t
�̂A − 1

q
∇r

�̂U ,

with a substitution of ∇p for ∇P being made in operator Â
(3.4).

The proof of Theorem 6 is given in Appendix B.
By comparing the second Vlasov equation (1.3) and

Eq. (3.7), it is possible to extend the Vlasov-Moyal approx-
imation (1.24) for the electromagnetic system.

Definition. We will call the approximation of the average
acceleration flow field in the phase space of the form

fV 〈 �̇P〉 = q fV

⎛
⎝←

Ê +
←

V̂ ×
←

B̂ +
←
d

dt

←

Â
(h̄)

⎞
⎠ (3.10)

the Vlasov-Moyal approximation for a quantum system with
an electromagnetic field.

The contributions of q fV
←

Ê and q fV
←

V̂ ×
←

B̂ are an infinite
series (3.9), and (3.4) and (3.5). The first term in the series

q fV
←

Ê is the classical Coulomb force, and, in q fV
←

V̂ ×
←

B̂, it
is the classical Lorentz force. The remaining terms of the
series have coefficients h̄2k and can be interpreted as quantum
corrections to the Coulomb and Lorentz forces. The third term

q fV
←
d
dt

←

Â
(h̄)

is associated with the presence of a magnetic field
and is of exclusively quantum nature, since it contains only
coefficients h̄2k at k ∈ N.

In the absence of a magnetic field ( �A = �θ ), approximation
(3.10) transforms into approximation (1.24). Indeed, taking
(3.4) and (3.9) into account, we obtain

fV 〈 �̇P〉 = q fV
←

Ê = − fV ∇r

←

Û

= −
+∞∑
l=0

(−1)l (h̄/2)2l

(2l + 1)!
fV (

←
∇P · �∇r )

2l
∇rU . (3.11)

Theorem 7. Averaging the Vlasov-Moyal approximation
(3.10) over momentum space �P gives an external force in the
hydrodynamic equation of motion (1.11) of the form

〈〈 �̇P〉〉 = q

(
−∂ �A

∂t
− 1

q
∇rU

)
+ q

m
〈 �P〉 × �B, (3.12)

∫
R3

fV
←

P̂d3P = f1〈 �P〉. (3.13)

The proof of Theorem 7 is given in Appendix B.
Remark. From expression (3.13) it follows that the averag-

ing of Eq. (3.7) over the momentum transforms it into the first
Vlasov equation (1.2):

∂ f1

∂t
+ 1

m
divr ( f1〈 �P〉) = 0. (3.14)

Quantum corrections [terms in series (3.4) and (3.5)] with
coefficients h̄2k when averaging over momentum P com-

pletely disappeared from expression (3.12), transforming it
into the classical expression for the external electromagnetic
force.

Note that Eq. (3.7) itself is similar to the second Vlasov
equation (1.3), but not equivalent to it. The difference between

the equations is contained in the second term, divr ( fV
←

P̂ ) �=
divr ( f2 �P). Only the first term in the expression

divr ( fV
←

P̂ ) = divr ( fV �P) − qdivr ( fV
←

Â
(h̄)

) (3.15)

coincides with the second term in the Vlasov equation (1.3).

The difference is made by quantum corrections, fV
←

Â
(h̄)

. How-
ever, approximation (3.10) can be used to cut the chain of
Vlasov equations off on the second equation. In this case, the
second Vlasov equation (1.3) for the function f2(�r, �P, t ) takes
the form

∂ f2

∂t
+ 1

m
divr ( f2 �P ) + divP[ f2〈 �̇P〉] = 0, (3.16)

Equation (3.16), integrated over momentum space �P , like
Eq. (3.7), will transform into the first Vlasov equation (3.14).

Let us compare hydrodynamic equation (1.11) with elec-
tromagnetic equation (1.16) and the averaged approximation
(3.12). Thus, we obtain the relation

1

m

∂Q

∂xk
= 1

f1

∂Pkλ

∂xλ
,

which completely coincides with the previously obtained ex-
pression (1.26) in the absence of a magnetic field.

Therefore, the presence of a magnetic field does not affect
the quantum pressure. Indeed, exact solutions (2.8) and (2.9)
have the same quantum potential (2.14), although one system
has a magnetic field and the other does not.

Despite the fact that the external force (3.12) in equation
of motion (1.11) is classical, the equation itself describes the
dynamics of a quantum system, since it contains quantum
pressure (1.15) and (1.26). Quantum pressure ∇rQ arises as
a counteraction to external force −∇rU that holds the particle
in potential U . In a sense, a quantum system is a macroscopic
object (in phase space), for which a hydrodynamic description
is applicable. The absence of external potential U will lead to
the disappearance of quantum pressure as well as to dispersion
of the wave packet. This analogy is similar to the behavior of
a gas that is released from a vessel.

Note that approximation (3.10) is not the only one pos-

sible for the average acceleration flow 〈 �̇P〉. The problem is
that evolution equation (3.7) contains information only on

divP[ fV 〈 �̇P〉] and, according to the Helmholtz theorem, to

correctly restore the field 〈 �̇P〉, the information about vortex
component curlP is needed, which is missing in Eq. (3.7).
From a physical point of view, uncertainty arises in the con-
struction of analogs of the “trajectories” of a quantum system
according to approximation (3.10).

On the one hand, such uncertainty in trajectories can be
attributed to the Heisenberg uncertainty principle. Indeed,
during the classical transition h̄ → 0, the terms with coeffi-
cients h̄2k in the scalar Û and vector Â potential operators
(3.4) and (3.5) will disappear. Consequently, approximation
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(3.10) transforms into

lim
h̄→0

〈 �̇P〉 = q

(
−∂ �A

∂t
− 1

q
∇rU

)
+ q

m
�P × �B. (3.17)

Expression (3.17) does not contain quantum corrections,
and quantum potential Q → 0 at h̄ → 0, that is, equations of
motion (1.11) and (1.16), will determine the classical trajecto-
ries of motion without quantum pressure. Note that expression
(3.17) was phenomenologically introduced by Vlasov when
the chain on the second equation was cut off for the solving of
the plasma physics problems.

On the other hand, as shown in [25], the transition from
quantum to classical systems is not necessarily associated
with the limit h̄ → 0. When directly substituting the Wigner
function into the Vlasov-Moyal approximation, Planck’s con-
stant h̄ is not present explicitly. As a result, the uncertainty in
the trajectory is associated with the spatial scale σr .

IV. CONCLUSION

An important difference between function fw and the
Wigner function W is that it has negative values for wave
function �G ∼ exp(−r2/2σ 2

r ). Note that, according to Hud-
son’s theorem [22] and its generalization to the 3D case [23],
the Wigner function W is positive only for �G. Thus, function
fw does not satisfy this condition.

It is shown that function fw is positive (2.27) in the entire
phase region for an electromagnetic quantum system (2.26)
described by a non-Gaussian wave function (2.8). In this case,
the opposite sign of vector potential �A3 (2.22) and scalar
potential 
 ∼ φ is essential. In fact, Corollary 2 is an analog
of Hudson’s theorem and its extension to the 3D case for
function fw.

Wave function �G is a solution to the Schrödinger equation
for a harmonic oscillator with potential U0 ∼ x2. Substituting
potential U0 into the right-hand side of Eq. (1.23), we obtain
zero. As a result, the Moyal equation becomes the classical
Liouville equation with positive solution WG. In the example
considered in this paper, potential U1 (2.12) has the form of a
quadratic funnel with a pole at the origin of the coordinates.
Substitution of potential (2.12) in series (3.4) and (3.5) leads
to the presence of an infinite number of nonzero summands.
Thus, Eq. (3.1) differs from the Liouville equation. Despite
this fact, solution WG of Eq. (3.1) is positive. This behavior
is associated with the presence of a magnetic field. In the
absence of a magnetic field, the wave function for the potential

(2.12) differs from the Gaussian distribution (2.8) and the
Wigner function has negative values.

An analysis of the properties of probability quasidensity
functions W and fw on the model example (2.8) and (2.9)
shows the correctness of calculating the mean values over the
phase space (Lemma 2) (2.30)–(2.36) for an electromagnetic
system. The expression for function W (1.22) is much simpler
than for function fw (1.27). A similar statement is also true for
the evolutionary equations satisfied by functions W and fw.

An important difference between functions W and fw is the
different type of momentum distribution (Corollary 3) (2.39)–
(2.41).

The function fV (�r, �P, t ) = m3W (�r, �p, t ) for electromag-
netic systems satisfies Eq. (3.7). A significant difference from
the known forms of Eq. (3.7) is its similarity with the sec-
ond Vlasov equation (1.3). This fact allows us to expand
the Vlasov-Moyal approximation (1.24) to systems with elec-
tromagnetic interaction in the form (3.10). The first term
in approximation (3.10) has the form (3.17) and coincides
with the well-known Vlasov approximation (1.20) and (1.21),
used in plasma physics, astrophysics, and solid state physics.
This term does not contain quantum corrections, since it has
coefficient h̄0. The following terms in approximation (3.10)
according to (3.4) and (3.5) contain coefficients h̄2k and give

quantum corrections to the external force 〈 �̇P〉 in the second
Vlasov equation (3.16). Using expression (3.10) one can find

the average sources of dissipations 〈〈Q2〉〉 = 〈〈divP〈 �̇P〉〉〉 for
evolution equation (1.9) of the Boltzmann H2 function. An
interesting fact is the disappearance of quantum contributions

when averaging 〈〈 �̇P〉〉 over momentum space �P. Here the

external force 〈〈 �̇P〉〉 contains only classical terms (3.12). In
this case, in the equation of motion (1.11), the quantum infor-
mation remains only in the form of quantum pressure ∇rQ.
As it turned out from the obtained approximation (3.10), the
quantum pressure itself is not explicitly related to the presence
of a magnetic field. The physical meaning of quantum term

q fV
←
d
dt

←

Â
(h̄)

associated with the magnetic field remains an open
question.
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APPENDIX A

Proof of Theorem 1. To prove the theorem, one can use the method described in [4,7] or make a direct substitution. Without
loss of generality, we use the second method. For the electromagnetic case (2.9), (2.11), we obtain

U = E + h̄2

2m

�r |�|
|�| − q2

2m

∣∣ �A∣∣2 − ih̄
q

m|�| �A · ∇r |�|, (A1)

U1 = E − Q − h̄2

2mρ2
, (A2)
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where it is taken into account that Q = − h̄2

2m
�r |�|
|�| , �A1 = − h̄

qρ �eφ , divr �A1 = 0, and ϕ = −E
h̄ t . The expression for the quantum

potential has the form

�r |�| = N

2σ 2
r

e
− ρ2

4σ2
r

− z2

4σ2
r

(
ρ2

2σ 2
r

− 2

)
+ N

2σ 2
r

e
− ρ2

4σ2
r

− z2

4σ2
r

(
z2

2σ 2
r

− 1

)
,

Q = − h̄2

4mσ 2
r

(
ρ2

2σ 2
r

− 3 + z2

2σ 2
r

)
, (A3)

where N−1 = (2π )3/4σ 3/2
r . For the case with electrical interaction only, the proof is given in [25]. Theorem 1 is proved.

Proof of Theorem 2. Using expression (A1), we obtain

U2 = E − Q − h̄2η2ρ2

8mσ 4
r

+ ih̄2ηρ

2σ 2
r m

�eφ ·
(

− ρ

2σ 2
r

�eρ − z

2σ 2
r

�ez

)
. (A4)

Since the form of the wave function has not changed, the quantum potential (A3) has not changed either. Substituting (A3)
into (A4), we derive (2.17). Theorem 2 is proved.

Proof of Theorem 3. Using the Helmholtz decomposition for the vector field 〈 �p〉 = m〈�v〉, we get

〈 �p〉 = m〈�v〉 = −αm∇r
 = − ih̄

2
∇rLn

(
�

�̄

)
= − ih̄

2

(∇r�

�
− ∇r�̄

�̄

)
,

|�|2〈 �p〉 = − ih̄

2
(�̄∇r� − �∇r�̄ ) =

∫
R3

f2(�r, �p, t ) �pd3 p. (A5)

Let us transform expression (A5), bringing the left side of (A5) to an integral form. Let us make a change of variables
�r± = �r ± �s/2 and note that

∇s[�̄(�r−, t )�(�r+, t )] = 1
2 [�̄(�r−, t )∇r+�(�r+, t ) − �(�r+, t )∇r−�̄(�r−, t )]. (A6)

Expression (A6) will transform into expression (A5) at s = 0; therefore,

|�|2〈 �p〉 = −ih̄
∫
R3

δ(�s)∇s[�(�r+, t )�̄(�r−, t )]d3s

= −ih̄

(2π h̄)3

∫
R3

e−i �p·�s
h̄ d3 p

∫
R3

∇s[�(�r+, t )�̄(�r−, t )]d3s

= −ih̄

(2π h̄)3

∫
R3

d3 p

{
e−i �p·�s

h̄ �(�r+, t )�̄(�r−, t )
∣∣∣
±∞

−
∫
R3

�(�r+, t )�̄(�r−, t )∇se
−i �p·�s

h̄ d3s

}
,

|�|2〈 �p〉 = 1

(2π h̄)3

∫
R3

�p
[∫

R3
�(�r+, t )�̄(�r−, t )e−i �p·�s

h̄ d3s

]
d3 p. (A7)

Comparing expressions (A5) and (A7), we get (2.19). Theorem 3 is proved.
Proof of Lemma 1. Substituting expression (2.9) into function (1.27), we obtain

(2π h̄)3(2π )3/2σ 3
r fw(�r, �P) =

∫
R3

e
− 1

4σ2
r

[(�r+ �s
2 )

2+(�r− �s
2 )2

]
e− i

h̄ �s· �P′
d3s = e

− r2

2σ2
r

∫
R3

e
− s2

8σ2
r

− i
h̄ �s· �P′

d3s, (A8)

where �P′ = �P + q
2

∫ 1
−1

�A(�r + τ �s
2 )dτ . Let us calculate the integral �s

2 q
∫ 1
−1

�A(�r + τ �s
2 )dτ with the field (2.12)

�s
2

q
∫ 1

−1

�A
(

�r + τ
�s
2

)
dτ = q

∫ �r+

�r−

�A(�r′)d�r′ = −h̄
∫ �r+

�r−

1

ρ ′ �eφ′d�r′ = −h̄
∫ φ+

φ−
dφ′ = −h̄(φ+ − φ−), (A9)

where d�r′ = {dρ ′, ρ ′dφ′, dz′}, �r± = �r ± �s
2 , and tan φ± = y±ys/2

x±xs/2 . When calculating the integral (A9), the potential of field �A
outside pole ρ = 0 is taken into account. From (A9), it follows that

�s · �P′ = �s · �P − h̄(φ+ − φ−). (A10)

Lemma 1 is proved.
Proof of Theorem 4. Let us write the integrand (1.22) of the Wigner function W (E)(�r, �p) for the wave function (2.8); we obtain

[25]

�̄ (E)(�r−, t )� (E)(�r+, t ) = ei(φ+−φ− )

(2π )3/2σ 3
r

e
− 1

2σ2
r

(r2+ s2

4 )
. (A11)
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In accordance with φ± = arctan y±ys/2
x±xs/2 , azimuth angles φ± admit the representation:

sin φ± = 2y ± ys√
(2x ± xs)2 + (2y ± ys)2

= sin φ ± ρ ′
s sin φs√

1 + ρ ′2
s ± 2ρ ′

s cos (φ − φs)
,

cos φ± = 2x ± xs√
(2x ± xs)2 + (2y ± ys)2

= cos φ ± ρ ′
s cos φs√

1 + ρ ′2
s ± 2ρ ′

s cos (φ − φs)
, (A12)

where ρ ′
s = ρs

2ρ
. Substituting (A11) into integral (1.22) gives expression (2.23) (with the change �p �→ �P) for the Wigner function

fw(�r, �P). Theorem 4 is proved.
Proof of Corollary 2. Let us calculate expression (1.27) for function fw; we obtain

fw(�r, �P, t ) = e
− r2

2σ2
r

(2π h̄)3(2π )3/2σ 3
r

∫
R3

e
− s2

8σ2
r

− i
h̄ �s· �P

d3s = 1

(π h̄)3 e
− r2

2σ2
r

− 2σ2
r

h̄2 P2

, (A13)

where expressions (2.8), (2.26), (A9), (A11), and (B1) are taken into consideration. Let us check that the wave function (2.8)
meets the Schrödinger equation (2.26). Here we use expression (A1) for potential U1 in which the sign of the vector potential
(2.26) is not significant. The quantum potential results from expression (A3).

Corollary 2 is proved.
Proof of Lemma 2. Taking expression (A5) and the representation∫

R3
e− i

h̄ �s· �P �Pd3P = ih̄∇s

∫
R3

e− i
h̄ �s· �Pd3P = ih̄(2π h̄)3∇sδ(�s)

into account we come to

|�|2〈 �P〉 = ih̄
∫
R3

exp

[
− i

h̄
q
∫ �r+

�r−

�A(
�r′)d�r′

]
ρ(�r+, �r−, t )∇sδ(�s)d3s

= −ih̄
∫
R3

δ(�s)∇s

(
exp

[
− i

h̄
q
∫ �r+

�r−

�A(�r′)d�r′
]
ρ(�r+, �r−, t )

)
d3s, (A14)

where integral
∫ �r+

�r−
�A(�r′)d�r′ is calculated along the straight line, connecting points �r±. Let us transform the integrand (A14):

∇s

(
exp

[
− i

h̄
q
∫ �r+

�r−

�A(�r′, t )d�r′
]
ρ(�r+, �r−, t )

)
= ρ(�r+, �r−, t )∇se

− i
h̄ q

∫ �r+
�r−

�A(�r′,t )d�r′ + e− i
h̄ q

∫ �r+
�r−

�A(�r′,t )d�r′∇sρ(�r+, �r−, t )

= − i

2h̄
qρ(�r+, �r−, t )e− i

h̄ q
∫ �r+
�r−

�A(�r′,t )d�r′∇s

∫ �r+

�r−

�A(�r′, t )d�r′

+ 1

2
e− i

h̄ q
∫ �r+
�r−

�A(�r′,t )d�r′
[�̄(�r−, t )∇r+�(�r+, t ) − �(�r+, t )∇r−�̄(�r−, t )]. (A15)

Substituting (A15) into (A14), we get

|�|2〈 �P〉 = − h̄

2h̄
q[ �A(�r, t ) + �A(�r, t )]ρ(�r, �r, t )e− i

h̄ q
∫ �r
�r �A(�r′,t )d�r′ − ih̄

2
e− i

h̄ q
∫ �r
�r �A(�r′,t )d�r′

[�̄(�r, t )∇r�(�r, t ) − �(�r, t )∇r�̄(�r, t )],

|�|2〈 �P〉 = i

h̄
q �A|�|2 − ih̄

2
[�̄∇r� − �∇r�̄], (A16)

or

〈 �P〉 = − ih̄

2
∇rLn

�

�̄
− q �A. (A17)

Similarly for the function W , we obtain

|�|2〈 �p〉 = 1

(2π h̄)3

∫
R3

e− i
h̄ �s· �p �pd3 p

∫
R3

ρ(�r+, �r−, t )d3s = − ih̄

2
[�̄(�r, t )∇r�(�r, t ) − �(�r, t )∇r�̄(�r, t )],

〈 �p〉 = − ih̄

2

[∇r�

�
− ∇r�̄

�̄

]
, 〈 �P〉 = 〈 �p〉 − q �A. (A18)

Lemma 2 is proved.
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Proof of Corollary 3. The validity of condition (2.38) directly results from integration:∫
R3

fw(�r, �P, t )d3P = 1

(2π h̄)3

∫
R3

�̄(�r−, t )�(�r+, t )e− iq
2h̄

∫ 1
−1 �s· �A(�r+�s τ

2 ,t )dτ d3s
∫
R3

e− i
h̄

�P·�sd3P

=
∫
R3

δ(s)�̄(�r−, t )�(�r+, t )e− iq
2h̄

∫ 1
−1 �s· �A(�r+�s τ

2 ,t )dτ d3s = |�(�r, t )|2. (A19)

For the vector potential �A1 expression (A9) is valid; therefore,∫
R3

fw(�r, �P)d3r = 1

(2π h̄)3

∫
R3

� (EM)(�r+, t )eiφ+e−i
�P·�r+

h̄ d3r+
∫
R3

�̄ (EM)(�r−, t )e−iφ−ei
�P·�r−

h̄ d3r−

= 1

(2π h̄)3

∫
R3

� (E)(�r+, t )e−i
�P·�r+

h̄ d3r+
∫
R3

�̄ (E)(�r−, t )ei
�P·�r−

h̄ d3r− = �̃ (E)( �P, t ) ˜̄�
(E)

( �P, t ) = |�̃ (E)|2, (A20)

where the gauge relation (2.24) is taken into account. Let us find �̃ (E),

(2π h̄)3/2�̃ (E)( �p, t ) =
∫
R3

� (E)(�r, t )e−i �p·�r
h̄ d3r =

∫
R3

� (EM)(�r, t )eiφe−i �p·�r
h̄ d3r = e−i E

h̄ t I ( �p)

(2π )3/4σ
3/2
r

, (A21)

with

I ( �p) =
∫
R3

e
− r2

4σ2
r eiφe−i �p·�r

h̄ d3r = 2σr

√
πe− σ2

r
h̄2 p2

z eiφp

∫ π

−π

e−σ 2
r

p2
ρ

h̄2 cos2φ′
dφ′

∫ +∞

0
e−[ ρ

2σr
+iσr

pρ

h̄ cos φ′]2

ρ cos φ′dρ, (A22)

where it is taken into account that∫ 2π

0
e−i

ρpρ

h̄ cos(φ−φp) sin φdφ = sin φp

∫ 2π

0
e−i

ρpρ

h̄ cos φ′
cos φ′dφ′,∫ 2π

0
e−i

ρpρ

h̄ cos(φ−φp) cos φdφ = cos φp

∫ 2π

0
e−i

ρpρ

h̄ cos φ′
cos φ′dφ′.

We calculate the integral in expression (A22), dividing it into two intervals (−π, 0) and (0, π ):

I1 =
∫ π

0
e−σ 2

r
p2
ρ

h̄2 cos2φ′
dφ′

∫ +∞

0
e−[ ρ

2σr
+iσr

pρ

h̄ cos φ′]2

ρ cos φ′dρ =
∫ π /2

0
e−σ 2

r
p2
ρ

h̄2 cos2φ′
dφ′

∫ +∞

0
e−[ ρ

2σr
+iσr

pρ

h̄ cos φ′]2

ρ cos φ′dρ

+
∫ π

π /2
e−σ 2

r
p2
ρ

h̄2 cos2φ′
dφ′

∫ −∞

0
e−[ ρ′

2σr
−iσr

pρ

h̄ cos φ′]
2

ρ ′ cos φ′dρ ′,

where ρ = −ρ ′.

I1 =
∫ π /2

0
e−σ 2

r
p2
ρ

h̄2 cos2φ′
dφ′

∫ +∞

0
e−[ ρ

2σr
+iσr

pρ

h̄ cos φ′]2

ρ cos φ′dρ +
∫ 0

π /2
e−σ 2

r
p2
ρ

h̄2 cos2φ′′
dφ′

∫ −∞

0
e−[ ρ′

2σr
+iσr

pρ

h̄ cos φ′′]
2

ρ ′ cos φ′′dρ ′

=
∫ π /2

0
e−σ 2

r
p2
ρ

h̄2 cos2φ′
dφ′

∫ +∞

0
e−[ ρ

2σr
+iσr

pρ

h̄ cos φ′]2

ρ cos φ′dρ +
∫ π /2

0
e−σ 2

r
p2
ρ

h̄2 cos2φ′′
dφ′′

∫ 0

−∞
e−[ ρ′

2σr
+iσr

pρ

h̄ cos φ′′]
2

ρ ′ cos φ′′dρ ′,

I1 =
∫ π /2

0
e−σ 2

r
p2
ρ

h̄2 cos2φ′
dφ′

∫ +∞

−∞
e−[ ρ

2σr
+iσr

pρ

h̄ cos φ′]2

ρ cos φ′dρ, (A23)

with φ′′ = π−φ′. Similarly for integral I2, we obtain

I2 =
∫ 0

−π

e−σ 2
r

p2
ρ

h̄2 cos2φ′
dφ′

∫ +∞

0
e−[ ρ

2σr
+iσr

pρ

h̄ cos φ′]2

ρ cos φ′dρ =
∫ π

0
e−σ 2

r
p2
ρ

h̄2 cos2φ′′
dφ′′

∫ +∞

0
e−[ ρ

2σr
+iσr

pρ

h̄ cos φ′′]2

ρ cos φ′′dρ,

(A24)

where φ′′ = −φ′. Substituting (A23) and (A24) into (A22), we arrive at the expression

I = −ieiφp
16πσ 4

r

h̄
pρe− σ2

r
h̄2 p2

z

∫ π /2

0
e−σ 2

r
p2
ρ

h̄2 cos2φ′
cos2φ′dφ′, (A25)

where the property of the mean value of the Gaussian distribution is taken into account:∫ +∞

−∞
e−[ ρ

2σr
+iσr

pρ

h̄ cos φ′]2

ρdρ = −i4
√

πσ 3
r

pρ

h̄
cos φ′.
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From expressions (A25) and (A21), we get

�̃ (E)(p, t ) = −ieiφp
16πσ 4

r

h̄

1

(2π h̄)3/2

e−i E
h̄ t

(2π )3/4σ
3/2
r

pρe− σ2
r

h̄2 p2
z

∫ π /2

0
e−σ 2

r
p2
ρ

h̄2 cos2φ′
cos2φ′dφ′,

∫
R3

fwd3P = |�̃ (E)|2 = 32σ 5
r

π (2π )3/2h̄5 P2
ρ e−2 σ2

r
h̄2 P2

z

(∫ π /2

0
e−σ 2

r
P2
ρ

h̄2 cos2φ′
cos2φ′dφ′

)2

. (A26)

Note that momentum representation �̃ (EM) has the form of the Gaussian distribution, that is,

|�̃ (EM)|2 =
(

σr

√
2π

π h̄

)3

e− 2σ2
r

h̄2 P2

, (A27)

and does not coincide with distribution (A26). For vector potential �A2, the following expression is valid:

q

2

∫ 1

−1
�s · �A2

(
�r + τ

�s
2

)
dτ = q�s · �A2(�r). (A28)

Using expression (A28), we find function fw(�r, �P) corresponding to wave function � (EM):

(2π h̄)3 fw(�r, �P) = e
− r2

2σ2
r

− 2σ2
r

h̄2 [ �P+q �A2(�r)]
2

(2π )3/2σ 3
r

∫
R3

e
− 1

2σ2
r

{ �s
2 +i2 σ2

r
h̄ [ �P+q �A2(�r)]}

2

d3s,

fw(�r, �P) = 1

(π h̄)3 e
− r2

2σ2
r

− 2σ2
r

h̄2 [ �P+q �A2(�r)]
2

. (A29)

For the momentum representation, we obtain

∫
R3

fw(�r, �P)d3r = σr

√
2π

(π h̄)3 e− 2σ2
r

h̄2 P2
∫ 2π

0
dφ′

∫ +∞

0
e
−( 1

2σ2
r

+ 2q2σ2
r c2

0
h̄2 )ρ ′2− 4qc0σ2

r
h̄2 Pρ sin (φ′−φP )ρ ′

ρ ′dρ ′

= σr

√
2π

(π h̄)3c2
1

e− 2σ2
r

h̄2 P2
∫ 2π

0
e

c2
2

2σ2
r c2

1
P2

ρ sin2φ′′
dφ′′

∫ +∞

0
e
− 1

2σ2
r

(ρ ′′+ c2
c1

Pρ sin φ′′ )2

ρ ′′dρ ′′, (A30)

where

с0 = − h̄η

2qσ 2
r

, c2
1 = 1 + 4q2σ 4

r c2
0

h̄2 , c2 = 4qc0σ
4
r

h̄2 , ρ ′′ = c1ρ
′. (A31)

Let us calculate the integral, ∫ +∞

0
e
− 1

2σ2
r

(ρ ′′+λ)2

ρ ′′dρ ′′ = σ 2
r e

− λ2

2σ2
r − λσr

√
π

2
erfc

(
λ

σr

√
2

)
, (A32)

where erfc(x) = 2√
π

∫ +∞
x e−t2

dt . Substituting (A32) into expression (A30), we obtain

∫
R3

fw(�r, �P)d3r = σr

√
2π

(π h̄)3c2
1

e− 2σ2
r

h̄2 P2
∫ 2π

0
e

c2
2P2

ρ sin2φ′′
2σ2

r c2
1 dφ′′

[
σ 2

r e
− c2

2P2
ρ sin2φ′′

2c2
1σ2

r − c2σr

c1

√
π

2
erfc

(
c2Pρ sin φ′′

c1σr

√
2

)
Pρ sin φ′′

]

= σ 3
r (2π )3/2

(π h̄)3c2
1

e− 2σ2
r

h̄2 P2 + 4σ 2
r c2

π2h̄3c3
1

e− 2σ2
r

h̄2 P2

Pρ

∫ π /2

0
e

c2
2P2

ρ sin2φ′′
2σ2

r c2
1 erf

(
c2Pρ sin φ′′

c1σr

√
2

)
sin φ′′dφ′′, (A33)

with the periodicity property of the integrand being taken into account:

∫ 2π

0
e

c2
2

2σ2
r c2

1
P2

ρ sin2φ′′
erfc

(
c2Pρ sin φ′′

c1σr

√
2

)
sin φ′′dφ′′ = −4

∫ π /2

0
e

c2
2

2σ2
r c2

1
P2

ρ sin2φ′′
erf

(
c2Pρ sin φ′′

c1σr

√
2

)
sin φ′′dφ′′.

Let us transform the coefficients (A31) c2
1 = 1 + η2, c2

c1
= − 2σ 2

r η

h̄
√

1+η2
. As a result, expression (A33) will take the form

∫
R3

fwd3r = 2σ 2
r e− 2σ2

r
h̄2 P2

π2h̄3(1 + η2)

[
σr

√
2π − 4σ 2

r η

h̄
√

1 + η2
Pρ

∫ π/2

0
e

2σ2
r η2P2

ρ sin2φ

h̄2 (1+η2 ) erf

(
− σrη

√
2

h̄
√

1 + η2
Pρ sin φ

)
sin φdφ

]
.

Corollary 3 is proved.
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APPENDIX B

Proof of Theorem 5. Let us find the partial time derivative of the Wigner function of the pure state (1.22):

(2π h̄)3 ∂

∂t
W (�r, �p, t ) =

∫
(∞)

e−i �s· �p
h̄ �(�r′′, t )

∂

∂t
�̄(�r′, t )d3s +

∫
(∞)

e−i �s· �p
h̄ �̄(�r′, t )

∂

∂t
�(�r′′, t )d3s. (B1)

It follows from the Schrödinger equation (1.13) that

( p̂ − q �A)
2
� = −h̄2�r� + 2ih̄q(∇r�, �A) + q2| �A|2�,

where the condition divr �A = 0 is taken into account. As a result, the Schrödinger equation takes the form

ih̄
∂

∂t
�(�r′′, t ) =

[
− h̄2

2m
�r′′ + i

h̄q

m
�A(�r′′, t ) · ∇r′′ + q2

2m
| �A(�r′′, t )|2 + U (�r′′, t )

]
�(�r′′, t ),

−ih̄
∂

∂t
�̄(�r′, t ) =

[
− h̄2

2m
�r′ − i

h̄q

m
�A(�r′, t ) · ∇r′ + q2

2m
| �A(�r′, t )|2 + U (�r′, t )

]
�̄(�r′, t ). (B2)

Sbstituting Eq. (B2) into the first and second integrals of expression (B1), we obtain

(2π h̄)3 ∂

∂t
W = I1 + I2 + I3 + I4, (B3)

where

I1 = i
h̄

2m

∫
(∞)

e−i �s· �p
h̄ [�̄(�r′, t )�r′′�(�r′′, t ) − �(�r′′, t )�r′�̄(�r′, t )]d3s, (B4)

I2 = q

m

∫
(∞)

e−i �s· �p
h̄ [�(�r′′, t ) �A(�r′, t ) · ∇r′�̄(�r′, t ) + �̄(�r′, t ) �A(�r′′, t ) · ∇r′′�(�r′′, t )]d3s, (B5)

I3 = i
q2

2mh̄

∫
(∞)

e−i �s· �p
h̄ �̄(�r′, t )�(�r′′, t )[| �A(�r′, t )|2 − | �A(�r′′, t )|2]d3s, (B6)

I4 = i

h̄

∫
(∞)

e−i �s· �p
h̄ �(�r′′, t )[U (�r′, t ) − U (�r′′, t )]�̄(�r′, t )d3s. (B7)

We have calculated integral I4. Let us transform the integrand:

U (�r′, t ) − U (�r′′, t ) = −
+∞∑
l=0

(�s · ∇r )2l+1

22l (2l + 1)!
U (�r, t ). (B8)

Let us perform a transormation:

e−i �s· �p
h̄

(
i
�s
h̄

· �∇r

)2l+1

U (�r, t ) = −( �∇p · �∇r )
2l+1

e−i �s· �p
h̄ U (�r, t ). (B9)

Substituting expressions (B8) and (B9) into the integral for potential energy (B7), we obtain

I4 = (2π h̄)3
+∞∑
l=0

(−1)l (h̄
/

2)
2l

(2l + 1)!
U (�r, t )(

←
∇r · �∇p)

2l+1
W (�r, �p, t ). (B10)

We transform integral I1 as

I1 = i
h̄

m

∫
(∞)

e−i �s· �p
h̄ (∇r · ∇s)�̄(�r′, t )�(�r′′, t )d3s = i

h̄

m
∇r ·

∫
(∞)

e−i �s· �p
h̄ ∇s�̄(�r′, t )�(�r′′, t )d3s, (B11)

where it is taken into account that �r = �r′+�r′′
2 , �s = �r′′ − �r′,

∇r′ = 1
2∇r − ∇s, ∇r′′ = 1

2∇r + ∇s, (B12)

�r′ − �r′′ = −2(∇r · ∇s). (B13)

We transform integral (B11):

e−i �s· �p
h̄ ∇s[�̄(�r′, t )�(�r′′, t )] = ∇s

[
e−i �s· �p

h̄ �̄(�r′, t )�(�r′′, t )
] + i

h̄
�p�̄(�r′, t )�(�r′′, t )e−i �s· �p

h̄ . (B14)
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Taking into account (B14), the integral (B11) takes the form

I1 = − �p
m

· ∇r

∫
(∞)

e−i �s· �p
h̄ �̄(�r′, t )�(�r′′, t )d3s = −(2π h̄)3 �p

m
· ∇rW. (B15)

Let us consider integral I2, using relation (B12):

I2 = q

2m

∫
(∞)

e−i �s· �p
h̄ [ �A(�r′, t ) + �A(�r′′, t )]·∇r�̄(�r′, t )�(�r′′, t )d3s + q

m

∫
(∞)

e−i �s· �p
h̄ [ �A(�r′′, t ) − �A(�r′, t )] · ∇s�̄(�r′, t )�(�r′′, t )d3s.

Let us take into account relations:

e−i �s· �p
h̄ [ �A(�r′, t ) + �A(�r′′, t )] · ∇r�̄(�r′, t )�(�r′′, t ) = ∇r{e−i �s· �p

h̄ [ �A(�r′, t ) + �A(�r′′, t )]�̄(�r′, t )�(�r′′, t )},
and

e−i �s· �p
h̄ [ �A(�r′′, t ) − �A(�r′, t )] · ∇s�̄(�r′, t )�(�r′′, t ) = ∇s · {e−i �s· �p

h̄ [ �A(�r′′, t ) − �A(�r′, t )]�̄(�r′, t )�(�r′′, t )}

+ i

h̄
�p · [ �A(�r′′, t ) − �A(�r′, t )]�̄(�r′, t )�(�r′′, t )e−i �s· �p

h̄ .

As a result,

I2 = q

2m
∇r ·

∫
(∞)

e−i �s· �p
h̄ [ �A(�r′, t ) + �A(�r′′, t )]�̄(�r′, t )�(�r′′, t )d3s

+ q

m

i

h̄
�p ·

∫
(∞)

[ �A(�r′′, t ) − �A(�r′, t )]�̄(�r′, t )�(�r′′, t )e−i �s· �p
h̄ d3s = I21 + I22. (B16)

Let us use the Taylor’s series expansions:

�A(�r′, t ) + �A(�r′′, t ) =
+∞∑
n=0

(−1)n(�s · ∇r )n

2nn!
�A(�r) +

+∞∑
n=0

(�s · ∇r )n

2nn!
�A(�r)

=
+∞∑
n=0

[1 + (−1)n](�s · ∇r )n �A(�r)

2nn!
= 2

+∞∑
k=0

(�s · ∇r )2k �A(�r)

22k (2k)!
, (B17)

�A(�r′′, t ) − �A(�r′, t ) =
+∞∑
n=0

[1 − (−1)n]
(�s · ∇r )n

2nn!
�A(�r) =

+∞∑
k=0

(�s · ∇r )2k+1

22k (2k + 1)!
�A(�r).

Substituting expansions (B17) into integral (B16), we obtain

I21 = (2π h̄)3 q

m
∇r ·

+∞∑
k=0

(−1)k (h̄
/

2)
2k

(2k)!
�A(�r, t )(

←
∇r · �∇p)

2k
W (�r, �p, t ), (B18)

where it is taken into account that

e−i �s· �p
h̄

(
i
�s
h̄

· ∇r

)2k

�A(�r, t ) = e−i �s· �p
h̄ (

←
∇ p · �∇r )

2k �A(�r, t ). (B19)

Similarly, for integral I22 we have

I22 = −(2π h̄)3 q

m
�p ·

+∞∑
k=0

(−1)k (h̄/2)2k

(2k + 1)!
W (�r, �p, t )(

←
∇ p · �∇r )

2k+1 �A(�r, t ), (B20)

which takes into account that

e−i �s· �p
h̄

(
i
�s
h̄

· ∇r

)2k+1

�A(�r) = −e−i �s· �p
h̄ (

←
∇ p · �∇r )

2k+1 �A(�r, t ). (B21)

Substituting (B20) and (B18) into expression (B16), we obtain

m

q

I2

(2π h̄)3 = ∇r ·
+∞∑
k=0

(−1)k (h̄
/

2)
2k

(2k)!
�A(

←
∇r · �∇p)

2k
W − �p ·

+∞∑
k=0

(−1)k (h̄
/

2)
2k

(2k + 1)!
�A(

←
∇r · �∇p)

2k+1
W. (B22)
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Let us find integral I3 using expansions (B17):

m

q2

1

(2π h̄)3 I3 =
+∞∑
l=0

(−1)l (h̄/2)2l

(2l + 1)!

+∞∑
k=0

(−1)k (h̄/2)2k

(2k)!
�A(�r, t )(

←
∇r · �∇p)

2k
[W (�r, �p, t )](

←
∇ p · �∇r )

2l+1 �A(�r, t ), (B23)

As a result,

∂

∂t
W + �p

m
· ∇rW =

+∞∑
l=0

(−1)l (h̄/2)2l

(2l + 1)!
U (

←
∇r · �∇p)

2l+1
W + q

m
∇r

+∞∑
k=0

(−1)k (h̄/2)2k

(2k)!
�A(

←
∇r · �∇p)

2k
W

− q

m
�p

+∞∑
k=0

(−1)k (h̄/2)2k

(2k + 1)!
�A(

←
∇r · �∇p)

2k+1
W

+ q2

m

+∞∑
l=0

(−1)l (h̄/2)2l

(2l + 1)!

+∞∑
k=0

(−1)k (h̄/2)2k

(2k)!
�A(�r, t )(

←
∇r · �∇p)

2k
[W (�r, �p, t )](

←
∇ p · �∇r )

2l+1 �A(�r, t ). (B24)

We transform the obtained equation (B24):

∂

∂t
W + 1

m

{
�p − q

+∞∑
k=0

(−1)k (h̄
/

2)
2k

(2k)!
�A(

←
∇r · �∇p)

2k
}

�∇rW = ( �∇pW · �∇r )
+∞∑
l=0

(−1)l (h̄
/

2)
2l

(2l + 1)!
(

←
∇ p · �∇r )

2l
U

− q

m

{
�p − q

+∞∑
k=0

(−1)k (h̄
/

2)
2k

(2k)!
�A(

←
∇r · �∇p)

2k
}

( �∇pW · �∇r )
+∞∑
l=0

(−1)l (h̄
/

2)
2l

(2l + 1)!
(

←
∇ p · �∇r )

2l �A = 0, (B25)

where operator ∇p acts only on the Wigner function. Let us transform the last term in Eq. (B25):[
pβ − q

+∞∑
l=0

(−1)l (h̄
/

2)
2l

(2l + 1)!
Aβ (

←
∇r · �∇p)

2l
]

∂W

∂ pα

+∞∑
k=0

(−1)k (h̄
/

2)
2k

(2k + 1)!
(

←
∇ p · �∇r )

2k ∂Aβ

∂xα

=
+∞∑
k=0

(−1)k (h̄
/

2)
2k

(2k + 1)!

∂Aβ

∂xα

(
←
∇r · �∇p)

2k ∂W

∂ pα

[
pβ − q

+∞∑
l=0

(−1)l (h̄
/

2)
2l

(2l + 1)!
(

←
∇ p · �∇r )

2l
Aβ

]
. (B26)

We break expression (B26) into two identical terms:

− q

[
pβ − q

+∞∑
l=0

(−1)l (h̄
/

2)
2l

(2l + 1)!
Aβ (

←
∇r · �∇p)

2l
]

∂W

∂ pα

+∞∑
k=0

(−1)k (h̄
/

2)
2k

(2k + 1)!
(

←
∇ p · �∇r )

2k ∂Aβ

∂xα

= 1

2
(∇pW · �∇r )

[
�p − q

+∞∑
l=0

(−1)l (h̄
/

2)
2l

(2l + 1)!
(

←
∇ p · �∇r )

2l �A
]2

. (B27)

Substituting expression (B27) into Eq. (B25), we obtain

∂

∂t
W + 1

m

{
�p − q

+∞∑
k=0

(−1)k (h̄
/

2)
2k

(2k)!
�A(

←
∇r · �∇p)

2k
}

∇rW

= ( �∇pW · ∇r )

⎧⎨
⎩ 1

2m

[
�p − q

+∞∑
l=0

(−1)l (h̄
/

2)
2l

(2l + 1)!
(

←
∇ p · �∇r )

2l �A
]2

+
+∞∑
l=0

(−1)l (h̄
/

2)
2l

(2l + 1)!
(

←
∇ p · �∇r )

2l
U

⎫⎬
⎭ = 0. (B28)

Using the notation (3.4) and (3.5) of operators qÛ and Â, Eq. (B28) takes the form

∂

∂t
W + 1

m
( �p − q �̂A) · ∇rW − (∇pW · ∇r )

[
1

2m
( �p − q

←

Â)
2

+
↼

Û
]

= 0. (B29)

Then we reduce Eq. (B29) to the second Vlasov equation:

∂

∂t
W + 1

m
divr[W ( �p − q

←

Â)]−
{

W divr
1

m
( �p − q

←

Â) + (∇pW · ∇r )

[
1

2m
( �p − q

←

Â)
2

+
↼

Û
]}

= 0. (B30)
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Let us transform the last term in equation (B30) and perform intermediate calculations:

divp

{
W ∇r

[
1

2m
( �p − q

←

Â)
2

+
↼

Û
]}

= ∇pW · ∇r

[
1

2m
( �p − q

←

Â)
2

+
↼

Û
]

+ W divp

{
∇r

[
1

2m
( �p − q

←

Â)
2

+
↼

Û
]}

. (B31)

We keep in mind that

divp

{
∇r

[
1

2m
( �p − q

←

Â)
2

+
↼

Û
]}

= 1

m
divr ( �p − q

←

Â). (B32)

Substituting (B32) into (B31), we derive

divp

{
W ∇r

[
1

2m
( �p − q

←

Â)
2

+
↼

Û
]}

= ∇pW · ∇r

[
1

2m
( �p − q

←

Â)
2

+
↼

Û
]

+ W
1

m
divr ( �p − q

←

Â). (B33)

Taking (B33) into account, Eq. (B30) takes the form

∂

∂t
W + 1

m
divr[( �p − q �̂A)W ] + divp

{
−∇r

[
1

2m
( �p − q �̂A)

2
+ �̂U

]
W

}
= 0. (B34)

Theorem 5 is proved.

Proof of Theorem 6. Let us write Eq. (3.1) with respect to the Vlasov function fV (�r, �P, t ). The derivative of operator
←

Ĥ takes
the form

∂

∂xβ

←

Ĥ = ∂

∂xβ

(
1

2m

←

P̂
2

+
↼

Û
)

= 1

m

←

P̂μ

∂
←

P̂μ

∂xβ

+ ∂
↼

Û
∂xβ

= −q
1

m

←

P̂μ

∂
←

Âμ

∂xβ

+ ∂
↼

Û
∂xβ

. (B35)

Note that, according to the definition (3.4) and (3.5), operator
←

Âμ contains the derivative with respect to variable �p. When

passing from variable �p to variable �P, the form of operator
←

Âμ does not change, since �P = �p − q �A and
←
∇ p =

←
∇P. Equation (B29)

is written with respect to the Wigner function W (�r, �p, t ), so let us rewrite it for the function W (�r, �p, t ) = W (�r, �P + q �A, t ) =
fV (�r, �P, t ), where �P = �p − q �A(�r, t ). We obtain expressions for partial derivatives:

∂

∂t
W = ∂ fV

∂t
− q

∂ fV
∂Pβ

∂Aβ

∂t
, (B36)

∂

∂ pβ

W = ∂ fV
∂Pβ

, (B37)

∂

∂xβ

W = ∂ fV
∂xβ

− q
∂ fV
∂Pα

∂Aα

∂xβ

. (B38)

Substituting expressions (B36)–(B38) and (B35) into Eq. (3.1), we obtain

∂ fV
∂t

+ 1

m
�̂Pβ

∂ fV
∂xβ

− ∂ fV
∂Pβ

⎛
⎜⎝ q

m

∂Aβ

∂xα

←

P̂α − q

m

←

P̂μ

∂
←

Âμ

∂xβ

+ q
∂Aβ

∂t
+ ∂

↼

Û
∂xβ

⎞
⎟⎠ = 0. (B39)

Let us transform the expression in brackets in Eq. (B39). According to (3.5), vector potential �A can be represented as

�A =
←

Â −
←

Â
(h̄)

,
←

Â
(h̄)

def=
+∞∑
k=1

(−1)k (h̄/2)2k

(2k)!
(

←
∇ p · �∇r )

2k �A, (B40)

and, as a result,

∂Aβ

∂xα

←

P̂α −
←

P̂μ

∂
←

Âμ

∂xβ

= −(
←

P̂ ×
←

B̂)β −
←

P̂α

∂
←

Â
(h̄)

β

∂xα

, (B41)

which takes into account that ∂Aβ

∂xα

←

P̂α =
←

P̂α
∂Aβ

∂xα
, since operator

←

P̂α is expressed in terms of operator
←

Âα , in which the differen-
tiation with respect to variable Pμ is performed, and potential Aβ does not depend on Pμ. Substituting expression (B41) into
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Eq. (B39), we obtain

∂ fV
∂t

+ 1

m
�̂Pβ

∂ fV
∂xβ

+ q
∂ fV
∂Pβ

⎡
⎢⎣ 1

m
(

←

P̂ ×
←

B̂)β + ∂
←

Â
(h̄)

β

∂t
+

←

V̂α

∂
←

Â
(h̄)

β

∂xα

− ∂
←

Âβ

∂t
− 1

q

∂
↼

Û
∂xβ

⎤
⎥⎦ = 0. (B42)

Let us transform the terms in Eq. (B42),

�̂Pβ

∂ fV
∂xβ

= ∂

∂xβ

[(
Pβ − q �̂A(h̄)

β

)
fV

]
, (B43)

where it is taken into account that

∂

∂xβ

[Aβ (
←
∇r · �∇p)

2k
fV ] = Aβ (

←
∇r · �∇p)

2k ∂ fV
∂xβ

,

since divr �A = 0. Similarly for the remaining terms, we obtain

∂ fV
∂Pβ

∂
↼

Û
∂xβ

= ∂

∂Pβ

⎛
⎜⎝ fV

∂
↼

Û
∂xβ

⎞
⎟⎠, (B44)

∂

∂Pβ

⎛
⎝ fV

∂
←

Âβ

∂t

⎞
⎠ = ∂ fV

∂Pβ

∂
←

Âβ

∂t
, (B45)

∂

∂Pβ

⎛
⎜⎝ fV

∂
←

Â
(h̄)

β

∂t

⎞
⎟⎠ = ∂ fV

∂Pβ

∂
←

Â
(h̄)

β

∂t
, (B46)

∂ fV
∂Pβ

⎛
⎜⎝←

V̂α

∂
←

Â
(h̄)

β

∂xα

⎞
⎟⎠ = ∂

∂Pβ

⎡
⎢⎣ fV

←

V̂α

∂
←

Â
(h̄)

β

∂xα

⎤
⎥⎦, (B47)

where divr �A = 0 and Pα
∂ fV
∂Pβ

= ∂
∂Pβ

(Pα fV ) − δαβ fV . The last term will take the form

∂ fV
∂Pβ

(
→

P̂ ×
←

B̂)β = ∂

∂Pβ

[ fV (
←

P̂ ×
←

B̂)β], (B48)

where it is taken into account that

∂ fV
∂Pβ

(Pα

→

B̂λ) = ∂

∂Pβ

( fV Pα

←

B̂λ) − fV δαβ

←

B̂λ.

Substituting expressions (B43)–(B48) into Eq. (B42), we derive

∂ fV
∂t

+ 1

m

∂

∂xβ

( �̂Pβ fV ) + q
∂

∂Pβ

⎧⎪⎨
⎪⎩ fV

⎡
⎢⎣ 1

m
(

←

P̂ ×
←

B̂)β + ∂
←

Â
(h̄)

β

∂t
+

←

V̂α

∂
←

Â
(h̄)

β

∂xα

− ∂
←

Âβ

∂t
− 1

q

∂
↼

Û
∂xβ

⎤
⎥⎦
⎫⎪⎬
⎪⎭ = 0. (B49)

Theorem 6 is proved.
Proof of Theorem 7. Integrating the Vlasov-Moyal approximation (3.10) over momentum space, we get

f1〈〈 �̇P〉〉 = q
∫
R3

fV
←

Êd3P + q
∫
R3

fV
←

V̂ ×
←

B̂d3P + q
∫
R3

fV

←
d

dt

←

Â
(h̄)

d3P. (B50)

Let us calculate each integral separately: ∫
R3

fV
←

Êβd3P = f1

(
−∂Aβ

∂t
− 1

q

∂U

∂xβ

)
, (B51)∫

R3
fV (

←

V̂ ×
←

B̂)βd3P = 1

m
f1〈 �P〉 × �B, (B52)
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where ελβαελμη = δβμδαη − δβηδαμ and ∫
R3

fV Pα (
←
∇ p · �∇r )

2k
Gαβd3P = 0. (B53)

The validity of expression (B53) results from the following calculations:∫
R3

fV Pα (
←
∇ p · �∇r )

2
Gαβd3P =

∫
R3

fV Pα

(←
∂

2

Px
�∂2

x +
←
∂

2

Py
�∂2

y +
←
∂

2

Pz
�∂2

z

)
Gαβd3P

+ 2
∫
R3

fV Pα

(←
∂Px

←
∂Py

�∂x
�∂y +

←
∂Px

←
∂Pz

�∂x
�∂z +

←
∂Py

←
∂Pz

�∂y
�∂z

)
Gαβd3P. (B54)

For terms
←
∂

2

Pλ
�∂2
λ from (B54), we can get

( fV Pα )
←
∂

2

Pλ
�∂2
λGαβ = (

Pα∂2
Pλ

fV + 2δαλ∂Pλ
fV

)
∂2
λGαβ,∫

R3

( fV Pα )
←
∂

2

Pλ
�∂2
λGαβd3P =

(
Pα∂Pλ

fV
∣∣
±∞ − δαλ

∫
R3

∂Pλ
fV d3P

)
∂2
λGαβ = 0, (B55)

and, for terms
←
∂Pλ

←
∂Pμ

�∂λ
�∂μ from (B54), we obtain

( fV Pα )
←
∂Pλ

←
∂Pμ

�∂λ
�∂μGαβ = (

Pα∂Pλ
∂Pμ

fV + δαλ∂Pμ
fV + δαμ∂Pλ

fV
)�∂λ

�∂μGαβ,∫
R3

( fV Pα )
←
∂Pλ

←
∂Pμ

�∂λ
�∂μGαβd3P =

(
Pα∂Pμ

fV |±∞ − δαλ

∫
R3

∂Pμ
fV d3P

)
�∂λ

�∂μGαβ = 0. (B56)

The substitution of (B55) and (B56) into the integral (B54) results in zero. A similar result is also valid for higher degrees,

(
←
∇P · �∇r )

2k
. Therefore, expression (B53) is true. For the last term from expression (B50), we obtain

∫
R3

fV

←
d

dt

←

Â
(h̄)

β d3P = 1

m

∫
R3

fV Pα

∂
←

Â
(h̄)

β

∂xα

d3P − q

m

∫
R3

fV
←

Â
(h̄)

α

∂
←

Â
(h̄)

β

∂xα

d3P = 0, (B57)

where previous calculations are taken into consideration. Substituting expressions (B51), (B52), and (B57) into the original
integral (B50), we get

f1〈〈 �̇P〉〉 = q f1

(
−∂ �A

∂t
− 1

q
∇rU

)
+ q

m
f1〈 �P〉 × �B, (B58)

with ∫
R3

�̂P fV d3P =
∫
R3

�P fV d3P − q
∫
R3

�̂A
(h̄)

fV d3P = f1〈 �P〉.

Theorem 7 is proved.

APPENDIX C

Let us find an expression for the Wigner function W (EM):

(2π h̄)3(2π )3/2σ 3
r W (EM) = e

− r2

2σ2
r

∫
R3

e
− s2

8σ2
r

− i
h̄ �s· �p

d3s = 8(2π )3/2σ 3
r e

− r2

2σ2
r

− 2σ2
r

h̄2 p2

. (C1)

Expression (C1) implies the validity of the representation of the Wigner function (2.21).
Let us calculate the value of mean energy 〈〈E〉〉 for functions W (EM) and fw. Let us start with function W (EM).

〈〈E〉〉(EM) = 1

2m(π h̄)3

∫
R3

e
− r2

2σ2
r d3r

∫
R3

(p2 − 2q �p · �A + q2| �A|2)e− 2σ2
r

h̄2 p2

d3 p

+ (2π )3/2

(π h̄)3

h̄3

8σ 3
r

h̄2

8mσ 4
r

∫
R3

(
r2 − 4σ 4

r

r2sin2θ

)
e
− r2

2σ2
r d3r = I (EM)

T + I (EM)
U . (C2)

Let us find integrals I (EM)
T , I (EM)

U separately. For kinetic integral I (EM)
T , we obtain

I (EM)
T = 3h̄2

8mσ 2
r

+ h̄2

2mσ 2
r

∫ π

0

dθ

sin θ
. (C3)
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Integral I (EM)
U corresponding to the potential energy has the form

I (EM)
U = 3h̄2

8mσ 2
r

− h̄2

2mσ 2
r

∫ π

0

dθ

sin θ
. (C4)

Substituting expressions (C3) and (C4) into (C2), we obtain

〈〈E〉〉(EM) =
∫
R3

∫
R3

(
P2

2m
+ U

)
W (EM)d3rd3 p = 3h̄2

4mσ 2
r

. (C5)

Let us perform averaging over function fw.

〈〈E〉〉( fw ) =
∫
R3

∫
R3

(
P2

2m
+ U

)
fwd3rd3P = 1

2m

∫
R3

d3r
∫
R3

P2 fwd3P +
∫
R3

Ud3r
∫
R3

fwd3P = I ( f )
T + I ( f )

U . (C6)

In order to calculate integral I ( f )
T , we use the result of [25] where we found the diagonal elements of the pressure tensor for

distribution W (E) (1.11). According to Theorem 4, the transition fw(�r, �P) = W (E)(ρ, z, �P) is valid; therefore,∫
(∞)

(Pα − 〈Pα〉)2 fwd3P = f (�r)
h̄2

4σ 2
r

. (C7)

From here, ∫
(∞)

P2
α fwd3P =

∫
(∞)

(Pα − 〈Pα〉)2 fwd3P + f (�r)|〈Pα〉|2 = f (�r)

[
h̄2

4σ 2
r

+ q2A2
α

]
. (C8)

Taking into account expression (C8), integral I ( f )
T takes the form

I ( f )
T = 3h̄2

8mσ 2
r

+ h̄2

2mσ 2
r

∫ π

0

dθ

sin θ
. (C9)

Expression for integral I ( f )
U coincides completely with I (EM)

U . Indeed,

I ( f )
U = h̄2

8mσ 4
r

∫
R3

f (�r)

(
r2 − 4σ 4

r

r2sin2θ

)
d3r = I (EM)

U . (C10)

Substituting (C9) and (C10) into expression (C6), we obtain

〈〈E〉〉( fw ) =
∫
R3

∫
R3

(
P2

2m
+ U

)
fwd3rd3P = 3h̄2

4mσ 2
r

. (C11)

Expressions (C5) and (C11) prove the validity of (2.34).
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