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Large violation of Leggett-Garg inequalities with coherent-state
projectors for a harmonic oscillator and chiral scalar field
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We investigate violations of Leggett-Garg inequalities (LGIs) for a harmonic oscillator and a (1 + 1)-
dimensional chiral scalar field with coherent-state projectors, which is equivalent to a heterodyne-type
measurement scheme. For the harmonic oscillator, we found that the vacuum and thermal states violated the LGIs
by evaluating the two-time quasiprobability distribution function. In particular, we demonstrate that the value of
the two-time quasiprobability reaches −0.123 for a squeezed coherent-state projector, which is equivalent to
98% of the Lüders bound corresponding to the maximal violation of the LGIs. We also find a violation of the
LGIs for the local mode of a quantum chiral scalar field by constructing a coherent-state projector similar to
the harmonic-oscillator case. In contrast with the harmonic oscillator, the periodicity in the time direction of the
quasiprobability disappears, which is related to the existence of quantum entanglement between the local mode
and its complementary degrees of freedom.
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I. INTRODUCTION

How can we be sure that a system is quantum
mechanical? Violation of macroscopic realism (MR) is a
concept that characterizes quantum mechanics. In a classical
system, the state of an object exists even before the measure-
ment is made. However, in quantum mechanical systems, it
is not necessarily true that an object is fixed in a particular
state before observation. How can we check whether MR
is broken? Leggett-Garg inequalities (LGIs) were proposed
by Leggett and Garg in 1985 to test whether a macroscopic
system follows MR [1].

In MR theory, for a dichotomic variable Q(t ) that takes
definite values of ±1, we consider the sequential measurement
of Q at times t1 and t2. Then, the following inequalities hold:

[1 + s1Q(t1)][1 + s2Q(t2)] � 0, (1)

where s1 = ±1 and s2 = ±1. Following the MR framework,
a joint probability distribution function exists for the mea-
surement results, and the existence of such a joint probability
implies that we can simply average the above formula and
obtain two-time LGIs:

1 + s1〈Q1〉 + s2〈Q2〉 + s1s2〈Q1Q2〉 � 0, (2)

where Q1 := Q(t1), Q2 := Q(t2), and 〈·〉 denotes the ensemble
averages of the measurement results. According to Halliwell
[2], the necessary and sufficient condition for MR to be valid
is that the above 12 two-time LGIs, which can be obtained
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with the three combinations of Qi and Qj by choosing two
from Q1, Q2, and Q3 and the four combinations from each si =
±1 and s j = ±1 with i, j = 1, 2, 3, and the following four
three-time LGIs:

1 + 〈Q1Q2〉 + 〈Q2Q3〉 + 〈Q1Q3〉 � 0, (3)

1 − 〈Q1Q2〉 − 〈Q2Q3〉 + 〈Q1Q3〉 � 0, (4)

1 + 〈Q1Q2〉 − 〈Q2Q3〉 − 〈Q1Q3〉 � 0, (5)

1 − 〈Q1Q2〉 + 〈Q2Q3〉 − 〈Q1Q3〉 � 0, (6)

for a total of 16 LGIs, are satisfied. In other words, if any
of the 16 LGIs are violated, we can confirm that MR does
not hold in that system. If MR does not hold, we can con-
clude that the system is quantum. Conversely, note that we
cannot conclude that there is no quantumness in a system in
which MR appears to hold, that is, all 16 LGIs hold true. In
quantum mechanics, the above expression of two-time LGIs
is promoted to be positivity of the two-time quasiprobability
defined by

qs1s2 := 1
4

(
1 + s1〈Q̂1〉 + s2〈Q̂2〉 + 1

2 s1s2〈{Q̂1, Q̂2}〉
)

= ReTr
[
M̂s2 (t2)M̂s1 (t1)ρ̂0

]
, (7)

where M̂s = (1 + sQ̂)/2 is the projector (measurement oper-
ator) for the dichotomic operator Q̂ and ρ̂0 is the quantum
state of the target system. The two-time LGIs are equivalent to
qs1s2 � 0 and the negativities of the quasiprobability indicate
a violation of MR (violation of the LGIs).

In terms of the expected values of the dichotomic operator,
the quasiprobability is

qs1s2 = 1
8 〈(1 + s1Q̂1 + s2Q̂2)2 − 1〉 � − 1

8 . (8)
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This quantity is always positive for classical systems, and its
negativity implies a violation of MR. The minimum value
−1/8 is called the Lüders bound [3], which corresponds
to the maximal violation of the LGIs. To verify the LGIs
experimentally, we obtain the expectation values 〈Q̂1,2〉 and
〈Q̂1Q̂2〉 from the experimental data and then check whether
the quasiprobability (7) is negative.

The two-time probabilities for these sequential measure-
ments are

p12(s1, s2) := Tr
[
M̂s2 (t2)M̂s1 (t1)ρ̂0M̂s1 (t1)

]
, (9)

which is a manifestly positively valued quantity but does not
satisfy the following no-signaling-in-time (NSIT) condition
[4–6]:

p2(s2) := Tr
[
M̂s2 (t2)ρ̂0

] =
∑

s1

p12(s1, s2). (10)

For a pure initial state ρ0 = |ψ0〉〈ψ0|, p12 fails to satisfy
the probability sum rule because of the interference between
the pairs of states |ψ+〉 = M̂s2 (t2)M̂+(t1)|ψ0〉 and |ψ−〉 =
M̂s2 (t2)M̂−(t1)|ψ0〉. Although the quasiprobability formally
satisfies the above probability sum rule (or generalized NSIT
condition [7])

p2(s2) =
∑

s1

qs1s2 , (11)

the value of quasiprobability can become negative. Equa-
tion (11) implies that the projection made at the earlier time
does not affect the probability p2(s2) at the later time [7].
However, it cannot be ruled out that violations of the LGIs
may also be due to the quantum nature of the measurement op-
erator. This can be seen by noting that the quasiprobability can
be rewritten as a overlap between the Wigner function in the
initial state and the Wigner-Weyl symbol of the measurement
operator (M̂1M̂2 + M̂2M̂1)/2. That is, the quasiprobability is

qs1s2 = Tr[(M̂1M̂2 + M̂2M̂1)ρ0]

= 2π

∫
dqd pWM̃12

(q, p)Wρ0 (q, p), (12)

where the Wigner functions for the projector M̃12 := M̂1M̂2 +
M̂2M̂1 and the Wigner function for the initial pure state ρ0 =
|ψ〉〈ψ | are defined as

WM̃12
(q, p)= 1

2π

∫ ∞

−∞
dye−ipy

〈
q + y

2

∣∣∣(M̂1M̂2+M̂2M̂1)
∣∣∣q − y

2

〉
,

(13)

Wρ0 (q, p) = 1

2π

∫ ∞

−∞
dye−ipy

〈
q + y

2

∣∣∣|ψ〉〈ψ |
∣∣∣q − y

2

〉
. (14)

For example, if the initial state is ρ0 = |0〉〈0|, then the Wigner
function of the system is positive. Although a positive value of
the Wigner function does not necessarily indicate classicality,
in this case we can say that the violation of the LGIs is due to
the quantum nature of the measurement operator.

The relationship between MR and the LGIs is discussed in
the paper by Maroney and Timpson [8]. According to them,
there are three types of MR (per se) and the LGIs contain only
one of them, “operational eigenstate mixture macrorealism.”
However, this paper will not go into this in depth.

As typical systems, LGIs are specifically applied to
quantum-harmonic oscillators (QHOs) [9–13]. Assuming that
the dichotomic variable Q̂ is in the form of a sign function
indicates that the quasiprobability for the ground state of a
QHO does not violate both the two-time LGIs and the three-
time LGIs [10]. However, by making the dichotomic operator
a more coarse-grained or nontrivial form [13], even for the
ground state, there are some cases in which the LGIs are vio-
lated; we confirm this behavior in this study. This implies that
the features of the measurement operator must be carefully
considered when verifying MR of the system. In previous
studies, LGIs have been applied to various types of Gaus-
sian states: coherent, thermal, squeezed, squeezed coherent,
and thermally squeezed coherent [9–13]. With the settings of
Ref. [11], the violation of the LGIs reached 84% of the Lüders
bound [3], which provided the maximal value of the violation
of the LGIs. Moreover, using a different scheme with tempo-
ral correlations (called no-signaling in time) has shown that
violations of MR can be verified independently of the mass,
momentum, and frequency of the QHO [12]. Experimen-
tal verification of LGIs has been reported in Refs. [14–16],
mainly using qubit systems. For recent experimental develop-
ments, applications and review of the Leggett-Garg inequality,
see the paper by Emary et al. [17] and the paper by Vitagliano
and Budroni [18]. Although there are few analyses of LGIs
applied to quantum fields, Tani et al. [19] investigated the
LGIs for (3 + 1)-dimensional quantum fields and (1 + 1)-
dimensional chiral massless scalar fields, and they concluded
that, for the vacuum state of the field, no violation of the
LGIs occurred without adopting a nontrivial dichotomic
variable Q̂.

In this study, we investigated the violation of LGIs for
harmonic oscillator and chiral scalar field systems with
coherent-state measurements. As a dichotomic observable for
the LGIs, we adopted one defined via a Gaussian projector
(Gaussian positive-operator-value measure) [11,12]. We see
that the Gaussian projector results in a greater violation of the
LGIs compared with non-Gaussian-type projectors [e.g., Q̂ =
sgn(x̂) [9–11,13] ]. For the scalar field system, we introduced
a local oscillator mode assigned to a specified spatial region
from the scalar field using a window function. This window
function was selected to respect the symplectic structure of the
local mode. Because the local mode is defined as an oscillator
embedded in the total quantum field system, its state becomes
mixed and evolves in a nonunitary manner. Therefore, we do
not have a Hamiltonian that determines the evolution of the
local mode required to evaluate the projectors at specified
times. To overcome this difficulty, we express the local mode
operators using the creation and annihilation operators of the
original quantum field and take the summation over each wave
number mode to obtain the quasiprobability of the local mode.

The remainder of this paper is organized as follows: In
Sec. II, we present the violation of the LGIs for a harmonic
oscillator with a Gaussian projector, and we explain why the
LGIs are violated in comparison with the classical motion of
the oscillator. In Sec. III, we consider the LGIs in a (1 + 1)-
dimensional chiral scalar field and derive a formula for the
quasiprobability of the spatial local modes of the scalar field.
We found that the LGIs violated the suitable projector param-
eters. We also discuss the LGI experiment using quantum Hall
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systems. Section IV is devoted to a summary and conclusions.
Throughout this paper, we adopt the units c = h̄ = 1.

II. VIOLATION OF LEGGETT-GARG INEQUALITY
FOR A HARMONIC-OSCILLATOR SYSTEM

A. Harmonic-oscillator system

Let us consider the quasiprobability in a harmonic-
oscillator system [9–13] with the following Hamiltonian:

Ĥ = p̂2

2
+ �2

2
q̂2 = �

(
â†â + 1

2

)
, (15)

where p̂ and q̂ are the dimensionless momentum and position
operators, respectively, and � is the angular frequency of the
harmonic oscillator. The annihilation and creation operators
are defined as

â =
√

�

2
q̂ + i√

2�
p̂, â† =

√
�

2
q̂ − i√

2�
p̂. (16)

The oscillator ground state is defined as â|0〉 = 0. For this
ground state, each expectation value is calculated as 〈q̂〉 =
〈p̂〉 = 0, 〈q̂2〉 = 1/(2�), and 〈p̂2〉 = �/2. The coherent state
of the oscillator is defined as

|α〉 = eαâ†−α∗â|0〉 = D̂a(α)|0〉 = e−|α|2/2
∑

n

αn

√
n!

|n〉, (17)

where D̂a(α) denotes the displacement operator. With the evo-
lution operator Û (t ) = exp(−iĤt ), the coherent state evolves
into

Û (t )|α〉 = e−i�t/2|e−i�tα〉, Û †âÛ = e−i�t â. (18)

For the initial state of the oscillator, we assume a thermally
coherent state

ρ̂0 = CD̂a(α) exp(−Aâ†â)D̂†
a(α), Trρ̂0 = 1, (19)

with the normalization C = Tr exp(−Aâ†â))−1 = (1 − e−A).
The constant A is related to the symplectic eigenvalue ν of the
covariance matrix for the Gaussian state (19) as follows:

e−A = ν − 1/2

ν + 1/2
, ν2 = 〈q̂2〉〈p̂2〉 � 1

4
. (20)

The temperature T of the thermal state is related to ν by ν−1 =
2 tanh(�/(2T )). 1 In the zero-temperature limit, T → 0, ν =
1/2, and ρ̂0 becomes a pure state.

B. Measurement operator

As discussed extensively in Ref. [7], violation of conven-
tional LGIs is equivalent to the existence of negative values of
quasiprobability defined by

qs1s2 = ReTr
[
M̂s2 (t2)M̂s1 (t1)ρ̂0

]
, (21)

1We can use the following formula to express the thermal state in
terms of the displacement operator:

e−Aâ† â = 1

(ν + 1/2)π

∫
d2ze−ν|z|2 D̂a(z), ν = 1

2

(
1 + e−A

1 − e−A

)
.

where M̂s is the measurement operator for a dichotomic ob-
servable Q̂ with the specified measurement results s = ±1 and
ρ̂0 denotes the initial state of the target oscillator. In terms of
Q̂, the measurement operator is expressed as

M̂s = 1 + sQ̂

2
, Q̂2 = 1, s = ±1. (22)

We consider LGIs with generalized measurements by adopt-
ing the following Gaussian measurement operators [20]

M̂s = 1 − s

2
+ s|βb〉〈βb| =

{|βb〉〈βb| for s = +1
1 − |βb〉〈βb| for s = −1,

(23)
where |βb〉 is the coherent state with the annihilation operator
defined by

b̂ :=
√

ω

2
q̂ + i√

2ω
p̂ = cosh râ + sinh râ†, er =

√
ω

�
,

(24)
where ω is the angular frequency of the projector (a mea-
surement apparatus parameter). This type of measurement
operator maps Gaussian states to Gaussian states and can be
realized experimentally by appending ancillary modes ini-
tialized in Gaussian states, implementing Gaussian unitary
operations on the system and ancillary modes, and measuring
quadrature operators that can be achieved using balanced ho-
modyne detection in the optics framework. The annihilation
operator is expressed as b̂ = Ŝ†(r)âŜ(r) with the squeezing
operator

Ŝ(ζ ) = exp

(
ζ

2
â†2 − ζ ∗

2
â2

)
, ζ = reiϕ, (25)

where ζ is the squeezing parameter and ϕ is the constant
phase. The “vacuum state” defined by b̂ is determined as
b̂|0b〉 = 0 with |0b〉 = Ŝ−1(r)|0〉, where â|0〉 = 0. Hence

|βb〉 = eβb̂†−β∗b̂Ŝ(−r)|0〉 = D̂a(γ )Ŝ(eiπ r)|0〉 =: |γ , ζ 〉,
γ = β cosh r − β∗ sinh r, ζ = eiπ r. (26)

Therefore, |βb〉 is the squeezed coherent state |γ , ζ 〉 with
displacement parameter γ and squeezing parameter ζ . Pa-
rameters β, r, and ω in the projector (23) are regarded as
the measurement parameters. The evolution of the projector

FIG. 1. Schematic plot of the coherent-state measurement of the
vacuum state |0〉 (left panel) and the coherent state |α〉 (right panel).
The dashed circles represent 1σ contours of the Gaussian state. As
the measurement result, we assign the dichotomic variable Q = +1
if the obtained measurement result (q, p) is included in the blue
disks; otherwise, Q = −1. After the measurement, the state |α〉〈α| of
the target system is projected to |〈α||β〉|2|β〉〈β| if the measurement
result is Q = +1.
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M̂1 = |βb〉〈βb| is

M̂1(t ) = Û †(t )M̂1Û (t )

= Û †(t )D̂(γ )Ŝ(ζ )|0〉〈0|Ŝ†(ζ )D̂†(γ )Û (t )

= D̂(ei�tγ )Ŝ(e2i�tζ )|0〉〈0|Ŝ†(e2i�tζ )D̂†(ei�tγ )

= |ei�tγ , e2i�tζ 〉〈ei�tγ , e2i�tζ |. (27)

The projector with measurement result s is

M̂s(t ) = 1 − s

2
+ s|γ (t ), ζ (t )〉〈γ (t ), ζ (t )|, γ (t ) = ei�tγ ,

ζ (t ) = e2i�t+iπ r. (28)

If we adopt the dichotomic operator Q̂ = 2|β〉〈β| − 1, where
|β〉 is a coherent state, then the measurement operator for this

dichotomic operator is M̂1 = |β〉〈β| and M̂−1 = 1 − |β〉〈β|
(Fig. 1). Hence for the vacuum state of the target oscillator,
if the measurement result with a fixed s is +1, this implies
Q = +1; on the other hand, if the measurement result is
−1, this implies Q = −1. Physical interpretation of this mea-
surement is as follows: If the measured values (q, p) of the
oscillator (yellow-shaded disks in Fig. 1) are included in the
width of the coherent-state projector (blue-shaded disks in
Fig. 1), we obtain the measurement result +1; otherwise, the
measurement result is −1.

C. Quasiprobability with a coherent-state projector
for the initial thermal coherent state

By using the measurement operator (28), the quasiproba-
bility with an initial thermal coherent state (19) becomes

qs1s2 = CReTr
[
M̂s2 (t2)M̂s1 (t1)D̂(α)e−Aâ†âD̂†(α)

] = CReTr
[
D̂†(α)M̂s2 (t2)D̂(α)D̂†(α)M̂s1 (t1)D̂(α)e−Aâ†â

]
, (29)

where

D̂†(α)M̂s(t )D̂(α) = 1 − s

2
+ s|γ (t ) − α, ζ (t )〉〈γ (t ) − α, ζ (t )|. (30)

Then, using e−Aâ†â = ∑
n e−An|n〉〈n| in Eq. (29) gives

qs1s2 =CRe
∑

n

[
(1 − s1)(1 − s2)

4
e−An + s1(1 − s2)

2
e−An|〈n|γ1 − α, ζ1〉|2 + s2(1 − s1)

2
e−An|〈n|γ2 − α, ζ2〉|2

+ s1s2e−An〈γ2 − α, ζ2||γ1 − α, ζ1〉〈n||γ2 − α, ζ2〉〈γ1 − α, ζ1||n〉
]
. (31)

For a coherent-state projector without squeezing, we set ζ = 0 and γ = β and the quasiprobability is evaluated as

qs1s2 = CRe

[
(1 − s1)(1 − s2)

4

∑
n

e−An + s1(1 − s2)

2
e−|β1−α|2 ∑

n

e−An |β1 − α|2n

n!
+ s2(1 − s1)

2
e−|β2−α|2 ∑

n

e−An |β2 − α|2n

n!

+ s1s2〈β2 − α||β1 − α〉e−|β2−α|2/2−|β1−α|2/2
∑

n

e−An (β2 − α)n(β∗
1 − α∗)n

n!

]

= CRe

{
(1 − s1)(1 − s2)

4

1

1 − e−A
+ s1(1 − s2)

2
e−|β1−α|2 exp(e−A|β1 − α|2) + s2(1 − s1)

2
e−|β2−α|2 exp(e−A|β2 − α|2)

+ s1s2e−|β2−α|2−|β1−α|2 e(β∗
2 −α∗ )(β1−α) exp[e−A(β2 − α)(β∗

1 − α∗)]

}

= (1 − s1)(1 − s2)

4
+ (

1 − e−A
){ s1(1 − s2)

2
e−|β1−α|2 exp(e−A|β1 − α|2) + s2(1 − s1)

2
e−|β2−α|2 exp(e−A|β2 − α|2)

+ s1s2e−|β2−α|2−|β1−α|2 Ree(β∗
2 −α∗ )(β1−α) exp[e−A(β2 − α)(β∗

1 − α∗)]

}
, (32)

where β1 := ei�t1β and β2 := ei�t2β. For the zero-temperature limit e−A → 0,

qs1s2 = (1 − s1)(1 − s2)

4
+ s1(1 − s2)

2
e−|β1−α|2 + s2(1 − s1)

2
e−|β2−α|2 + s1s2e−|β2−α|2−|β1−α|2 Ree(β∗

2 −α∗ )(β1−α). (33)

Furthermore, for the vacuum state α = 0, the quasiprobability
qs1s2 depends only on the difference between the two mea-
surement times �(t2 − t1) and β. For the high-temperature

limit e−A → 1, the quasiprobability becomes qs1s2 = (1 −
s1)(1 − s2)/4 � 0 and the LGIs are not violated within this
limit.
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TABLE I. This table summarizes the results of Sec. II Violation of LGI for a harmonic oscillator system.

���������Projector
State

Vacuum Coherent Thermal

Coherent
• q++ is negative for β > 1. • q++ is negative for β > α. • The thermal effect
• q−− is negative for β < 1. • q−− is negative for β ≈ α. reduces violation of LGIs.

• q+−, q−+ can be negative.

• When |r| 	 1, LGIs are not violated.
Squeezed coherent • When |r| ≈ 0.3, the violation

reaches 98% of the Lüders bound.

A table briefly summarizing the results of Sec. II is pre-
sented in Table I. The features and interpretation of violation
of the LGIs for the initial vacuum state, initial coherent state,
and initial thermal state are as follows:

a. Initial vacuum state α = 0. The first row in Fig. 2
shows the behavior of the quasiprobability with an initial
vacuum state |0〉 (Eq. (33)), where we chose t1 = 0 and ω =
�. Regions where qs1s2 < 0 (enclosed by red lines) is in the

FIG. 2. Negative regions of the quasiprobability (enclosed by red lines) for the pure state |α〉 with α = 0, 1, and 3. For α = 0, q++ and
q−− become negative. For α 
= 0, q++, q−−, and q+− become negative. We chose t1 = 0 and ω = �.
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FIG. 3. Schematic explanation of violation of the LGIs for the
coherent-state projector. Yellow regions represent the initial state of
the oscillator, and blue regions represent 1σ contours of the projector.
The left panel represents the projector with β > 1 and the right panel
represents the projector with β < 1.

(t, β ) plane. Figure 3 shows a schematic interpretation of the
violation of the LGIs with a coherent projector. In this case,
q++ and q−− are negative. For a projector with parameter
β < 1, because the target vacuum state of the oscillator is
localized at q ∼ 0, the measurement discriminates whether
the particle is located around q ∼ 0 (measurement with s =
+1) or not (measurement result with s = −1). Hence, q++
does not violate the LGIs with this value of the parameter
β; Immediately after the first measurement, the particle is
definitely located around q ∼ 0 and the second measurement
will result in the same result as the first measurement, and
these measurement results are classically expected. However,
q−− represents the “possibility” that a particle does not exist
around q = 0 for both the first and second measurements,
and such a measurement result cannot be expected classically.
Therefore, q−− becomes negative and MR is violated. Further-
more, it can be expected that the maximum violation occurs
at the half-period �t2 = π because of the largest overlap
between the yellow region (state of the oscillator) and blue
region (projector) in the right panel of Fig. 3. For the β = 0
case, qs1s2 = (1 + s1)(1 + s2)/4 � 0 and there is no violation
of the LGIs. This is because the measurement with β = 0 does
not disturb the target vacuum state, and the obtained mea-
surement results coincide with the classical results (and the
particle always exists at q = 0 in this case). For β > 1, q++ is
negative. Negative regions in q++ form a fringe structure that
implies quantum interference of the oscillator motion; indeed,
the quasiprobability for the initial vacuum state is regarded as
overlap of two branches of evolved states |ψ1〉 := M̂+(t1)|0〉
and |ψ2〉 := M̂+(t2)|0〉, and 〈ψ1||ψ2〉 represents interference
of these two branches. After the first measurement at t1, the
center of the wave function is projected to the location where
β > 1 and then evolves according to the classical equation of
motion. Because classical particle motion is oscillatory in
time, the measurement result Qs1=1 = Qs2=1 = +1 cannot be
expected classically. The measurement result depends on the
value of t2 − t1. Therefore, q++ was negative.

b. Initial coherent state α 
= 0. The second and third rows
in Fig. 2 show the behavior of the quasiprobability with an
initial coherent state |α〉 [Eq. (33)], where we chose t1 = 0 and
ω = �. Regions where qs1s2 < 0 (enclosed by red lines) are in
the (t, β ) plane. In this case, q++, q−+, and q−− are negative.
We can provide the following explanation for the emergence

FIG. 4. Schematic explanation of violation of the LGIs for q−+
with α = 1 and β ≈ 0.5. At time t = t1, s1 = −1, and the particle is
expected to be in the yellow region. Then, at time t = t2, the particle
is expected to be in the green region because s2 = +1. The mismatch
in location in the phase space between the yellow region in the left
panel (t = t1) and the green region in the right panel (t = t2) leads to
the violation of the LGIs.

of negative regions in the quasiprobability: q++ exhibits a
fringe pattern in the region β > α, which is the same behavior
as that in the α = 0 case. Because the quasiprobability with
the initial coherent state overlaps the two states M̂(t1)|α〉 and
M̂(t2)|α〉, it represents interference between these two states.
For β > α, the interference fringe appears as a negative value
for q++ in the (t, β ) plane. If we focus only on the position
of the oscillator, where the value of the violation is relatively
large (dark black region in Fig. 2), then we observe that the
relation β ∼ α ± 1.5(>1) holds with any α. This relationship
explains why round regions with a negative quasiprobability
suddenly appear in the lower left panel of Fig. 2. Although
not included in the figure, as can be seen from the relation
β ∼ α ± 1.5, round regions with negative quasiprobabilities
begin to appear when α begins to exceed 2.5. Physically, one
could say that an overlap between the state of the oscillator
and the projector that is neither too large nor too small is
required for a violation of the LGIs (Fig. 3). For q−+, if we
select the α = 1 case as shown in Fig. 4, the first measure-
ment result implies that the particle exists around the yellow
region (Q = −1), but the second measurement confirms that
the particle exists around the green region (Q = +1), which
is not classically expected. Of course, we must consider the
spread of the oscillator’s wave function; this effect is omitted
here for intuitive understanding. The quasiprobability q−− can
become negative in narrow regions with α ∼ β in the (t, β )
plane. That the first and second measurement results predict
the nonexistence of the particle around q = 0 is not classically
expected because the yellow region (state of the oscillator)
and blue regions (projector) overlap (Fig. 3). Therefore, q−−
has negative values and the LIGs are violated. Here, since
the harmonic-oscillator states and the projector are Gaussian
coherent states, their Wigner functions are positive by Hud-
son’s theorem [21]. However, as can be read from Fig. 2, the
LGIs are still violated in the current setting. This gives us
an example that positivity of the Wigner function does not
necessarily mean that the system is classical.

c. Initial thermal state. Figure 5 shows the thermal effect
on the negativity of the quasiprobability. For the initial mixed
states with ν = 0.51, 0.61, and 0.75, the negative regions of
qs1s2 become smaller with an increase in ν compared with
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FIG. 5. Negative regions of the quasiprobability (enclosed by red lines) for the initial thermal state α = 0 with ν = 0.51, 0.61, and 0.75.
ν = 0.5 corresponds to a pure state. As ν increases, the thermal effect reduces the violation of the LGIs. We chose t1 = 0 and ω = �.

those of the initial vacuum state. Therefore, the thermal effect
(mixedness of the initial states) reduces violation of the LGIs.
Above the critical value of ν, violation of the LGIs is not
observed in q−−. Figure 6 shows the time dependence of q++
(with β = 1.6) and q−− (with β = 0.5) for ν = 0.5, 0.61,
and 0.75. This shows that the smallest negative values of the

FIG. 6. Time dependence of the quasiprobability q++ with β =
1.6 (left panel) and q−− with β = 0.5 (right panel) for the initial
thermal state with ν = 0.5, 0.61, and 0.75. ν = 0.5 corresponds to
a pure state. The thermal effect reduces violation of the LGIs. For
ν = 0.75, q−− does not have negative values.

quasiprobability approach zero with an increase in ν and the
thermal effect prevents violation of the LGIs.

D. Quasiprobability with a squeezed coherent-state projector
in the initial vacuum state

Now, we consider a projector with a squeezed coherent
state (28) for the initial vacuum state. After taking the
zero-temperature limit A → ∞ and α = 0 in Eq. (29), the
quasiprobability with the initial vacuum state is

qs1s2 = Re

[
(1 − s1)(1 − s2)

4
+ s1(1 − s2)

2
|〈0||γ1, ζ1〉|2

+ s2(1 − s1)

2
|〈0||γ2, ζ2〉|2

+ s1s2〈γ2, ζ2||γ1, ζ1〉〈0||γ2, ζ2〉〈γ1, ζ1||0〉
]
, (34)
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FIG. 7. Negative regions of the quasiprobability (enclosed by red lines) for the pure ground state |0〉 with the squeezed coherent-state
projector r > 0. q++ and q−− have negative values and the LGIs are violated.

where2

〈0||γ j, ζ j〉 = 1√
cosh r

exp

[
−γ 2

2
(1 + tanh r)

]
(35)

2We use the following formulas for the squeezed coherent state
|β, ξ〉, where ξ = eiϕr [22]:

〈0||β, ξ〉 = 1√
cosh r

exp

[
−1

2
|β|2 + eiϕ

2
β∗2 tanh r

]
,

〈β1, ξ1||β2, ξ2〉 = 1√
σ21

exp

[
η21η

∗
12

2σ21
+ 1

2
(β2β

∗
1 − β∗

2 β1)

]
,

for r2 = r1 ≡ r, where

σ21 = cosh2 r − ei(ϕ2−ϕ1 ) sinh2 r,
η21 = (β2 − β1) cosh r − (β∗

2 − β∗
1 )eiϕ2 sinh r,

η12 = (β1 − β2) cosh r − (β∗
1 − β∗

2 )eiϕ1 sinh r

has no time dependence. Therefore, the quasiprobability is
given by

qs1s2 = (1 − s1)(1 − s2)

4
+ |〈0||γ , ζ 〉|2

×
[
s1(1 − s2)

2
+ s2(1 − s1)

2
+ s1s2Re〈γ2, ζ2||γ1, ζ1〉

]
,

(36)

with

〈γ2, ζ2||γ1, ζ1〉 = 1√
σ21

exp
[

η21η
∗
12

2σ21
+ 1

2 (γ2γ
∗
1 − γ ∗

2 γ1)
]
,

(37)

σ21 = cosh2 r − e2i�(t2−t1 ) sinh2 r, (38)
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FIG. 8. Negative regions of the quasiprobability (enclosed by red lines) for the pure ground state |0〉 with squeezed coherent-state projector
r < 0. q++ and q−− have negative values and the LGIs are violated.

η21 = (
ei�t2 − ei�t1

)
γ cosh r

− (
e−i�t2 − e−i�t1

)
γ ei(2�t2+π ) sinh r, (39)

η12 = −(
ei�t2 − ei�t1

)
γ cosh r

+ (
e−i�t2 − e−i�t1

)
γ ei(2�t1+π ) sinh r, (40)

γ2γ
∗
1 = ei�(t2−t1 )γ 2, (41)

η21η
∗
12 = γ 2e−i�(t2−t1 )

(
1 − ei�(t2−t1 )

)2

× (
cosh r − ei�(t2−t1 ) sinh r

)2
, (42)

γ2γ
∗
1 − γ ∗

2 γ1 = (
ei�(t2−t1 ) − e−i�(t2−t1 )

)
γ 2. (43)

The time dependence of qs1s2 was determined as a function of
the time difference t21 = t2 − t1.

Figures 7 and 8 show the negative regions of the quasiprob-
ability for the vacuum state with a squeezed coherent-state
projector. The structures of the negative regions in q++ and
q−− are essentially identical to those in the coherent-state-
projector case. However, the squeezing effect of the projector
affects the shapes of the negative regions of the quasiproba-
bility and their negative values.

First, we consider the r > 0 case (Figs. 7 and 9). We
observe that squeezing with r > 0 enhances the violation of
the LGIs in q−− [see Fig. 9, which depicts (r, β ) dependence
of q−− at �t21 = π ]. In fact, when r ≈ 0.31, q−− can reach
≈ − 0.123 at β ≈ 0.57, �t21 = π , which is close to the value
of the Lüders bound −1/8 = −0.125, and a nearly maximal

violation of the LGIs is realized. The maximum violation
setting of the LGIs is similar to that for q−− with a coherent-
state projector for the initial vacuum state [see q−− (α = 0)
in Fig. 2] but, in terms of the amount of violation, it becomes
greater with the introduction of the squeezing. This reflects the
fact that the squeezed state itself represents a quantum nature
compared with the simple coherent state without squeezing.
For q++, its values decrease with the increase in r. Therefore,
squeezing enhances the violations of the LGIs that appears
in q++.

FIG. 9. Dependence of (r, β ) for negative values of q−− at
�t21 = π . At (r, β ) ≈ (0.31, 0.57), the maximum violation of the
LGIs close to the Lüders bound is realized.
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FIG. 10. Schematic explanation of the LGIs violation with the
squeezed coherent-state projector. The distribution of particles and
projectors when the squeezing parameter r is positive is shown in the
upper panel, and that when r is negative is shown in the lower panel.
q++ is the left panel, and q−− is the right panel. The deviation of
the projector (blue region) from the origin is the coherent amplitude
β. Therefore, we can see that, in q−−, LGIs violation is occurring
between β = 0 and β = 1 even when the projector is squeezed.

Figure 10 shows a schematic explanation of the viola-
tion of the LGIs by a squeezed coherent-state projector. This
figure helps us understand why quasiprobability is nega-
tive in some of the panels of Fig. 8. Figure 11 conversely
illustrates typical examples of a setting in which quasiprob-
ability is not negative (i.e., the LGIs are not violated). The
left panel explains why the quasiprobability is not negative
in the half-period (�t21 = π ) for the lower right panel in
Fig. 8. That is, in the orange region, where the particles are
predicted to be present, the second measurement measures
almost the same region as the first measurement; therefore,
we can say that no information is obtained from the second
measurement.

For the r < 0 case (Figs. 8 and 9), we observe that
the squeezing increases negative values of q++ and q−−

FIG. 11. Typical examples of q−− > 0. The left and right panels
represent the extreme case of squeezing, in which the LGIs are not
violated. For large |r|, the state after measurement becomes approxi-
mately eigenstates of q̂ or p̂, and the violation of the LGIs cannot be
expected.

and reduces violation of the LGIs. Therefore, squeezing did
not enhance the violation of the LGIs in this case. As r
decreases (e.g., r = −0.5), the position of the maximum vi-
olation changes from �t21 = π (a half-period) to �t21 = π/2
(a quarter period) and �t21 = 3π/2 (a three-quarter period).
As shown in the schematic explanation of the violation of
the LGIs (left panel of Fig. 11), this corresponds to the fact
that, at �t21 = π , we perform the measurement for almost the
same area as measured at t1. Therefore, we did not obtain any
information and the LGIs were not violated.

For larger absolute values of the squeezing parameter |r| 	
1, the negative value of the quasiprobability approaches zero
for q++. This can be explained as follows: A projector with
these values of r corresponds to an ideal projective q or p
measurement (see the middle and right panels of Fig. 11).
These types of measurements project the target state onto the
position eigenstate or momentum eigenstate after the mea-
surement. In other words, if |r| is large, the state of the
particle collapses to the position or momentum eigenstate, and
a violation of the LGIs is not expected. For q−−, the state is
projected to the outside of the blue region, as shown in Fig. 11.
When |r| 	 1, the projected region is almost the same as the
original vacuum state, which gives results that are not signifi-
cantly different from classical motion. This indicates that the
information obtained from this measurement was insufficient.
We observe a similar feature of suppressing the violation of
the LGIs for a quantum field with a local projection operator
with a large squeezing parameter.

III. VIOLATION OF LEGGETT-GARG INEQUALITIES
FOR A QUANTUM FIELD

As an application of the coherent-state projector, we in-
vestigated LGIs for a chiral scalar field that appears as an
edge excitation of quantum-Hall systems [23]. To formulate
the LGIs for the quantum field, we first introduce the spatial
local modes of the quantum field.

A. Chiral scalar field in (1 + 1)-dimensional spacetime

We consider a quantum chiral scalar field ϕ̂ corresponding
to the edge excitation of a quantum Hall system [24,25]. Our
main purpose is to investigate the quantum effect of edge
modes in a quantum Hall system, which is measurable us-
ing the local charge density ∂xϕ̂. The scalar field obeys the
following (1 + 1)-dimensional Klein–Gordon equation:

¨̂ϕ − v2∂2
x ϕ̂ = 0, (44)

where v is the propagation speed of edge excitation. It is
determined as

v = cU ′(y)

eB
= cE

B
, (45)

where U (y) is the trapping potential perpendicular to the
edges of the quantum Hall system, E is the electric field
induced by U , and B is the perpendicular magnetic field.
Hereafter, we set v = 1 and adopt v as the units of length and
time.

The field operator at x+ = t + x is expressed as

ϕ̂(x+) =
∫ ∞

0

dk√
4πk

[âke−ikx+ + â†
keikx+

]. (46)
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We assumed a vacuum state in the quantum field by imposing
âk|g〉 = 0. In our setup, the gauge-invariant physical quantity
is the current (charge) density given by the derivative of the
field operator ϕ̂:

�̂(x+) := ϕ̂′(x+) = −i
∫ ∞

0
dk

√
k

4π
[âke−ikx+ − â†

keikx+
].

(47)
The commutators between the field operators are

[ϕ̂(x+), ϕ̂(y+)] = − i

4
sgn(x+ − y+), (48)

[ϕ̂(x+), �̂(y+)] = i

2
δ(x+ − y+), (49)

[�̂(x+), �̂(y+)] = i

2
δ′(x+ − y+). (50)

The two-point correlation functions areas are as follows:

〈{ϕ̂(x+), ϕ̂(y+)}〉 = 1

2π

∫ ∞

0

dk

k
cos[k(x+ − y+)], (51)

〈{ϕ̂(x+), �̂(y+)}〉 = 1

2π

∫ ∞

0
dk sin[k(x+ − y+)], (52)

〈{�̂(x+), �̂(y+)}〉 = 1

2π

∫ ∞

0
dkk cos[k(x+ − y+)]. (53)

The Wightman function for ϕ̂ is

Dϕ (x+
1 , x+

2 ) = 〈ϕ̂(x+
1 )ϕ̂(x+

2 )〉 = 1

4π

∫ ∞

μ

dk

k
e−ik(x+

1 −x+
2 −iε),

= − 1

4π
ln[μ(x+

1 − x+
2 − iε)], (54)

where we introduce an infrared cutoff μ as the lower bound
of the integral and an ultraviolet cutoff ε by ε := �x, where
�x is the spatial cutoff length. In our analysis, the chi-
ral scalar field ϕ̂ is an effective one and there exists a
short cutoff length ε, below which the effective treatment
of the edge mode breaks down. In a quantum Hall system,
this scale is given by the magnetic length of the quantum
Hall system:

�B =
√

h̄

eB
. (55)

We considered the short-length cutoff �x as the length
in our analysis. The Wightman function for �̂ is as
follows:

D�(x+
1 , x+

2 ) := 〈�̂(x+
1 )�̂(x+

2 )〉
= ∂x+

1
∂x+

2
D(x+

1 , x+
2 )

= 1

4π

∫ ∞

0
dkk[e−ik(x+

1 −x+
2 −iε)]

= − 1

4π

1

(x+
1 − x+

2 − iε)2
. (56)

This quantity exhibits the same behavior as that of the
massless scalar field in four-dimensional space-time and is
independent of the infrared cutoff μ.

B. Local spatial modes of a quantum field

We considered measurements of the current density �̂(x+)
at point xA. The measurement can be represented by the fol-

FIG. 12. Spatial profiles of window functions wq(x) and wp(x).

lowing interaction Hamiltonian between �̂ and the canonical
variables of the measurement apparatus (q̂D, p̂D):

Ĥint = λ(t )g(q̂D, p̂D) ⊗
∫

dxwA(x)�̂(t + x), (57)

where g(q̂D, p̂D) is a function of the canonical variables of
the measurement apparatus, wA(x) is a window function that
defines the spatial mode of the field at xA, and λ(t ) is a switch-
ing function. After acting on the apparatus, interaction causes
a change in the “reading” of the apparatus depending on the
state of the quantum field �̂ at xA. In the present analysis, we
did not introduce the details of the measurement protocols but
only focused on the behavior of the local mode of the quantum
field introduced by the spatial window function.

To measure the values of the field and its conjugate mo-
mentum, we define canonical variables corresponding to the
local spatial modes of field at xA as follows:

q̂(t ) =
∫

dxwq(x − xA)�̂(t + x),

p̂(t ) =
∫

dxwp(x − xA)�̂(t + x),

(58)

where wp(x) and wq(x) are window functions with nonzero
values in a compact spatial region x ∈ [−�/2, �/2] (see
Fig. 12). By requiring these operators to be canonical pairs,
equal-time commutators between these operators should be

[q̂, p̂] = i

2

∫
dxwq(x − xA)w′

p(x − xA) ≡ i, (59)

[q̂, q̂] = i

2

∫
dxwq(x − xA)w′

q(x − xA) ≡ 0, (60)

[ p̂, p̂] = i

2

∫
dxwp(x − xA)w′

p(x − xA) ≡ 0. (61)

These conditions are independent of the quantum field state.
Hence, the local spatial mode (q̂, p̂) can be introduced as
suitably choosing window functions wq(x) and wp(x) irre-
spective of the states of the quantum field. Locality of the
spatial mode is guaranteed if window functions are adopted in
which support is compact. We chose the following p-window
function in our analysis:

wp(x) = −w′
q(x),

∫
dx[w′

q(x)]2 = 2, (62)

and we assumed that the q-window function has the Gaussian
form

wq(x) = 2

(
�2

π

)1/4

exp

(
− x2

2�2

)
. (63)

The covariances of the local spatial modes are

〈q̂2〉 = 1

2

∫
dxdywq(x − xA)wq(y − xA)

× 〈{�̂(t + x), �̂(t + y)}〉, (64)
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〈p̂2〉 = 1

2

∫
dxdywp(x − xA)wp(x − xA)

× 〈{�̂(t + x), �̂(t + y)}〉, (65)

〈q̂ p̂ + p̂q̂〉 =
∫

dxdywq(x − xA)wp(y − xA)

× 〈{�̂(t + x), �̂(t + y)}〉
= 0, (66)

where

〈{�̂(t + x), �̂(t + y)}〉 = 1

2π

∫ ∞

0
dkk cos[k(x − y)]e−εk .

(67)

Therefore,

〈q̂2〉 = �3

π3/2

∫ ∞

0
dke−εkk

(∫ ∞

−∞
dze−z2/2 cos(k�z)

)2

= �

π1/2

[
1 − π1/2

2

(ε

�

)
+ O

(ε

�

)2
]
, (68)

〈p̂2〉 = �

π3/2

∫ ∞

0
dke−εkk

(∫ ∞

−∞
dzze−z2/2 sin(k�z)

)2

= 1

π1/2�

[
1 − 3π1/2

4

(ε

�

)
+ O

(ε

�

)2
]
. (69)

As ν2 = 〈q̂2〉〈p̂2〉 = 1/π − 5/(4π1/2)(ε/�) + O(ε/�)2, the
state of the local mode is generally thermal (for a pure state,
ν = 1/2). The mixedness of local mode depends on the re-
gion size � and reflects the entanglement behavior between
the local region and its complement. With an increase in
�, the symplectic eigenvalue ν increases, and the entangle-
ment between the local modes and their complement becomes
greater. This behavior of entanglement of the local mode was
discussed in our previous study on a chiral scalar field in a
quantum Hall system [25].

C. Measurement of a quantum field

We considered coherent-state measurements of the quan-
tum field. The target local mode at x = xA defined by the
quantum field is given as (58). The local modes are expressed
as follows:

q̂(t ) = − i√
2

∫ ∞

0
dkk1/2wq(k)(e−ik(t+xA )âk − eik(t+xA )â†

k ),

(70)

p̂(t ) = − 1√
2

∫ ∞

0
dkk3/2wq(k)(e−ik(t+xA )âk + eik(t+xA )â†

k ),

(71)

where the Fourier component of the window function is intro-
duced as

wq(k) = 1√
2π

∫ ∞

−∞
dxwq(x)eikx,

wq(k) = w∗
q (k),

wp(k) = ikwq(k), (72)

and, for the window function (63),

wq(k) = 2

(
�6

π

)1/4

e− �2

2 k2
. (73)

The annihilation operator for the local mode is introduced as
follows:

b̂(t ) : =
√

ω

2
q̂(t ) + i√

2ω
p̂(t )

= − i

2

∫ ∞

0
dkkwq(k)

[(√
ω

k
+

√
k

ω

)
e−ik(t+xA )âk

−
(√

ω

k
−

√
k

ω

)
e+ik(t+xA )â†

k

]

= −i
∫ ∞

0
dkkwq(k)(cosh rkâk (t ) − sinh rkâ†

k (t )),

(74)

where ω is a parameter characterizing the local mode (a pa-
rameter characterizing the projector related to the protocols of
the measurement apparatus) and we introduced rk and âk (t ) as

erk =
√

ω

k
, âk (t ) = e−ik(t+xA )âk . (75)

We consider the following Gaussian projector for the local
mode at time t :

M̂s(t ) = 1 − s

2
+ sD̂b(t )(β )ρ̂b(t )D̂

†
b(t )(β ), (76)

D̂b(t )(β ) = eβb̂†(t )−β∗b̂(t ), ρ̂b(t ) = |0b(t )〉〈0b(t )|, (77)

where s = ±1 and ρ̂b(t ) represents the state of measurement
apparatus for the local mode. We use the following formula
that connects the displacement operator to the vacuum density
operator:

|0b(t )〉〈0b(t )| =
∫

d2z

π
exp

[
−1

2
|z|2

]
D̂b(t )(z). (78)

The Gaussian projector can then be written as3

M̂s(t )= 1−s

2
+ s

π

∫
d2z exp

[
−1

2
|z|2

]
D̂b(t )(β )D̂b(t )(z)D̂†

b(t )(β )

= 1 − s

2
+ s

π

∫
d2z exp

[
−1

2
|z|2

]
e−β∗z+βz∗

D̂b(t )(z).

(79)

3The formulas for the displacement operators are

D̂(λ1)D̂(λ2) = D̂(λ1 + λ2) exp
[

1
2 (λ1λ

∗
2 − λ∗

1λ2)
]
, D̂(λ)D̂(z)D̂†(λ) = D̂(z) exp(−zλ∗ + z∗λ).
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We simplify this expression as follows: By using

zb̂†(t ) − z∗b̂(t ) = i
∫

dkkwq(k)[(z∗ cosh rk − z sinh rk )âk (t ) + (z cosh rk − z∗ sinh rk )â†
k (t )]

=
∫

dk[Zk (z, t )â†
k − Z∗

k (z, t )âk], (80)

with

Zk (z, t ) := ikwq(k)(z cosh rk − z∗ sinh rk )eik(t+xA ), (81)

the displacement operator for the local mode D̂b(t )(z) = ezb̂†(t )−z∗b̂(t ) can be written as a product of the displacement operator for
each k mode of the original field operator:

D̂b(t )(z) =
∏

k

exp[Zk (z, t )â†
k − Z∗

k (z, t )âk]

=
∏

k

D̂ak (Zk (z, t )). (82)

Therefore, the projector (79) can be expressed by the displacement operator for each k mode of the original field operator.

D. Quasiprobability

Let us consider the quasiprobability with the initial vacuum state ρ̂0 = |g〉〈g| in a quantum field. The quasiprobability was
evaluated as follows:

qs1s2 = Re〈g|M̂s2 (t2)M̂s1 (t1)|g〉

= (1 − s1)(1 − s2)

4
+ (1 − s2)s1

2π
Re

∫
dze−|z|2/2−β∗z+βz∗ 〈g|D̂b1 (z)|g〉

+ (1 − s1)s2

2π
Re

∫
dze−|z|2/2−β∗z+βz∗ 〈g|D̂b2 (z)|g〉

+ s1s2

π2
Re

∫
d2z2d2z1e−|z2|2/2−β∗z2+βz∗

2 e−|z1|2/2−β∗z1+βz∗
1 〈g|D̂b2 (z2)D̂b1 (z1)|g〉

= (1 − s1)(1 − s2)

4
+ (1 − s2)s1

2π
Re[I1] + (1 − s1)s2

2π
Re[I2] + s1s2

π2
Re[I3], (83)

where integrals I1, I2, and I3 are defined as follows:

I1,2 =
∫

d2ze−|z|2/2−β∗z+βz∗ 〈g|D̂b1,2 (z)|g〉, (84)

I3 =
∫

d2z2d2z1e−|z2|2/2−β∗z2+βz∗
2 e−|z1|2/2−β∗z1+βz∗

1 〈g|D̂b2 (z2)D̂b1 (z1)|g〉. (85)

By using the relation (82), the expectation values in integrals I1, I2, and I3 are evaluated as

〈g|D̂b(t )(z)|g〉 =
∏

k

〈g|D̂ak [Zk (z, t )]|g〉

=
∏

k

exp

[
−1

2
|Zk (z, t )|2

]

= exp

[
−1

2

∫
dkk2w2

q (k)|z cosh rk − z∗ sinh rk|2
]

= exp

[
−x2 + �2ω2y2

π1/2�ω

]
, (86)

〈g|D̂b2 (z2)D̂b1 (z1)|g〉 =
∏

k

〈g|D̂ak [Zk (z2, t2)]D̂ak [Zk (z1, t1)]|g〉

=
∏

k

exp

{
1

2

[
Zk (z2, t2)Z∗

k (z1, t1) − Z∗
k (z2, t2)Zk (z1, t1)

]}〈g|D̂ak [Zk (z2, t2) + Zk (z1, t1)]|g〉
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=
∏

k

e
1
2 (Z2Z∗

1 −Z∗
2 Z1 )e− 1

2 (Z1+Z2 )(Z1+Z2 )∗

=
∏

k

exp

[
−k2w2

q (k)

( |z1 cosh rk − z∗
1 sinh rk|2

2
+ |z2 cosh rk − z∗

2 sinh rk|2
2

+ e−ikt21 (z∗
2 cosh rk − z2 sinh rk )(z1 cosh rk − z∗

1 sinh rk )

)]

= exp

{
− 2�3

π1/2ω

∫
dkke−�2k2[

k2
(
x2

1 + x2
2

) + ω2
(
y2

1 + y2
2

) + 2e−ikt21 (kx1 + iωy1)(kx2 − iωy2)
]}

=: exp (−I4), (87)

where z1 = x1 + iy1, z2 = x2 + iy2, and t21 = t2 − t1. The integral I4 is

I4 = 1

4�4ω

[
�

π1/2

{−2t2
21x1x2 + 4�4(y1 + y2)2ω2 + 4�2[(x1 + x2)2 + t21(x1y2 − x2y1)ω]

}
− e− t2

21
4�2

{−t3
21x1x2 + 2�2t21(3x1x2 + t21x2y1ω − t21x1y2ω) + 4�4ω(−x2y1 + y2x1 + t21y1y2ω)

}(
i + Erfi

[
t21

2�

])]
. (88)

Therefore, I1, I2, and I3 become

I1 = I2 = π√
1/2 + 1

π1/2�ω

√
1/2 + �ω

π1/2

exp

(
− β2

1/2 + �ω/π1/2

)
, (89)

I3 =
∫

d2z2d2z1e−|z2|2/2−β∗z2+βz∗
2 e−|z1|2/2−β∗z1+βz∗

1 exp [−I4(z1, z2)]. (90)

After performing a Gaussian integral with respect to z1 and z2

in I3, we obtain the exact formula for qs1s2 [Eq. (83)]. The
resulting expression has a rather complicated form and we
do not present it here. The quasiprobability depends on the
parameters through a combination of ω� and t21/�.

Figures 13 and 14 show the negative regions of the
quasiprobabilities q++ and q−− in the (t21, β ) plane with val-
ues of ω� = 0.4–4. The structures of the negative regions of
q++ and q−− for the quantum field are similar to those for the
harmonic-oscillator case, such as the fringe structure of q++
and the violation of q−− near β ≈ 0. The major difference is
the loss of periodicity in the time direction. Indeed, in q++
and q−−, the symmetry around half of the period with respect
to time on the horizontal axis, which is exhibited in the case
of harmonic oscillators, is lost. The loss of time periodicity
is related to the mixedness of the local mode defined by the
quantum field; as the local mode is a subsystem embedded
in a total pure system, its state inevitably becomes mixed.
This mixedness depends on the size of the local region and
the UV cutoff length and reflects the entanglement between
the local mode and its complementary degrees of freedom.
The evolution of the local mode is nonunitary; Therefore, the
periodicity of the state in the time direction is lost. However,
the Fourier modes (k mode) are decoupled each other in the
Fourier space and the local mode can be expressed as the sum
of the decoupled Fourier modes. The loss of periodic features
is explained by a dephasing effect.

It is worth mentioning that regions with a negative q−−
disappear when ω� is too large or too small. This behav-
ior can be explained by the fact that ω� corresponds to the

squeezing parameter of the coherent squeezing measurement
of the harmonic oscillator. Because the typical wave number
of the local mode is k ∼ 1/�, we can regard the parameter
ω� as an effective squeezing parameter by comparing (24)
and (75). Hence, when ω� is too large or too small, too little
information is obtained from the measurements (left and right
panels in Fig. 11). Therefore, the quantum nature of the mea-
surement is not visible and the LGIs are not violated. For q++,
the negative value of the quasiprobability approaches zero as
squeezing (≈ω�) increases, which is similar to the harmonic
oscillator in the previous section. However, the difference is
that the negative regions shift toward larger positive values of
β as squeezing increases significantly, although we did not
explicitly demonstrate this.

IV. SUMMARY AND CONCLUSION

We showed violations of the LGIs in terms of the two-time
quasiprobability using Gaussian (squeezed) coherent projec-
tors for a harmonic oscillator and a chiral scalar field. For the
harmonic oscillator, violations appear mainly in q++ and q−−
even in vacuum. In the thermal state, the LGIs are not violated
when the temperature is sufficiently high. The Refs. [11,13]
also investigated the LGIs for harmonic-oscillator systems.
Reference [13] considered that a dichotomic variable de-
scribed by a simple step function, where the violation of
LGIs was less than about half of the Lüder’s bound at most.
In contrast, we have considered the squeezed coherent state
projector for a dichotomic variable, and we have shown that
a larger violation of the LGIs close to the Lüder’s bound can
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FIG. 13. Negative regions of the quasiprobability (enclosed by red lines) for the local mode of the quantum field. The quasiprobabilities
q++ and q−− with ω� = 0.2, 0.4, and 0.6 are shown.

be achieved, even for the vacuum state. Ref. [11] reported that
the violation reaches the Lüders bound by assuming a special
initial condition and a coherent-state projector. The new point
is that we have found that the large violation very close to
the Lüders bound for the ground state as the initial state is
achieved by adopting the squeezed coherent projector. When
the projector is prepared in a squeezed coherent state, the
quasiprobability reaches −0.123 for r ≈ 0.31 and β ≈ 0.57,
which is equivalent to 98% of the Lüders bound. Generally, a
violation of LGIs occurs when the measurement results differ
from those classically expected. Therefore, the violation of
LGIs represents a feature of the quantumness of the systems;
however, further study is required to clarify why a violation
close to the Lüders bound is obtained.

We also showed violations of the LGIs for a local mode
in the chiral scalar field, similar to those for the harmonic
oscillator. A major difference is the disappearance of the pe-

riodicity in violations. The reason for this periodicity loss is
that the local mode is in a mixed state as a subsystem of the
entire system. This is consistent with previous results [19].
This could be related to the entanglement entropy of the local
mode. The Ref. [19] concluded that the initial state of the
field was coherent or squeezed while using a non-Gaussian
projector, and the violation was about a quarter of the Lüders
bound. We applied the Gaussian projector to the vacuum field
in the same configuration as in Sec. II, and obtained the same
or larger violation as in Ref. [19].

Our results can be applied to experiments on LGIs using
a quantum Hall edge system [24]. Because we use the Gaus-
sian positive-operator-value measurement of local modes, we
should obtain a dichotomic value of Q̂(t ) = s(2M̂s(t ) − 1)
by measuring (q, p), where M̂s is given by Eq. (76). To
this end, we consider adjacent regions A and B and mea-
sure their local values qA and qB using the window function
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FIG. 14. Negative regions of the quasiprobability (enclosed by red lines) for the local mode of the quantum field. The quasiprobabilities
q++ and q−− with ω� = 1, 2, and 4 are shown.

wq(x): q̂A = ∫
dxwq(x − xA)�̂(t + x) and q̂B = ∫

dxwq(x −
xA − �)�̂(t + x) = ∫

dxwq(x − xA)�̂(t + x + �), where the
window function is defined by (73). Using q̂A and q̂B, which
include the information of the momentum because their dif-
ference is equivalent to the momentum essentially, makes it
possible to obtain Q to perform a coherent measurement (76).

As well as an application of our theoretical predictions
to quantum Hall experiments, applying them to harmonic-
oscillator systems would also be interesting. Recently,
macroscopic oscillators have attracted attention as a means
to explore the boundary between the worlds of quantum
and classical mechanics (see, e.g., Refs. [26–28]). In such
macroscopic oscillators, techniques such as continuous mea-
surements, feedback control, and optimal filters are used to

generate quantum states. There is also the issue of construct-
ing dichotomic measurements in macroscopic oscillators.
Therefore, applying our predictions to such systems is not
trivial and further investigation is necessary.
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APPENDIX: ANOTHER DERIVATION OF qs1s2 WITH A SQUEEZED COHERENT-STATE PROJECTOR

We can derive (36) without using the properties of the squeezed coherent state. The initial vacuum state is considered as
follows:

ρ̂0 = |0a〉〈0a|. (A1)

The measurement operator with the vacuum seed state is

M̂s(t ) = 1 − s

2
+ sD̂b(t )(β )|0b(t )〉〈0b(t )|D̂†

b(t )(β )

= 1 − s

2
+ s

π

∫
d2ze−|z|2/2D̂b(t )(β )D̂b(t )(z)D̂†

b(t )(β )

= 1 − s

2
+ s

π

∫
d2ze−|z|2/2−β∗z+βz∗

D̂a[Z (t, z)], (A2)

where Z (t, z) = (z cosh r − z∗ sinh r)ei�t , e2r = ω/�. The quasiprobability is

qs1s2 = Re
〈
0a

∣∣M̂s2 (t2)M̂s1 (t1)
∣∣0a

〉
= (1 − s1)(1 − s2)

4
+ (1 − s2)s1

2π

∫
d2z1e−|z1|2/2−β∗z1+βz∗

1 〈D̂a[Z (t1, z1)]〉

+ (1 − s1)s2

2π

∫
d2z2e−|z2|2/2−β∗z2+βz∗

2
〈
D̂a[Z (t2, z2)]

〉
+ s1s2

π2
Re

∫
d2z1d2z2e−|z1|2/2−β∗z1+βz∗

1−|z2|2/2−β∗z2+βz∗
2 〈D̂a[Z (t2, z2)]D̂a[Z (t1, z1)]〉. (A3)

The expected values of the displacement operators are

〈D̂a[Z (t1, z1)]〉 = 〈D̂a[Z (t2, z2)]〉 = exp

(
−1

2
|z cosh r − z∗ sinh r|2

)
, (A4)

〈D̂a[Z (t2, z2)]D̂a[Z (t1, z1)]〉 = 〈D̂a[Z (t1, z1) + Z (t2, z2)]〉 exp

[
1

2
(Z2Z∗

1 − Z1Z∗
2 )

]
= exp

(
−|Z1|2

2
− |Z2|2

2
− Z1Z∗

2

)
. (A5)

After performing the Gaussian integrals in (A3), we obtain qs1s2 using the squeezed coherent-state projector.
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