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Non-Markovian refrigeration and heat flow in the quantum switch
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The quantum switch has seen multiple applications in quantum information and thermodynamical tasks. As
it is constructed by placing two quantum channels in a coherent superposition of alternating causal orders, a
composition known as indefinite causal order, these enhancements are often attributed to this indefinite causality
and coherent superposition. However, as recent works have shown that the quantum switch also features non-
Markovian effects that can contribute to the enhancement of communication capacities and work extraction,
we attempt to show in this work that these non-Markovian effects can also enhance heat extraction tasks. In
particular, we compare the quantum switch to the superposition of independent channels where two quantum
channels are placed in a superposition, which have no non-Markovian effects, and show that the quantum switch
can only outperform the superposition of independent channels in the prethermalization regimes, which also
depends on the presence and amount of non-Markovianity. Our work reveals that positive heat extraction is
still possible even when the working body is at a higher temperature than the interacting baths, allowing us to
construct a refrigeration cycle utilizing this feature.
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I. INTRODUCTION

The quantum switch is a quantum composition of channels
where the operations of two quantum channels �A and �B are
placed in a controlled superposition of alternating operation
orders of �B ◦ �A and �A ◦ �B, achieving the phenomenon
of indefinite causal orders [1] (see Fig. 1). Since its inception,
the quantum switch’s indefinite causal orders was touted to
grant multiple advantages in enhancing certain quantum in-
formational tasks, such as communication capacities [2–6],
computational complexity [1,7,8], metrology [9–11], work
extraction [12,13], and refrigeration tasks [14]. Without loss
of generality, the quantum switch operation can be described
by the Kraus operator of

K sw
i j = |0〉〈0| ⊗ BjAi + |1〉〈1| ⊗ AiBj (1)

such that its overall operation is

�sw(ρC ⊗ ρQ) =
∑
i, j

K sw
i j (ρC ⊗ ρQ)K sw†

i j , (2)

where the channels �A and �B act on the main quan-
tum system Q (denoted by the superscript) with �A(ρQ) =∑

i Aiρ
QA†

i and �B(ρQ) = ∑
j B jρ

QB†
j , where {Ai} and {Bj}

are their corresponding sets of Kraus operators. Note that the
quantum switch operation �sw must depend on the choice of
�A and �B, i.e., �sw(ρC ⊗ ρQ) = �sw(�A,�B)(ρC ⊗ ρQ).
However, for brevity we will write �sw(�A,�B) as just �sw.
As evident from the Kraus operator K sw

i j , the operational
orderings of the two channels are determined or controlled
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by the control quantum system C such that if it is in a su-
perposition of the two orthogonal bases |0〉C and |1〉C , e.g.,
ρC = |φ〉〈φ|C , where |φ〉C = √

q|0〉C + √
1 − q|1〉C , we have

a superposition of the two causal orders. In Ref. [14] it was
shown that if �A and �B are taken to be the fully thermalizing
channels of Nβ (ρ) = σβ , where σβ is the thermal state of

FIG. 1. Quantum switch, where a control qubit ρC puts the ther-
mal interaction orders of �B ◦ �A and �A ◦ �B in a superposition. In
one path of the superposition, the main system ρQ interacts with heat
bath A and then heat bath B (�B ◦ �A); in the other path it interacts
with heat bath B and then heat bath A (�A ◦ �B). At the end of the
interaction, the control qubit ρC is measured and depending on the
measurement basis and outcome, the collapsed main system can be
at a higher or lower effective temperature than the heat baths.
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inverse temperature β, we have

�sw
(
ρC ⊗ ρ

Q
t0

) = [q|0〉〈0|C + (1 − q)|1〉〈1|C] ⊗ σβ

+
√

q(1 − q)[|0〉〈1|C ⊗ |1〉〈0|C]

⊗ σβρt0σβ,

(3)

where ρ
Q
t0 is the initial state of the main system Q. Physically,

this means that the working body of the main system Q ther-
malizes with two heat baths of the same temperature in an
indefinite causal order. If the control qubit of the output state is
then measured in the |±〉C basis, we obtain the collapsed main
system Q of ρ

Q
± = σβ

2 ± √
q(1 − q)σβρt0σβ , depending on the

measurement outcome. Despite that both individual channels
�A and �B are fully thermalizing such that they transform all
states to the thermal state, the second term is dependent on
the initial state ρt0 and allows the collapsed state to deviate
from the thermal state σβ , enabling Ref. [14] to construct a
refrigeration cycle utilizing this deviation from the expected
equilibrium state. This was also demonstrated experimentally
in Refs. [15,16].

Despite the multiple applications that the quantum switch
was demonstrated to grant, the underlying resource for its
advantage were put into question as other channel compo-
sitions with fixed causal orders were shown to replicate or
even surpass the quantum switch’s enhancements, particularly
in the enhancements of communication capacities [2,17,18].
While consensus remains that the quantum switch’s indefinite
causality does contribute to its advantages [19,20], some re-
cent works have shown that in addition to activating backflow
of information for non-Markovian channels that do not violate
P (positive) divisibility [21], the quantum switch itself also
has intrinsic non-Markovianity and non-Markovian backflow
of information [22–24], which can play a role in granting the
quantum switch’s enhancements to communication capacities
[22] and to work extraction [23].

In this work, by taking this non-Markovian perspective,
we examine the quantum switch’s advantages in refrigeration
tasks. Specifically, we show that a superposition of indepen-
dent channels [18] can achieve the same advantage as the
quantum switch in the case of full thermalization [Eq. (3)].
Instead, prethermalization regimes, where the working body
does not reach equilibrium with the heat bath, are required
for the quantum switch to have an advantage over the super-
position of independent channels. Furthermore, we show that
these advantages are dependent on the presence and amount of
non-Markovianity. We also construct a refrigeration protocol
where the working body starts at a hotter temperature than
the heat baths and yet heat can still be extracted from the
colder heat baths into the working body. This is different from
the refrigeration protocol proposed by Ref. [14], where the
working body starts at the same temperature as the heat baths.
We also note that in our protocol, the requirement of prether-
malization regimes for the quantum switch to outperform the
superposition of independent channels still holds, as well as
its dependence on non-Markovianity.

We will begin by reintroducing the extended quantum
switch of Ref. [23] in Sec. II A, which allows the presence
and amount of non-Markovianity to be varied in the quantum

switch. This is followed by Sec. II B, which demonstrates how
the presence of non-Markovianity can contribute to heat flow
between a working body and an interacting heat bath. Next,
in Sec. III, we examine the conditions where the extended
quantum switch can grant an advantage over the superposition
of independent channels �indep, which covers the full and
prethermalization regimes, revealing the possibility of heat
extraction even when the working body is at a higher temper-
ature than the interacting heat baths. In Sec. III C we exploit
this possibility for heat extraction to propose a refrigeration
cycle that is able to perform refrigeration with a hotter work-
ing body. Finally, in Sec. IV, we summarize and discuss our
results in the context of other work.

II. NON-MARKOVIAN HEAT FLOW
IN THE QUANTUM SWITCH

A. Extended quantum switch

Here we reintroduce the extended quantum switch of
Ref. [23]. It was shown from resource-theoretic arguments
that a thermal operation � acting on a quantum state ρQ at in-
verse temperature β can be defined as �(ρQ) = TrB[U (ρQ ⊗
σ B

β )U †], with an energy conserving unitary U acting on ρQ

and an ancillary quantum system B that is at a thermal state
of inverse temperature β, i.e., σ B

β [25–27]. Therefore, by tak-
ing �A and �B as thermal operations, the quantum switch
operation of �sw in Eqs. (1) and (2) has the environmental
representation [28,29]

�sw(ρC ⊗ ρQ) = TrA,B
[
U sw

(
ρC ⊗ σ A

β ⊗ ρQ ⊗ σ B
β

)
U sw†

]
,

(4)

where subsystems A and B are ancillary environmental sub-
systems that correspond to the operations of �A and �B,
respectively, and are initialized as thermal states. In the qubit
case, we refer to these two ancillary systems as the bath qubits.

It was shown in Refs. [22,23] that U sw can be broken into
three time steps of

U sw =U sw
t2→t3 It1→t2U

sw
t0→t1

= [|0〉〈0|C ⊗ (
IA ⊗ U QB

B

) + |1〉〈1|C ⊗ (
U AQ

A ⊗ IB
)]

× [IC ⊗ IA ⊗ IQ ⊗ IB]

× [|0〉〈0|C ⊗ (
U AQ

A ⊗ IB
) + |1〉〈1|C ⊗ (

IA ⊗ U QB
B

)]
,

(5)

where

U sw
t0→t1 = |0〉〈0|C ⊗ (

U AQ
A ⊗ IB

) + |1〉〈1|C ⊗ (
IA ⊗ U QB

B

)
,

(6)

It1→t2 = IC ⊗ IA ⊗ IQ ⊗ IB, (7)

U sw
t2→t3 = |0〉〈0|C ⊗ (

IA ⊗ U QB
B

) + |1〉〈1|C ⊗ (
U AQ

A ⊗ IB
)
.

(8)

Note that the second time step is the identity operation of
It1→t2 = IC ⊗ IA ⊗ IQ ⊗ IB for reasons that will become clear
later. Under the completely positive (CP) divisibility def-
inition of non-Markovianity [29,30], whether the quantum
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switch operation �sw is a Markovian or non-Markovian evo-
lution depends on whether it obeys the divisibility property

�t→t ′′ = �t ′→t ′′ ◦ �t→t ′ ∀ t < t ′ < t ′′. (9)

The divisibility property states that a CP map �t→t ′′ is
Markovian if it is divisible into other CP maps for all t <

t ′ < t ′′. In the case of the quantum switch’s three-time-step
process U sw = U sw

t2→t3 It1→t2U
sw
t0→t1 , the divisibility property can

be written as

�sw
t0→t3 = �sw

t2→t3 ◦ �sw
t0→t1 , (10)

where we have written �sw = �sw
t0→t3 . It was shown in

Refs. [22,23] that this divisibility property does not hold for
the quantum switch, as the operation in the last time step is
not CP in general due to the presence of system-environment
(SE) correlations generated in the first interaction time steps
[31,32]. This SE correlation is the non-Markovian memory
that results from the operation of the quantum switch. Since
certain information measures are contractive under CP maps,
the non-CP evolution in non-Markovian processes can lead
to a revival of these measures. This is referred to as non-
Markovian backflow of information [33–35]. Backflow of
information in the quantum switch was demonstrated with the
revival of a general entanglement monotone in Ref. [22], of a
trace distance in Ref. [23], and of general geometric distance
measures in Ref. [24].

It is possible to drive the evolution of the quantum switch
to a Markovian one by destroying the correlations before the
operation of the last time step. This is the reason for the
inclusion of the identity It1→t2 in the second time step. By
choosing appropriate operations instead of the identity, one
can reduce or eliminate the SE correlations to control the
amount of non-Markovian memory. For example, in Ref. [22],
additional ancillary systems A′ and B′ were used to inter-
act unitarily with the environmental systems A and B, i.e.,
Ut1→t2 = IC ⊗ U A′A ⊗ IQ ⊗ U BB′

, while in Ref. [23], a ther-
malization process acting on just A and B was used, both
of which can reduce the SE correlations between the main
systems CQ and the environmental systems A and B, causing
the process to be more Markovian. The resulting operation of
this extended quantum switch where the SE correlations are
controllable is denoted by �ext. If the second time step is the
identity of It1→t2 as in the quantum switch case, i.e., �ext =
�sw, no operation is performed to destroy SE correlations
and thus we have the fully non-Markovian limit. This means
that we expect non-Markovian effects to be most apparent
in the quantum switch �sw case. In the other extreme of the
fully Markovian limit where all SE correlations are destroyed
before the final time step, Refs. [22,23] showed that we obtain
the case of a superposition of trajectories [20], denoted by
�traj and with Kraus operator

K traj
i jkl = α0|0〉〈0| ⊗ BlAi + α1|1〉〈1| ⊗ AkBj, (11)

where α0 and α1 are complex coefficients to ensure∑
i jkl K traj†

i jkl K traj
i jkl = I . The superposition of trajectories �traj

is still a superposition of the two operations �B ◦ �A and
�A ◦ �B like the quantum switch �sw, except that the two
paths of the superposition are independent of each other.
In other words, the second pair of �A and �B operations

in t2 → t3 is independent of the first pair in t0 → t1, which
implies Markovianity. This independence is reflected in the
different indices in Eq. (11).

Restricting the discussion to the qubit case, we take the
system Hamiltonian of the main system Q and bath qubits A
and B to be ω|1〉〈1| (the control system is taken to have no
energy) such that the total system Hamiltonian H0 = HQ

0 +
HA

0 + HB
0 , where

HQ
0 = IC ⊗ IA ⊗ ω|1〉〈1|Q ⊗ IB, (12)

HA
0 = IC ⊗ ω|1〉〈1|A ⊗ IQ ⊗ IB, (13)

HB
0 = IC ⊗ IA ⊗ IQ ⊗ ω|1〉〈1|B, (14)

with ω the energy gap between the excited and ground states.
We take the approach of Ref. [23], where the erasure of the SE
correlations is performed with a thermalization process Nt1→t2
in the second time step with Kraus operators [36]

K1 = √
1 − N (|0〉〈0| +

√
1 − γ |1〉〈1|), (15)

K2 =
√

γ (1 − N )|0〉〈1|, (16)

K3 =
√

N (
√

1 − γ |0〉〈0| + |1〉〈1|), (17)

K4 =
√

γ N |1〉〈0| (18)

such that

Nt1→t2 (ρCAQB) =
∑
i, j

Wi jρ
CAQBW †

i j, (19)

where Wi j = IC ⊗ KA
i ⊗ IQ ⊗ KB

j and N = 1/(1 + eβω ), with
β the inverse temperature of the thermalizing bath. Note that
the thermal state can be expressed in terms of N with

σβ =
(

1 − N 0
0 N

)
, (20)

where N ∈ [0, 0.5], achieving the maximum for infinite
temperature and the minimum for zero temperature. This
parametrization of the bath temperature with N will aid in our
analysis later in this work. For example, we can define NQ to
parametrize the thermal state σ

Q
β of the main quantum system

Q at some inverse temperature β that depends on NQ. On the
other hand, note that we will simply use N with no subscript
to parametrize the bath temperature of the interacting baths in
the extended quantum switch, i.e., the baths of bath qubits A
and B. Therefore, the comparison between the temperatures of
the main system Q and the heat baths in the extended quantum
switch can be written in terms of NQ and N , e.g., NQ < N
implies TQ < T or βQ > β.

This set of Kraus operators of Nt1→t2 is simply the gen-
eralized amplitude damping channel (GADC), also known
as the one-qubit thermal operation [37,38]. The GADC de-
scribes an interaction with a thermal environment or heat
bath at some finite temperature, also known as the T1 or
energy relaxation, where the Lindblad operators of the master
equation are

√
JT nσ− and

√
JT (n + 1)σ+, where σ± are the

raising and lowering operators, JT is the coupling strength,
and n = eβω − 1 is the mean number of excitations in the
bath with inverse temperature β and energy gap ω [36,39].
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FIG. 2. Extended quantum switch �ext unwrapped into a space-
time diagram in the environmental representation, which can be
broken into three time steps. In addition to the first and last time
steps which are present in the standard quantum switch, the ex-
tended quantum switch includes a intermediate operation Nt1→t2 ,
which allows the bath qubits to thermalize with the heat baths that
they are in. Depending on the strength of this thermalization (the
parameter γ ), the system-environment correlations in the bath qubits
can be reduced or destroyed, allowing the presence and amount of
non-Markovianity to be controlled.

The thermalization strength is controlled by the parameter
γ ∈ [0, 1], where γ = 0 implies no thermalization, γ = 1
implies full thermalization, and 0 < γ < 1 implies prether-
malization. Physically, full thermalization refers to the case
where the interacting system is allowed to equilibrate to the
equilibrium state of the heat bath, i.e., the thermal state, while
prethermalization refers to the case where the equilibrium
state is not reached. How close the system is to the equilibrium
or thermal state is determined by how close γ is to 1. Hence,
the fully non-Markovian case is achieved with γ = 0, where
the SE correlations are fully retained as the bath qubits are
unchanged, while the fully Markovian case is achieved with
γ = 1, where the bath qubits return to the thermal state, which
destroys the SE correlations. Therefore, the extended quantum
switch operation is

�ext(ρC ⊗ ρQ)

= TrA,B
{
U sw

t2→t3Nt1→t2

[
U sw

t0→t1

× (
ρC ⊗ σ A

β ⊗ ρQ ⊗ σ B
β

)
U sw†

t0→t1

]
U sw†

t2→t3

}
. (21)

Note that while the thermalization operation Nt1→t2 is
nonunitary, it can always be written as a unitary opera-
tion by replacing it with Ut1→t2 = IC ⊗ U A′A ⊗ IQ ⊗ U BB′

and adding the ancillary systems A′ and B′. This means
that Eq. (21) still admits an environmental representation
and thus is CP [28,29]. This extended quantum switch
operation �ext is shown in Fig. 2. The output state at each time
step of the extended quantum switch operation can then be
obtained as

ρ
CQ
t1 = TrA,B

[
U sw

t0→t1

(
ρC ⊗ σ A

β ⊗ ρQ ⊗ σ B
β

)
U sw†

t0→t1

]
, (22)

ρ
CQ
t2 = TrA,B

[
Nt1→t2

(
U sw

t0→t1

(
ρC ⊗ σ A

β ⊗ ρQ ⊗ σ B
β

)
U sw†

t0→t1

)]
,

(23)

ρ
CQ
t3 = �ext(ρC ⊗ ρQ). (24)

Note that it was shown in Ref. [23] that Eq. (21) indeed re-
duces to the Kraus representations of the quantum switch �sw

[Eq. (1)] and the superposition of trajectories �traj [Eq. (11)]
in the fully non-Markovian (γ = 0) and the fully Marko-
vian limits (γ = 1), respectively. As for the operations of
U sw

t0→t1 and U sw
t2→t3 , recall from Eqs. (6) and (8) that they

each implement a controlled superposition between an in-
teraction with heat bath A and an interaction with heat bath
B. These interactions with the heat baths A and B, defined
with U AQ

A and U BQ
B , respectively, are thermal and thus can

also be described with the GADC operation, but in its unitary
definition of

U AQ
A =

⎛
⎜⎜⎜⎜⎝

1 0 0

0 xA −ieiϕ
√

1 − x2
A 0

0 −ie−iϕ
√

1 − x2
A xA 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠, (25)

U QB
B =

⎛
⎜⎜⎜⎜⎝

1 0 0

0 xB −ie−iϕ
√

1 − x2
B 0

0 −ieiϕ
√

1 − x2
B xB 0

0 0 0 1

⎞
⎟⎟⎟⎟⎠, (26)

where ϕ is an arbitrary phase typically taken to be 3π/2
[37,38]. Note that U AQ

A can be generated from an energy-
conserving interaction Hamiltonian of HAQ

int = JA(eiϕσ A
−σ

Q
+ +

e−iϕσ A
+σ

Q
− ) (and vice versa for U QB

B ), where JA (or JB for
U QB

B ) is the coupling strength and σ± are the raising and
lowering operators such that the parameters xA = cos JAt and
xB = cos JBt , with −1 � xA, xB � 1 controlling the strength
of the thermalizations with bath qubits A and B, respectively.
Therefore, each heat bath can be either at full thermalization
(xA = 0 or xB = 0) or at prethermalization (xA �= 0 or xB �= 0),
independently of each other.

Finally, at the end of the three-time-step operation
�ext(ρC ⊗ ρQ), the control qubit is measured in the
|±〉C basis, obtaining the collapsed system Q of ρ

Q
±,t3 =

TrC[(|±〉〈±|C ⊗ IQ)ρCQ
t3 ]/p±,t3 , where p±,t3 = Tr[(|±〉〈±|C

⊗ IQ)ρCQ
t3 ] are the probabilities of measurement. Note that the

collapsed state at other time steps, i.e., ρ
Q
±,t1 and ρ

Q
±,t2 , can

also be found from Eq. (21) by applying the operations up to
U sw

t0→t1 or Nt1→t2 for t1 and t2, respectively. As mentioned in
the Introduction, in the case of the quantum switch �sw of
γ = 0, it is possible to perform refrigeration tasks depending
on the measurement outcome. If the measurement outcome
is |−〉C , heat is extracted by the collapsed system Q, allow-
ing refrigeration to be performed. On the other hand, if the
measurement outcome is |+〉C , heat is passed from the col-
lapsed system Q to the heat baths and no refrigeration can be
done [14].

As a final note, if we were to stop the operation at t1,
i.e., �sw

t0→t1 , we would obtain the superposition of independent
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channels �indep that has the Kraus operator

K indep
i j = ν0|0〉〈0| ⊗ Ai + ν1|1〉〈1| ⊗ Bj, (27)

which is simply a superposition of the two channels �A

and �B, where ν0 and ν1 are complex coefficients to en-
sure

∑
i j K indep†

i j K indep
i j = I . The superposition of independent

channels �indep is often compared to the quantum switch,
serving as a counterexample where the advantages of the
quantum switch can be achieved even with fixed causal order
in some cases [2,18]. It was noted in Refs. [22,23] that since
non-Markovian effects in the quantum switch arise in the last
time step of t2 → t3, which is absent in �indep, the question of
when one can grant more advantage than the other is a matter
of whether advantages from non-Markovian contributions are
possible in the quantum switch.

B. Non-Markovian heat flow

Since the quantum switch is a non-Markovian process, we
would like to see how non-Markovian effects can contribute to
the increase of heat flow. For a quantum system Q interacting
with a heat bath system B of inverse temperature β at time t ,
its nonequilibrium free energy is [40]

F (ρQ
t ) = E (ρQ

t ) − 1

β
S
(
ρ

Q
t

)
, (28)

where E (ρ) = Tr(H0ρ) is the energy of ρ with system
Hamiltonian H0 and S(ρ) = −Tr(ρ ln ρ) is the von Neumann
entropy. Since the equilibrium state is the thermal state of
the heat bath σ

Q
β , the difference in free energy between the

current state and the equilibrium state is F (ρQ
t ) − F (σ Q

β ) =
1
β

S(ρQ
t ||σ Q

β ), where S(ρ||σ ) = Tr(ρ ln ρ) − Tr(ρ ln σ ) is the
quantum relative entropy. Therefore, the energy difference of
system Q in a time step t → t ′ is

E (ρQ) = F (ρQ) + 1

β
S(ρQ),

βE (ρQ) = S
(
ρQ

∣∣∣∣σ Q
β

) + S(ρQ),

βQQ
t→t ′ = S

(
ρQ

∣∣∣∣σ Q
β

) + S(ρQ), (29)

where E (ρQ) = QQ
t→t ′ is the heat flow into system Q in the

time step t → t ′.
Since quantum relative entropy is contractive under CP

maps [28,41], we expect S(ρQ||σ Q
β ) � 0 for thermal oper-

ations, which are CP. However, in a non-Markovian process,
there are time intervals where the CP-divisibility property
can be violated, e.g., the interval τ → t ′ in the entire t →
τ → t ′ process, which means that the monotonic decrease
of S(ρQ||σ Q

β ) � 0 does not need to hold in those intervals,
allowing the possibility for backflow of information, e.g.,
τ→t ′S(ρQ||σ Q

β ) > 0, resulting in irreversibility mitigation
[42,43] or negative-entropy production rates [44,45]. It should
be noted, however, that we still have t→t ′S(ρQ||σ Q

β ) � 0 for
the entire process of t → t ′ as thermal operations are CP.
Furthermore, we can express S(ρQ||σ Q

β ) as

S
(
ρQ||σ Q

β

) = βQQ
t→t ′ − S(ρQ)

= −βQB
t→t ′ + S(ρB) − I (ρQ; ρB)

FIG. 3. Violation of the contractive property of quantum relative
entropy is most significant in the |−〉〈−|C measurement outcome
for N = 0.223 and NQ = 0.159. This violation is indicative of non-
Markovian backflow of information and is only present in the
prethermalization regimes (xA, xB �= 0). The backflow is greatest
for the fully non-Markovian case of γ = 0 and decreases as non-
Markovianity decreases, i.e., when γ increases.

− S(ρQB)

= −S
(
ρB||σ B

β

) − I
(
ρQ; ρB

) − S(ρQB),

(30)

where I (ρQ; ρB) = S(ρQ) + S(ρB) − S(ρQB) is the quantum
mutual information and the SE correlation, which should
make clear that the presence of initial SE correlations, as
well as a bath qubit that is perturbed away from the thermal
state, can grant positive contributions to S(ρQ||σ Q

β ). In the
extended quantum switch, these conditions can happen in
t2 → t3, i.e., t = t2 and t ′ = t3. The equilibration process of
Nt1→t2 (depending on the parameter γ ) can prevent this by
thermalizing the bath qubits back to the thermal state, which
destroys the SE correlations in the process, i.e., S(ρB

t2 ||σ B
β ) =

0 and I (ρQ
t2 ; ρB

t2 ) = 0. This leads to positive S(ρB||σ B
β ) =

S(ρB
t3 ||σ B

β ) and positive I (ρQ; ρB) = I (ρQ
t3 ; ρB

t3 ) in the fi-
nal time step t2 → t3, granting a negative contribution to
S(ρQ||σ Q

β ), eliminating the non-Markovian backflow of
information.

In the case of the extended quantum switch, we are con-
cerned with the collapsed main system Q after a measurement
on the control qubit, and so we have

βQQ
±,t2→t3 = t2→t3 S

(
ρ

Q
±||σ Q

β

) + t2→t3 S(ρQ
± ), (31)

where the subscript ± refers to the measurement outcomes
|±〉C . Plotting t2→t3 S(ρQ

−||σ Q
β ) in Fig. 3 reveals the presence

of the non-Markovian backflow of information.

III. ADVANTAGE OF NON-MARKOVIANITY

It should be noted that despite that the non-Markovian
effects manifest only from t2 → t3, the quantification of
its advantage is not simply the quantification of QQ

±,t2→t3 .
Instead, we have to compare the performance of the
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extended quantum switch �ext (t0 → t3) and the superpo-
sition of independent channels �indep (t0 → t1). This is
because, while the heat extraction may appear to be equiv-
alent, i.e., QQ

±,t2→t3 = QQ
±,t0→t3 − QQ

±,t0→t1 , �indep and �ext

actually have different probabilities of measurement for |±〉C .
Therefore, the advantage that the extended quantum switch
�ext (which holds the possibility of non-Markovian backflow
of information) has over the superposition of independent
channels �indep is

〈Q〉Q
± = p±,t3 QQ

±,t0→t3 − p±,t1 QQ
±,t0→t1 , (32)

which is the difference between the amount of heat extracted
from �ext and �indep, weighted by their respective probabil-
ity of measurements, and is not equal to QQ

±,t2→t3 . Note that
while having 〈Q〉Q

± > 0 implies that the extended quantum
switch �ext has an advantage over �indep, it does not imply
positive heat extraction. Hence, in addition to the conditions
for 〈Q〉Q

± > 0, we are also interested in the conditions where
positive heat extraction is possible.

A. Full thermalization

Let us consider the case of full thermalization first where
xA = xB = 0, which was the case considered in Ref. [14].
Specifically, Ref. [14] demonstrated that the quantum switch
�sw can grant p−,t3 QQ

−,t0→t3 � 0 even for NQ = N , i.e., posi-
tive heat extraction even when the working body is at the same
temperature as the baths. Here we will see that this feature is
not unique to the quantum switch. Taking the control qubit
to be ρC

0 = |φ〉〈φ|C , where |φ〉 = √
q|0〉C + √

1 − q|1〉C , and
recalling that we have

p±,t = Tr
[
(|±〉〈±|C ⊗ IQ)ρCQ

t

]
, (33)

QQ
±,t→t ′ = E (ρQ

±,t ′ ) − E (ρQ
±,t ) (34)

= Tr
(
HQ

0 ρ
Q
±,t ′

) − Tr
(
HQ

0 ρ
Q
±,t

)
, (35)

where

ρ
Q
±,t = 1

p±,t
TrC

[
(|±〉〈±|C ⊗ IQ)ρCQ

t

]
, (36)

we consider the case of general NQ and compute explicitly the
heat flow for the collapsed systems

p±,t1 QQ
±,t0→t1

= ω
√

q(1 − q)

(
N − NQ

2
√

q(1 − q)
∓ NQ(1 − NQ)(1 − 2N )

)

(37)

and

p±,t3 QQ
±,t0→t3

= ω
√

q(1 − q)

×
(

N − NQ

2
√

q(1 − q)
∓ NQ(1 − NQ)(1 − 2N ) ∓ νγ

)
,

(38)

where their difference is an additional term

νγ = − 2γ N[NQ(1 − 3N ) +
√

1 − γ N (1 − N − 2NQ)]

+ 2(γ + γ
√

1 − γ )NQN[NQ(1 − 3N )

− 2N2(1 − NQ)], (39)

which depends on the non-Markovian parameter γ . Their
difference is thus 〈Q〉Q

± = ∓ω
√

q(1 − q)νγ . Equation (39)
shows that for all possible values of γ , NQ, and N , we have
νγ � 0 with equality only in the quantum switch �sw case of
γ = 0. This means that for the fully non-Markovian case of
the quantum switch �sw, we have 〈Q〉Q

± = 0. In other words,
the superposition of independent channels �indep with its fixed
causal order is sufficient to achieve the same advantage as the
quantum switch.

Still, 〈Q〉Q
± can be positive for the case of γ �= 0, specifi-

cally for the |+〉C measurement outcome. Let us consider the
two measurement outcomes separately and find the conditions
for positive heat extraction.

1. |−〉〈−| measurement outcome

For the case of the |−〉〈−| measurement outcome, since
νγ is always negative, decreasing the amount of non-
Markovianity, or γ > 0, always results in a negative contribu-
tion to the heat flow into main system Q, and so the extended
quantum switch �ext does not grant an advantage over �indep

and any displacement from the fully non-Markovian case of
γ = 0 will lead to a worse performance than �indep.

We can find the condition for positive heat flow for �indep

by setting p−,t1 QQ
−,t0→t1 > 0 to obtain

N − NQ > −2
√

q(1 − q)NQ(1 − NQ)(1 − 2N ). (40)

Note that the right-hand side is always negative, which means
that we can get positive heat flow into the main system Q
whenever NQ < N , i.e., the left-hand side is positive. This is
not surprising since NQ < N means that the main system Q is
in a thermal state of a lower-temperature system interacting
with a higher-temperature system, and so heat flow into the
main system Q is expected.

Interestingly, the inequality still holds for some cases of
NQ � N . This means that the main system Q can still extract
heat from the heat baths even if it is in a thermal state that
is of hotter temperature than the heat baths. We can find the
boundary for the case of q = 0.5 by setting the left-hand and
right-hand sides of Eq. (40) to be equal, which gives us the
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FIG. 4. Heat flow into the collapsed main system Q in the
|−〉〈−|C measurement outcome for the range of all possible N and
NQ for the full thermalization case of xA, xB = 0. We see that there
can be positive heat extraction (bottom right areas bounded by
the black line) for some values of NQ > N , which decreases as γ

increases.

upper bound of NQ or βQ that allows positive heat flow:

N − NQ + NQ(1 − NQ)(1 − 2N ) = 0,

e2βQω − eβω

(1 + e2βQω )(1 + eβω )
= 0,

e2βQω = eβω,

2βQ = β. (41)

Therefore, positive heat flow into the main system Q is pos-
sible if the thermal state of the main system Q has less than
twice the temperature of the interacting baths, i.e., TQ < 2T .

Likewise, for �ext, we have

N − NQ + 2
√

q(1 − q)νγ

> −2
√

q(1 − q)NQ(1 − NQ)(1 − 2N ), (42)

where despite the presence of the negative contribution
of 2

√
q(1 − q)νγ (since νγ � 0), there are still cases of

NQ � N where the inequality holds. We plot p−,t3 QQ
−,t0→t3

in units of ω for different values of NQ and N in
Fig. 4 to demonstrate this. Therefore, this opens the pos-
sibility for novel refrigeration tasks where the working
body can be at a higher temperature than the baths be-
ing cooled. However, we reiterate that the superposition
of independent channels �indep is sufficient to implement
these tasks.

2. |+〉〈+| measurement outcome

The case of the |+〉〈+| measurement outcome differs from
the |−〉〈−| case simply by the signs of the NQ(1 − NQ)(1 −
2N ) and νγ terms. In this case, 〈Q〉Q

+ can be positive, al-
lowing �ext to grant higher heat flow than �indep. However,
we will see that this advantage is only possible for the trivial
case of NQ < N and thus is not useful for novel refrigeration

FIG. 5. Heat flow into the collapsed main system Q in the
|+〉〈+|C measurement outcome for the range of all possible N and
NQ for the full thermalization case of xA, xB = 0. Different from the
case of the |−〉〈−|C outcome, there is no positive heat extraction
(bottom right areas bounded by the black line) for NQ > N .

tasks. This case is not of interest as it is achievable by simpler
classical compositions.

Specifically, we have the following two conditions for pos-
itive heat flow for �indep and �ext, respectively:

N − NQ > 2
√

q(1 − q)NQ(1 − NQ)(1 − 2N ), (43)

N − NQ − 2
√

q(1 − q)νγ

> 2
√

q(1 − q)NQ(1 − NQ)(1 − 2N ). (44)

Different from the |−〉〈−| case, the right-hand side is positive,
which means that positive heat flow is possible for NQ < N ,
but not for NQ � N in the case of �indep. On the other hand,
for the case of �ext, we have a positive contribution from
the −2

√
q(1 − q)νγ term, and so it might be possible for

the inequality to hold even for NQ � N . However, plotting
p+,t3 QQ

+,t0→t3 in units of ω in Fig. 5 reveals that this is still
not possible. Therefore, despite the extended quantum switch
�ext granting an advantage over �indep with 〈Q〉Q

+ > 0, the
extended quantum switch does not grant any new application
for heat extraction that cannot be achieved by other simpler
compositions that make use of the temperature difference
NQ < N .

B. Prethermalization

Let us now consider the general case of −1 � xA, xB � 1,
which includes the prethermalization regimes. For �indep we
have

p±,t1 QQ
±,t0→t1

= ω
√

q(1 − q)

(
N − NQ

2
√

q(1 − q)

[
1 − qx2

A − (1 − q)x2
B

]

∓ NQ(1 − NQ)(1 − 2N )(1 − xAxB)

)
, (45)
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FIG. 6. Positive heat extraction by the main system Q is still pos-
sible in the |−〉〈−|C measurement outcome for the case of NQ > N ,
which decreases as γ increases. The prethermalization regimes can
extract more heat than the full thermalization regime.

which is the same as the full thermalization case except for an
additional factor that depends on xA and xB. Note that we are
unable to provide a closed-form solution for the case of the
extended quantum switch p±,t3 QQ

±,t0→t3 and will instead pro-
vide a numerical analysis of p−,t3 QQ

−,t0→t3 and p+,t3 QQ
+,t0→t3

separately.

1. |−〉〈−| measurement outcome

In the case of the |−〉〈−| measurement outcome, the con-
dition for p−,t1 QQ

−,t0→t1 > 0 is

N − NQ >
−(1 − xAxB)

1 − qx2
A − (1 − q)x2

B

× 2
√

q(1 − q)NQ(1 − NQ)(1 − 2N ). (46)

Note that this is again simply the condition for the case of
full thermalization except for an additional term that depends
on xA and xB. This additional term decreases the right-hand
side further; e.g., in the case of q = 0.5, the right-hand side
has a range of [−∞,−1], achieving the maximum of −1
for xA = xB = 0. Hence, prethermalization can allow greater
heat extraction and can grant more allowable values of NQ

and N for positive heat extraction. Furthermore, we see that
the case of NQ > N can still grant positive heat flow in the
prethermalization regimes.

As for the case of the extended quantum switch �ext, we
plot p−,t3 QQ

−,t0→t3 in units of ω in Fig. 6 with N = 0.223,
NQ = 0.269, and q = 0.5. Note that this corresponds to the
case of NQ > N . We see that �ext is still able to grant posi-
tive heat flow into the main system Q, despite having NQ >

N , and that the maximum possible heat flow occurs in the
prethermalization regime (xA, xB �= 0) and is greater as γ ap-
proaches 0, i.e., for increasing non-Markovianity. Finally, we
plot the advantage 〈Q〉Q

− in units of ω in Fig. 7. We see that
there are thermalization regimes where the extended quantum
switch �ext can perform better than �indep, i.e., 〈Q〉Q

− > 0,

FIG. 7. Advantage in positive heat extraction of the extended
quantum switch �ext over the superposition of independent chan-
nels �indep. The advantage is only present in the prethermalization
regimes, which decreases as the amount of non-Markovianity de-
creases (increasing γ ).

and that they are dependent on the presence and amount of
non-Markovianity.

Therefore, we see that not only can �ext grant posi-
tive heat flow into the main system Q with NQ > N , but
it can also grant a better performance over �indep in the
prethermalization regimes. This advantage is dependent on the
non-Markovianity parameter γ , and we see that the maximum
is achieved for the fully non-Markovian case of γ = 0. We
can further probe the non-Markovian contribution to positive
heat flow by plotting p−,t3 QQ

−,t2→t3 in units of ω in Fig. 8,
where we see that the enhancement to positive heat flow
decreases with increasing γ or Markovianity. Different from
the case of 〈Q〉Q

−, there is no positive enhancement for large

FIG. 8. Non-Markovian contribution to the amount of heat ex-
traction for the extended quantum switch �ext, which decreases as
non-Markovianity decreases (increasing γ ). This makes clear that
the advantage of �ext seen in Fig. 7 is largely due to the contribution
from the non-Markovian time step from t2 → t3.
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values of γ . This is expected as the non-Markovian backflow
of information S(ρQ

−||σ Q
β ) should decrease as the system

becomes more Markovian. Furthermore, the regimes where
non-Markovian backflow of information is possible (Fig. 8)
closely coincide with the regimes where the extended quan-
tum switch �ext has an advantage over �indep, i.e., 〈Q〉Q

− >

0, for small γ (Fig. 7).

2. |+〉〈+| measurement outcome

Let us briefly take a look at the case of the |+〉〈+| measure-
ment outcome, where the difference from the |−〉〈−| case is
simply a sign difference for the last term and so the condition
for positive heat extraction for p+,t1 QQ

+,t0→t1 is

N − NQ >
1 − xAxB

1 − qx2
A − (1 − q)x2

B

× 2
√

q(1 − q)NQ(1 − NQ)(1 − 2N ), (47)

where the right-hand side now has a range [0,∞]. Therefore,
similar to the full thermalization case, positive heat extraction
for �indep is still impossible for NQ > N . For the case of �ext,
a numerical search over the entire range of values N, NQ ∈
[0, 0.5], xA, xB ∈ [−1, 1], and γ ∈ [0, 1], for q = 0.5, reveals
that it is also impossible to have positive heat extraction
for NQ > N .

C. Refrigeration with NQ > N

To recap, our results agree with Ref. [14] that the quan-
tum switch is able to grant positive heat extraction even for
NQ = N in the |−〉〈−| measurement outcome. However, we
showed that this advantage is already achievable with the
superposition of independent channels �indep and that it is
only in the prethermalization regimes that the quantum switch
has an advantage over it due to the presence of contributions
from the non-Markovian backflow of information.

Furthermore, we revealed that in addition to NQ = N , pos-
itive heat extraction is still possible with NQ > N . Positive
heat extraction in the case of NQ = N is novel as we expect
no net flow of heat, and in the case of NQ > N we would
expect a negative heat flow, i.e., heat flows out of the hotter
main system Q into the colder baths of β, yet positive heat
flow into the main system Q is possible up to a certain NQ

with respect to N . This might present an opportunity for more
novel refrigeration applications where the working body can
be at a higher temperature than the system being cooled.
In this section we construct such a refrigeration cycle for
NQ > N and compare the cycle’s coefficient of performance
of the extended quantum switch �ext and the superposition of
independent channels �indep.

We illustrate the refrigeration cycle in Fig. 9. The cycle
involves heat baths of two different temperatures: the cold
baths of inverse temperature β that the working body or main
system Q interacts with in the �ext operation and a hot bath
of inverse temperature βQ, with βQ < β, TQ > T , or NQ > N .
The main system Q is the working body of the cycle and
starts in a thermal state of the hot bath of inverse temperature
βQ. It undergoes the extended quantum switch �ext opera-
tion interacting with the cold baths of inverse temperature
β. After the interaction, the control qubit is measured. If the

FIG. 9. Refrigeration cycle for the case of a main system or
working body Q that starts at inverse temperature βQ of a hot bath
that is hotter than the cold baths in the �ext operation, i.e., βQ < β

or NQ > N . After measurement of the control qubit, depending on
the measurement outcome, there can be positive heat flow into the
working body Q, despite it being at a higher temperature than the
interacting baths. This extracted heat is passed to the βQ hot bath,
resetting the cycle. In the measurement outcome where heat flows
from the working body into the cold baths of β, we interact the
working body again with the cold bath of β before resetting the
working body with the hot bath of βQ. We can then find regimes
where on average heat flows out of the cold bath and into the
hot bath.

measurement outcome is |−〉〈−|, we reinitialize the collapsed
working body Q back to the thermal state of βQ by thermal-
izing with the βQ hot bath. If the measurement outcome is
|+〉〈+|, we thermalize the collapsed working body Q with the
β cold baths before reinitializing it back to the thermal state
of βQ with the hot bath.

The average heat flow per cycle out of the cold bath (and
into the hot bath) is thus

〈Q〉H
t = p−,t Q

Q
−,t0→t − p+,t

[
E

(
σβQ

) − E (σβ )
]
, (48)

where the superscript H represents heat flow into the hot
bath. Note that the entropic or work cost comes about due
to Maxwell’s demonlike measurement process, where after
the measurement of the control qubit, some amount of infor-
mation about the measurement result is stored in a memory
register, which must be erased to reset the thermodynamic
cycle [14]. This erasure of information would then require
work expenditure in accordance with Landauer’s principle
[46]. Given that the erasure is performed with a resetting bath
of inverse temperature βR, the work cost of the cycle is thus
Wt = H (p±,t )/βR, or

Wt = − 1

βR
(p−,t ln p−,t + p+,t ln p+,t ), (49)

where H (·) is the Shannon entropy. We can then calculate
the efficiency or coefficient of performance (COP) of the
refrigeration cycle as

ηt = max
{
0, 〈Q〉H

t

}
Wt

, (50)

where we only consider the COP where refrigeration is pos-
sible, i.e., 〈Q〉H

t � 0. Therefore, we can find the difference in
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FIG. 10. The COP of the refrigeration cycle of Fig. 9 utilizing
the extended quantum switch �ext in units of βR. It is greatest for
the fully non-Markovian case of γ = 0 and decreases with decreas-
ing non-Markovianity (increasing γ ). It is also only nonzero in the
prethermalization regimes.

COP of �ext and �indep as

η = ηt3 − ηt1 . (51)

Taking N = 0.223, NQ = 0.269, and q = 0.5, we plot ηt3 in
units of ωβR in Fig. 10, demonstrating that there are ther-
malization regimes (areas bounded by the black lines) where
refrigeration is possible for the extended quantum switch �ext.
Likewise, we plot η in units of ωβR in Fig. 11, revealing
the regimes where the extended quantum switch �ext can
perform better than the superposition of independent channels
�indep (areas bounded by the black lines). There are three

FIG. 11. Advantage in COP of the refrigeration cycle utilizing
�ext as compared to �indep. Again, the advantage is greatest in the
fully non-Markovian case of γ = 0 and decreases with decreasing
non-Markovianity (increasing γ ). The advantage is also only present
in the prethermalization regimes. However, it can be seen that there
are other regimes where �indep can outperform the extended quantum
switch �ext.

important things to note. First, the ability for �ext to perform
refrigeration and its advantage over �indep are maximal for
the fully non-Markovian case of γ = 0, which decreases with
decreasing non-Markovianity, i.e., increasing γ . Second, this
ability and its advantage are absent in the fully thermaliza-
tion regime, i.e., xA, xB = 0. This is despite the fact that heat
extraction is possible in the |−〉〈−|C measurement outcome
for full thermalization as seen in Fig. 4, which means that
this extractable heat is balanced out by the |+〉〈+|C measure-
ment outcome, resulting in no average heat extraction. Third,
there are regimes where �indep still grants a higher COP than
the extended quantum switch �ext, i.e., η < 0. These three
results note that while the quantum switch has additional ad-
vantage granted by its non-Markovianity, deliberately chosen
prethermalization regimes is necessary for this advantage to
be significant and for it to outperform the simpler superposi-
tion of independent channels. For example, consider a setup
where heat bath A is fully thermalizing (xA = 0), while heat
bath B can be prethermalizing (xB �= 0). We can see in Fig. 11
that there are prethermalization regimes for heat bath B where
the quantum switch �sw can outperforms �indep (xB < 0),
whereas in regimes where the converse is true (xB > 0), �indep

can only grant a lesser advantage close to zero.

IV. CONCLUSION

Many works have demonstrated that when the quantum
switch operation �sw is used to perform full thermalization
between a working body and the baths, the working body
is able to extract heat from the baths even when they are
initialized at the same temperature [14–16]. However, here we
showed that the same advantage is achieved by the superpo-
sition of independent channels �indep, which has fixed causal
order. Instead, the quantum switch �sw only has an advantage
over �indep in certain prethermalizing regimes, and by extend-
ing the quantum switch into the extended quantum switch �ext

of Ref. [23] such that its non-Markovianity is variable, we are
able to show that this advantage and its regimes decrease as
the amount of non-Markovianity decreases.

Furthermore, we computed the conditions for positive heat
extraction in terms of the temperatures of the baths and work-
ing body, revealing that positive heat extraction is possible
even when the working body is at a higher temperature than
the baths. This allows us to construct a refrigeration cycle
that is able to perform refrigeration with a working body of
a higher temperature than the bath being cooled in certain
prethermalization regimes. The coefficient of performance of
the cycle is greatest for the fully non-Markovian case of the
quantum switch �sw and decreases as the amount of non-
Markovianity decreases. This dependence on the amount of
non-Markovianity is also true for the quantum switch’s advan-
tage over the superposition of independent channels �indep.

Our work is consistent with previous works on the presence
and contributions of non-Markovianity to some advantages
seen in the quantum switch [22–24]. The ability to perform
refrigeration with a working body of a higher temperature
might also present an opportunity for novel quantum refrig-
eration applications. However, it is important to note that the
advantage of the quantum switch over �indep, as well as the
advantage granted by non-Markovian contributions, is only
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present in certain prethermalization regimes and that there are
other regimes where �indep can perform much better than the
quantum switch. This means that while non-Markovianity can
grant additional advantage, its advantage can be easily sur-
passed with just a coherent superposition. This is in line with
recent works that showed that the advantages of the quantum
switch can be replicated with just coherent superpositions,
e.g., in communication advantages [2,17,18]. Furthermore,
our work, which includes the prethermalization regimes, ex-
tends the work of Ref. [47], where it was shown that the
superposition of N independent channels can outperform a
quantum switch with N cyclic causal orders, which considers
only the full thermalization regime, although in this work we
only have N = 2. Therefore, combined with the low COP,
practical quantum refrigeration applications utilizing this fea-
ture of the quantum switch are circumstantial and depend on
the thermalization regimes.

Future works could look into how to better utilize the
non-Markovian advantage granted by the quantum switch in
quantum refrigeration tasks. For example, Ref. [48] showed

that non-Markovian memory can be enhanced by increasing
the dimensions of the control qubit. Otherwise, one can also
examine if the advantages granted by the quantum switch are
always redundant and achievable with just coherent super-
positions. Other forms of thermal interactions such as ones
with squeezed baths [39] or non-Markovian baths [49] (on top
of the non-Markovianity of the quantum switch) might also
enhance refrigeration beyond what the quantum switch can
offer. The feature of non-Markovianity is also not exclusive
to the quantum switch and is applicable to other channel
compositions. While our work focused on its presence in
the quantum switch, other future works can extend the same
framework to other channel compositions that might grant a
greater coefficient of performance than the quantum switch.
Ultimately, our work further demonstrated the role of non-
Markovianity in the quantum switch in granting its various
advantages, and one important open question is whether its
feature of indefinite causal order, as well as the advantages
that it grants, always has a dual characterization in terms of
non-Markovianity.
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