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Systematic and efficient pseudomode method to simulate open
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Using the pseudomode model to simulate open quantum systems is important in quantum physics. Here we
report a systematic and efficient pseudomode model based on dissipative, noninteracting harmonic oscillators,
capable of accurately simulating any type of environmental spectrum. The dynamical evolution is reduced to a
Lindblad master equation with only one dissipation term. A simple procedure to determine the parameters of
the pseudomodes is proposed. We evaluate its accuracy by some spin-boson models under different environ-
mental spectra. Our findings consistently exhibit high accuracy. Finally, we extend this pseudomode method
to larger systems with more complicated interactions. Our method may have potential applications in quantum
information.
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I. INTRODUCTION

In quantum physics, the system of interest most often
interacts with its surrounding environment, i.e., an open
quantum system (OQS). A typical description of the OQS
dynamics is the reduced density operator, obtained by trac-
ing out the environmental degrees of freedom [1,2]. To
solve the dynamical evolution, a well-known treatment is the
Born-Markov approximation, which requires weak system-
environment coupling and a large separation between system
and environment timescales. Under the Born-Markov approxi-
mation, the reduced dynamics of the OQS can be described by
a master equation [3,4]. However, in many practical scenarios
such as solid state physics, hybrid systems, quantum biology
and quantum optics, the Born-Markov approximation is no
longer suitable, leading to distinct non-Markovian behavior
[5–8]. Therefore, it is crucial to develop an accurate and
efficient description or simulation of a non-Markovian OQS.

A wide range of physical environments can be described
by Gaussian baths (such as those consisting of bosonic and
fermionic degrees of freedom at thermal equilibrium) linearly
coupled to the system. In this case, all effects of the environ-
ment on the system are fully characterized by the second-order
correlation functions (hereafter referred to as COFs) of the en-
vironmental operators coupled to the system. To simulate the
OQS, various numerical methods have been proposed, includ-
ing the stochastic Schrödinger equations (SSE) theory [9–14],
the quasiadiabatic propagator path integral [15–19], the time-
dependent density-matrix renormalization group [20–22] or
matrix product states [23–27], the non-Markovian cascaded
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networks [28–31], and the hierarchical equations of motion
(HEOM) theory [32–41].

The pseudomode method [42–49] provides an alternative
route for the numerical study of such nontrivial open-system
problems. The key idea of this method is to replace the
original environment by some discrete dissipative quantum
harmonic oscillators (known as pseudomodes). These pseu-
domodes are designed such that their COFs exactly reproduce
the COFs of the original environment. The evolution of the
system + pseudomodes can be described by a Lindblad mas-
ter equation, which provides the simplest description for the
OQS.

Regarding the pseudomode methods, a practical issue is
how to design the pseudomode model to make its COFs ex-
actly match any given COFs of the original environment. One
strategy is to use some exponential functions to fit the original
environmental COFs and then determine suitable pseudomode
parameters to make their COFs match these exponential func-
tions [44,46,47]. Recently, a powerful stochastic pseudomode
model based on a “quantum-classical” decomposition has
been proposed [48]. The idea is to simulate the “classical”
part of the environmental COF by introducing some classical
stochastic processes and reproduce the “quantum” part of the
COF by the pseudomodes. Among these pseudomode meth-
ods, achieving high accuracy requires more pseudomodes or
more stochastic processes, which significantly increase the
computational cost. It is essential to develop a systematic
approach that minimizes the computational costs while main-
taining high accuracy in simulating the OQS. Additionally, the
parameters of the pseudomodes should be determined using a
simple method.

In this research, we present an efficient pseudomode model
to accurately simulate the OQS. Our model utilizes a small
number of noninteracting dissipative pseudomodes, eliminat-
ing the need for pseudomode-pseudomode interactions or
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FIG. 1. (a) The original open quantum system problem. The
system couples to a non-Markovian boson bath. (b) A pseu-
domode model based on local dissipated harmonic oscillators.
The system couples with some pseudomode harmonic oscil-
lators (blue solid circles) locally dissipated in the respective
Markovian baths. (c) A pseudomode model based on locally dissi-
pated harmonic oscillators with an oscillator-oscillator interaction
chain. The system couples with some self-interacting pseudomode
harmonic oscillators, and the oscillators are also locally dissipated
in the respective Markovian baths. (d) A pseudomode model based
on collective dissipated harmonic oscillators. The system couples
with some pseudomode harmonic oscillators, and the oscillators are
collectively dissipated in a single Markovian bath.

stochastic processes. The system’s dynamical evolution is
governed by a Lindblad master equation with a single dis-
sipation term. Given an arbitrary environmental spectrum,
the parameters of these pseudomodes can be determined
through straightforward procedures. Notably, the frequencies
and dissipation rates of these pseudomodes can be directly
determined by a simple equation group, irrespective of the
number of pseudomodes being employed. We evaluate our
method’s accuracy using two exactly solvable spin-boson
models under different environmental spectrums. Addition-
ally, we examine a more complicated spin-boson model
and validate our approach by comparing it with the HEOM
method. Our findings consistently exhibit high accuracy. We
also extend our pseudomode model to larger systems with
more intricate interactions.

II. OPEN QUANTUM SYSTEM PROBLEM

As illustrated in Fig. 1(a), we consider a system coupling
to a boson environment or bath. The total Hamiltonian is
given by

Ĥtot = Ĥs + Ĥenv + V̂ , (1)

where Ĥs, Ĥenv, and V̂ are the Hamiltonians of the system, the
environment, and the interaction, respectively. The environ-
mental Hamiltonian reads

Ĥenv =
∑

k

ωkb̂†
kb̂k, (2)

where bk is the kth boson mode’s annihilation operator of
the environment, with the characteristic frequency ωk . We
consider the interaction Hamiltonian

V̂ = Ŝ ⊗ B̂, (3)

where Ŝ is the operator in the system’s Hilbert space and
B̂ = ∑

k gkb̂k + g∗
kb̂†

k is the operator in the environment’s
Hilbert space.

We assume the initial state can be written as ρs(0) ⊗ ρB(0),
where ρs(0) and ρB(0) are the initial states of the system and
the environment, respectively. Meanwhile, we assume ρB(0) is
a thermal equilibrium state (a Gaussian state) at temperature
T . The effects of the system-environment interaction are fully
characterized by the COF, given by [1]

C(t ) =
∫ ∞

0
dωJ (ω)

[
coth

(
ω

2KbT

)
cos(ωt ) − i sin(ωt )

]
,

(4)

where J (ω) ≡ ∑
k |gk|2δ(ω − ωk ) is the spectral density func-

tion and Kb is the Boltzmann constant. The reduced density
matrix of the system can be expressed in the interaction pic-
ture as [32–34,48]

ρ̃s(t ) = T exp

{
−

∫ t

0
dτ1S̃(τ1)×

∫ τ1

0
dτ2[CR(τ1 − τ2)S̃(τ2)×

+ iCI (τ1 − τ2)S̃(τ2)o]

}
ρs(0), (5)

where S̃(t ) ≡ eiĤst ŜeiĤst , A×ρ̂ ≡ Aρ̂ − ρ̂A, Aoρ̂ ≡ Aρ̂ + ρ̂A,
and CR (CI ) is the real (imaginary) part of the COF. If the
system’s initial state ρs(0) and the operator Ŝ are given, ρ̃s(t )
is fully dominated by the COF. The key task is to calculate the
reduced density matrix ρ̃s(t ) efficiently.

III. PSEUDOMODE MODEL

To calculate the reduced density matrix of the system, one
choice is the HEOM method [32–41]. However, the HEOM
method is complicated and its physical meaning is not in-
tuitive. In recent years, it has been found that the original
problem can be replaced by introducing some dissipated pseu-
domode harmonic oscillators with appropriate parameters. If
the COF of the pseudomode model matches the original COF,
the pseudomode model is equivalent to the original one.

Generally, the COF of pseudomode harmonic oscillators is
a discrete sum of exponential functions, but the COF of the
original model is usually nonexponential. Therefore, a com-
mon treatment is to fit the COF by a discrete set of exponential
functions, which is similar to the HEOM method. Under the
premise of ensuring accuracy and computation cost, we must
use the least amount of exponential functions as possible. Be-
cause more exponential functions requires more pseudomode
harmonic oscillators, which significantly enlarges the Hilbert
space and hence increases the computation cost. Fortunately,
the Prony method helps us use very few exponential functions
to fit the COF C(t ) ≈ ∑

j λ jeγ j t with high accuracy, where
the parameters λ j and γ j are generally complex numbers.
If one considers the pseudomode model shown in Fig. 1(b),
those λ j values are limited within the field of real numbers
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[44], which is unable to meet demand. Reference [46] pro-
posed a pseudomode model involving an interaction chain
of oscillator-oscillator [shown in Fig. 1(c)], which extended
λ j to the complex number field. However, determining the
parameters of the pseudomodes to match the original COF is
complicated and requires a difficult random sampling process.

In this work, we propose a simplified pseudomode model
shown in Fig. 1(d). The system couples to M pseudomode
harmonic oscillators, but the oscillators are collectively dis-
sipated in a single Markovian bath, without any interaction of
oscillator-oscillator. The total Hamiltonian of such a model is
given by

Ĥpse = Ĥs + Ŝ ⊗ B̂ + ĤB, (6)

with

B̂ =
M∑

j=1

η j ĉ
†
j + η∗

j ĉ j (7)

and

ĤB =
M∑

j=1

	 j ĉ
†
j ĉ j +

∑
k

ωkb̂†
kb̂k

+
∑

k

M∑
j=1

g j,k b̂k ĉ†
j + g∗

j,k b̂†
k ĉ j . (8)

Here, η j denotes the interaction strength between the system
and the jth harmonic oscillator, g j,k = μ jgk denotes the cou-
pling strength between the jth harmonic oscillator and the kth
boson model of the bath (note that there is only one bath). For
convenience, we consider a constant coupling strength gk (i.e.,
the harmonic oscillators are dissipated in a Markovian bath)
and we assume that the bath is initially in the vacuum state. We
emphasize that the harmonic oscillators are characterized by
Markovian dissipation, but the system is characterized by non-
Markovian dissipation. In the following, we show that using
few harmonic oscillators with collective Markovian dissipa-
tion can accurately simulate any non-Markovian environment.

If we view the system and the pseudomode harmonic oscil-
lators as a whole, it undergoes dissipation within a Markovian
bath, in which dynamical evolution is governed by the
Lindblad master equation

∂ρsc

∂t
= −i[Ĥ , ρsc] +D

⎡
⎣ M∑

j=1

μ j ĉ j

⎤
⎦ρsc, (9)

where

Ĥ = Ĥs +
M∑

j=1

	 j ĉ
†
j ĉ j + Ŝ ⊗

M∑
j=1

(η j ĉ
†
j + η∗

j ĉ j ) (10)

and

D[Â]ρsc ≡ ÂρscÂ† − ρscÂ†Â + Â†Âρsc

2
. (11)

Note that ρsc is the total density matrix of the system +
oscillators. Tracing out the oscillators, we get the reduced
density matrix of the system, i.e.,

ρs = Trc(ρsc). (12)

For simplicity, the initial state can be taken as ρsc(0) =
ρs(0) ⊗ ρ⊗M

vac , where ρs(0) is the initial state of the system and
ρvac is the vacuum state of the harmonic oscillator.

A key problem is determining what kind of non-Markovian
environment this pseudomode model can characterize (or
what is the COF like of this pseudomode model). In Appendix
A, we exactly calculated the expression of the pseudomode’s
COF, i.e.,

Cpse(t ) ≡ 〈B̂(t )B̂†〉 =
M∑

j=1

λ je
γ j t , (13)

with B̂(t ) ≡ eiĤBt B̂e−iĤBt . Specifically, γ j are roots of the
equation

M∑
l=1

− 1
2 |μl |2

i	l + γ j
= 1, (14)

and

λ j =
∑M

k=1

∑M
l=1 ηkη

∗
l Zk, jZl, jμkμ

∗
l∑M

n=1 Z2
n, j |μn|2

, (15)

where we have defined

Zn, j := 1

i	n + γ j
. (16)

Note that Eq. (14) is an M-order polynomial equation; thus
it gives M roots γ1, γ2, . . . , γM . It should be mentioned that
we always have Re[γ j] < 0; this is because the COF must
decay to 0 when t → ∞, and hence requires eγ j t → 0, which
is consistent with physical intuition. After knowing those γ j

values, we can directly calculate λ j by Eq. (15) and hence
obtain the analytical expression of Cpse(t ) by Eq. (13).

Recalling the local dissipation case [44,48], we have the

parameter relation
− 1

2 |μl |2
i	l +γl

= 1 for all l . But for the collective
dissipation case, the parameter relation is given by Eq. (14);
i.e., the sum over l is equal to 1, which clearly shows the
difference between the two cases. Another difference can be
seen from Eq. (15). For the local dissipation case, we always
have λ j = |η j |2 � 0. But for the collective case, λ j is usually
a complex number, which extends the form of Cpse(t ).

IV. DETERMINING THE PSEUDOMODE PARAMETERS

By now we have obtained the expression of the pseudo-
mode’s COF, i.e., Eqs. (13)–(16). But the practical issue is
that, given an original open quantum system model shown
in Fig. 1(a) with a concrete COF, C(t ), how does one de-
sign a pseudomode model [shown in Fig. 1(d)] equivalent to
the original one. The answer is that we need to determine
the pseudomode parameters (	 j, μ j, η j ) making Cpse(t ) =∑M

j=1 λ jeγ j t ≈ C(t ), which can be done through three steps.
(i) Given a C(t ), we use the Prony method [41,50] (or see

Appendix B) to decompose the COF to C(t ) ≈ ∑M
j=1 λ̃ jeγ̃ j t .

Here, λ̃ j and γ̃ j are usually complex numbers.
(ii) Solving the equation group

M∑
l=1

− 1
2 |μl |2

i	l + γ̃ j
= 1, with j = 1, 2, . . . , M, (17)
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we can easily determine one choice of 	 j and μ j . Note that
	 j is a real number (positive or negative), but μ j can be a
complex number. For the sake of simplicity, we assume that
μ j can also be a real number (positive or negative).

(iii) Replace γ j by γ̃ j in Eq. (15) and hence directly obtain
the expression of λ j (η1, η2, . . . , ηM ). Finally, solve the equa-
tion’s group λ j (η1, η2, . . . , ηM ) = λ̃ j , with j = 1, 2, . . . , M,
which gives the optimal values of η1, η2, . . . , ηM . Here, those
η j values are usually complex numbers.

After getting all the pseudomode parameters, the origi-
nal open quantum system can be simulated by solving the
Lindblad master equation given by Eq. (9). Tracing out the
pseudomode oscillators, we obtain the reduced density matrix
of the system, i.e., ρs = Trc(ρsc).

V. EXAMPLES: THE SPIN-BOSON MODEL

A. Pure-dephasing spin-boson model

We now consider N 1/2-spin ensemble dissipating in a bo-
son environment with the spin Hamiltonian Ĥs = ω0Ĵz, where
Ĵz is the total spin-z operator of the spin ensemble. The total
Hamiltonian and the interaction Hamiltonian are given by
Eqs. (1) and (3) with Ŝ = Ĵz. Given the bath temperature T
and the spectral density function J (ω) = ∑

k |gk|2δ(ω − ωk ),
the model can be exactly solved. We expand the Hilbert
space by the basis |m〉, with m = − j,− j + 1, . . . , j − 1, j
and j ≡ N/2, where |m〉 is the common eigenstate of Ĵ2 and
Ĵz, i.e., Ĵ2|m〉 = j( j + 1)|m〉 and Ĵz|m〉 = m|m〉. If we take the
initial state ρs(0) = (| j〉 + | − j〉)/

√
2, the exact solution of

the reduced density matrix is given by

ρs(t ) = | j〉〈 j| + | − j〉〈− j|
2

+ e−N2�(t )

2
(e−iNω0t | j〉〈− j| + eiNω0t | − j〉〈 j|), (18)

where

�(t ) =
∫ ∞

0
dωJ (ω) coth

(
ω

2KbT

)
1 − cos(ωt )

ω2
. (19)

As an example, we consider an environment with its spec-
tral density function [40,51]

J (ω) =
{

χ ω3

πω2
c

√
1 − ω2/ω2

c (for 0 � ω � ωc),

0 (for ω � ωc),
(20)

where χ is the coupling strength and ωc is the cutoff fre-
quency. For the case of zero temperature, we can calculate

�(t ) = χ

2ωct
St(2, ωct ), (21)

where St(· · · ) is the Struve function.
To show the three-step process of determining the pseu-

domode parameters, we start from the two-pseudomode
case, with harmonic oscillator frequencies (	1,	2), dissipa-
tion rates (μ1, μ2), and interaction strengths (η1, η2). These
parameters can be determined by the three-step method men-
tioned in the previous section. Specifically, we first use the
Prony method to decompose the COF to C(t ) ≈ ∑2

j=1 λ̃ jeγ̃ j t ,
which gives (λ̃1, λ̃2) = (4.139 + 4.834i, 4.139 − 5.441i) and

FIG. 2. The real part and the imaginary part of the COF
for the original model and the pseudomode model with pseudo-
mode oscillator numbers M = 2 and M = 3, where the spectral
density of the original model is given by Eq. (20). In all
figures, we take χ = 2 and ωc = 10. The pseudomode parame-
ters of the two-mode case: (	1, 	2) = (5.151, 9.819), (μ1, μ2) =
(2.161, 1.518), and (η1, η2) = (−0.979 − 2.331i, 0.738 + 1.756i).
The pseudomode parameters of three-mode case: (	1, 	2, 	3) =
(2.308, 7.612, 10.234), (μ1, μ2, μ3) = (−2.147, 1.626, 1.574), and
(η1, η2, η3) = (0.755, 2.73, −0.764).

(γ̃1, γ̃2) = (−0.951 − 9.228i,−2.537 − 5.743i), where C(t )
is calculated by Eq. (4). Next, solving the equation group

− 1
2 |μ1|2

i	1 + γ̃ j
+ − 1

2 |μ2|2
i	2 + γ̃ j

= 1, with j = 1, 2, (22)

we obtain (	1,	2) = (5.151, 9.819) and (μ1, μ2) =
(2.161, 1.518). Note that the solution is nonunique; we
only need to choose one solution. Once 	1,2 and μ1,2

are obtained, we can directly obtain the expression of
λ1,2 by replacing γ1,2 with γ̃1,2 in Eq. (15), i.e., λ1 =
(−0.119 + 0.112i)|η1|2 − (0.177 + 0.39i)(η1η

∗
2 + η2η

∗
1 ) +

(1.119 − 0.112i)|η2|2 and λ2 = (1.119 − 0.112i)|η1|2 +
(0.177 + 0.39i)(η1η

∗
2 + η∗

1η2) − (0.119 − 0.112i)|η2|2.
Finally, solving λ1,2 = λ̃1,2, which gives the optimal solution
(η1, η2) = (−0.979 − 2.331i, 0.738 + 1.756i). In Fig. 2, we
compare the original COF C(t ) with the pseudomode COF
Cpse(t ), given by Eqs. (4) and (13), respectively. For the
two-mode case, one can find that the pseudomode COF does
not perfectly coincide with the original COF. To get a better
fitting, we consider three pseudomode oscillators. Using the
same procedures mentioned above, we get the pseudomode
parameters shown in the caption of Fig. 2. One can find that
the pseudomode COF perfectly matches with the original
COF for the three-mode case.

After determining those pseudomode parameters, we can
describe the time evolution by a Lindblad master equation
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FIG. 3. (a) and (b) The real part and the imaginary part of
the density matrix element ρ02 ≡ 〈1|ρs−1〉 for the analytical
result [calculated by Eqs. (18) and (21)] and the pseudomodel
method’s result. (c) and (d) The relative error of ρ02 between the
analytical result and the pseudomodel method’s result with different
pseuodomodes number and coupling strength χ , calculated by
Eq. (23). In all figures, we take the spin number N = 2 and the
spin frequency ω0 = 2π . The pseudomode model parameters of the
four-mode case: (	1, 	2, 	3, 	4) = (8.608, 10.362, 0.982, 5.198),
(μ1, μ2, μ3, μ4) = (1.306, 1.609, 1.990, 1.598), and (η1, η2, η3,

η4) = (2.045 − 0.992i, −0.386 + 0.166i, 0.192 − 0.036i, −1.554 +
0.837i). Other parameters are the same as those in Fig. 2.

given by Eq. (9). Tracing out the pseudomode oscillators, we
obtain the reduced density matrix of the spin system, i.e.,
ρs = Trc(ρsc) . In Figs. 3(a) and 3(b), we compare the numer-
ical solution of Eq. (9) with the analytical solution by taking
different numbers of pseudomode harmonic oscillators. Here
we have taken the spin number N = 2 and the temperature
T = 0. One can find that the four-mode case coincides with
the exact analytical solution. The relative error between the
analytical solution and the numerical solution is defined as

Error(ρana, ρnum ) ≡ |ρana − ρnum|
|ρana + ρnum| . (23)

As shown in Fig. 3(c), we show the error of 〈1|ρs| − 1〉. The
maximal error is about 4% for the three-mode case and no
more than 0.4% for the four-mode case, which verifies the
validity of our method.

The accuracy is also affected by the coupling strength.
In Fig. 3(d), we show the error with different values of the
coupling strength χ , where we have taken three pseudomodes.
When the coupling strength χ increases, the accuracy be-
comes slightly worse. This is because the increase of coupling
strength amplifies the mismatch of the COF. If we expect
a higher accuracy, we need to increase the number of pseu-
domode harmonic oscillators. Therefore, the strong-coupling
model requires more pseudomodes and more computation
resources.

Next, we consider an Ohmic spectral environment with the
spectral density function J (ω) = χωe−ω/ωc [7], where χ is the
coupling strength and ωc is the cutoff frequency. For the zero

FIG. 4. (a) The spectral density function of the Ohmic spectral
environment. (b) The real part and the imaginary part of the COF
for the original Ohmic spectral model and the pseudomode model
with four pseudomodes. (c) and (d) With spin numbers N = 1 and
N = 2, the real part of the matrix elements ρ01 ≡ 〈 1

2 |ρs|− 1
2 〉 and

ρ02 ≡ 〈1|ρs|−1〉 for the analytical result [calculated by Eqs. (18)
and (24)] and the numerical result [calculated by Eqs. (9)–(12)]. The
insets are the relative errors of ρ01 and ρ02 between the analytical
result and the numerical result. In all panels, we take the spin
frequency ω0 = 1, the coupling strength χ = 1, and the cutoff
frequency ωc = 0.25. The pseudomode parameters of the four-mode
case: (	1, 	2, 	3, 	4) = (0.0389, −0.4886, 0.3681, 1.5722),
(μ1, μ2, μ3, μ4) = (0.314, 1.117, −0.6121, −1.287), and (η1,

η2, η3, η4) = (−0.0597 + 0.0348i, −0.002 − 0.021i, −0.1588 +
0.1569i, 0.0531 − 0.074i).

temperature case, �(t ) has the simple form

�(t ) = χ

2
ln

(
1 + ω2

ct2
)
. (24)

To simulate the time evolution by our pseudomode method,
we consider four pseudomodes. The comparison of COFs is
plotted in Fig. 4(b), which shows a perfect match. Taking
different spin numbers N , we compare the numerical solution
of Eq. (9) with the analytical solution in Figs. 4(c) and 4(d).
One can find that all the cases indicate a high accuracy.

This pseudomode method is also valid for finite tempera-
ture. In Fig. 5, we show the accuracy under the Ohmic spectral
environment with the temperature KbT = 2.5ωc. One can find
that the error can be controlled within 1.3% by two pseudo-
modes and 0.17% by three pseudomodes.

B. Full spin-boson model

If we consider a more complicated model with the spin
Hamiltonian Ĥs = ω0Ĵz + ω�Ĵx and the interaction Hamilto-
nian V̂ = Ĵz ⊗ B̂, the model cannot be analytically solved.
But, we can also numerically solve the model by our pseu-
domode method. We test our method by comparing with the
HEOM method under the Ohmic spectral environment. Here,
we consider N = 1 (i.e., a two-level system) and take the ini-
tial state ρs(0) = (| ↑〉 + | ↓〉)/

√
2. The comparisons of 〈σ̂z〉
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FIG. 5. With the temperature KbT = 2.5ωc and the spin number
N = 1, the real part of the matrix element ρ01 ≡ 〈 1

2 |ρs− 1
2 〉 for the

analytical result and the numerical result. The insets are relative
errors of ρ01. The pseudomode parameters of the two-mode case:
(	1, 	2) = (−0.3084, 0.7481), (μ1, μ2) = (0.9277, 1.21), and
(η1, η2) = (0.175 − 0.4117i, −0.1441 + 0.3389i). The pseudo-
mode parameters of the three-mode case: (	1, 	2, 	3) =
(−0.0463, 1.0955, −1.3298), (μ1, μ2, μ3) = (0.6022, 1.228,

1.1936), and (η1, η2, η3) = (−0.4859-0.2077i, 0.19516 + 0.05i,
−0.007094 + 0.04962i).

and 〈σ̂x〉 are shown in Fig. 6, which verifies the validity of our
pseudomode method.

C. Spontaneous emission model

We now consider a 1/2-spin dissipating in an Ohmic spec-
tral environment at zero temperature. The total Hamiltonian is
given by Eq. (1) with Ĥs = ω0

2 σ̂z. The interaction Hamiltonian
with a rotating-wave approximation is given by

V̂ = σ̂− ⊗ B̂† + σ̂+ ⊗ B̂, (25)

where σ̂z and σ̂± are the Pauli operators and B̂ = ∑
k gkb̂k . For

such a rotating-wave approximation interaction Hamiltonian,
if we take the initial state ρs(0) = (| ↑〉 + | ↓〉)/

√
2, the re-

duced density matrix of the spin can be analytically written

FIG. 6. Numerical result using four pseudomode oscillators vs
the HEOM method under the Ohmic spectral environment. We take
ωc = 0.25, ω0 = 1, ω� = 0.3, and T = 0. The pseudomode model
parameters in panels (a) and (b) are the same as those in Fig. 4.

FIG. 7. (a)–(c) The matrix element ρ00 and ρ01 for the analytical
result [calculated by Eqs. (26) and (27)] and the numerical result
with four pseudomode oscillators. (d) The relative errors of ρ00

and ρ01 between the analytical result and the numerical result. The
pseudomode model parameters are the same as those in Fig. 4.

as [1,52]

ρs(t ) =
[

1
2 |α(t )|2 1

2α(t )
1
2α∗(t ) 1 − 1

2 |α(t )|2
]
, (26)

where α(t ) obeys the equation

α̇(t ) + iω0α(t ) +
∫ t

0
C(t − τ )α(τ )dτ = 0, (27)

and C(t ) is given by Eq. (4) with the temperature T = 0.
The above equation can be solved by the Laplace trans-
form. The model can also be simulated by our pseudomode
method. The time evolution is still described by the Lindblad
master equation shown by Eq. (9). Different to the pure de-
phasing case, the Hamiltonian of the pseudomode model is
given by

H = ω0

2
σ̂z +

M∑
j=1

	 j ĉ
†
j ĉ j +

M∑
j=1

(η j σ̂−ĉ†
j + η∗

j σ̂+ĉ j ).

(28)

We test the accuracy under the Ohmic spectral environment.
Here, we use four pseudomodes and the parameters are the
same as those in Fig. 4. In Figs. 7(a)–7(c), we compare the
matrix elements ρ00 ≡ 〈↑ |ρs| ↑〉 and ρ01 ≡ 〈↑ |ρs| ↓〉 for an-
alytical result and numerical result. The relative errors are
shown in Fig. 7(d), which demonstrates the validity of our
method.

VI. EXTENSION TO COMPLICATED MODEL

Our pseudomode method can also extend to more compli-
cated models. For example, as shown in Fig. 8(a), two systems
couple to two uncorrelated non-Markovian baths with differ-
ent interactions Ŝ1 ⊗ B̂1 and Ŝ2 ⊗ B̂2. The total Hamiltonian
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FIG. 8. Pseudomode model to simulate different complicated
models. (a) The original OQS in which two systems couple to
two different non-Markovian baths. The corresponding pseudomode
model is shown in panel (b), which contains two groups of dissipated
pseudomode oscillators. (c) The original OQS in which two systems
couple to one non-Markovian bath with different interactions. The
corresponding pseudomode model is shown in panel (d).

is given by

Ĥtot = Ĥs + Ĥenv,1 + Ĥenv,2 + Ŝ1 ⊗ B̂1 + Ŝ2 ⊗ B̂2, (29)

where

Ĥs = Ĥs,1 + Ĥs,2 + V̂1,2, (30)

and V̂1,2 denotes the interaction between the two systems.
Such a model can be simulated by the corresponding pseu-
domode model shown in Fig. 8(b). The first original bath is
replaced by M1 dissipated pseudomode oscillators and the
second original bath is replaced by M2 dissipated pseudo-
mode oscillators, with the annihilation operators ĉ j and ĉ′

j ,
respectively. The pseudomode parameters can be determined
by matching the corresponding bath COF, which can be done
by using the procedures in Sec. IV. After determining those
parameters, the evolution is described by

∂ρsc

∂t
=−i[Ĥ, ρsc] +D

⎡
⎣ M1∑

j=1

μ j ĉ j

⎤
⎦ρsc

+D
⎡
⎣ M2∑

j=1

μ′
j ĉ

′
j

⎤
⎦ρsc, (31)

where Ĥ is given by

Ĥ = Ĥs +
M1∑
j=1

	 j ĉ
†
j ĉ j + Ŝ1 ⊗

M1∑
j=1

(η j ĉ
†
j + η∗

j ĉ j )

+
M2∑
j=1

	′
j ĉ

′†
j ĉ′

j + Ŝ2 ⊗
M2∑
j=1

(η′
j ĉ

′†
j + η′∗

j ĉ′
j ). (32)

It can be easily extended to larger systems dissipating in L
baths with the total Hamiltonian

Ĥtot = Ĥs +
L∑

i=1

Ĥenv,i +
L∑

i=1

Ŝi ⊗ B̂i. (33)

The corresponding pseudomode model’s Hamiltonian is

Ĥ = Ĥs +
L∑

i=1

Mi∑
j=1

[	i, j ĉ
†
i, j ĉi, j + Ŝi ⊗ (ηi, j ĉ

†
i, j + η∗

i, j ĉi, j )],

(34)

where ĉi, j is the annihilation operator of the jth pseudomode
oscillator in the ith bath, and Mi is the number of pseudomode
oscillators in the ith bath. The model can be solved by

∂ρsc

∂t
= −i[Ĥ, ρsc] +

L∑
i=1

D

⎡
⎣ Mi∑

j=1

μi, j ĉi, j

⎤
⎦ρsc. (35)

Similarly, the original model in Fig. 8(c) can also be simulated
by the corresponding pseudomode model in Fig. 8(d).

VII. CONCLUSION AND DISCUSSION

In summary, we have proposed a systematic and efficient
pseudomode model for simulating open quantum systems
under any type of environmental spectrum at any temper-
ature. In our pseudomode model, the system couples to a
few pseudomode harmonic oscillators that collectively dis-
sipate in a single Markovian bath. The time evolution is
reduced to a Lindblad master equation with only one dis-
sipation part. In principle, any spectral environment can be
accurately simulated using our pseudomode model with ap-
propriate parameters. The frequencies and dissipation rates
can be determined by a simple equation group. We have tested
the accuracy of our model for two exactly solvable spin-boson
models: the pure dephasing model and the relaxation model,
with two types of spectral environments. We have also con-
sidered a more complex spin-boson model and verified our
method’s validity by comparing it with the HEOM method.
Our results consistently exhibit high accuracy. As the number
of pseudomode harmonic oscillators increases, the accuracy
significantly improves. Generally, taking three or four pseu-
domode oscillators is sufficient. Our pseudomode method can
easily be extended to more complicated and larger systems.

Finally, let us discuss the limitations of the pseudomode
method. First, the system and the environment must be
initially unentangled. Second, the environment must be de-
scribable by a Gaussian bath, usually in the thermal initial
state. Finally, the environment operators coupled to the system
must be linear, i.e., a linear combination of the creation and
annihilation operators of the bosonic degree of freedom. It
would be interesting to explore possible generalization of the
pseudomode method to go beyond these constraints.
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APPENDIX A: DERIVATION OF COF

Substituting Eq. (7) into Eq. (13), we have

Cpse(t ) ≡ 〈B̂(t )B̂†〉 =
M∑

j=1

M∑
l=1

η jη
∗
l 〈ĉ j (t )ĉ†

l 〉, (A1)

with ĉ j (t ) ≡ eiĤBt ĉ je−iĤBt and 〈· · · 〉 denotes expectation at the
initial state (vacuum state). To derive the expression of the
COF, we need to exactly calculate ĉ j (t ) by the Heisenberg
motion equations

i
d

dt
ĉ j (t ) = 	 j ĉ j (t ) + μ j

∑
k

gkb̂k (t ), (A2)

i
d

dt
b̂k (t ) = ωkb̂k (t ) + g∗

k

M∑
i=1

μ∗
i ĉi(t ). (A3)

Integrating Eq. (A3), we obtain

b̂k (t ) = e−iωkt b̂k − i
M∑

i=1

μ∗
i

∫ t

0
g∗

ke−iωk (t−τ )ĉi(τ )dτ. (A4)

For convenience, we consider a flat density spectrum,
which gives the relation

∑
k |gk|2e−iωk (t−τ ) = δ(t − τ ), i.e., a

Markovian environment. Substituting Eq. (A4) into Eq. (A2),
we obtain the differential equation

i
d

dt
ĉ j (t ) = 	 j ĉ j (t ) − i

μ j

2

M∑
l=1

μ∗
l ĉl (t ) + μ j

∑
k

gke−iωkt b̂k .

(A5)

Next, we define
−→̂
c (t ) ≡ [ĉ1(t ), ĉ2(t ), . . . , ĉM (t )]T and−→̂

s (p) ≡ [ŝ1(p), ŝ2(p), . . . , ŝM (p)]T with ŝ j (p) being the
Laplace transform of ĉ j (t ). Making the Laplace transform for
Eq. (A5), we obtain the relation

−→̂
s (p) = A−1(

−→̂
c (0) − −→

E ), A = D

2
+ i	 + p, (A6)

where

−→
E = [μ1, μ2, . . . , μM]T

∑
k

igk

p + iωk
b̂k, (A7)

D is the dissipation coefficient matrix

D =

⎡
⎢⎢⎢⎢⎣

|μ1|2 μ1μ
∗
2 · · · μ1μ

∗
M

μ2μ
∗
1 |μ2|2 · · · μ2μ

∗
M

· · · · · · · · · · · ·
μMμ∗

1 μMμ∗
2 · · · |μM |2

⎤
⎥⎥⎥⎥⎦, (A8)

and 	 = diag[	1,	2, . . . , 	M] is the frequency matrix. Us-
ing the matrix inversion formula, we can calculate the inverse
of A, i.e.,

A−1 = (i	 + p)−1

h(p)

[
h(p)I− D

2
(i	 + p)−1

]
, (A9)

where I is the identity matrix and

h(p) = 1 + 1

2

M∑
n=1

Zn(p)|μn|2, (A10)

with

Zn(p) = 1

i	n + p
. (A11)

Using Eqs. (A6) and (A9), we can obtain

ŝ j (p) = Zj (p)

h(p)

(
h(p)ĉ j − μ j

2

M∑
i=1

Zi(p)μ∗
i ĉi

)
+

∑
k

Qj,k (p)b̂k,

(A12)

where

Qj,k (p) = −μ jZ j (p)

h(p)

igk

p + iωk
. (A13)

Making the inverse Laplace transform for ŝ j (p), we obtain the
integral form

ĉ j (t ) = 1

2π i

∫ ε+i∞

ε−i∞
ŝ j (p)ept dp = 1

2π i
I +

∑
k

Ik b̂k, (A14)

where

I =
∫ ε+i∞

ε−i∞

Zj (p)

h(p)

(
h(p)ĉ j − μ j

2

M∑
i=1

Zi(p)μ∗
i ĉi

)
ept dp

(A15)

and

Ik = 1

2π i

∫ ε+i∞

ε−i∞
Qj,k (p)ept dp. (A16)

To calculate the integral I , we need to use the residue
theorem. First, we should find out the poles, which can be
easily realized by solving the equation h(p) = 0, i.e.,

M∑
l=1

− 1
2 |μl |2

i	l + p
= 1, (A17)

which gives M poles. If we label the poles as p = γk (k =
1, 2, . . . , M ), we arrive at Eq. (14) in the main text. Consider-
ing the COF must decay to zero when time t → ∞, we always
have Re[γk] < 0; i.e., the poles always lie in the left-half
plane, which is an inherent physical constraint. In Fig. 9, we
plot an infinite semicircle, which helps us to calculate the
integral I . According to the residue theorem, we have the
relation

2π i
M∑

k=1

res(γk ) = I + Ic. (A18)

According to the Jordan lemma, we have Ic = 0; therefore,

I = 2π i
M∑

k=1

res(γk ). (A19)
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FIG. 9. Calculate the integral at the infinite semicircle using the
residue theorem. The red dots are poles γk (k = 1, 2, 3, . . . , M),
which lie in the left-half plane. The circuit integral Ic + I is equal
to the sum of residues at each poles. According to the Jordan lemma,
the integral Ic is 0.

Next, we need to calculate the residue at each pole:

res(γk ) = lim
p→γk

Z j (p)
[
h(p)ĉ j − μ j

2

∑M
i=1 Zi(p)μ∗

i ĉi
]

h(p)
(p−γk )

ept

= lim
p→γk

Z j (p)
[− 1

2μ j
∑M

i=1 Zi(p)μ∗
i ĉi

]
− 1

2

∑M
n=1 Z2

n (p)|μn|2
ept

=
M∑

i=1

ξ j,ie
γkt ĉi, (A20)

where we have defined

ξ j,i = Zj (γk )Zi(γk )μ jμ
∗
i∑M

n=1 Z2
n (γk )|μn|2

. (A21)

Using Eqs. (A19) and (A14), we have

ĉ j (t ) =
M∑

k=1

M∑
i=1

ξ j,ie
γkt ĉi +

∑
k′

I
k′ b̂k′ . (A22)

Finally, using Eq. (A1), we obtain the COF of the pseudomode
model:

Cpse(t ) =
M∑

j=1

M∑
l=1

η jη
∗
l

〈
M∑

k=1

M∑
i=1

ξ j,ie
γkt ĉiĉ

†
l

〉

=
M∑

j=1

M∑
l=1

η jη
∗
l

〈
M∑

k=1

ξ j,l e
γkt ĉl ĉ

†
l

〉

=
M∑

k=1

λkeγkt , (A23)

where

λk =
M∑

j=1

M∑
l=1

η jη
∗
l ξ j,l , (A24)

and we have used the fact of 〈b̂k ĉ†
l 〉 = 0. Substituting

Eq. (A21) into Eq. (A24), we obtain the equation in the main
text:

λk =
∑M

j=1

∑M
l=1 η jη

∗
l Z j (γk )Zl (γk )μ jμ

∗
l∑M

n=1 Z2
n (γk )|μn|2

. (A25)

APPENDIX B: DECOMPOSE THE COF
BY PRONY METHOD

Given a COF, C(t ), one can decompose it to M expo-
nential functions by the Prony method [41,50], e.g., C(t ) ≈∑M

k=1 λ̃keγ̃kt . Usually, λ̃k and γ̃k are complex numbers we need
to determine. The procedure contains three steps.

(i) we set a time region t ∈ [0, tmax] and divide it into 2N
segments with the segment size �t = tmax/(2N ). We label the
time points C(tn) = C(n�t ), with n = 0, 1, 2, . . . , 2N .

(ii) we construct the Hankel matrix

H =

⎡
⎢⎢⎢⎢⎣

C(t0) C(t1) · · · C(tN−1) C(tN )
C(t1) C(t2) · · · C(tN ) C(tN+1)
C(t2) C(t3) · · · C(tN+1) C(tN+2)

...
...

. . .
...

...

C(tN ) C(tN+1) · · · C(t2N−2) C(t2N )

⎤
⎥⎥⎥⎥⎦.

(B1)

Making a singular value decomposition for H , we have

H = U †�V, (B2)

where � is a diagonal matrix and U and V are unitary
matrices.

(iii) We define Rn as the matrix element of U in the (M +
1)th row and the nth column. Solving the eigenvalues of the
matrix

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 −R1
RN+1

1 0 · · · 0 −R2
RN+1

0 1 · · · 0 −R3
RN+1

...
...

. . .
...

...

0 0 · · · 1 −RN
RN+1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (B3)

we obtain N eigenvalues x = x1, x2, x3, . . . xN . Picking out all
the xk which satisfies |xk| < 1, we can determine γ̃k by

γ̃k = ln xk

�t
, (B4)

with k = 1, 2, . . . , M.
(iv) Finally, using the least-square method to solve the

matrix equation⎡
⎢⎢⎢⎢⎢⎣

eγ̃1t0 eγ̃2t0 · · · eγ̃Mt0

eγ̃1t1 eγ̃2t1 · · · eγ̃Mt1

eγ̃1t2 eγ̃2t2 · · · eγ̃Mt2

...
...

. . .
...

eγ̃1t2N eγ̃2t2N
... eγ̃Mt2N

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

λ̃1

λ̃2
...

λ̃M

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

C(t0)
C(t1)
C(t2)

...

C(t2N )

⎤
⎥⎥⎥⎥⎦, (B5)

we can obtain all λ̃k .
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