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Wigner’s friend paradoxes highlight contradictions between measurements made by friends inside a laboratory
and superobservers outside the laboratory, who have access to an entangled state of the measurement apparatus.
Where there are two separated laboratories, the contradictions lead to no-go theorems for observer-independent
facts, thus challenging concepts of objectivity. Here, we examine the paradoxes from the perspective of
establishing consistency with macroscopic realism. We present versions of the Brukner-Wigner’s-friend and
Frauchiger-Renner paradoxes in which the spin-1/2 systems measured by the friends correspond to two
macroscopically distinct states. The local unitary operations Uθ j that determine the measurement settings θ j

at each laboratory are carried out using nonlinear interactions, which are tailored to ensure that measurements
need only distinguish between the macroscopically distinct states. The macroscopic paradoxes are perplexing,
seemingly suggesting there is no objectivity in a macroscopic limit. However, we demonstrate consistency with
a contextual weak form of macroscopic realism (wMR): The premise wMR asserts that each system j can be
considered to have a definite spin outcome λθ j , at the time after the system has undergone the local unitary
rotation Uθ j to prepare it in a suitable measurement basis. We further show that the paradoxical outcomes imply
failure of deterministic macroscopic local realism and arise when there are unitary interactions Uθ j occurring
due to a change of measurement setting at both laboratories, with respect to the state prepared by each friend. In
models which validate wMR, there is a breakdown of a subset of the assumptions that constitute the Bell-locality
premise. A similar interpretation involving a contextual weak form of local realism exists for the original
paradoxes.
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I. INTRODUCTION

The Wigner’s friend paradox concerns a gedanken exper-
iment in which inconsistencies arise between observations
recorded by experimentalists either inside (the “friends”) or
outside (the “superobservers”) the laboratory [1]. There is
a distinction between systems that have undergone a “col-
lapse” into an eigenstate due to measurement and systems
which remain entangled with the laboratory apparatus. The
inconsistencies can be quantified in the form of Brukner’s
no-go theorem for “observer-independent facts,” whereby a
record of the results of measurements exists in a way that
can be viewed consistently between observers [2]. The no-go
theorem applies to an extended Wigner’s friend paradox for
two separated laboratories and adopts the locality assumption
[3–7]. The inconsistencies have been further highlighted by
the Frauchiger-Renner paradox [8]. As experiments support
quantum predictions [9,10], the paradoxes challenge the con-
cept of objectivity. This has motivated further work [9–24] in-
cluding analyses involving consistent histories [15], Bohmian
models [14], weak measurements [17], timeless formulations
[21], and strong “local friendliness” no-go theorems [10].

In this paper, we present macroscopic versions of the ex-
tended Wigner’s friend and Frauchiger-Renner paradoxes in
which all measurements leading to the inconsistent results
are performed on a system “which has just two macroscop-
ically distinguishable states available to it” [25–27]. This

includes the initial system measured by the friends in each
laboratory, which is normally considered to be microscopic.
The consequence is that one can apply, for each system
and measurement, the definition of macroscopic realism put
forward by Leggett and Garg [27,28]. Leggett and Garg’s
macroscopic realism (MR) asserts that the system actually
be in one or other state at any given time, meaning that the
outcome of a measurement distinguishing between the two
macroscopically distinct states has a predetermined value. We
note that the definition of MR does not require knowledge
about the “state” the system is in at a microscopic level.

With this definition, it might seem at first glance impossi-
ble to obtain consistency between macroscopic realism and
the macroscopic Wigner’s friend paradoxes, which suggest
there is no objectivity between observers for the outcomes of
quantum measurements on a macroscopic spin. The paradoxes
as applied to macroscopic qubits become especially puzzling,
because apparently then there is no basis for objectivity even
in a macroscopic limit.

In this paper, we examine the relationship of the para-
doxes with macroscopic realism (MR), giving a resolution
of the apparent inconsistencies. We consider two forms of
MR, a deterministic form (dMR) which we show is negated
by the paradoxes, and a weaker form (wMR), which we
show is consistent with the quantum predictions and is
similar to Bell’s idea of macroscopic “beables” [29]. The
resolution is based on the dynamics of the unitary interaction
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Uθ that determines the measurement setting for a spin mea-
surement Sθ . In a contextual model of quantum mechanics,
the state of the system after the interaction differs from that
before the interaction. We demonstrate that the premise of MR
if applied to the system at the time ti after the dynamics Uθ (t )
(when the measurement settings are fixed) is consistent with
the quantum predictions: The premise of MR if applied to the
system as it exists prior to the dynamics Uθ (t ) is falsifiable
by the quantum predictions. This leads to the two definitions
of MR [30–33]. The first is a weaker (more minimal) as-
sumption, referred to as weak macroscopic realism (wMR).
The second definition is a stronger assumption that postulates
predetermined variables prior to all stages of measurement,
along the lines of classical mechanics, and is referred to as
deterministic macroscopic realism (dMR).

We therefore put forward an analysis of the Wigner’s friend
experiments that validates an objective macroscopic realism,
in which there is a predetermined value λθ,i for the outcome
of the measurement on the macroscopic two-state system de-
fined at a time ti, in accordance with wMR. The system is
objectively in a state of definite qubit value λθ,i, at the time ti
once the system has undergone the appropriate local unitary
rotation Uθ to prepare it in the suitable basis, meaning that the
records of the friend (who makes a measurement inside the
laboratory) and the superobserver (who makes measurements
on the entire laboratory) agree on such values. The paradoxi-
cal outcomes between the two types of observers (friends and
superobservers) at different laboratories illustrate a failure of
dMR, which we show manifests as a violation of a macro-
scopic Brukner-Bell-Wigner inequality in both the extended
Wigner’s friend experiment, and the Frauchiger-Renner ver-
sion.

We further show that the inconsistencies between the dif-
ferent observers arise where there are two nonzero unitary
rotations, Uθ and Uφ , one at each of the two laboratories,
giving a change of measurement setting of the superobservers
with respect to the friends at both available laboratories. In
this case, the assumption of locality is justified by determin-
istic MR but not by weak MR. The quantum predictions that
violate Brukner-Bell-Wigner or Bell inequalities are therefore
not inconsistent with weak macroscopic realism (wMR).

In fact, the premise of wMR implies only a partial locality,
which asserts no-disturbance to the value of λθ,i for the state
created at the time ti, after the local unitary Uθ (t ) has taken
place. It is postulated that there can be no change to the value
of λθ,i due to any further unitary interaction Uφ occurring
at the other laboratory after the time ti. The premise wMR
does not imply locality in the full sense: It cannot be assumed
that the outcome of a spin measurement Sθ at one laboratory
A is not affected by an interaction Uφ occurring to fix the
measurement setting φ at the other laboratory B if the local
unitary interaction Uθ at A has not yet occurred. Here, we
assume no relative motion between the laboratories and that
all observers are in the laboratory frame.

The formulation of the macroscopic paradoxes is achieved
by a direct mapping of the microscopic gedanken experiment
onto a macroscopic one, the spin qubits |↑〉 and |↓〉 corre-
sponding to two macroscopically distinct orthogonal states.
We illustrate with two examples: two coherent states |α〉 and
|−α〉 where α → ∞, and two groups of N correlated spins.

The unitary operations Uθ required for the measurement of a
spin component Sθ are realized by a Kerr Hamiltonian HNL,
where the value of θ is determined by the time of interaction
with a nonlinear medium, or a sequence of CNOT gates.

The interpretation given in this paper motivates a similar
interpretation for the original paradoxes, where the friends
make microscopic spin measurements. In that interpretation,
wMR is replaced by a weak version of local realism (wLR),
which specifies a predetermined value λθ,i for the outcome of
a measurement Sθ , for the system prepared at time ti after the
unitary interaction Uθ determining the choice of measurement
setting θ has been carried out. The interaction Uθ prepares
the system with respect to a measurement basis, in a state
given as the superposition |↑〉θ + |↓〉θ of eigenstates of the
spin observable Sθ . In this contextual model, the state is only
completely described once the measurement basis is specified.
Similar contextual models have been given for Bell violations
[30–34] and, in a full probabilistic formulation, for quantum
measurement [35,36].

Overview of paper. The paper is organized as fol-
lows: In Sec. II, we summarize the Wigner’s friend and
Frauchiger-Renner gedanken paradoxes. For our work involv-
ing macroscopic superposition states, it proves convenient to
consider two strategies, one involving measurements of Sz and
Sx as in the original examples, and the other involving mea-
surements of Sz and Sy. We illustrate the fully macroscopic
versions of the paradoxes in Sec. III, where we show a vio-
lation of the Brukner-Bell-Wigner inequality. In Sec. IV, we
demonstrate the failure of deterministic macroscopic (local)
realism (dMR) for both paradoxes. Weak macroscopic realism
(wMR) is explained in Sec. V, where it is shown how wMR
can be compatible with violations of the Brukner-Bell-Wigner
and Clauser-Horne-Shimony-Holt (CHSH) Bell inequalities.
We prove a sequence of results for wMR. In Sec. VI, the
consistency of the paradoxes with wMR is illustrated by way
of an explicit wMR model. This is done by comparing with
the predictions of certain quantum mixtures that are valid from
one or other of the friends’ perspectives. A conclusion is given
in Sec. VII.

II. WIGNER’S FRIEND PARADOXES

A. Observer-independent facts no-go theorem:
Brukner Bell-Wigner test

We first summarize the theorem introduced by Brukner for
an extended version of the Wigner’s friend paradox [2]. A
spin-1/2 system is in a closed laboratory L where Wigner’s
friend F can make a measurement on a spin-1/2 system to
measure the z component σz. This means that the spin sys-
tem will become entangled with a second more macroscopic
system that exists in the laboratory. (Ultimately, as each piece
of apparatus becomes entangled, the macroscopic apparatus
includes the friend.) From the friend’s perspective, after the
measurement, the system has collapsed into a state that has a
definite value for the spin σz measurement. To Wigner, who is
outside the laboratory, the friend’s measurement is described
by a unitary interaction, and the combined state of the spin
and friend is given by

|�〉SF = 1√
2

(|↑〉z|Fz+〉 + |↓〉z|Fz−〉). (1)
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Here, |↑〉z and |↓〉z are the eigenstates of σz. The |Fz+〉 and
|Fz−〉 are states for the macroscopic measuring apparatus,
which we might envisage to be a pointer on a measurement
dial that indicates the result of the measurement to be either
a positive outcome +1 (spin “up”), or a negative outcome
−1 (spin “down”), respectively. We refer to Wigner’s possi-
ble spin measurement, which involves a more macroscopic
state and need not be restricted to just one component, using
the notation Sz, Sx, and Sy. Wigner’s description of the com-
bined state is that of a superposition. Hence, the interpretation
of the overall state of the laboratory is different, or unclear,
since the superposition is not equivalent to the mixture of the
two states |↑〉z|Fz+〉 and |↑〉z|Fz+〉.

A no-go theorem relating to the paradox was presented by
Brukner, who established a theoretical framework in which
one can account for observer-independent facts [2]. The no-
tion of observer-independent facts is tested by carrying out
a Bell-Wigner experiment. Based on the work of Brukner,
a violation of a Bell-Wigner inequality implies a failure of
the conjunction of: (1) locality, (2) free choice (freedom for
all parties to choose their measurement settings), and (3)
observer-independent facts (a record from a measurement
should be a fact of the world that all observers can agree
on). The difference between a Bell test and a Bell-Wigner
test lies in the third assumption; a Bell-Wigner test assumes
observer-independent facts, while a Bell test assumes hidden
variables that describe (for maximally correlated Bell states)
predetermined measurement outcomes. Locality is defined by
Bell in the original derivation of Bell’s inequalities and im-
plies no instantaneous influences between spacelike-separated
systems.

Brukner considered a pair of superobservers (Alice and
Bob) who can carry out experiments on two separate lab-
oratories LA and LB that each consist of a spin-1/2 system
and the superobservers’ friends, Charlie and Debbie, respec-
tively (Fig. 1). Measurement settings A1 and A2 correspond to
the observational statements of Charlie and Alice, while the
measurement settings B1 and B2 correspond to the observa-
tional statements of Debbie and Bob. The conjunction of the
assumptions leads to the Bell-Wigner inequality in the form
of a Clauser-Horne-Shimony-Holt (CHSH) Bell inequality
[4–7,29]

S = |〈A1B1〉 + 〈A1B2〉 + 〈A2B1〉 − 〈A2B2〉| � 2. (2)

A violation would imply a contradiction with the
assumptions.

It has been shown that the inequality can be violated [2].
For our analysis using cat states, it will prove convenient to
consider two strategies, one involving measurements of spins
Sz and Sx as in the original example, and the other involving
measurements of spins Sz and Sy. We therefore propose that
Charlie and Debbie receive an entangled state of spin-1/2
particles given as

|ψ±〉 = − sin
θ

2
|φ∓〉 + ε± cos

θ

2
|ψ+〉

= − sin
θ

2
(|↑〉z,C |↑〉z,D ∓ |↓〉z,C |↓〉z,D)/

√
2

+ ε± cos
θ

2
(|↑〉z,C |↓〉z,D + |↓〉z,C |↑〉z,D)/

√
2, (3)

FIG. 1. Wigner’s friend paradox: The two entangled systems A
and B are prepared and then separated into laboratories LA and LB.
The friends in each laboratory measure the spin σz of the local
system, using a macroscopic meter. The superobservers outside each
laboratory can measure the local macroscopic spins Sz or Sx of the en-
tire lab systems. In our analysis, we generalize to also consider where
the superobservers measure Sz or Sy. The arrow depicts the direction
of time, meaning that the superobservers make their measurements
after those of the friends.

where |φ∓〉 = 1√
2
(|↑〉z,C |↑〉z,D ∓ |↓〉z,C |↓〉z,D) and |ψ+〉 =

1√
2
(|↑〉z,C |↓〉z,D + |↓〉z,C |↑〉z,D), with ε+ = 1 and ε− = i. The

states |↑〉z,C , |↓〉z,C , and |↑〉z,D, |↓〉z,D denote the spin-1/2
eigenstates of Sz as prepared in Charlie and Debbie’s labora-
tory, respectively. We define two initial states |ψ+〉 and |ψ−〉,
which will allow violation of the inequality (2) for the pair of
measurements Sz and Sx, and the pair of measurements Sz and
Sy, respectively.

Next, Charlie and Debbie each perform a measurement.
After completing the coupling needed for their measurement
on the system prepared in |ψ±〉, the overall state becomes

|
̃±〉 = − sin
θ

2
|�∓〉 + ε± cos

θ

2
|
+〉, (4)

where

|�∓〉 = 1√
2

(|Aup〉|Bup〉 ∓ |Adown〉|Bdown〉),

|
+〉 = 1√
2

(|Aup〉|Bdown〉 + |Adown〉|Bup〉), (5)

with |Aup〉 = |↑〉z,C |Cz+〉C , |Adown〉 = |↓〉z,C |Cz−〉C , |Bup〉 =
|↑〉z,D|Dz+〉D, and |Bdown〉 = |↓〉z,D|Dz−〉D. Here, |Cz±〉C and
|Dz±〉D are the states of the macroscopic measurement appa-
ratus (the friends) in the respective laboratories.

For the choice of initial state |ψ+〉, we consider the mea-
surement settings

A1 ≡ Az = |Aup〉〈Aup| − |Adown〉〈Adown|,
A2 ≡ Ax = |Aup〉〈Adown| + |Adown〉〈Aup|, (6)

corresponding to macroscopic spin z and spin x measurements
in Charlie’s laboratory, and

B1 ≡ Bz = |Bup〉〈Bup| − |Bdown〉〈Bdown|,
B2 ≡ Bx = |Bup〉〈Bdown| + |Bdown〉〈Bup|, (7)
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corresponding to macroscopic spin z and spin x measurements
in Debbie’s laboratory. The Bell-Wigner CHSH inequality for
this case is

S = |〈AzBz〉 + 〈AzBx〉 + 〈AxBz〉 − 〈AxBx〉| � 2. (8)

It has been shown that this inequality is violated for θ = π/4
with S = −2

√
2.

On the other hand, for the choice of initial state |ψ−〉, we
consider the measurement settings

A1 ≡ Az = |Aup〉〈Aup| − |Adown〉〈Adown|,
A2 ≡ Ay = (|Aup〉〈Adown| − |Adown〉〈Aup|)/i, (9)

corresponding to macroscopic spin z and spin y measurements
in Charlie’s laboratory, and

B1 ≡ Bz = |Bup〉〈Bup| − |Bdown〉〈Bdown|,
B2 ≡ By = (|Bup〉〈Bdown| − |Bdown〉〈Bup|)/i, (10)

corresponding to macroscopic spin z and spin y measurements
in Debbie’s laboratory. The Bell-Wigner CHSH inequality for
this case is

S = 〈AzBz〉 + 〈AzBy〉 + 〈AyBz〉 − 〈AyBy〉 � 2. (11)

This is the case of interest in this paper. We evaluate the
correlations as follows: Directly, we find

〈AzBz〉 = − cos θ.

To evaluate 〈AzBy〉, we write the state in the new basis, by
noting the standard transformation

|↑〉y = 1√
2

(|↑〉z + i|↓〉z ),

|↓〉y = 1√
2

(|↑〉z − i|↓〉z ), (12)

where |↑〉y and |↓〉y are the eigenstates of the Pauli spin σy,
with eigenvalues +1 and −1, respectively. Hence, we write
|↑〉z = (|↑〉y + |↓〉y)/

√
2 and |↓〉z = −i(|↑〉y − |↓〉y)/

√
2.

Substituting, we find

〈AzBy〉 = 〈AyBz〉 = − sin θ,

〈AyBy〉 = cos θ.

The Bell-Wigner inequality is violated with |S| = 2
√

2 for
θ = π/4. An experimental test supporting the predictions of
quantum mechanics has been carried out by Proietti et al. [9].

B. Frauchiger-Renner paradox

Here we outline the Frauchiger-Renner paradox [8] which
also examines the Wigner friend’s thought experiment, ar-
riving at a contradiction between the friends inside the
laboratories and the observers outside. We follow the sum-
mary given by Losada et al. [15].

First, a biased quantum coin tossed by the friend FA in
laboratory A gives outcomes h and t with probabilities 1/3
and 2/3, respectively. If the outcome is h or t , the friend FB

in the second laboratory LB creates the spin-1/2 state |↓〉
or | →〉 = 1√

2
(|↑〉 + |↓〉), respectively. Here, |h〉z, |t〉z, and

|↑〉z, |↓〉z are the eigenstates of the Pauli spin observables
σ A

z and σ B
z for two spin-1/2 systems at the spatially separated

laboratories LA and LB, respectively.

In fact, the friend FA has measured the state of the coin, by
first coupling with a device in LA, later measured by the friend.
The macroscopic states |H〉z and |T 〉z ultimately represent all
macroscopic devices leading to the measurement outcome.
The |H〉z and |T 〉z are the macroscopic states of the laboratory
LA giving the measurement outcomes h and t respectively,
being eigenstates of the observable denoted SA

z . The coupling
to the second laboratory LB is described by an interaction
Hamiltonian. The laboratory LA is coupled to LB so that a final
entangled state

|ψzz〉FR = 1√
3
|H〉z|⇓〉z +

√
2

3
|T 〉z|⇒〉z (13)

is created. Here, |⇒〉z = 1√
2
(|⇑〉z + |⇓〉z ), where |⇑〉z and

|⇓〉z are the macroscopic states of LB giving the “up” and
“down” outcomes respectively for the observable denoted SB

z .
The second step is that the external superobservers WA

and WB make measurements of Sx on the systems in LA and
LB, respectively. These observables are defined so that the
eigenstates of SA

x for laboratory LA are

|H〉x = 1√
2
|H〉z + 1√

2
|T 〉z,

|T 〉x = 1√
2
|H〉z − 1√

2
|T 〉z. (14)

Similarly, the “up” and “down” eigenstates of SB
x for labora-

tory LB are

|⇑〉x = 1√
2
|⇑〉z + 1√

2
|⇓〉z,

|⇓〉x = 1√
2
|⇑〉z − 1√

2
|⇓〉z. (15)

We first consider where WA and WB both measure Sx. We
rewrite the state (13) in terms of the different bases. In the
new basis, we find

|ψxx〉FR =
√

3

2
|H〉x|⇑〉x − 1√

12
|T 〉x|⇑〉x

− 1√
12

|H〉x|⇓〉x − 1√
12

|T 〉x|⇓〉x. (16)

From the above expression, we see that the probability is 1/12
for obtaining outcomes T and ⇓.

But now, if the friend FB had measured σz, and WA mea-
sures SA

x , we would write

|ψxz〉FR = 1√
6
|H〉x|⇑〉z − 1√

6
|T 〉x|⇑〉z + 2√

6
|H〉x|⇓〉z.

(17)

Here, the probability for |T 〉x|⇓〉z is zero. This implies that,
when WA obtains T for Sx, it is confirmed with certainty that
FB would have obtained ↑ for the measurement of σz, which
in turn would imply for friend FB that FA had obtained t for
σz, (since the ↑ state for σz at system B is only created when
FA would have obtained t for σz). In the basis of σz for LA and
Sx for LB, we would write

|ψzx〉FR = 1√
6
|H〉z(|⇑〉x − |⇓〉x ) +

√
2

3
|T 〉z|⇑〉x. (18)
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FIG. 2. A macroscopic paradox with cat states: The two en-
tangled systems A and B are prepared and then separated into
laboratories LA and LB, as in Fig. 1. Here, the systems A and B are
themselves macroscopic, meaning that the spins values +1 and −1
for σz correspond to macroscopically distinct states of the system.
The premise of macroscopic realism asserts that the value of the spin
outcome σz is predetermined, given by a variable λz.

As the outcome t for σz is perfectly correlated with the state
|⇑〉x, it is certain from (18) that WB would then get ⇑ for their
measurement Sx in laboratory LB. But (16) gives a nonzero
probability for WA and WB getting T and ⇓ for Sx, and this is
the basis of the Frauchiger-Renner (FR) paradox.

III. WIGNER’S FRIEND PARADOXES USING CAT STATES

In this section, we present the paradox in terms of cat states
[25,26], where the original spin-1/2 system measured by the
friends is a macroscopic one, and the two spin-1/2 eigenstates
are macroscopically distinct states (macroscopic qubits). This
is depicted in Fig. 2.

A. Two stages of the spin measurement

An important aspect of the Wigner’s friend paradox is that
the measurement of spin occurs in two stages, one of which is
reversible. In the cat example, this is also true. We examine
a specific macroscopic realization, in order to analyze the
dynamics of the measurements.

The first reversible stage of the spin measurement is the
unitary interaction Uθ which determines the measurement
setting, i.e., the component of spin that will be measured,
whether σz, σx, or σy. This stage transforms an initial eigen-
state into a superposition of two eigenstates: e.g., |↑〉 →

1√
2
(|↑〉 + |↓〉). In a photonic Bell experiment, the unitary

transformations are achieved by polarizing beam splitters
(PBS). The unitary transformations Uθ for coherent-state
qubits are explained below.

The second stage of measurement occurs after the unitary
rotation Uθ . Once the unitary rotation has been performed,
the measurement setting has been selected, and the system is
prepared for a final stage of measurement, that we refer to as
the “pointer” measurement. This would usually include a final
amplification and detection stage, involving a coupling to a
meter, and a read-out to a second system, i.e., an observer. We
might also refer to this stage of measurement as the “collapse”

stage because, from the perspective of the observer making the
measurement, this stage is irreversible.

B. Macroscopic spins

The paradoxes involve spin measurements on each of two
separated systems, labeled A and B (Fig. 2). For macroscopic
qubits, the spin measurements are defined by two macroscop-
ically distinct states. For example, the macroscopic two-state
systems of the entire labs at B and A are denoted by |⇑〉
and |⇓〉, and |H〉 and |T 〉, respectively. The corresponding
two-state spin observables are

SA
z = |H〉〈H | − |T 〉〈T |,

SA
x = |H〉〈T | + |T 〉〈H |,

SA
y = {|H〉〈T | − |T 〉〈H |}/i, (19)

and

SB
z = |⇑〉〈⇑| − |⇓〉〈⇓|,

SB
x = |⇑〉〈⇓| + |⇓〉〈⇑|,

SB
y = {|⇑〉〈⇓| − |⇓〉〈⇑|}/i. (20)

The paradoxes involve noncommuting spin measurements.
We therefore will seek a unitary transformation U −1

x that
transforms the eigenstates of Sz into eigenstates of Sx:

|H〉 → (|H〉 + |T 〉)/
√

2,

|T 〉 → (|H〉 − |T 〉)/
√

2, (21)

or else the transformation U −1
y that transforms the eigenstates

of Sz into eigenstates of Sy:

|H〉 → (|H〉 + i|T 〉)/
√

2,

|T 〉 → (|H〉 − i|T 〉)/
√

2 (22)

(and similarly for |↑〉 and |↓〉).
In a macroscopic Wigner-friend paradox, the initial spin-

1/2 system measured by the friend is based on two
macroscopically distinct states. We propose three sorts of
macroscopic (or mesoscopic) qubits. The first two are pre-
sented in Appendix A 1. For the third, the spins |↑〉 and |↓〉
are the macroscopically distinct coherent states |α〉 and |−α〉,
defined for a field mode, where α is large and real (Fig. 2).
In the limit α → ∞, the two states are orthogonal, and one
defines two-state spin observables, for lab A, as

σ A
z = |α〉〈α| − |−α〉〈−α|,

σ A
x = |α〉〈−α| + |−α〉〈α|,

σ A
y = {|α〉〈−α| − |−α〉〈α|}/i. (23)

There is a direct mapping between the qubits |↑〉 and |↓〉 and
the macroscopic qubits |α〉 and |−α〉. Similarly,

σ B
z = |β〉〈β| − |−β〉〈−β|,

σ B
x = |β〉〈−β| + |−β〉〈β|,

σ B
y = {|β〉〈−β| − |−β〉〈β|}/i, (24)

where |β〉 and |−β〉 (β is large and real) are macroscopically
distinct coherent states for lab B. We consider quadrature
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FIG. 3. The time sequence as the system A prepared at time t = 0 in a coherent state |α〉 evolves according to HA
NL of Eq. (26). This

evolution is used to perform the rotation of basis necessary to carry out the spin measurement σ A
y . The time of evolution is given above each

snapshot. The cat state [Eq. (27)] given by U A
π/4|α〉 ≡ UA(π/2)|α〉 is formed at time t = π/2. The contour graphs show surface plots of

the Q function Q(α0) with α = 4 (refer Sec. VI for definitions). At the times t = π/2 and 3π/2, the state of the system is expressible as a
superposition of the coherent states |α〉 and |−α〉. Here, αR and αI are the real and imaginary components of α0. The evolution is periodic with
period 2π/ and hence (U A

π/4)−1 = UA(3π/2).

phase amplitude observables

X̂A = (â + â†)/2,

P̂A = (â − â†)/2i, (25)

defined for the field mode of lab A, where â is the field
annihilation operator [37]. The two states |α〉 and |−α〉 can
be distinguished by a measurement of X̂A. The sign of the
outcome gives the qubit value, whether +1 or −1. The
measurement X̂A constitutes the pointer measurement of the
system. Similar observables X̂B and P̂B are defined for lab B,
the boson annihilation operator for the field at B being denoted
by b̂.

C. Measuring the different spin components

We next consider how to realize the first stage of the
measurement, which determines the measurement setting, i.e.,
whether σz, σy, or σx will be measured. For the spins defined
by the coherent states, the unitary transformation for U A

y can
be achieved using a Kerr nonlinearity, modeled by the Hamil-
tonian [38]

HA
NL = h̄n̂2

A, (26)

where n̂A = â†â is the number operator. After an interaction
time t = π/2, the field of lab A initially prepared in a
coherent state |α〉 becomes a cat state. We find [37]

UA

( π

2

)
|α〉 = e−iπ/4

√
2

(|α〉 + i|−α〉), (27)

where UA(t ) = e−iHA
NLt/h̄. The dynamics is plotted in Fig. 3,

where contour plots of the Q function [39] are presented after
various times of evolution. We use the notation UA ≡ U A

π/4 ≡
UA( π

2
) to denote the transformation. Hence, for (22), we

select Uy = U −1
A = (U A

π/4)−1. The realization of the inverse
of U −1

A is achieved by evolving for a time 3π/2. Here, we
consider a system A in the lab A, but a similar interaction HB

NL
can be performed on a system B in lab B. Here, HB

NL = h̄n̂2
B

where n̂B = b̂†b̂.
Hence, the unitary interactions associated with the mea-

surements Sy for each system are performed via the inverse of
U A

π/4 and U B
π/4. Thus, we write

|±〉y,A = U A
π/4| ± α〉z = e−iπ/4

√
2

(| ± α〉z + i| ∓ α〉z ),

|±〉y,B = U B
π/4| ± β〉z = e−iπ/4

√
2

(| ± β〉z + i| ∓ β〉z ), (28)

where we use that UA(t ) = e−iHA
NLt/h̄ and UB(t ) = e−iHB

NLt/h̄ as
in (27). The different overall phase compared with the defini-
tion (22) does not change that the states are eigenstates of σy.
This gives the required transformation, on denoting |±〉z,A ≡
| ± α〉z and |±〉y,A ≡ | ± α〉y,A. It is straightforward to verify
that |±〉y,A are the eigenstates of σ A

y , given by Eq. (23), where
α → ∞.

To rewrite the basis states for z in the basis for y, we operate
on the states by U −1

A (U −1
B ):

|±α〉z = U −1
A | ± α〉y

= eiπ/4

√
2

(| ± α〉y − i| ∓ α〉y). (29)

More generally, for a state |ψ〉 written as a superposition of
the eigenstates of σz the transformation into the eigenstates of
σy is given by

Uy|ψ〉 ≡ U −1
A |ψ〉. (30)

A similar local transformation takes place on system B.
In summary, the system A can be prepared at time t = 0 in

a superposition of the eigenstates of σz,
|ψ〉 = a|α〉 + b|−α〉, (31)

where a and b are probability amplitudes. The measurement
of σ̂z is carried out by a direct measurement of the quadrature
X̂A to determine the sign of X̂A, since α is real. To measure σ̂y,
a rotation of basis is first necessary. We need to “rewrite” the
state |ψ〉 as a superposition of the basis states of σy. This is
achieved by the unitary operation Uy = U −1

A . Thus the system
evolves as

Uy|ψ〉 = aUy|α〉 + bUy|−α〉

= eiπ/4

√
2

(c|α〉 + d|−α〉), (32)

where c = a − ib and d = −i(a + ib). This is equivalent to
implementing eigenstates | ↑〉y = e−iπ/4√

2
(| ↑〉z + i| ↓〉z ) and

|↓〉y = ie−iπ/4√
2

(|↑〉z − i|↓〉z ) = e−iπ/4√
2

(i|↑〉z + |↓〉z ), which

hence imply that |↑〉z = eiπ/4√
2

(|↑〉y − i|↓〉y) and | ↓〉z =
eiπ/4√

2
(−i| ↑〉y + | ↓〉y). Note, if we use the standard eigenstates

| ↑〉y = 1√
2
(| ↑〉z + i| ↓〉z ) and | ↓〉y = 1√

2
(| ↑〉z − i| ↓〉z ),

and then transform |ψ〉 = a|↑〉z + b|↓〉z, we find c = a − ib
and d = a + ib, which gives the same probabilities of
detection. We see that the outcome for spin σy is hence
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given by the final pointer measurement, realized as the
measurement of the (sign of the) quadrature X̂A for the system
in the state (32) after rotation UY has been performed. Similar
transformations and measurements can be performed on
system B.

The cat states (27) have been created for a microwave
field, using a dispersive Kerr interaction HA

NL [40,41]. Similar
effects are observed in Bose-Einstein condensates [42,43].
Other cat states have been created experimentally, using Ry-
dberg atoms and CNOT gates [44–47]. In particular, the odd
and even cat states ≈|α〉 ± |−α〉 which would allow the
transformation Ux have been created in the laboratory [48].
Mechanisms for generation of such cat states are often limited
to smaller systems, or else involve conditional measurements
and/or optical, superconducting or optomechanical systems
where dissipation plays a role [49–53]. In this paper, we
focus on the cat states (27) generated by the simple uni-
tary transformation U A

y which is realizable using HA
NL. The

coherent-state qubits and unitary interactions Uy also allow
macroscopic Bell violations [30,33,38], tests of macroreal-
ism [30,33,54], macroscopic Bohm-Einstein-Podolsky-Rosen
and GHZ paradoxes [31], and tests of two-dimensional
macroscopic retrocausal models in delayed-choice Wheeler-
Chaves-Lemos-Pienaar experiments [32].

D. Bell-Wigner tests with cat states

We now propose that the Bell-Wigner test given in Sec. II A
be implemented with the spins |↑〉z,C and |↓〉z,C realized as the
macroscopic coherent states |α〉z,C and |−α〉z,C , and the spins
|↑〉z,D and |↓〉z,D realized as the macroscopic states |α〉z,D and
|−α〉z,D, for large α. We explicitly write the state |ψ−〉 given
by Eq. (3) as

|ψzz〉W F = Azz(|α〉z,C |α〉z,D + |−α〉z,C |−α〉z,D)

+ Bzz(|α〉z,C |−α〉z,D + |−α〉z,C |α〉z,D), (33)

where Azz = − 1√
2

sin θ/2 and Bzz = i√
2

cos θ/2. This state
describes the systems when prepared in the z basis at both
sites (labs). A method for experimentally mapping the state
(3) onto the coherent-state version (33) is presented in
Refs. [55,56].

The friends, Charlie and Debbie, then each perform a
measurement of spin σz inside the labs. This involves coupling
each system with a meter via interactions HAm and HBm at the
respective labs, and then further couplings to the friends in
each laboratory. The overall interactions of the systems with
the macroscopic apparatus are described by HAmF and HBmF .
After the couplings, the overall state of the labs becomes
|
̃−〉 = − sin θ

2 |�+〉 + i cos θ
2 |
+〉, where |�+〉 and |
+〉

are given by Eq. (5), with |Aup〉 = |α〉z,C |Cz+〉C , |Adown〉 =
|−α〉z,C |Cz−〉C , |Bup〉 = |α〉z,D|Dz+〉D, and |Bdown〉 =
|−α〉z,D|Dz−〉D. Here, |Cz±〉C and |Dz±〉D are the states of
the macroscopic measurement apparatus (the friends) in the
respective labs. An example of the measurement interaction
HAm is given in the Appendix. With α real, the measurements
of the quadrature phase amplitudes X̂A and X̂B [Eq. (25)] in
the respective laboratories LA and LB will distinguish between
the spin eigenstates in the limit of large α.

At each lab, the superobservers have the choice to mea-
sure either Sz or Sy (Fig. 2). To measure Sy, they can first

disentangle the system from the respective meter (by revers-
ing HAmF or HBmF ), and then perform the unitary evolution
U −1

A (or U −1
B ) as in (29), in order to change the measure-

ment basis. A second stage of measurement (the pointer
measurement) is then needed to give the final readout for
Sy, meaning that the evolved system after U −1

A (or U −1
B ) is

then coupled to the meters and measurement apparatus, so
that |α〉z,C → |α〉z,c|Cz+〉C and |−α〉z,C → |−α〉z,c|Cz−〉C (and
|β〉z,D → |β〉z,D|Dz+〉D and |−β〉z,D → |−β〉z,D|Dz−〉D). This
amounts to a measurement of the quadrature phase amplitude
X̂A (or X̂B) after the unitary operation U −1

A (or U −1
B ). To in-

stead measure Sz, there is no need to perform a subsequent
unitary operation, because the system given by (33) is already
prepared with respect to the measurement basis for spin z.

Consider measurements of SA
z and SB

y . After performing the
necessary unitary rotations (including reversals), the system is
given by

|ψzy〉W F = Azy(|α〉z,C |α〉y,D + i|−α〉z,C |−α〉y,D)

+ Bzy(−|α〉z,C |−α〉y,D + i|−α〉z,C |α〉y,D), (34)

where |ψzy〉W F = U −1
B |ψzz〉W F , Azy = 1

2 (− sin θ/2 +
cos θ/2), and Bzy = 1

2 (sin θ/2 + cos θ/2). Similarly, the
state of the system prepared for pointer measurements SA

y and
SB

z is

|ψyz〉W F = Ayz(|α〉y,C |α〉z,D + i|−α〉y,C |−α〉z,D)

+ Byz(i|α〉y,C |−α〉z,D − |−α〉y,C |α〉z,D) (35)

where |ψyz〉W F = U −1
A |ψzz〉W F , Ayz = 1

2 (− sin θ/2 +
cos θ/2), and Byz = 1

2 (sin θ/2 + cos θ/2). Similarly, for
the measurements SA

y and SB
y ,

|ψyy〉W F = Ayy(|α〉y,C |α〉y,D − |−α〉y|−α〉y,C )

+ Byy(|α〉y,C |−α〉y,D) + |−α〉y,C |α〉y,D), (36)

where |ψyy〉W F = U −1
A U −1

B |ψzz〉W F , Byy = − 1√
2

sin θ/2, and

Ayy = 1√
2

cos θ/2. Comparing with Sec. II A, this gives an
analogous violation of the Bell-Wigner inequality (11), with
S = 2

√
2.

E. Frauchiger-Renner paradox using cat states

We now consider a test of the Frauchiger-Renner (FR)
paradox based on cat states. The version of the FR paradox
given in Sec. II C considers the option that the observers
measure either spin z or spin x. We suppose instead that the
observers at A and B measure either spin z or spin y, so that
we may use the transformation (27). To do this, we consider
that the state initially prepared between the laboratories is

|ψzz〉FR = 1√
3
|H〉z,A|⇓〉z,B + 1√

3
|T 〉z,A(|⇑〉z,B + i|⇓〉z,B).

(37)

We suppose the state is prepared with respect to the basis Sz

at each location, A and B. A paradox can be constructed as
explained in Sec. II B above, but where the measurements of
spin x are substituted as measurements of spin y.

We now present a version of the paradox using coherent
states. We suppose the initial state created between the two
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laboratories is

|ψzz〉FR = 1√
3
|α〉z|−β〉z

+ 1√
3
|−α〉z(|β〉z + i|−β〉z ). (38)

We drop the subscripts A and B, where it is clear that the
first (second) ket refers to the first (second) system. We now
suppose at each lab that observers may make a measurement
of either σz (as performed by the friends), or Sy (as performed
by the superobservers). The friends’ measurements of σz are
modeled by the Hamiltonians HAm and HBm each of which
leads to a coupling with a local meter m. Hence, we write

|ψzz,m〉FR = e−iHAmt/h̄e−iHBmt/h̄|ψzz〉FR. (39)

We give an example of HAm in the Appendix. The state of the
labs after the friends’ measurements is given by

|ψzz,mF 〉FR = e−iHAmF t/h̄e−iHBmF t/h̄|ψzz,m〉FR, (40)

which describes that the friends have themselves become cou-
pled (entangled) with the meters. The coupling is given by
interactions HAmF and HBmF .

We suppose that both the Wigner superobservers measure
Sy. The interactions HAm, HBm, HAmF , and HBmF are reversed.
The superobservers perform the respective local unitary inter-
actions U −1

A and U −1
B as in (29) to change the measurement

settings from z to y. After the unitary evolution corresponding
to the measurement interaction, the state of the system is

|ψyy〉FR = U −1
A U −1

B |ψzz〉FR

= i

2
√

3
{−3i|α〉y|β〉y − i|−α〉y|−β〉y

+ |α〉y|−β〉y − |−α〉y|β〉y}. (41)

Each system is coupled to a meter M (in the superobservers’
labs), using interactions HAM and HBM . A pointer measure-
ment is then made so that the superobservers may record the
outcomes. We see that there is a nonzero probability of 1/12
that both observers get outcomes −1 and −1 for measure-
ments of Sy.

The alternative setup is where the friend of lab B measures
σz and the superobserver of laboratory A measures Sy. After
the reversals, and the unitary interaction Uy, the state is

|ψyz〉FR = U −1
A |ψzz〉FR

= eiπ/4

√
6

{2|α〉y|−β〉z + |−α〉y|β〉z − i|α〉y|β〉z}.

(42)

The probability of getting −1 for lab B and −1 for lab A on
measurements of σz and Sy, respectively is zero: P−−|yz = 0

The FR logic is as before: If, from (42), Wigner superob-
server A gets −1 for Sy, it is inferred from the state |ψyz〉FR

that the friend B is +1 for σz. But if the friend B gets the result
+1 for σz, then one infers from the original state |ψzz〉FR at
time t1 [Eq. (37)] that the friend for system A measured down
for σz.

Yet, considering measurements of σz at A and Sy at B, if A
was in the state −1 as measured by the friend A, then there is
no possibility to get outcome −1 for Sy at B. The probability

of obtaining −1 and −1 for measurements σz and Sy is zero.
This is seen by considering the measurement of σz at A and Sy

at B: The final state after the reversals and unitary rotation at
B is written
|ψzy〉FR = U −1

B |ψzz〉FR

= eiπ/4

√
3

{
1√
2
|α〉z(|−β〉y − i|β〉y) +

√
2|−α〉z|β〉y

}
.

(43)

We find P−−|zy = 0. This implies the impossibility to get both
outcomes of Sy being −1 at A and B, in contradiction to the
earlier result. This gives the paradox for a situation where
all the measurements, including those initially made by the
friends, are distinguishing between two macroscopically dis-
tinct states.

IV. ANALYSIS USING MACROSCOPIC REALISM

The macroscopic version of the paradox identifies two
macroscopically distinct states available to the systems at each
time ti. This gives an inconsistency in the realistic perception
of the same event by the two observers, even where those
events are based on measurements of macroscopic qubits,
which is puzzling. Here, we examine the definitions of macro-
scopic realism carefully, showing that a deterministic form of
macroscopic realism is indeed falsified by the Wigner friend
paradoxes.

Macroscopic realism (MR) is the assumption that a system
“which has just two macroscopically distinguishable states
available to it” at the times tk will actually be in one of those
states at time tk , prior to any measurement [27]. If we consider
a system in a superposition of two macroscopically distinct
states (e.g., |α〉 and |−α〉, as α → ∞), then MR posits that
the outcome of a measurement (say X̂ ) that distinguishes
between those states will have a predetermined value λ prior
to the measurement actually taking place. We emphasize that
in the definition of MR, there is no specification of what is
meant by “states.” The definition of MR that we consider
is general and does not imply that the system be in one of
the states that form the superposition (e.g., |α〉 or |−α〉), a
result that can be negated [37]. To the best of our knowledge,
there has been no direct experimental negation of the premise
of MR, as defined in the general sense here. Violations of
Leggett-Garg inequalities require additional assumptions
linked to the premise of noninvasive measurability [27,57–
59].

However, in the setups that we have proposed for the real-
ization of the Wigner friend paradoxes using cat states, there
is a consideration of different measurement settings (e.g., Sy

and Sz). The operation that determines the setting occurs in the
lab, as a real interaction. The operation is usually considered
to be part of the measurement. For both settings, the system
is in a superposition (or mixture) of macroscopically distinct
states, prior to the final pointer stage of the measurement X
that distinguishes the states [as in Eqs. (33)–(36)].

If the predetermination λ of the outcome for both measure-
ments (e.g., Sy and Sz) is assumed to apply to the system as
it exists prior to the part of the measurement (the dynamics
Uθ ) that fixes the setting (y or z), then this is a strong (more
restrictive) form of MR, that we refer to as deterministic
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macroscopic realism (dMR). This form of MR has been shown
previously to be negated by quantum predictions in several
different scenarios [30,32,38,60].

A. Deterministic macroscopic (local) realism falsified

Result 4.A. The violation of the Bell-Wigner inequality
for the cat-state version of the experiment implies failure of
deterministic macroscopic realism.

Proof. The Bell-Wigner inequality (2) would hold, if si-
multaneous predetermined values for both spin measurements
σy and σz defined by (23) and (24) are identifiable for both
systems A and B, for the state |ψzz〉W F [Eqs. (3) or (33)].
With this assumption, one would specify hidden variables λA

z
and λA

y that predetermine the results of the measurements of
σ A

z and σ A
y , respectively, and hidden variables λB

z and λB
y that

predetermine the results of the measurements of σ B
z and σ B

y ,
respectively, should those measurements be performed by the
friends. The values of λA

z , λA
y , λB

z , λB
y are each either +1 or −1,

corresponding to the value for the outcome of the respective
measurements, if performed. In the setup, the possible results
for each λ identify macroscopically distinct states for the
system, as evident by writing the state |ψ〉W F in the respective
bases, as in Eqs. (33)–(36).

Following the definitions of macroscopic realism given in
Refs. [27,30,31,33,38], we then refer to the assumption of the
simultaneous predetermined variables as deterministic macro-
scopic realism (dMR). The assumption naturally includes that
of locality, but we may also specify the assumption as de-
terministic macroscopic (local) realism to make this clear.
Following the original proofs of the Bell inequalities [5,6],
the Bell-Wigner inequality follows based on the assertion of
the simultaneous variables λA

z , λA
y , λB

z , and λB
y . The premise

dMR also specifies that the measurements Sz and Sy of the
superobservers are determined by the hidden variables λz and
λy, at the respective site. The assumption of dMR is therefore
falsified by the violation of the Bell-Wigner inequality. �

B. Failure of deterministic macroscopic
realism: The Frauchiger-Renner paradox

Result 4.B. The premise of dMR is also falsified by the
FR paradox, where the assertion applies to the state |ψzz〉FR

[Eq. (37) or (38)].
Proof. A table of all the values λz and λy that are possible

for each system A and B according to dMR can be constructed.
The table is given in Appendix A 3. The impossibility of con-
sistency with the outcomes predicted by quantum mechanics
is evident. The values of {λzA, λzB, λyA, λyB} given by a row of
the table represent a possible dMR state. If a spin z or a spin
y measurement is made on system A, the outcome will be λzA

or λyA, respectively. Similarly, λzB and λyB are the outcomes
of spin z and spin y measurements if made on system B. In
the table, the joint probability of the possible spin outcomes
for the given dMR state is given across the row. The joint
probability for the spin outcomes, given a measurement of z
or y at A and B, is denoted PεAεB|θφ , where εA (εB) is the sign of
the spin outcome at A (B), and θ and φ are the respective spin
measurements (z or y) at A and B. The dMR states for which
P−−|zy = 0 and P−−|yz = 0 [corresponding to measurements

of σ A
z SB

y and SA
y σ B

z ] can be identified by examining the last
two columns. There is no possibility of an FR paradox, since
those states for which the result is also −, − for measurements
SA

y SB
y are highlighted by the stars. There is only one, but

this dMR state gives a nonzero probability for outcomes ++
(both up) for σ A

z σ B
z , which is inconsistent with the initial state

|ψFR〉 ≡ |ψzz〉FR. The initial state has zero probability for ++:
Therefore the predictions of the dMR state are not compatible
with the state (37). The table gives a falsification of dMR, if
the predictions of quantum mechanics are correct.

It is also possible to falsify dMR for the FR system, using
the Bell-Wigner inequality. The choice of measurement is of
either Sy or σz at each site. Hence we write the Bell-Wigner
inequality for the two laboratories, LA ≡ A and LB ≡ B as in
(2), in terms of the moments,

S =|〈AzBz〉 + 〈AyBz〉 + 〈AzBy〉 − 〈AyBy〉| � 2. (44)

The assumption of dMR implies the inequality (34) (from
the proof of Result 4.A). The assumption implies local hid-
den variables that predefine the values for Az, Ay, Bz and By

to each be either +1 or −1, implying the existence of the
joint probability p(Az, Ay, Bz, By) whose marginals satisfy the
CHSH-Bell inequality. For the FR paradox, there are four
possible preparation states: |ψzz〉FR, |ψyz〉FR, |ψzy〉FR, and
|ψyy〉FR. Identifying the outcomes of σ A

z , SA
y , σ B

z and SB
y to be

Az, Ay, Bz and By respectively, we evaluate from these states
the following:

〈
σ A

z σ B
z

〉 = −1/3,〈
SA

y σ B
z

〉 = −2/3,〈
σ A

z SB
y

〉 = −2/3,〈
SA

y SB
y

〉 = 2/3, (45)

which gives a value of S = 7/3. The violation of the inequality
falsifies dMR. �

V. WEAK MACROSCOPIC REALISM

In this section, we show how consistency between macro-
scopic realism and the quantum predictions of the Wigner
friends gedanken experiment can be obtained. Since deter-
ministic macroscopic realism is falsifiable by the experiment,
it is necessary to define macroscopic realism in a less strict
sense, as given by a weaker (more minimal) assumption. This
motivates the premise of weak macroscopic realism (wMR),
as defined in Refs. [30,31,33]. Below, we explain how wMR
can be consistent with the Wigner-friend paradoxes.

To understand the meaning of wMR, we examine the
dynamics associated with the operation Uθ that fixes the mea-
surement setting as either σz or σy depending on the time of
evolution, as in Fig. 3. The dynamics reveals an evolution
over timescales of order , during which the system cannot
always be given as a superposition (or mixture) of the two
states |α〉 and |−α〉. Let us consider the system of Fig. 3 at
the times t2 = π/2 and t3 = 3π/2, for which the system
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FIG. 4. The weak macroscopic realism (wMR) Assertions can
be understood by considering the analogy of a ball in one of two
boxes. There are two pairs of boxes, one in each lab A and B, and
a ball for each pair. Each ball can be shuffled among the boxes of
its pair, and the boxes then opened to determine which box each ball
is in. The opening of the boxes is analogous to a measurement of
spin, the choice of shuffling modeling the choice of measurement
settings, θ and φ. Assertion wMR(1) posits that at each time tk (k =
1, 2, 3, 4) after the shuffling, the ball is in one of the boxes, prior to an
observer opening the boxes. The predetermined spin values are given
as λA

k and λB
k . Assertion wMR(2) posits that these values cannot then

be changed by any further shuffling that occurs at the other lab at a
later time. For example, the value λA

1 does not change at time t2 or
t3 due to U B

φ or U B
φ′ and hence λA

3 = λA
2 = λA

1 . However, once further
shuffling U A

θ ′ at A occurs, to change the local setting from θ = 0 to
θ ′ = π/8, wMR does not assert that the value λA

θ ′ cannot depend on
the shuffling (U B

φ or U B
φ′ ) that may have occurred at B from time t1

to t4. Hence, according to wMR, the observation of any nonlocality
requires rotations at both sites (indicated by the grey dashed and pink
dashed-dotted rectangles).

is in such a macroscopic superposition. The assumption that
the system defined at the time tk (k = 2, 3) has (as α → ∞)
a definite value λk for the outcome of the pointer stage of
the measurement, given by the sign of the quadrature phase
amplitude measurement X̂A, motivates a weak form of the
macroscopic realism (MR) premise.

A. Definition of weak macroscopic realism

As with Bell tests [4], in order to justify the locality
assumption used in the derivation of the inequality (2), we
consider that during the experiment the laboratories of the two
friends (and the associated superobservers) are spatially sepa-
rated to the extent that any event or interaction that takes place
for one lab cannot causally influence the events or outcomes
in the second lab i.e., the labs are spacelike separated [61,62].
It is assumed that the superobservers Alice and Bob are at rest
in the respective lab frames, and that there is no relative mo-
tion with respect to the two laboratories. Weak macroscopic
realism (wMR) implies the following two Assertions (Fig. 4)
[30,31].

1. Assertion wMR (1)

We consider the system that is prepared at the time tk after
the unitary dynamics Uθ that determines the measurement set-
ting θ . The system at this time tk is prepared with respect to the
measurement basis θ , and (we suppose, as depicted in Figs. 3
and 4) is in a superposition (or mixture) of macroscopically
distinct states that each have a definite outcome for the pointer
measurement of the spin with setting θ . In the context of a
general spin measurement, as in the definitions of wMR, we
choose to denote the spin-component by Sθ (but emphasize the
notation in this context is not intended to distinguish between
the measurements of the friends and of the superobservers).

Assertion wMR(1) is that this macroscopic system, pre-
pared after the local unitary dynamics Uθ , can be regarded
as having a definite predetermined value λθ (+1 or −1) for
the outcome of Sθ . In other words, macroscopic realism (MR)
applies to the macroscopic system prepared in a macroscopic
superposition state after the unitary interaction Uθ that fixes
the measurement setting θ (e.g., as Sz or Sy). This value λθ

can be considered the value of the “record” of the result of the
measurement at that time, even if the final pointer stage of the
measurement is not actually carried out.

We illustrate the application of Assertion wMR(1). Con-
sider systems prepared at the time tk in the macroscopic
superposition state

|ψzz〉W F = Azz(|α〉z,C |α〉z,D + |−α〉z,C |−α〉z,D)

+ Bzz(|α〉z,C |−α〉z,D + |−α〉z,C |α〉z,D), (46)

as in Eq. (33), or else in the spin-friend system

|�〉SF = 1√
2

(|↑〉z|Fz+〉 + |↓〉z|Fz−〉), (47)

as in Eq. (1). In both cases, the system can be regarded as
being in superposition of macroscopic “pointer” states for spin
z measurements. This is because a direct amplitude measure-
ment of X̂A (or X̂B) for (33) or of the friend’s equipment for
(1) would yield the measurement outcome for SA

z (or SB
z ), or

of σz, respectively. The systems are prepared at the time tk in
the measurement basis, ready for the pointer measurement:
According to wMR(1), the system (46) at the time tk can
be regarded as having definite predetermined values λA

z , λB
z

(being +1 or −1) for the outcomes SA
z and SB

z . Similarly,
the system prepared in (47) has a definite value λz for the
outcome of the spin measurement σz. According to wMR, the
value λθ that at time tk predetermines the outcome for the
macroscopic spin measurement σθ if made by the friend is
the same value that predetermines the spin measurement Sθ , if
made by the superobserver. This is because there is no change
of measurement setting.

2. Assertion wMR (2)

Where there are two spatially separated systems, or labs,
as in the extended Wigner-friend experiments, it is necessary
that the premise of weak macroscopic realism addresses how
the assumption of locality applies to the hidden variables λθ

defined for each lab system. In this context, to understand the
motivation for the premise, it is useful to refer to the analogy
given below, of balls shuffled among a set of boxes.
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The second assumption of weak macroscopic realism [As-
sertion of wMR(2)] is that the value λθ assigned [according to
Assertion wMR(1)] to the local system at the time tk (after the
local unitary interaction Uθ that fixes the local measurement
setting θ ) cannot then be changed by any event or interaction
that subsequently occurs at the other spacelike-separated sys-
tem, or lab. In other words, there is locality with respect to
this pointer value λθ : It is assumed that the value λθ predeter-
mining the outcome for the (pointer) measurement Sθ is not
subsequently changed by future events or interactions Uφ that
occur at the separated system.

B. Analogy: A ball shuffled between boxes

The Assertions of wMR are less restrictive than those of
local realism introduced by Bell. The motivation for the As-
sertions is given by the macroscopic nature of the systems,
and the role played by the unitary interactions U that fix the
measurement settings. We see from Fig. 3 that the dynamics
of U does not allow the application of the premise of MR at all
times, because the system is not in a macroscopic superposi-
tion at all times. This motivates us to introduce an asymmetry
with regard to the assumptions, which prioritizes the times
when macroscopic superposition states are formed.

It is useful to consider an analogy motivated by the three-
box paradox, in which a ball is placed in one of a set of boxes
[63–67]. The set of boxes the ball can be in defines the macro-
scopically distinct states of a system. Following Refs. [33,67],
we consider there are two boxes in the set. The ball can then
be shuffled between the boxes, and an observer can then open
the boxes to determine the state of the system (the value of
λ), as in which box the ball is in. In the analogy, the local
unitary operations Uθ determining the measurement setting θ

correspond to particular shuffling sequences of the ball among
a given set of boxes, the shuffling being a reversible process.

In our example, there are two spatially separated sets of
boxes, in the different labs labelled A and B, and a ball is
associated with each set (Fig. 4). The balls can be found to be
in one of the boxes (if opened) of each set at the initial time
t1. After preparation at time t1, there can be a shuffling at each
site, corresponding to U A

θ and U B
φ . The premise of wMR(1)

posits that at the time tA
k after the shuffling has been completed

at the local site A, macroscopic realism applies to the state of
the ball at A, i.e., the ball is in one of the boxes at A, so that
there is a predetermined value λA

k giving the outcome if an
observer opens the boxes to determine which box the ball is
in. The same is true for the ball in the second set of boxes at
lab B. At the time tB

j after the local shuffling U B
φ at B, the ball

is in one of the local set of boxes i.e., there is a definite value
λB

j giving the state of the ball.
Assertion wMR(2) is a partial locality assumption. It is

posited that the state of the ball at lab A at the time tA
k (after

the local shuffling U A
θ has been completed) cannot be changed

by any shuffling U B
φ that then occurs at the other set of boxes,

B. We see that the full locality assumption specified by Bell
would imply that the interactions U B

φ do not in any way affect
the value of λA

θ , which is a stronger assumption. The same
Assertion wMR(2) holds with respect to the ball at lab B.

It is important to note that the Assertions of wMR do not
refer to the entire “state” of the system (the ball), but refer only

to the value of λ which gives the macroscopic outcome. It is
only assumed that the value of λ is determined at the time tk .
For example, the state of the ball prior to and after an observer
opens the boxes can be different, but have the same value of
λ. It is also not assumed that the “state” of the ball at A is not
affected by any shuffling occurring at B, for example, since
the full “state” includes microscopic detail not specified by λ.
This is discussed in Refs. [66] and [67], which address tests
of macrorealism for the three-box paradox.

A similar analogy arises for a recent macroscopic re-
alization of the Einstein-Podolsky-Rosen paradox using
Bose-Einstein condensates [68]. In that experiment, the mea-
surement setting is determined by an interaction of the atoms
with a pulse. After the interaction, and just prior to a final
measurement involving atom counting, the atoms can be con-
sidered to have available to them two atomic states. It can be
argued that the atoms are analogous to the macroscopic balls
sitting in one of two boxes, and that weak macroscopic realism
applies.

For measurements of the qubit value associated with the
two coherent states of system A, the final pointer stage of
the measurement corresponds to the determination of the sign
of the quadrature phase amplitude XA. The premise wMR
specifies a hidden variable λA

θ for the outcome of this pointer
measurement once the dynamics U A

θ associated with the
choice of measurement setting has occurred. This means that
the predetermination is with respect to one or other spin, e.g.
Sz or Sy, not both simultaneously. For example, in Fig. 4, the
assertion applies to predetermine at the time t2 the outcomes
of the spins with settings φ = π/8 at B and θ = 0 at A. For
system B of Fig. 4, the assertion applies to predetermine the
spin outcome for φ = π/8 at time t2, and then to predetermine
the outcome for φ = π/4 at the different time t3 (after the
dynamics U B

φ ).
The assertions of wMR allow for nonlocality, as illus-

trated in Fig. 4. However, a careful examination reveals that
the impact of any nonlocality will manifest symmetrically,
in the sense of requiring unitary rotations (changes of mea-
surement setting) at both sites. This has been pointed out in
Refs. [30,31] and is illustrated in Figs. 4–6. As part of the
definition of wMR, it is assumed in Fig. 4 that the value λA

θ

predetermining the pointer measurement for spin SA
θ at the

time t2 is not changed at time t3 by the unitary rotation U B
φ′

at B that then takes place at B. However, if there is a further
local unitary rotation U A

θ ′ at A, as in Fig. 4, then a different
value λA

θ ′ applies to the system at the later time after the
interaction U A

θ ′ , to predetermine the result of the new pointer
measurement SA

θ ′ . The wMR postulate does not assert that this
value is not affected by the unitary rotation U B

φ′ , because here
there are two unitary rotations from the initial time considered
of t2, one at B and one at A. Hence, for nonlocality to be
observed consistently with wMR, it is necessary to change the
measurement setting at both sites.

C. Consistency of weak macroscopic realism with macroscopic
Bell violations using cat states

The Assertions of wMR are less restrictive than those of
Bell’s local realism [3,5,7] and we show in Sec. V D2 that
the Assertions do not imply Bell-CHSH inequalities. It is
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FIG. 5. The violation of the Bell inequality (52) is consistent with weak macroscopic realism (wMR). We plot the quantum dynamics for
the system depicted in Fig. 4 as it evolves under the interactions HA

nl and HB
nl of Eq. (49) for the respective times ta and tb, given as (tb, ta) above

each snapshot, in units of −1. The measurement settings θ = 0, φ = π/8, φ′ = π/4, and θ ′ = π/8 are realized by the unitary rotations U A

and U B, as the local system is evolved for the appropriate time. Shown are the contour plots for the marginal Qm ≡ Q(XA, XB) of the Q function
of the quantum state as it evolves. The sign of X̂A (X̂B) at tk gives the appropriate spin value SA

j (SB
j′ ). The joint probabilities for SA

1 and SB
2 are

measured at time t2; those for SA
1 and SB

3 at time t3; and those for SB
3 and SA

2 at time t4. The probabilities are indicated by the relative weighting
of the peaks (refer to text). In the top sequence, the initial state is the Bell-cat state, Eq. (48) (α = 4), and the predictions violate the Bell
inequality (52). There is no inconsistency with the Assertions of wMR, which assign predetermined values for the spins according to Fig. 4,
the spin values SA

1 , SB
2 , SB

3 , SA
2 given by λA

1 , λB
2 , λB

3 , λA
4 , respectively. In the lower sequence, the initial state is the mixed state ρmix, Eq. (53), and

a Bell violation is not possible. There is no distinction between the predictions for |ψBell〉 and ρmix at times t1, t2, and t3 (gray dashed rectangle)
where there is a unitary rotation at only one site, B. The predictions clearly diverge by time t4 (pink dashed-dotted rectangle), after rotations at
both sites, as is consistent with the premises of wMR.

FIG. 6. The weak macroscopic realism (wMR) model. The cat
systems at time t1 are described by variables λA

z and λB
z that pre-

determine outcomes for measurements of σz. After interaction with
the cat systems, the meters are attributed values λA,M

z and λB,M
z that

predetermine the outcome of the measurement on them by the friends
(λA,M

z = λA
z , λB,M

z = λB
z ). These variables predetermine the outcomes

(λA,S
z and λB,S

z ) if a measurement is made of Sz by the superobservers
A or B, at the time t2. There is no change of measurement setting at
A. Hence λA,S

z predetermines the outcome for SA
z by superobserver

A at time t3, regardless of any unitary Uy at B. If superobserver B
performs a unitary interaction Uy to prepare the system for a (pointer)
measurement Sy, then the system at time t3 is attributed a variable λB,S

y

that predetermines the outcome. It is now not necessarily true that the
value λB

z predetermines the outcome of a future measurement SB
z .

possible that a model compatible with wMR will violate Bell
inequalities [30]. Here, we summarize the results of Ref. [30],
which demonstrate how Bell violations can be consistent with
wMR.

Consider the bipartite systems A and B prepared at time t1
in a Bell-cat state [56]

|ψBell〉 = N (|α〉|−α〉 − |−α〉|α〉). (48)

Here, α is real, and N is the normalization constant. The
nonlinear interaction

HA
nl = h̄n̂4

A (49)

[which differs from Eq. (26)] provides a unitary evolution with
the property that after an interaction time ta = t2 = π/4, the
system A if initially prepared in a coherent state |α〉 evolves
into the state [30]

U A
π/8|α〉 = e−iπ/8(cos π/8|α〉 + i sin π/8|−α〉). (50)

Similarly, after a time ta = t3 = π/2, the system is in the
state

U A
π/4|α〉 = e−iπ/4(cos π/4|α〉 + i sin π/4|−α〉). (51)

A similar interaction HB
nl = h̄n̂4

B can occur at B, with an
evolution time tb, the interaction times ta and tb being in-
dependently controlled at each site to determine the local
measurement setting. This allows three choices of measure-
ment setting at each site, corresponding to the choice of
interactions times ta/b = 0, π/4, π/2. Measurements of
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the signs (+ or −) of the quadrature phase amplitudes X̂A

and X̂B [Eq. (25)] after interacting locally for times ta = t j

and tb = tk ( j, k = 1, 2, 3) give outcomes of either +1 or −1,
respectively, for each system, which we denote as the spin
outcomes, SA

j and SB
k . Bell’s original inequality |〈SA

1 SB
2 〉 −

〈SA
1 SB

3 〉| � 1 + 〈SA
2 S3

3〉 [3] implies

−〈
SA

1 SB
2

〉 + 〈
SA

1 SB
3

〉 − 〈
SA

2 SB
3

〉
� 1. (52)

A violation of the Bell inequality (52) is predicted for the
Bell-cat system [30]. We consider the top sequence depicted in
Fig. 5, where t4 = 3π/4. The sequence depicts the dynamics
as the unitary operations associated with the spin measure-
ments S j are performed on |ψBell〉. The sequence is as given in
Fig. 4, where we assign the variables λk at each of the times tk
(k = 1, 2, 3, 4) according to wMR. In Fig. 5, the predictions
for the Bell cat state (48) are given in the form of contour plots
of the marginal Q(XA, XB) of the Q function as the dynam-
ics unfolds. The full two-mode Q function Q(XA, PA, XB, PB)
is defined as Q = 1

π2 |〈β0|〈α0|ψBell〉|2 where α0 = XA + iPA,
β0 = XB + iPB, and |α0〉 and |β0〉 are coherent states of the
fields A and B, respectively [39]. The distributions at each time
show peaks corresponding to distinctly positive or negative
values (4 or −4) of XA and XB. At ta = tb = 0, the anticorrela-
tion is evident. The measurements of X̂A and X̂B after evolution
times ta = 0 and tb = π/4 yield the moment 〈SA

1 SB
2 〉 (third

snapshot from the left). Similarly, the moment 〈SA
1 SB

3 〉 is given
after times ta = 0 and tb = π/2 (fifth snapshot from left),
and that of 〈SA

2 SB
3 〉 after times ta = π/4 and tb = π/2

(final snapshot on the right). It is confirmed in Ref. [30]
how (for large α > 2) the relative weighting of the distinct
peaks gives the joint probability for the spin outcomes. In fact,
〈SA

1 SB
2 〉 = 〈SA

2 SB
3 〉 = −1/

√
2, 〈SA

1 SB
3 〉 = 0, which violates (52)

[30].
In the Fig. 5, we also plot the predictions for the mixed

state

ρmix = 1
2 (|α〉|−α〉〈−α|〈α| + |−α〉|α〉〈α|〈−α|) (53)

which provides a local hidden variable theory for the system
and cannot violate the Bell inequality. There is no distin-
guishable difference (any difference vanishes exponentially
as α → ∞ [30]) between the predictions of |ψBell〉 and ρmix

where there is a rotation at site B (or A) only. This is consistent
with Assertion wMR(2), because for ρmix, the variables λA

k ,
λB

k depicted in Fig. 4 can be identified [30]. This is because
the mixed state ρmix is equivalent to a system probabilistically
with a spin “up” or “down” at each site A, and this is not
changed by a local unitary interaction at B. We see from Fig. 5
that the results for |ψBell〉 and ρmix diverge where the unitary
rotations are over both sites, in agreement with the analysis
above in Sec. V B (refer Fig. 4).

The quantum predictions given in Fig. 5 for the Bell-cat
state are consistent with Assertion wMR(1). At the given
times tk (k = 1, 2, 3, 4) after the unitary operations, and just
prior to the measurements of XA and XB that would determine
the values of the spins (SA

j and SB
j , say), the system has

evolved into a macroscopic superposition |ψk〉 of just four
states, |α〉|α〉, |α〉|−α〉, |−α〉|α〉, |−α〉|−α〉. Let us denote
the respective probability amplitudes as ci (i = 1, 2, 3, 4). The
probabilities for outcomes SA

j and SB
j′ are indistinguishable

from those of the corresponding mixture ρk of the four states.
In such a mixture, the system is at time tk in just one of
the four states, with probability |ci|2, respectively, and hence
has definite predetermined spin values (refer to Result 6.A).
The superposition and the mixture can be distinguished by
quadrature measurements, but this requires a further unitary
rotation, to measure P̂A or P̂B [37].

If we also consider the interaction time t4 = 3π/4, the
system initially in a coherent state |α〉 will evolve into the state

U A
3π/8|α〉 = ei3π/8(cos 3π/8|α〉 + i sin 3π/8|−α〉). (54)

This allows evaluation of the CHSH-Bell inequality [5,7]

|E (θ, φ) + E (θ ′, φ) + E (θ ′, φ′) − E (θ, φ′)| � 2, (55)

which becomes in our notation∣∣〈SA
1 SB

2

〉 + 〈
SA

3 SB
2

〉 + 〈
SA

3 SB
4

〉 − 〈
SA

1 SB
4

〉∣∣ � 2. (56)

Here θ = 0 implies ta = t1, φ = π/8 implies
tb = t2, θ ′ = π/4 implies ta = t3, and φ′ = 3π/8
implies tb = t4. For these choices, we find that
E (θ, φ) = − cos 2(φ − θ ). The predictions are
〈SA

3 SB
4 〉 = − cos π/4 and 〈SA

1 SB
4 〉 = − cos 3π/4, giving a

violation of the inequality. Consistency with wMR follows as
for the inequality (52), as shown in Ref. [30].

D. Weak macroscopic realism and
the extended Wigner’s friend paradox

Now we return to the extended Wigner’s friend paradox.
The assumptions of Brukner’s Bell-Wigner inequality are (1)
locality, (2) free choice, and (3) observer-independent facts (a
record from a measurement should be a fact of the world that
all observers can agree on). The violation of the inequality
implies at least one of the assumptions breaks down. Our
motivation is to examine how the premise of wMR can be
consistent with the Wigner friend paradoxes, and the violation
of the inequality. In this section, we first examine which of
the above assumptions can break down in a wMR-model
and which records observers will agree on. We find that for
consistency with wMR, the locality assumption as defined by
Bell breaks down, and also that observers will agree on certain
records but not others.

1. Records in a weak macroscopic realism model

We deduce which records the observers agree on in a wMR
model by examining the Assertions of wMR. We find the
following results:

Result 5.D.1 (1). The friends and superobservers of a given
lab agree on the friend’s record of σz. For the superobserver,
this is given by Sz. From the definition of wMR, there is a
predetermination of the value that would be the record of a
measurement, at a time t , after the unitary interaction Uθ that
determines the measurement setting θ . Hence, in the wMR
model, a definite value λA

z (λB
z ) predetermines the outcome of

the friend’s spin measurement, σz, at the lab A (B), once the
systems have been prepared with respect to the z basis, ready
for a final pointer measurement of σz in each lab (refer to Figs.
6 and 7). The superobservers can make a corresponding mea-
surement of Sz, through various mechanisms which involve
coupling to meters in the superobservers’ labs, but which do
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FIG. 7. Resolving the extended Wigner friend paradox for con-
sistency with weak macroscopic realism (wMR): Partial locality.
According to wMR, measuring 〈SA

z SB
z 〉, 〈SA

z SB
y 〉, and 〈SA

y SB
z 〉, which

(after the time t2) require a unitary rotation at no more than one
site, gives consistent records between friends and superobservers.
The systems at time t1 are prepared with respect to the basis for
σz. The premise wMR assigns variables λA

z , λB
z , λA,M

z , and λB,M
z to

the lab systems so that 〈SA
z SB

z 〉 = 〈λA
z λB

z 〉 (top). The superobserver B
may carry out a unitary interaction Uy to prepare the system with
respect to the basis Y (center). At time t3, the system has a definite
predetermined value for SB

y , given by λB,S
y , but the predetermination

of SA
z at site A is unaffected. Hence 〈SA

z SB
y 〉 = 〈λA

z λB,S
y 〉. Similarly,

〈SA
y SB

z 〉 = 〈λA,S
y λB

z 〉 (lower).

not involve a unitary interaction U that gives a change of
a measurement basis. The pointer measurement made by a
superobserver can be regarded as a pointer measurement on
the system of the (associated) friend. In the wMR model,
there is a predetermined value λA,S

z (λB,S
z ) for the outcome of

the superobserver’s measurement SA
z (SB

z ), at the time t4, and
hence the wMR model establishes that

λA,S
z = λA

z , λB,S
z = λB

z .

FIG. 8. Resolving the extended Wigner friend paradox for con-
sistency with weak macroscopic realism (wMR): In the wMR model,
Bell’s locality need not hold, and the paradox arises, where there are
two rotations after the preparation, one at each site. The system is
prepared at time t2 for pointer measurements of Sz at each site. The
premise of wMR assigns variables λ to predetermine the outcome
after the unitary rotations that determine the measurement settings,
θ and φ. This means that when there are two unitary interactions Uy

from the time of preparation as in the measurement of 〈SA
y SB

y 〉 de-
picted in the diagram, the premise of wMR does not specify that the
value of λA,S

y (defined after λB,S
y ) is independent of φ, and the records

are not necessarily consistent according to the inequality (8). This
is consistent with Fig. 5, where it is seen that the Bell nonlocality
emerges for the moment 〈SA

2 SB
3 〉 which involves two rotations θ ′ and

φ′, one at each site.

The value that gives the record of the friend in a given lab also
gives the outcome that would be obtained for the measurement
made by the associated superobserver, if they choose to mea-
sure the same spin, Sz, as the friends (i.e. they do not perform
a further interaction giving a change of basis) (Figs. 6 and 7).
There is agreement for these records.

Result 5.D.1 (2). There is consistency of records between
the friends and superobservers, if only one superobserver
measures a different spin component from that measured by
the friends. This is because according to Assertion 2 of wMR,
there is no change to the value of λA

z (which gives the record
of σ A

z and SA
z ) due to a further unitary interaction that takes

place at B to change the local superobserver’s setting from z
to y at B. Similarly, there is no change to λB

z due to a further
unitary interaction that may take place at site A. In the wMR
model, the inconsistency arises where the two superobservers
both measure a different spin (e.g., Sy). This is due to the
unitary interactions U that change the measurement settings.
We illustrate this in Sec. V D2 below.

2. Results about locality in a weak macroscopic realism model

The assumption of wMR implies only a partial locality.
There is locality with respect to the pointer values λz once
they are defined, after the unitary interaction Uθ . However,
wMR does not imply locality (as defined by Bell [3,5,7])
in the full sense. For example, in Fig. 8, it cannot be as-
sumed that the future outcome of SA

y at one lab (as to be
measured after the local unitary interaction U A

y needed for
the measurement setting) is independent of the change in
measurement choice φ that has occurred at the other lab. We
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have seen from Sec. V C by an example that Bell nonlocality
can be consistent with the wMR Assertions (Fig. 5). The
feature evident in Fig. 5 is that the moments contributing to
the violation are those of E (θ ′, φ′) ≡ 〈SA

θ ′SB
φ′ 〉 ≡ 〈SA

2 SB
3 〉, for

which there are unitary rotations U A
θ ′ and U B

φ′ giving a change
of measurement setting θ ′ and φ′ at both locations A and B.
Here, we outline explicitly how the observed violations of the
Bell-Wigner inequality are not inconsistent with wMR. We
prove the following:

Result 5.D.2. Weak macroscopic realism (wMR) does not
imply the Bell-Wigner and Bell-CHSH inequalities.

Proof. The Bell-Wigner inequality (8) is derived for the
Wigner friend setup by noting the variables λA

z , λA
y , λB

z , and
λB

y that in the derivation denote the outcomes (records) for
the spins have the values either +1 or −1, which bounds the
quantity

λA
z λB

z + λA
y λB

z + λA
z λB

y − λA
y λB

y (57)

to have a magnitude less than or equal to 2. The derivation
considers that these values exist in any single run, so that the
bound corresponds to that for the averages. Bell’s locality is
assumed, implying that the values at any one site are inde-
pendent of any change of setting at the other site. In the top
diagram of Fig. 7, we can assign the values λA

z (t2) ≡ λA
z and

λB
z (t2) ≡ λB

z at time t2, so that〈
SA

z SB
z

〉 = 〈
λA

z (t2)λB
z (t2)

〉 = 〈
λA

z λB
z

〉
. (58)

We then consider the center diagram, and define λB
y (t3) ≡

λB
y (t3|θ = 0) as the value predetermining SB

y , where there is no
rotation UA at A. According to wMR, the pointer measurement
value at A is not affected by UB so that〈

SA
z SB

y

〉 = 〈
λA

z λB
y (t3)

〉 = 〈
λA

z λB,S
y

〉
. (59)

Similarly, we consider the lower diagram and define λA
y (t4) ≡

λA
y (t4|φ = 0) so that

〈
SA

y SB
z

〉 = 〈
λA

y (t4)λB
z

〉 = 〈
λA,S

y λB
z

〉
. (60)

Figure 8 shows one way to measure the moment 〈SA
y SB

y 〉. The
value of λB

y (t3) determines SB
y independently of the future

choice of θ according to wMR because the value of the pointer
measurement is specified at the timet3 after the rotation Uy. We
define λA

y (t4|φ �= 0) and λB
y (t3) and we can say

〈
SA

y SB
y

〉 = 〈
λA

y (t4|φ)λB
y (t3)

〉 = 〈
λA,S

y λB,S
y

〉
. (61)

However, the postulate of wMR is not sufficient to allow full
assumption of Bell’s locality: We cannot assume in this case
that the value λA

y (t4) = λA
y (t4|φ) is independent of the change

φ of the measurement setting that has occurred at B. This leads
us to conclude consistency of values (records) for the mea-
surements carried out where there is no more than one unitary
rotation (as in Fig. 7), but not necessarily where there are two
changes of measurement setting, as in the measurement of
〈SA

y SB
y 〉 (Fig. 8). The full assumption of Bell’s locality is not

applicable in a wMR model, and the Bell-Wigner inequality
(8) cannot be derived. A similar reasoning implies that the
standard Bell inequalities (52), (55) and (56) are not implied
by wMR [31,33].

A similar conclusion is reached if the moment 〈SA
y SB

y 〉 is
measured with a different time order of the unitary operations,
so that the change of setting at A precedes that at B. If the
interactions U A

y and U B
y occur simultaneously over the same

time interval, then wMR posits that the values λB
y (t4) and

λB
y (t4) are fixed after both interactions at time t4, but there is

no assumption that either value is independent of the change
in settings, θ and φ. �

VI. CONSISTENCY OF THE QUANTUM PREDICTIONS
WITH WEAK MACROSCOPIC REALISM:
MACROSCOPIC WIGNER’S FRIEND AND

FRAUCHIGER-RENNER PARADOXES

In this section, we explicitly show that the quantum
predictions giving the macroscopic Wigner’s friend and
Frauchiger-Renner (FR) paradoxes are consistent with the two
assertions of the wMR premise, as stated by the definition
in Sec. V A. The first assertion is that the system prepared
(after the unitary dynamics that determines the measurement
setting) for the pointer measurement has a predetermined out-
come λ. The second assertion is that this value is not altered
by the subsequent dynamics at a different site. As in Sec. V C
where we examine Bell violations, we show the consistency
by comparing the quantum predictions with those of certain
mixed states that satisfy the wMR assertions.

We will illustrate with figures for the FR paradox. Here,
the system is prepared at time t1 in the state |ψzz〉FR given
by (38). It will be useful to depict the measurement dynam-
ics associated with the unitary rotations Uθ performed on
each system in terms of the Q function. The single-mode Q
function Q(α0) = 1

π
|〈α0|ψ〉|2 defines the quantum state |ψ〉

uniquely as a positive probability distribution [39]. The Q
function of the two-mode state |ψzz〉FR is Qzz(XA, PA, XB, PB),
where

Qzz = 1

π2
|〈β0, α0|ψzz〉|2

= e−|α|2−|α0|2−|β|2−|β0|2

3π2
{e−2αXA−2βXB

+ 2 cosh (2αXA − 2βXB) + 2 cos (2αPA − 2βPB)

− 2e−2βXB sin (2αPA) − 2e−2αXA sin (2βPB)}. (62)

Here, α0 = XA + iPA, β0 = XB + iPB, and we consider α, β

to be real. The first two terms in brackets give three distinct
Gaussian peaks corresponding to the three outcomes for the
joint spins originating from |α〉|−β〉, |−α〉|β〉, and |−α〉|−β〉
in (38). These terms constitute the Q function of the mixture
ρzz,FR of the three states. The function Qzz has three sinusoidal
terms, which distinguish the superposition |ψzz〉FR from the
mixture ρzz,FR. The Q function corresponds to the antinor-
mally ordered operator moments. We may compare with the
probability distribution P(XA, XB) for detecting outcomes XA

and XB of measurements of X̂A and X̂B. While the peaks
of the marginal function Qzz(XA, XB) (defined by integrating
Qzz(XA, PA, XB, PB) over PA and PB) will show extra noise,
this noise is at the vacuum level. Here, we consider superposi-
tions of macroscopically distinct coherent states, as in |ψzz〉FR

[Eq. (38)], where α and β become large, and the peaks are
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FIG. 9. Contrasting the dynamics for the system prepared in the
superposition state |ψzz〉FR (top sequence) with that for the system
prepared in the mixed state ρzz,FR (lower sequence). The states are
initially indistinguishable but become macroscopically distinguish-
able under evolution. In the top sequence, from left to right, we show
contour plots of the marginal Qm ≡ Q(XA, XB) of the Q function at
the times (ta, tb), after the system has undergone a local evolution
under HA

NL and HB
NL [Eq. (26)] at each subsystem (lab) A and B

respectively, for the respective times ta and tb. The system begins
in |ψzz〉FR [Eq. (38)] (top, far left) and evolves to |ψyz〉FR [Eq. (42)]
(top, far right). In the lower sequence, the system begins in ρzz,FR

[Eq. (63)] (far left) and is evolved as for the top plots. Here, α = 3,
 = 1.

clearly distinguishable, and identifiable as corresponding to
the peaks of P(XA, XB). The marginal of the Q function hence
depicts the joint probability for the outcomes of the pointer
measurements if made at that time.

At the special times tk , after the unitary operations Uθ

relevant to the macroscopic paradoxes have been performed,
the system remains expressible as a superposition of macro-
scopically distinct states (refer to Fig. 3 and the model given
by Fig. 4). The Q functions for the system defined at these
times have macroscopic components and sinusoidal features
similar to Eq. (62). The relevant spin measurements σθ or Sθ

made at times tk will bin the amplitudes X̂A and X̂B according
to sign. As with Eq. (62), the sinusoidal terms decay with large
α, β, and the joint probability for the spins if directly mea-
sured at the time tk (without further unitary transformation) is
determined by the weighting of the distinct Gaussian peaks in
the Q function at the time tk [30]. For large α, β, these peaks
and their relative weightings become evident from the plots of
the marginal Q functions, Q(XA, XB) defined at the times tk .
This is evident in the Figs. 9–12.

A. Measuring SA
z and SB

z : Consistency
with weak macroscopic realism

We first show consistency of the predictions for 〈σ A
z σ B

z 〉
and 〈SA

z SB
z 〉 with a wMR model, thereby verifying the first

part of the definition of wMR. Consider the system prepared
at time t1 in the state |ψzz〉FR. The preparation is with respect
to the σz (Sz) “pointer basis” at each lab, so that a pointer mea-
surement is all that is needed to complete the measurement of
σz (Sz).

Result 6.A. The system |ψzz〉FR as prepared for the spin
z pointer measurements gives predictions consistent with a
wMR model.

Proof. The essential feature of the proof is the
comparison between the predictions of the superpo-

sition as written in the pointer basis with that of the
corresponding mixed state. With reference to a general
state of the form |ψzz〉 = c11|α〉|β〉 + c12|α〉|−β〉 +
c21|−α〉|β〉 + c22|−α〉|−β〉, the corresponding mixed
state is

ρzz =
∑

i j

|ci j |2ρi j, (63)

where ρ11 = |α〉|β〉〈β|〈α|, ρ12 = |α〉|−β〉〈−β|〈α|, ρ21 =
|−α〉|β〉〈β|〈−α|, and ρ22 = |−α〉|−β〉〈−β|〈−α|. The pre-
dictions of |ψzz〉 and ρzz for the joint probabilities of the
pointer measurements σ A

z and σ B
z are identical. The premise of

wMR asserts that hidden variables λA
z and λB

z are valid to pre-
determine the outcome of the pointer measurements σ A

z and
σ B

z , respectively. This interpretation holds for the mixed state
ρzz, which describes a system that is indeed in one or other
of the states comprising the mixture, and hence describable
by such variables λA

z and λB
z at the time t1. Hence, since the

predictions for the pointer measurement on |ψzz〉 are identical,
a wMR model exists to describe the (pointer) predictions for
a state of the form |ψzz〉. �

It is useful to visualize this result for the macroscopic
system by examining the Q function, where one includes the
friends’ meters. Consider |ψzz〉FR given by (38). The Q func-
tion for the state (39) where the meters are explicitly included
is similar to (62), but with four modes. The state is expanded
as

|ψzz,m〉FR = 1√
3
|α〉z|γ 〉Am|−β〉z|−γ 〉Bm

+ 1√
3
|−α〉z|−γ 〉Am(|β〉z|γ 〉Bm

+ i|−β〉z|−γ 〉Bm), (64)

where |γ 〉, |−γ 〉 are coherent states for the meter of the
friend’s systems. We take γ as large and real. The Q function
is Qzz,m = 1

π4 |〈β0, α0, γA, γB|ψzz,m〉FR|2. Defining the com-
plex variables γA = Xγ A + iPγ A for the meter mode Am of
system A, and γB = Xγ B + iPγB for the meter mode Bm of
system B, we find (α0 = XA + iPA, β0 = XB + iPB)

Qzz,m = e−|α|2−|β|2−2|γ |2

3π4
e−|α0|2−|β0|2−|γA|2−|γB|2

× {
e−2αXA−2γ Xγ A e−2βXB−2γ Xγ B

+ 2 cosh(2αXA + 2γ Xγ A − 2βXB − 2γ Xγ B)

+ 2 cos(2αPA + 2γ Pγ A − 2βPB − 2γ Pγ B)

− 2e−2βXB−2γ Xγ B sin(2αPA + 2γ Pγ A)

− 2e−2αXA−2γ Xγ A sin(2βPB + 2γ Pγ B)
}
. (65)

The last three terms decay as e−|γ |2 and so, for large γ , the
solution is

Qzz,m = e−P2
A−P2

B−P2
γ A−P2

γ B

3π4

× {
e−(XA+α)2

e−(XB+β )2
e−(Xγ A+γ )2

e−(Xγ B+γ )2

+ e−(XA−α)2
e−(XB+β )2

e−(Xγ A−γ )2
e−(Xγ B+γ )2

+ e−(XA+α)2
e−(XB−β )2

e−(Xγ A+γ )2
e−(Xγ B−γ )2}

. (66)
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The final meter (pointer) measurement corresponds to the
measurement of the meter quadrature amplitudes, denoted as
X̂γ A and X̂γ B. The marginal Qzz,m(Xγ A, Xγ B) describes the dis-
tribution for the measured meter outputs (as measured by the
friends) and is found by integrating over all system variables
as well as Pγ A and Pγ B: We find

Qzz,m(Xγ A, Xγ B) = 1

3π

{
e−(Xγ A+γ )2−(Xγ B+γ )2

+ e−(Xγ A−γ )2
e−(Xγ B+γ )2

+ e−(Xγ A+γ )2
e−(Xγ B−γ )2}

. (67)

The three Gaussians are well-separated peaks, which repre-
sent the three distinct sets of outcomes, as expected from the
components of |ψzz〉FR [Eq. (38)].

The function Qzz,m(Xγ A, Xγ B) gives the probabilities for
detection of each component, for the measurement on the
meter made by the friends. We see this corresponds to the
marginal Qρzz (XA, XB) of the mixed state ρzz,FR (of the type
(63))

ρzz,FR = 1
3 (ρ1 + ρ2 + ρ3), (68)

where ρ1 = |α〉|−β〉〈α|〈−β|, ρ2 = |−α〉|β〉〈−α|〈β|, and
ρ3 = |−α〉|−β〉〈−α|〈−β|, once we put Xγ A = XA and Xγ B =
XB in (67). This is expected, since the meter outcomes are a
measurement of the system amplitudes X̂A and X̂B.

We may further compare the distribution (67), which de-
scribes the final outputs of the meter-measurements made by
the friends, with that of the marginal Q function

Qzz(XA, XB) = e−|α|2−X 2
A −|β|2−X 2

B

3π

{
e−2αXA−2βXB

+ 2 cosh(2αXA − 2βXB) + 2e−α2−β2}
(69)

obtained directly from the superposition |ψzz〉FR [Eq. (38)].
This is derived from Qzz [Eq. (62)] by integrating over PA and
PB. This function corresponds to that of the systems A and B
prior to coupling to the meter, and gives an alternative way
to model the measurement by the friends. We see that, for
large α = β, the last term vanishes, which gives the result for
Qzz(XA, XB) identical to (67) upon replacing Xγ A and Xγ B with
XA and XB. This implies that in fact for the cat state where α

and β are large, the distribution for the outcomes of the pointer
measurement on the superposition is indistinguishable from
that for the outcomes of the pointer measurement made on
the mixed state. This is evident from Fig. 9. The function
Qzz(XA, XB) of (69) is plotted in Fig. 9 (far left top snapshot)
and is indistinguishable from (67) of the mixture ρzz,FR (far
left lower snapshot, where Xγ A and Xγ B are labeled XA and
XB).

In summary, the Q function solutions for the cat and meter
states give a convincing illustration of Result 6.A, that there is
consistency with wMR for 〈σ A

z σ B
z 〉, the measurements made

by the friends. The marginal Q functions Qzz,m(Xγ A, Xγ B)
and Qzz(XA, XB) for |ψzz〉FR at time t1 are indistinguishable
from those of ρzz,FR. Hence, the predictions for the pointer
measurements of σ A

z and σ B
z on the system prepared in |ψzz〉FR

at time t1 are consistent with a wMR model. We see, however,
from Fig. 9 that with an appropriate evolution, despite that
the distinction between the Q functions for |ψzz〉FR and ρzz,FR

decays with e−α2
, the evolved states show a consistent macro-

scopic difference, even as α → ∞.
So far, the analysis concerns the measurements 〈σ A

z σ B
z 〉

made by the friends. We now consider 〈SA
z SB

z 〉 as measured
by the superobservers. If the system-meter state given by
|ψzz,m〉FR [Eq. (39)] is coupled to the friends, then the final
state is written as

|ψzz,mF 〉FR = 1√
3
|α〉z|γ 〉AmF |−β〉z|−γ 〉BmF

+ 1√
3
|−α〉z|−γ 〉AmF (|β〉z|γ 〉BmF

+ i|−β〉z|−γ 〉BmF ), (70)

where | ± γ 〉AmF = |γ 〉Am|F 〉A and | ± γ 〉BmF = |γ 〉Bm|F 〉B

represent the combined states of the meter and friend in each
lab. The measurements Sz made by the superobservers cor-
respond to measurements on the system in a state of type
(64), except that the meter systems are further coupled to
second-larger meters (e.g., the friends). Since only a pointer
measurement is necessary to complete the measurement of
Sz, the final marginal distribution Qzz,mF (Xγ FA, Xγ FB) for the
outcomes of the superobservers, found after integration of the
full Q function over the unmeasured variables, is identical
to (67), the distribution for the mixed state ρzz,FR (once we
put Xγ FA = XA and Xγ FB = XB). Hence by the same argument
given above in the proof of Result 6.A, the distribution and
predictions for the final outcomes SA

z and SB
z measured by

the superobservers are consistent with the variables λA,S
z and

λB,S
z defined in Result 5.D.1 (Fig. 6) that predetermine the

outcomes for the superobservers, hence giving consistency
with wMR.

Moreover, we prove consistency with Result 5.D.1 (1) of
wMR, that the variables λA

z and λB
z predetermining the out-

comes of σ A
z and σ B

z for the friends are equal to those (λA,S
z

and λB,S
z ) predetermining the outcomes of SA

z and SB
z for the

superobservers (Fig. 6):

λA,S
z = λA,m

z = λA
z ,

λB,S
z = λB,m

z = λB
z . (71)

We follow the arguments above given for Result 6.A to note
that the function Qzz,mF (Xγ FA, Xγ FB) will be indistinguishable
from that obtained if the system had been prepared in the
mixture ρzz,FR at time t1, and then measured by the friends
and/or superobservers. Such measurements on ρzz will satisfy
(71). To prove this, consider the system prepared in ρzz. Here,
one can assign variables λA

z and λB
z which indicate the system

to be in one of the three states ρi [of Eq. (68)]. This implies
predetermined outcomes for the spins σ A

z and σ B
z , consistent

with wMR. If the friends make a measurement on this system,
the solution is given precisely by (66). The combined system
after the coupling to the meters is the correlated mixed state

ρmix,m = 1
3 (ρ1ργ 1 + ρ2ργ 2 + ρ3ργ 3), (72)

where ργ i is the state of the meters. For the mixture, it is valid
to say that if the system were in the state ρi at time t1, then
the meter after the coupling is in state ργ i. Here, because the
combined system is a mixed state, one can assign variables
λA,m

z and λB,m
z to the meters, these variables predetermining
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the outcomes of the measurements on the meter. For the mixed
state, the meter variables are correlated with λA

z and λB
z , those

of the systems. The outcomes of the friend’s measurements
on the meters indicates the values of the λA

z and λB
z . Hence,

we put λA,m
z = λA

z and λB,m
z = λB

z .
We then consider the system-meter-friend state |ψzz,mF 〉

given by (70). On the other hand, if the system in the mixed
state ρmix,m is coupled to another set of meters (the friends),
then the system is described by

ρmix,mF = 1
3 (ρ1ργ F1 + ρ2ργ F2 + ρ3ργ F3), (73)

which is a mixture of the three components in (70), each ργ Fi

being a state of a meter and friend. As above, the relevant
marginal Q distributions for |ψzz,mF 〉FR and ρmix,mF that give
the predictions for the pointer measurements (the outcome for
spin z) are indistinguishable. One may assign variables to the
system (73), these variables predetermining the outcome of
the superobservers’ measurements, so that (71) holds. Hence,
for the system originally prepared in ρzz,FR, the distributions
and predictions for the measurements σz made by the friends
and Sz made by the superobservers are consistent with (71):
Since these distributions and predictions are indistinguishable
from those for the system prepared in |ψzz〉FR, we conclude
there is consistency of the predictions of the moment 〈SA

z SB
z 〉

with (71). The measurements made by the superobservers, if
they measure Sz, will be consistent with the records λA

z and λB
z

obtained by the friends.

B. Measuring Sy: Consistency of the unitary dynamics
with weak macroscopic realism

We next examine the measurements needed for moments
such as 〈SA

y σ B
z 〉, 〈σ A

z SB
y 〉, and 〈SA

y SB
y 〉. For 〈SA

y σ B
z 〉 and 〈σ A

z SB
y 〉,

the system is prepared for the pointer measurement of σz (or
Sz) at the time t1 in one of the labs, but a unitary rotation Uy

needs to be applied for the lab at the other site (Figs. 7 and 8).
The premise of wMR asserts a value λz which predetermines
the outcome for σz (or Sz). This value applies to the system
from the time t1, and is unaffected by the dynamics Uy at the
other lab. In this subsection, we show consistency with this
assertion.

Result 6.B (1). Consider a system prepared in each lab A
and B in the measurement basis of spin z, ready for the pointer
measurement of σz (or Sz), which we choose to be spin z.
The predictions where there is a single further rotation Uy (as
defined in Sec. III C) in one of the labs will be consistent with
wMR.

Proof. We are considering a state of the type

|ψzz〉 = a+|β〉|ψ〉A+ + a−|−β〉|ψ〉A−, (74)

where |ψ〉A+ = c+|α〉 + c−|−α〉 and |ψ〉A− = d+|α〉 +
d−|−α〉, with probability amplitudes a±, c±, and d±. The
state (74) is written in the measurement basis, in terms of
states with a definite outcome for σz. After a unitary rotation
U A

y at A,

|ψzz(t )〉 = a+|β〉U A
y (t )|ψ〉A+ + a−|−β〉U A

y (t )|ψ〉A−. (75)

The rotations give solutions of the form (refer Sec. III C)

|ψzz(t )〉 = a+|β〉(c1(t )|α〉 + c2(t )|−α〉)

+ a−|−β〉(d1(t )|α〉 + d2(t )|−α〉). (76)

We first show that the predictions are indistinguishable from
those of the system prepared in the mixture

ρmix,B = p+|β〉〈β|ρA+ + p−|−β〉〈−β|ρA−, (77)

where p+ = |a+|2 and p− = |a−|2, ρA± being the density
operator for the state |ψ〉A± respectively. The mixture evolves
under U A

y into

ρmix,B(t ) = p+|β〉〈β|UAρA+U †
A

+ p−|−β〉〈−β|UAρA−U †
A . (78)

Upon expansion, it is straightforward to show that the mea-
surable joint probabilities for the outcomes of σ B

z and σ A
y are

identical to those of the evolved state |ψzz(t )〉.
The second part of the proof is to show equivalence to

wMR. Here, there is preparation for the pointer measurement
of σ B

z and no further unitary dynamics occurs at lab B. Weak
macroscopic realism implies a predetermined value λB

z for the
result of SB

z , and that this value is not affected by the unitary
dynamics U A

y that occurs in lab A. For the mixture ρmix,B,
the system B is in one or other of the states, ρ1 = |β〉〈β|
or ρ2 = |−β〉〈−β|. As β → ∞, each of these states gives a
definite outcome, +1 or −1, respectively, for σ B

z . This im-
plies that the system B at the initial time is in a state with a
predetermined value λB

z for the outcome of σ B
z and SB

z . Any
operations by the superobserver in lab A are local. The system
prepared in ρmix,B remains in a state with the definite value λB

z
for σ B

z , throughout the dynamics. The dynamics for the system
prepared in |ψzz〉 under the evolution U A

y is indistinguishable
from that for ρmix,B. That dynamics is therefore consistent
with wMR. �

Result 6.B (2). The dynamics for the superposition |ψzz〉
and the mixed state ρmix,B can diverge, if there are further
rotations U A

y and U B
y , at both sites.

Proof. This is easy to show, on expansion. We also prove
this by example below.

1. Dynamics of the change of measurement setting

We illustrate Result 6.B by examining the dynamics of the
measurements. To measure Sy, the superobserver must first
reverse the coupling of the system to the friend and meter.
The superobserver then performs a local unitary rotation Uy, to
change the measurement setting from x to y. This occurs over
the timescale associated with Uy. Following that, a pointer
measurement occurs by coupling to a second meter in the
superobserver’s lab, thereby completing the measurement of
Sy. We focus on the unitary dynamics Uy, and assume the
decoupling from the friend meter has been performed by
the time t2 (Figs. 8 and 7). As outlined in Sec. III, we assume
that the reversal takes place at both labs, even where one
superobserver may opt to measure Sz.

We first examine 〈SA
y SB

z 〉. Here, the superobserver A

would apply the unitary rotation U −1
A (ta) given according to

(27). The dynamics to create the state |ψyz〉FR is given by
U −1

A (ta)|ψzz〉FR, where ta = 3π/2 so that U −1
A (ta) = U A

y .
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FIG. 10. Dynamics for the single unitary rotation U A
y associated

with the joint measurements of SA
y and SB

z by the superobservers is
indistinguishable from that of ρmix,B, of Eq. (82). The notation is
as for Fig. 9.  = 1, α = 4. Top sequence: The system begins in
|ψzz〉FR [Eq. (38)], and evolves according to U −1

A to the state |ψyz〉FR

[Eq. (42)] (far right snapshot). Lower sequence: The system begins
in ρmix,B and evolves as for the top plots. The top and lower sequences
are identical, which indicates consistency with weak macroscopic
realism (refer to text).

The evolution is pictured as the top sequence of snapshots of
Fig. 10. After an interaction time ta = −π/2 ≡ 3π/2, the
state is |ψyz〉FR, for which the Q function is

Qyz = e−|α|2−X 2
A −P2

A−|β|2−X 2
B −P2

B

6π2

{
4e2[αXA−βXB]

+ 4 cos (2[αPA − βPB]) − 4e2αXA sin (2βPB)

+ 2e2βXB cosh (2αXA) − 2e2βXB sin (2αPA)
}
. (79)

The marginal function is

Qyz(XA, XB) = e−|α|2−X 2
A −|β|2−X 2

B

3π

{
2e2[αXA−βXB]

+ 2e−α2−β2 + e2βXB cosh(2αXA)
}
, (80)

as plotted in Fig. 10. Including the treatment of the final
coupling to the superobservers’ meters M, as above, and then
taking γ large, we obtain for the inferred measured amplitudes

Qyz,mF (XA, XB) = e−|α|2−X 2
A −|β|2−X 2

B

3π

{
2e2[αXA−βXB]

+ e2βXB cosh (2αXA)
}
. (81)

This agrees with that marginal (80) derived directly from the
cat state where α = β is large, which is the case of interest.

Similarly, after the appropriate reversal, the measurement
Sy at B requires the evolution U −1

B (tb)|ψzz〉FR, which gives
after a time tb = −π/2 ≡ 3π/2, the state |ψzy〉FR. The
dynamics for this measurement is plotted in Fig. 11.

After the rotations to measure Sy at both sites, the system
is described by U −1

A U −1
B |ψzz〉FR, which becomes (for the ap-

propriate interaction times) |ψyy〉FR [Eq. (41)]. The dynamics
of these measurements in terms of the Q function is plotted in
Fig. 12.

2. Comparison with the classical mixture ρzz,FR:
The perspective of the friends

The mixture ρzz,FR [Eq. (68)] is the state formed from the
perspective of the friends, if the two friends have both mea-
sured σz at their locations e.g., by coupling to the meter. The

FIG. 11. Dynamics for the single unitary rotation U B
y associated

with the joint measurements of SA
z and SB

y by the superobservers is
indistinguishable from that of ρmix,A, where friend A’s measurement
is not reversed: The notation is as for Fig. 9. Top sequence: The
system begins in |ψzz〉FR [Eq. (38)] and evolves according to U −1

B

to the state |ψzy〉FR [Eq. (43)] (far right snapshot). Lower sequence:
The system begins in ρmix,A and evolves according to U −1

B as for
the top plots. The two sequences are indistinguishable, indicating
consistency with weak macroscopic realism (refer to text).

ρzz,FR describes the statistical state of the system conditioned
on both the friends’ outcomes for their measurements of σz.
The state is conditioned on the outcome +1 or −1 for the
spins Sz of the meter modes, denoted Am and Bm in (64), also
found by integration of the full Q function over the system
and meter variables as explained in Sec. VI A, to derive the
result (67). Each meter mode is coupled to the system, so that
the systems themselves can continue to evolve, conditioned on
the outcome of the measurement on the meter. This evolution
is given by that of ρzz,FR.

The dynamics for ρzz,FR is plotted in Fig. 9, below the
dynamics for the superposition state |ψzz〉FR. We see that the
macroscopic difference between the predictions emerges over

FIG. 12. Dynamics for the two unitary rotations U A
y and U B

y

associated with the joint measurements of SA
y and SB

y by the super-
observers. The notation is as for Fig. 9. Top sequence: The system
begins in |ψzz〉FR [Eq. (38)] and evolves according to U −1

A and U −1
B

to the state |ψyy〉FR [Eq. (41)]. Center (lower) sequence: The system
begins in ρmix,A (ρmix,B) and evolves as for the top plots. The results
for |ψzz〉FR diverge macroscopically from those of the mixed states
over the dynamics, leading to a violation of the Bell-Wigner inequal-
ity for |ψzz〉FR. This is not inconsistent with wMR: The wMR premise
allows a failure of the macroscopic Bell-locality premise where there
are two rotations (refer to Secs. V C and V D2 and Fig. 5).
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the timescales of the unitary interaction U A
y responsible for the

change of measurement setting.
The state ρzz,FR is consistent with a model for which there

is a definite predetermined outcome λA
z and λB

z for σz in each
lab. The evolution for the system prepared in ρzz,FR is given
as ρ(ta, tb) = U −1

A U −1
B ρzz,FRUAUB, which satisfies a local re-

alistic theory of the type considered by Bell, and as such does
not violate the Bell-Wigner inequality. Hence, the paradox is
not realized by ρzz,FR. The superobservers must reverse the
friends’ measurements in order to restore the state |ψzz〉FR.
We note the violation of the Bell-Wigner inequality can be
inferred, by performing measurements directly on |ψzz〉FR,
based on the assumption that a measurement of Sz made by
the superobservers would yield the same value as that of the
friends. It is clear that the predictions and dynamics displayed
by the entangled state |ψzz〉FR are not compatible with the
mixed state ρzz,FR [nor any state giving consistency with a lo-
cal realistic theory, since such a state would not violate (44)].

3. Comparison with partial mixtures: Conditioning
on one friend’s measurement

We now compare the evolution of |ψzz〉FR with that of
partial mixtures obtained by conditioning on the outcomes of
one friend. This enables demonstration of the consistency with
wMR, using the Result 6.B (1).

First, we consider the dynamics for the measurements of SB
z

and SA
y , on the system prepared in the state |ψzz〉FR. This dy-

namics creates |ψyz〉FR. We compare with the mixture created
if the spin measurement σ B

z made by the friend in LB is not
reversed. The friend has coupled the meter Bm to the system
B, as in (64), and conditions all future measurements on the
outcome for the meter being +1 or −1. The density operator
for the combined system after a measurement of spin σz at B
is the partial mixture

ρmix,B = 1
3 |−α〉|β〉〈β|〈−α|
+ 1

3 (|α〉 + i|−α〉)|−β〉〈−β|(〈α| − i〈−α|). (82)

Here, we recall our notation where the first ket we drop the
subscripts. Now we consider that a measurement SA

y is made
on system A. This implies (after the appropriate reversal) the
evolution according to U −1

A (ta), which is given in Fig. 10 for
both |ψzz〉FR and ρmix,B. Consistent with the predictions of
wMR, the evolution of ρmix,B is indistinguishable from that
of |ψzz〉FR.

We next consider the dynamics associated with the mea-
surements of SA

z and SB
y on the system prepared in |ψzz〉FR,

which creates |ψzy〉FR. For comparison, we also consider that
the friend at lab A performs the measurement σ A

z . The condi-
tioning on the outcomes for the friend’s measurement leaves
the systems in the mixture

ρmix,A = 1
3 |α〉|−β〉〈−β|〈α|
+ 1

3 |−α〉(|β〉 + i|−β〉)(〈β| − iB〈−β|)〈−α|.
(83)

The dynamics associated with the measurement of SB
y involves

the system evolving according to U −1
B (tb), as given in Fig. 11.

We see that as consistent with wMR, this evolution for sys-

tems prepared in |ψzz〉FR is indistinguishable from that of
systems prepared in ρmix,A.

Finally, we consider the dynamics where measurements
of SA

y and SB
y are made on the system prepared in the state

|ψzz〉FR. Here, two local unitary rotations U −1
A (ta) and U −1

B (tb)
are applied, to create the state |ψyy〉FR, prepared in measure-
ment bases for final pointer measurements of SA

y and SB
y . We

compare this evolution with that of the system prepared in
ρmix,A, or ρmix,B (Fig. 12). The evolution is macroscopically
different in each case, consistent with the predictions of weak
macroscopic realism.

4. Consistency with the weak macroscopic realism model

The predictions of quantum mechanics as given in
Figs. 10–12 reveal consistency with weak macroscopic re-
alism (wMR). First, consider measurement of 〈SA

y SB
z 〉. The

evolution of |ψzz〉FR shown in Fig. 10 is indistinguishable
from that of ρmix,B. Hence, from Result 6.B.1, those results
show consistency with wMR. After the interaction U −1

A in
lab A, the system is prepared in the appropriate basis, so that
the final pointer measurement SA

y can be made by the super-
observer. Hence, by Result 6.A, this state is also consistent
with wMR. Similarly, prior to the dynamics U −1

A portrayed
in the Fig. 10, the superobservers perform the reversal of the
friends’ measurements. This does not change the preparation
basis and, as argued in Sec. VI A, a wMR model exists in
which the pointer value λB,S

z = λB
z is unchanged. We therefore

conclude consistency with wMR.
The same arguments apply to the measurement of 〈SA

z SB
y 〉.

The evolution of |ψzz〉FR shown in Fig. 11 is indistinguishable
from that of ρmix,A. Hence, from Result 6.B.1, those results
show consistency with wMR.

We have argued that particular models (based on the mixed
states) exist that replicate the quantum predictions of the
|ψzz〉FR, for the moments 〈SA

z SB
z 〉, 〈SA

z SB
y 〉, and 〈SA

y SB
z 〉. At

first glance these models seem not consistent, since for the
different moments, we consider different mixed states (ρzz,FR,
ρmix,A, and ρmix,B) which are not entirely compatible. In fact,
we propose a more complete wMR model which includes
local operations made by the superobservers. In the model, the
system begins in ρzz,FR at the time t2, and consistent with that
mixed state, the results for both friends’ measurements of σz

can be known to the superobservers. Where the superobserver
A measures Sy by applying U −1

A , then in the model the
superobserver A first operates locally in lab A so that the
overall system in ρzz,FR is transformed into ρmix,B. This local
operation does not change the value of λB

z in the model.
Similarly, if superobserver B measures Sy, then in the wMR
model, a local operation is performed to change ρzz,FR into
ρmix,A. For this model, wMR holds throughout the dynamics.

In summary, we have shown consistency of the quantum
predictions of the Wigner friends paradoxes with both the
wMR assertions. This was done using a particular wMR
model, and showing compatibility with the predictions for
〈SA

z SB
z 〉, 〈SA

z SB
y 〉, and 〈SA

y SB
z 〉. However, the particular wMR

model used is a Bell-local realistic one and does not describe
the quantum dynamics for the measurements of Sy at both
labs, i.e., where there are two rotations Uy, one at A and one
at B. We see from Sec. V however that this does not imply
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the quantum predictions are inconsistent with the premise of
wMR. The two assertions of wMR are not applicable where
there are unitary rotations at both sites (refer to Figs. 4, 5, and
12), since both systems shift to a new measurement basis, so
that the former pointer values λA and λB need no longer apply.

VII. CONCLUSION AND DISCUSSION

The motivation of this paper is to present a mapping be-
tween the microscopic Wigner’s friend paradoxes involving
spin qubits and macroscopic versions involving macroscop-
ically distinct “spin” states. In Sec. III, we provide such a
mapping, where the macroscopically distinct states are two
coherent states, |α〉 and |−α〉, as α → ∞. Unitary rotations
U determine which spin component is to measured and in
a microscopic spin experiment correspond to Stern-Gerlach
analyzers or polarizing beam splitters. In the macroscopic
setup, the U are realized with nonlinear interactions.

The mapping motivates us to seek an interpretation for
the paradoxes where macroscopic realism can be upheld. The
extended Wigner’s friend paradoxes are based on plausible
assumptions, including that of locality, defined by Bell. We
show in Sec. IV that the realizations of the Brukner and
Frauchiger-Renner paradoxes each imply falsification of de-
terministic macroscopic (local) realism.

Motivated by that, we consider in Sec. V a more minimal
definition of macroscopic realism, called weak macroscopic
realism (wMR), which assigns realism to the system as it
exists after the unitary rotation U that determines the mea-
surement setting. This establishes a predetermined value for
the outcome of the pointer measurement that is to follow. The
premise of wMR also establishes a locality for this value:
the value is not then affected by events or interactions at a
spacelike-separated lab. Careful examination shows that wMR
does not imply a full locality of the type postulated by Bell,
which considers local hidden variables for the system as it ex-
ists prior to the unitary dynamics U . In Secs. V–VI, we prove
several results which verify that the predictions of quantum
mechanics for the paradoxes are consistent with wMR.

A feature of wMR is the definition of realism in a contex-
tual sense. In the wMR model, the state of the system is not
defined completely until the measurement basis is specified.
The measurement basis for the macroscopic spin system at
a given time t is defined as the basis such that the spin can
be measured without a further unitary rotation U that would
give a change of measurement setting. The final measurement
involves a sequence of operations such as amplification and
detection, or coupling to meters. These operations are referred
to as the final pointer stage of the measurement.

It is possible to define a similar contextual realism for
the microscopic qubits. We refer to this as weak local real-
ism (wLR). The interpretations of the macroscopic paradoxes
can be replicated in the microscopic versions, since there
is a mapping between the two. The proofs of the results in
Secs. IV–VI follow identically, for the spin-1/2 system. This
implies failure of a deterministic local realism, and consis-
tency with weak local realism. Violation of the Bell-CHSH
and of Brukner’s Bell-Wigner inequality is possible because
wLR does not imply the full Bell locality assumption.

The results of this paper may give insight into how
the assumptions of Bell’s theorem break down for quan-

tum mechanics. We find the paradoxes arise only where
the measurement setting is changed at both sites. This im-
plies two unitary rotations. The unitary dynamics has been
analyzed using the Q function. There is an effectively unob-
servable (as α → ∞) difference between the Q function of the
macroscopic superposition and that of the corresponding mix-
ture (the mixture giving consistency with the Bell-CHSH
inequalities). The difference remains undetectable for the case
where there is only a single rotation, which gives consistency
with a model in which there is a predetermination of one of
the measurement outcomes, so that wMR applies. However,
where there are two rotations, the Q functions for the states
evolving from the macroscopic superposition and the mixture
become macroscopically different. This leads to macroscopic
differences in the predictions, hence allowing the macroscopic
paradox to emerge. This is paradoxical, since the final dif-
ference between the Q functions is macroscopic in the limit
α → ∞, precisely the limit where the initial difference is
increasingly negligible.

While we propose that wMR (and wLR) may hold, we
have not presented a full wMR model that replicates all the
predictions of quantum mechanics. In particular, we do not
propose any specific mechanism for the Bell nonlocality. Ar-
guments have been given elsewhere that there is inconsistency
between wMR and the completeness of (standard) quantum
mechanics (see, e.g., Refs. [25,30,31]). This motivates exam-
ination of alternative theories, or theories which may give a
more complete description of quantum mechanics (see, e.g.,
Refs. [14,34–36,69–78]) for consistency with wMR. It has
been shown previously that the Frauchiger-Renner paradox
can be explained consistently with Bohm’s hidden variable
theory, which is highly nonlocal [14]. We leave open the
question of whether wMR can be falsified.

Finally, we consider a possible experiment. The micro-
scopic superposition states can be mapped onto coherent-state
superpositions using the methods of Refs. [55,56]. The unitary
rotations involving Kerr interactions have been realized in
experiments creating cat states [41]. The experiments might
also be conducted using Greenberger-Horne-Zeilinger states
and CNOT gates, as in Ref. [44].
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APPENDIX

1. Examples of realisation of the friend’s cat states

In this paper, we give three examples of a Wigner’s friend
experiment where the initial spin system is a macroscopic
one. The first has been presented in Sec. III. The second
example uses GHZ states and CNOT operations. Consider a
large number of spin 1/2 qubits. For lab A, we select a set of
N + 1 qubits, choosing |h〉 = |↑〉|↑〉⊗N and |t〉 = |↓〉|↓〉⊗N .
Similar macroscopic qubits can be selected for lab B. The
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TABLE I. The Table gives along each row a set of possible values that according to deterministic macroscopic realism (dMR) simultane-
ously predetermine the spin z and spin y outcomes of the bipartite system. All possibilities are given by the 16 rows. The possibilities would
not allow a Frauchiger-Renner (FR) paradox to occur. Hence, dMR is falsified by the FR paradox. The full details are explained in Sec. IV B.

λzA λzB λyA λyB P−−|yy P−+|yy P+−|yy P++|yy P−−|yz P−−|zy

1 1 1 1 0 0 0 1 0 0
1 1 1 −1 0 0 1 0 0 0
1 1 −1 1 0 1 0 0 0 0
*1 *1 *−1 *−1 *1 *0 *0 *0 *0 *0
1 −1 1 1 0 0 0 1 0 0
1 −1 1 −1 0 0 1 0 0 0
1 −1 −1 1 0 1 0 0 1 0
1 −1 −1 −1 1 0 0 0 1 0
−1 1 1 1 0 0 0 1 0 0
−1 1 1 −1 0 0 1 0 0 1
−1 1 −1 1 0 1 0 0 0 0
−1 1 −1 −1 1 0 0 0 0 1
−1 −1 1 1 0 0 0 1 0 0
−1 −1 1 −1 0 0 1 0 0 1
−1 −1 −1 1 0 1 0 0 1 0
−1 −1 −1 −1 1 0 0 0 1 1

qubits can be realized as orthogonally polarized photons in
N + 1 different modes. The coupling to the meters in the labs
links the systems to a larger set of M qubits, so that |H〉 =
|↑〉|↑〉⊗N |↑〉⊗M and |T 〉 = |↓〉|↓〉⊗N |↓〉⊗M . The unitary rota-
tion Ux or Uy can be realized using CNOT gates. Suppose the
system A is created in |H〉. Then the photon of the first mode
is passed through a beam splitter or polarizing beam splitter,
to create

(|↑〉 + eiϕ |↓〉)|↑〉⊗(N+M ). (A1)

For each subsequent qubit, a CNOT operation is applied, which
creates the Greenberger-Horne-Zeilinger (GHZ) state [45,79–
81]

|↑〉|↑〉⊗(N+M ) + eiϕ |↓〉|↓〉⊗(N+M ). (A2)

The inclusion of a phase shift ϕ at the first mode trans-
formation allows either the Ux or the Uy to be realized.
Such states have been used to experimentally demonstrate
failure of macrorealism [44] and have also been proposed
for macroscopic tests of GHZ and Bohm-Einstein-Podolsky-
Rosen paradoxes [31], as well as for testing macroscopic Bell
inequalities [30].

The third example uses two-mode states and nonlinear
interactions. The macroscopic qubits are two-mode num-
ber states, given by |N〉1|0〉2 and |0〉1|N〉2, where |n〉i is a
number state for the mode i. These states for large N are

macroscopically distinct. The states were studied in Ref. [38]
and [31], where it was shown that a nonlinear interaction Hnl

(different to (49)) can create the macroscopic cat superposi-
tion according to Ux and Uy given by (21) and (22) (where
we put |H〉 = |N〉1|0〉2 and |T 〉 = |0〉1|N〉2). The transforma-
tions are not fully realized, but are sufficiently effective that
violation of Bell inequalities are predicted.

2. Meter coupling

Let us consider the qubit c|↑〉 + d|↓〉, where c and d are
complex amplitudes. We couple the qubit system to a field
mode prepared initially in a coherent state |γ0〉. We consider
the evolution under HAm where [82–85]

HAm = h̄Gσ A
z n̂A

c . (A3)

Here σ A
z is the Pauli spin operator for the qubit system A, n̂A

c
is the number operator for the meter mode C in lab A, and G
is a real constant. The solution for the final entangled state is

|ψ〉out = e−iHd t/h̄(c|↑〉|γ0〉 + d|↓〉|γ0〉)

= c|↑〉|γ 〉 + d|↓〉| − γ 〉,
where we select Gt = π/2 and γ = −iγ0.

3. Table of values for macroscopic realistic states

Here, we present the Table I for the proof of Result 4.B of
Sec. IV. B. The explanation of the table is given in the main
text.
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