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Quantum backflow current in a ring: Optimal bounds and fractality

Arseni Goussev ,1,2 Felix Quinque ,3 Jaewoo Joo,3 and Andrew Burbanks 3

1Section of Mathematics, University of Geneva, Rue du Conseil-Général 7-9, 1205 Genève, Switzerland
2Quantum Physics Corner Ltd, 20-22 Wenlock Road, London N1 7GU, United Kingdom

3School of Mathematics and Physics, University of Portsmouth, Portsmouth PO1 3HF, United Kingdom

(Received 27 March 2024; accepted 18 July 2024; published 12 August 2024)

The probability density of a quantum particle moving freely within a circular ring can exhibit local flow
patterns inconsistent with its angular momentum, a phenomenon known as quantum backflow. In this study, we
examine a quantum particle confined to a ring and prepared in a state composed of a fixed (yet arbitrary) number
of lowest-energy eigenstates with nonnegative angular momentum. We investigate the time-dependent behavior
of the probability current at a specified point along the ring’s circumference. We establish precise lower and
upper bounds for this probability current, thereby delineating the exact scope of the quantum backflow effect.
We also present an analytical expression for a quantum state that yields a record-high backflow probability
transfer, reaching over 95% of the theoretical bound. Furthermore, our investigation yields compelling numerical
and analytical evidence supporting the conjecture that the current-versus-time function associated with states
maximizing backflow probability transfer forms a fractal curve with a dimension of 7/4. The observed fractality
may provide a characteristic, experimentally relevant signature of quantum backflow near the probability-transfer
bound.

DOI: 10.1103/PhysRevA.110.022216

I. INTRODUCTION

In classical mechanics, a particle always moves in the
direction of its momentum, which serves as a measure of
the intensity of the particle’s motion. In quantum mechanics,
however, the situation can be strikingly different: the probabil-
ity density of a quantum particle may in fact flow against its
momentum. This intriguing phenomenon, initially recognized
within the context of the arrival time problem [1–3], is known
as quantum backflow (QB).

The first systematic examination of QB was conducted by
Bracken and Melloy [4]. They examined the time evolution
of the probability density of a free particle on a line con-
strained to move with positive momentum and addressed the
(classically impossible) flow of the probability density in the
negative direction. Their most notable finding was the fact that
the total probability transported through a fixed spatial point
cannot exceed a certain threshold, commonly known as the
Bracken-Melloy (BM) bound. The BM bound is independent
of the particle’s mass, the observation time interval, or the
Planck constant. Numerical estimates indicate the BM bound
to approximately equal 0.0384517 [5,6]. While the exact value
of the BM bound remains unknown, it has been recently
proven to lie between 0.0315 and 0.0725 [7].

The phenomenon of QB has been addressed in the lit-
erature across various scenarios and formulations. Among
the problems explored are QB against a constant force [8],
the spatial extent of the backflow proability current [5,9,10],
the relationship between QB and the arrival time prob-
lem [11–14], QB for rotational motion [15–18], QB in
many-particle systems [19,20] and in the presence of noisy
and dissipative environments [21–23], backflow in relativis-
tic systems [24–28], QB across a black hole horizon [29],

and the classical limit of QB [30–33]. Multiple analytical
examples of states exhibiting probability backflow have been
constructed [4,5,30,34,35]. QB has been explored both in
phase space [4,21,36,37] and as variations of the quantum
reentry problem [38–41]. The reader is directed to Ref. [42]
for an elementary introduction to the phenomenon of QB and
to Refs. [43–45] for non-technical discussions of its physical
interpretation and nonclassical character.

So far, direct experimental observation of QB remains
elusive, despite existing proposals exploring methods to de-
tect the effect using Bose-Einstein condensates [46,47]. The
challenges associated with the experimental realization of QB
for a particle on a line stem from two main factors. First,
only a minute portion of the overall probability, given by the
BM bound, can theoretically be transported in the “wrong”
direction. Second, the quantum states that exhibit backflow
probability transfer near the BM bound are characterized by
their infinite spatial extent and infinite energy [30], rendering
them challenging to produce in a laboratory environment.
However, although the first experimental demonstration of QB
is still forthcoming, the effect has already been successfully
simulated in classical optics experiments [48–50] and on a
genuine quantum computer [51].

A promising avenue for future experimental realization of
QB involves a quantum particle rotating freely in a circular
ring [17]. In this scenario, the particle is prepared in a super-
position of energy and angular momentum eigenstates with
nonnegative angular momentum, and the observed quantity
is the probability current through a fixed point on the ring.
Contrary to classical mechanical predictions, the quantum
mechanical probability current can assume negative values,
thereby manifesting the phenomenon of QB. For this sce-
nario, it has been demonstrated [17] that the total backflow
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probability transfer over a finite time interval can exceed the
BM bound by more than threefold, reaching approximately
0.116816. Moreover, the particle-in-a-ring states exhibiting
significant backflow probability transfer have been shown to
possess finite energy (and, due to the nature of the problem,
finite spatial extent), rendering them more suitable for experi-
mental realization.

In this paper, we explore the QB phenomenon for a par-
ticle confined to a circular ring, scrutinizing the probability
current at a fixed point along the ring’s circumference. Our
study yields two primary findings. First, we establish optimal
lower and upper bounds on the probability current for the
most general state of the system, encompassing a fixed (yet
arbitrary) number of lowest-energy eigenstates with nonnega-
tive momentum. In other words, we determine the minimally
and maximally attainable values of the probability current
associated with the most general superposition of nonnegative
angular momentum states, all with energies not exceeding
a specified (yet arbitrary) threshold. Second, we propose a
conjecture regarding the time dependence of the probability
current of the state maximizing backflow probability trans-
fer, or states characterized by backflow probability transfers
nearing the theoretical limit. More specifically, we conjecture
that this probability current is a fractal function of time, with
a fractal dimension of 7/4, and present compelling numeri-
cal and analytical evidence in support of our conjecture. We
suggest the possibility that fractal characteristics may provide
an experimental signature of QB near the probability-transfer
bound, important for future investigations.

The paper is organized as follows. In Sec. II, we define the
system and introduce the dimensionless probability current,
which will serve as the central object of study throughout
the rest of the paper. In Sec. III, we derive the optimal
bounds for the probability current. Section IV is dedicated to
summarizing crucial facts about backflow probability trans-
fer, laying the groundwork for the subsequent discussion.
Section V explores the time dependence of the probability
current associated with the backflow-maximizing state and
presents the numerical calculation of its fractal dimension. In
Sec. VI, we construct an accurate analytical approximation for
the backflow-maximizing state and determine that the fractal
dimension of its corresponding current-versus-time function
is 7/4, in good agreement with the numerical value obtained in
Sec. V. (In brief, Secs. II and IV primarily introduce the sys-
tem and review relevant existing results, whereas Secs. III, V,
and VI present original findings.) We summarize our findings
and provide closing remarks in Sec. VII.

II. PROBABILITY CURRENT

We consider a particle of mass M freely moving on a
circular ring of radius R. The wave function of the particle
is denoted by ψ (θ, T ) and satisfies the Schrödinger equation

ih̄
∂ψ

∂T
= − h̄2

2MR2

∂2ψ

∂θ2
. (1)

Here, θ is the angle coordinate of the particle, and T is time.
The wave function is subject to periodic boundary conditions,
ψ (−π, T ) = ψ (π, T ). The general solution to Eq. (1) has the

form of a linear combination of energy eigenstates

φm(θ, T ) = 1√
2π

eimθ−iEmT/h̄,

each labeled by an integer m ∈ Z and characterized by the
energy value

Em = h̄2m2

2MR2
.

Since (−ih̄∂/∂θ )φm = (mh̄)φm, the eigenstates φm are also
characterized by definite values of angular momentum mh̄.

In what follows, we only consider quantum wave packets
with nonnegative angular momentum. Thus, let ψN be a wave
packet comprised of eigenstates φm with 0 � m � N , namely,

ψN (θ, T ) = 1√
2π

N∑
m=0

cmeimθ−iEmT/h̄. (2)

The wave packet is assumed to be normalized to unity,∫ π

−π
dθ |ψN (θ, T )|2 = 1, implying that the expansion coeffi-

cients satisfy

N∑
m=0

|cm|2 = 1. (3)

By construction, any angular momentum measurement con-
ducted on ψN is certain to yield a nonnegative result.

The main focus of present study is the probability current
JN through an arbitrarily fixed point on the ring, taken to be
θ = 0 for concreteness

JN (T ) = h̄

MR2
Im

{
ψ∗

N (θ, T )
∂ψN (θ, T )

∂θ

}∣∣∣∣
θ=0

. (4)

QB occurs when the probability current is negative, i.e., when
JN (T ) < 0 for some T .

It is convenient to introduce dimensionless time t and di-
mensionless probability current jN as

T = 2MR2

h̄
t, JN (T ) =

(
2MR2

h̄

)−1

jN (t ). (5)

Substituting Eq. (2) into Eq. (4), and taking into account
transformations (5), we obtain the following expression for
the dimensionless probability current:

jN (t ) = 1

2π

N∑
m,n=0

c∗
mcn(m + n)ei(m2−n2 )t . (6)

III. OPTIMAL BOUNDS ON THE PROBABILITY CURRENT

How small and how large can the probability current pos-
sibly be? In this section we answer this question by showing
that

N (N + 1)

4π

(
1 −

√
4N + 2

3N

)
� jN (t )

� N (N + 1)

4π

(
1 +

√
4N + 2

3N

)
,

(7)
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for all t , and by finding the expansion coefficients {cm}N
m=0 of

the states corresponding to the extreme values of the current.
We begin by rewriting Eq. (6) as an expectation value

jN (t ) = 〈ψN (t )| ĵN |ψN (t )〉. (8)

Here,

|ψN (t )〉 =
N∑

m=0

cme−im2t |m〉 (9)

is the particle’s state, |0〉, |1〉, . . . , |N〉 are angular momentum
eigenstates satisfying the orthonormality condition 〈m|n〉 =
δmn, and

ĵN = 1

2π

N∑
m,n=0

|m〉(m + n)〈n| (10)

is the operator representing the probability current on the
subspace of the Hilbert space spanned by {|m〉}N

m=0. The state
ψN is assumed to be normalized, i.e., 〈ψN |ψN 〉 = 1, which is
equivalent to Eq. (3).

We now look for eignevectors |χ〉 of ĵN that are of the form

|χ〉 = A
N∑

m=0

(m + a)|m〉, (11)

where a and A are some (yet to be determined) constants.
Substituting Eqs. (10) and (11) into the eigenequation

ĵN |χ〉 = λ|χ〉,
we obtain

1

2π

N∑
m,n=0

(m + n)(n + a)|m〉 = λ

N∑
m=0

(m + a)|m〉.

Then, using the identities
∑N

n=0 n = 1
2 N (N + 1) and∑N

n=0 n2 = 1
6 N (N + 1)(2N + 1), we evaluate the sum over n

in the last equation to get

(N + 1)(N + 2a)

4π

N∑
m=0

(
m + N (2N + 1 + 3a)

3(N + 2a)

)
|m〉

= λ

N∑
m=0

(m + a)|m〉.

The last equation is satisfied if and only if

a = N (2N + 1 + 3a)

3(N + 2a)
(12)

and

λ = (N + 1)(N + 2a)

4π
. (13)

Equation (12) is quadratic in a and has two roots, a+ and a−,
given by

a± = ±
√

N (2N + 1)

6
. (14)

FIG. 1. Eigenvalues λ+ and λ− as functions of N , given by
Eq. (15). The gray horizontal line shows the level of zero probability
current.

Then, according to Eq. (13), the corresponding eigenvalues,
λ+ and λ−, read

λ± = N (N + 1)

4π

(
1 ±

√
4N + 2

3N

)
. (15)

Clearly, λ+ > 0 and λ− < 0, for all N � 1. Figure 1 il-
lustrates the dependence of the eigenvalues on N . Finally,
eigenvectors |χ+〉 and |χ−〉 corresponding to the eigenvalues
λ+ and λ− are found by substituting Eq. (14) into Eq. (11):

|χ±〉 = A±
N∑

m=0

(
m ±

√
N (2N + 1)

6

)
|m〉. (16)

It is straightforward to verify (see Appendix A) that the
normalization constants, A+ and A− are given by

A± =
[

N (N + 1)

(
2N + 1

3
±

√
N (2N + 1)

6

)]−1/2

. (17)

We now make the observation that λ+ and λ−, given by
Eq. (15), are the only nonzero eigenvalues of the operator
ĵN . Indeed, as shown in Appendix B, ĵN admits the following
decomposition:

ĵN = λ+|χ+〉〈χ+| + λ−|χ−〉〈χ−|. (18)

Then, using Eq. (8), we get

jN (t ) = λ+|〈χ+|ψN (t )〉|2 + λ−|〈χ−|ψN (t )〉|2. (19)

Since λ+ > 0, λ− < 0, and 0 � |〈χ±|ψN (t )〉| � 1, we
conclude that

λ− � jN (t ) � λ+,

which is equivalent to Eq. (7). The probability current jN (t )
reaches its extreme values, λ+ and λ−, when |ψN (t )〉 coincides
(up to a global phase factor) with the states |χ+〉 and |χ−〉,
respectively.
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IV. PROBABILITY TRANSFER

We now consider the amount of probability PN pass-
ing through the point θ = 0 over a time interval 
. More
precisely,

PN =
∫ 
/2

−
/2
dT JN (T ),

where JN is the probability current defined by Eq. (4). In
terms of the dimensionless current, defined in Eq. (5), the
probability transfer PN reads

PN =
∫ α

−α

dt jN (t ), (20)

where

α = h̄


4MR2

is a dimensionless parameter.
As demonstrated in Ref. [17], PN can be negative and

has a finite greatest lower bound. In the following section of
this paper, we explore the probability current jN (t ) generated
by a quantum state characterized by the value of PN that
is very close to the greatest lower bound. To set the stage
for this exploration, we now briefly summarize some find-
ings of Ref. [17] that are particularly relevant to the ensuing
discussion.

The substitution of Eq. (6) into Eq. (20), followed by eval-
uation of the integral over t , yields

PN = α

π

N∑
m=0

N∑
n=0

c∗
mcn(m + n) sinc[α(m2 − n2)], (21)

where sinc z = (sin z)/z. To determine the (negative) optimal
lower bound for probability transfer, one needs to mini-
mize PN within the (N + 1)-dimensional space of vectors
(c0, c1, . . . , cN ), while adhering to the normalization con-
straint (3). This is accomplished through the method of
Lagrange multipliers, whereby one conducts unconstrained
minimization of the function

L(c0, c1, . . . , cN ) = PN − μ

N∑
m=0

c∗
mcm,

where μ is a Lagrange multiplier. In view of Eq. (21), the
Euler-Lagrange equation corresponding to this minimization
problem reads

α

π

N∑
n=0

(m + n) sinc[α(m2 − n2)]cn = μcm.

This equation defines an eigenproblem, in which μ plays
the role of the eigenvalue corresponding to the eigenvector
(c0, c1, . . . , cN ). The eigenproblem is then solved numeri-
cally, resulting in a spectrum of (N + 1) (not necessarily
distinct) eigenvalues, μ0, μ1, . . . , μN . The smallest eigen-
value corresponds to the desired minimal probability transfer

Pmin
N ≡ min PN = min{μ0, μ1, . . . , μN }.

It is important to keep in mind that Pmin
N depends on the system

parameter α.

The function Pmin
N was numerically computed in Ref. [17].

In particular, the study demonstrated that

inf
α

lim
N→∞

Pmin
N 
 −0.116816, (22)

thus providing the greatest lower bound on the probability
transfer associated with the most general superposition of
particle-in-a-ring states with nonnegative angular momentum.
The bound presented in Eq. (22) is achieved for the system
parameter value close to

α = 1.163635. (23)

We conclude this section by noting that the probability
transfer, PN , can be represented as the sum of two terms, one
nonnegative and the other nonpositive

PN = P(+)
N + P(−)

N , (24)

where

P(±)
N = 1

4πa±

∫ α

−α

dt

∣∣∣∣∣
N∑

m=0

cm(m + a±)e−im2t

∣∣∣∣∣
2

. (25)

The fact that a+ = −a− > 0 [see Eq. (14)] implies that

P(+)
N � 0 and P(−)

N � 0.

Appendix C provides a derivation of this representation
and elucidates its relationship with Eq. (21). Currently, the
practical significance of this representation remains unclear.
However, the noteworthy aspect that P(+)

N � 0 and P(−)
N � 0

is nontrivial, and it may prove valuable in future studies,
especially when attempting to establish precise bounds for
probability transfer.

V. FRACTAL DIMENSION OF THE
BACKFLOW-MAXIMIZING CURRENT

We now explore a specific particle-in-a-ring state with
nonnegative angular momentum, characterized by a value of
probability transfer very close to the estimated bound given in
Eq. (22). The state was obtained via numerical minimization
of the probability transfer (21), with N = 9999 and α given
by Eq. (23), subject to the normalization constraint, Eq. (3).
Employing somewhat loose terminology, we will refer to this
state as a “backflow-maximizing” state.

More precisely, the backflow-maximizing state |ψbm(t )〉
considered here is defined as |ψ9999(t )〉 [see Eq. (9)] with

c0 = 9.443114018508278473 × 10−1,

c1 = −3.152130460659169908 × 10−1,

c2 = 7.894329104096091398 × 10−2,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
c9999 = 6.151844737832881660 × 10−10. (26)

The complete list of expansion coefficients is provided in the
Supplemental Material [52]. The numerically computed value
of the probability transfer, corresponding to |ψbm〉, equals
−0.11681564958330892. Hereinafter, our analysis maintains
a fixed value for α as specified by Eq. (23).

As noted in Ref. [17], the backflow-maximizing state |ψbm〉
is characterized by a finite mean energy, which stands in stark
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FIG. 2. Probability current for the backflow-maximizing state.
The two graphs was obtained by computing j9999(t ) from Eq. (6),
with cm’s given by Eq. (26), at two different sets of instances between
t = 0 and t = α. One thousand equally spaced points were used to
produce the thin (blue) curve, whereas 250 equally spaced points
were used for the thick (orange) curve. The value of α is given by
Eq. (23).

contrast to the infinite mean energy observed in the linear
case. In the units used in the present paper, the mean energy
of |ψbm〉 is given by

〈E〉 = h̄2

2MR2

9999∑
m=0

m2c2
m 
 0.082837 × h̄2

MR2
.

Figure 2 shows the graph of the probability current jbm(t ),
computed numerically for two different sets of points between
t = 0 and t = α, using Eq. (6), for the backflow-maximizing
state, |ψbm(t )〉. In other words, jbm(t ) is j9999(t ) [see Eq. (6)]
with cm’s given by Eq. (26). The graph appears to be highly
irregular. (In fact, as we will argue below, it represents a fractal
curve.) The visual appearance of the graph strongly depends

on the particular choice of instances used to evaluate the func-
tion jbm(t ) and plot the graph. The thin (blue) curve in Fig. 2
was obtain by computing jbm at 1000 equally spaced instances
between t = 0 and t = α, whereas 250 equally spaced points
were used to plot the thick (orange) curve.

The probability current for the backflow-maximizing state
of a particle in a ring (see Fig. 2) is significantly distinct
from the corresponding probability current in the particle-
on-a-line scenario (see, e.g., Fig. 6 in Ref. [6]). In the later
case, the current is consistently negative within the observed
time window for probability transfer, and is represented by
a smooth curve. In contrast, the previous case displays sign
changes and exhibits a markedly irregular, fractal-like graph.
Exploring this difference is both interesting and important,
especially given the proposed direct measurement of current
as a strategy for the first experimental observation of quan-
tum backflow [4]. To this end, we quantitatively examine the
fuzziness and irregularity of the current-versus-time curve for
the ring geometry by evaluating its fractal dimension. The re-
mainder of this section focuses on the numerical computation
of the fractal dimension, while Sec. VI provides analytical
arguments supporting the numerical results.

Let us now evaluate the Higuchi dimension [53], denoted
by DH, of the function jbm(t ) on the interval 0 < t < α (see
Fig. 2). The Higuchi dimension is widely used as an estimator
of the box-counting dimension for bounded functions. (See
Ref. [54] for the analysis of the robustness and limitations of
this method.)

Our calculation of the Higuchi dimension of jbm(t ) follows
the procedure presented in Ref. [53]. We compute the func-
tion jbm(t ) at S = 262 144 = 218 equally spaced time points
between 0 and α, thus obtaining the sequence

J = {J (1),J (2),J (3), . . . ,J (S)},
where

J (s) = jbm

(
s − 1

S − 1
α

)
.

Then, for an integer k between 1 and S, we construct k new
sequences:

J (1)
k =

{
J (1),J (1 + k),J (1 + 2k), . . . ,J

(
1 +

⌊
S − 1

k

⌋
k

)}
,

J (2)
k =

{
J (2),J (2 + k),J (2 + 2k), . . . ,J

(
2 +

⌊
S − 2

k

⌋
k

)}
,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

J (k)
k =

{
J (k),J (k + k),J (k + 2k), . . . ,J

(
k +

⌊
S − k

k

⌋
k

)}
.

Here, �·� denotes the floor function. For each sequence J (s)
k ,

we calculate its “length”

L(s)
k = S − 1⌊

S−s
k

⌋
k2

� S−s
k �∑

r=1

|J (s + rk) − J (s + (r − 1)k)|,

and then find the average of the lengths

Lk = 1

k

k∑
s=1

L(s)
k .
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FIG. 3. Dependence of Lk on k. The (red) circles represent the
numerically obtained data points. The (turquoise) line is the corre-
sponding line of best fit. See the text for further discussion.

If the curve under investigation is a fractal, then Lk scales
with k as

Lk ∼ 1/kDH ,

with DH being the Higuchi dimension of the fractal.
Following the above procedure, we calculated Lk for 47

different values of k, ranging between 1 and 8192 = 213. Fig-
ure 3 shows the results of this calculations on a log-log scale.
The (red) circles represent the 47 data points. The (turquoise)
line shows the corresponding line of best fit

log2 Lk = constant − DH log2 k.

The method of least squares gave the following value of the
(negative of the) slope of the line

DH = 1.751 ± 0.0019. (27)

This is the sought fractal dimension of the probability current
of the backflow-maximizing state. (The intercept is of no
importance to our analysis. Merely for reference purposes, it
approximately equals 9.309.)

VI. ANALYTICAL APPROXIMATION
OF THE BACKFLOW-MAXIMIZING STATE

In this section, we introduce an accurate analytical approx-
imation for the backflow-maximizing state discussed in the
previous section. Termed the “guess state,” this approximation
will be instrumental in exploring the fractal properties of the
backflow probability current within the near-optimal regime.

Let us consider the following (guess) state of the particle
in a ring

∣∣ψ (g)
N (t )

〉 = CN

(
|0〉 − 1

2

N∑
m=1

sinc(αm2)e−im2t |m〉
)

, (28)

where

CN =
(

1 + 1

4

N∑
m=1

sinc2(αm2)

)−1/2

.

The state is normalized to unity, 〈ψ (g)
N |ψ (g)

N 〉 = 1. As in the
previous section, we take the value of α to be specified by
Eq. (23).

For N = 9999, which is the value used in the numerical
investigations in Sec. V, the guess state provides a very good
approximation of the backflow-maximizing state |ψbm〉. The
accuracy of the approximation, as quantified by fidelity, ex-
ceeds 99%: ∣∣〈ψ (g)

9999

∣∣ψbm
〉∣∣2 
 0.996328. (29)

Let us denote by j (g)
N (t ) and P(g)

N the probability current and
probability transfer, respectively, associated with the guess
state |ψ (g)

N (t )〉. More precisely,

j (g)
N (t ) = 〈

ψ
(g)
N (t )

∣∣ ĵN
∣∣ψ (g)

N (t )
〉

and

P(g)
N =

∫ α

−α

dt j (g)
N (t ).

In terms of numerical calculations, j (g)
N (t ) and P(g)

N can be
computed from Eqs. (6) and (21), respectively, by taking the
expansion coefficient cm to be those of |ψ (g)

N (0)〉, i.e., c0 = CN ,
and cm = −CN

2 sinc(αm2) for 1 � m � N . Thus, we find that

the guess state |ψ (g)
9999〉 yields the probability transfer

P(g)
9999 
 −0.11131265, (30)

which is over 95% of the bound given by Eq. (22). For com-
parison, in the scenario of a particle on a line, the current
analytical approximation record for the backflow probability
transfer stands at 70% of the BM bound [30].

The numerical estimates provided by Eqs. (29) and (30)
enable us to infer that the family of guess states |ψ (g)

N 〉, as
defined in Eq. (28), serves as a good approximation to the
backflow-maximizing state for sufficiently large N . Taking
this into consideration, we now turn our attention to the limit-
ing state |ψ (g)

∞ 〉, given by Eq. (28) with N → ∞. We argue that
the graph representing the corresponding probability current,
j (g)
∞ (t ), forms a fractal curve with fractal dimension of 7

4 . Our
argument relies on the theory outlined in Ref. [55], which can
be summarized as follows. Consider a function f (t ) defined
through the Fourier series

f (t ) =
∑

l

ale
−ilt . (31)

If the coefficients al have (pseudo)random phases and the
power spectrum scales as

|al |2 ∼ 1

lβ
(1 < β � 3)

as |l| → ∞, then the graphs of Re f (t ) and Im f (t ) are con-
tinuous nondifferentiable curves with fractal dimension

D[ f ] = 5 − β

2
.

It follows from Eq. (6) that the probability current in ques-
tion can be expressed as

j (g)
∞ (t ) = 1

π
Re{h∗

0(t )h1(t )},
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where

h0(t ) =
∞∑

m=0

cme−im2t ,

h1(t ) =
∞∑

m=0

mcme−im2t ,

and

c0 = C∞,

cm = −C∞
2α

sin(αm2)

m2
, (m � 1).

Both series defining h0 and ht can be regarded as Fourier
series of the form (31) with l = m2, and the sin(αm2)
term furnishes the pseudorandomness of the Fourier coeffi-
cients. Then, the power spectrum corresponding to h0 scales
as |al |2 ∼ |cm|2 dm

dl ∼ m−5 = l−5/2, yielding β = 5/2. Hence,
the graph of h0(t ) has fractal dimension

D[h0] = 5
4 .

In the case of h1, we have |al |2 ∼ |mcm|2 dm
dl ∼ m−3 = l−3/2,

and β = 3/2. Hence,

D[h1] = 7
4 .

Given that j (g)
∞ is a composite function resulting from the sum-

mation of products of two fractal functions, each possessing
fractal dimensions of 5/4 and 7/4, respectively, it follows that
j (g)
∞ is itself a fractal, and its fractal dimension is the larger of

the two

D
[

j (g)
∞

] = 7
4 . (32)

As observed, the guess state |ψ (g)
∞ 〉 serves as a good approx-

imation to the numerically exact backflow-maximizing state
|ψbm〉. Furthermore, the fractal dimension of the probability
current linked to the guess state, Eq. (32), aligns closely with
the numerical estimate of the fractal dimension characterizing
the backflow-maximizing current, Eq. (27). Hence, it is plau-
sible to conjecture that the probability current embodying the
true backflow-maximizing state, if it exists, is indeed a fractal
with a dimension of 7/4.

VII. SUMMARY AND DISCUSSION

Motivated to gain deeper insights into the phenomenon of
quantum backflow for a particle in a ring, we have taken a
careful examination of some properties of the time-dependent
probability current through a fixed point on the ring. We
showed that when a particle is in a superposition of the N + 1
lowest-energy eigenstates with nonnegative angular momen-
tum, Eq. (2), the dimensionless probability current can only
range between two extreme values, λ− and λ+, Eq. (15). λ−,
being the negative extreme value, determines the limit for
an instantaneous measurement of the backflow current. The
quantum state |χ−〉 corresponding to this extreme value is
given by Eqs. (16) and (17).

It is instructive to briefly discuss the regime where N � 1,
wherein the particle state comprises a large number of en-
ergy eigenstates. In this regime, the inequalities bounding

the dimensionless probability current, given by Eq. (7),
simplify to

−
√

4
3 − 1

4π
N2 � jN �

√
4
3 + 1

4π
N2.

For the dimensional probability current, Eq. (5), we have

−
√

4
3 − 1

4π

Emax

h̄
� JN �

√
4
3 + 1

4π

Emax

h̄
,

where Emax = h̄2N2

2MR2 represents the energy of the particle’s
highest-energy component. Presented in this form, our result
can be compared with a related statement applicable to the
scenario of a free particle on a line [12]: |J| � 
E/h̄, where J
represents the probability current and 
E denotes the energy
uncertainty of the particle’s state. While the two statements
are not directly analogous, this comparison offers a comple-
mentary perspective.

The second part of this study examines the time de-
pendence of the probability current for particle states that
maximize the backflow probability transfer or approach its
theoretical bound. First, we perform numerical calculations to
determine the backflow-maximizing state (assuming its exis-
tence) and compute the fractal dimension of the corresponding
probability current versus time function. The obtained numer-
ical value for the fractal dimension, Eq. (27), falls close to
7/4. Then, we explore an accurate analytical approximation
of the backflow-maximizing state, Eq. (28). This analyti-
cal state closely aligns with the numerically computed one,
exhibiting a fidelity of over 99% and demonstrating back-
flow probability transfer exceeding 95% of the theoretical
bound. (For comparison, in the scenario of a free particle
on a line, the state-of-the-art analytical approximation of the
backflow-maximizing state captures approximately 70% of
the corresponding maximal probability transfer value [30].)
The availability of the accurate analytical approximation en-
ables us to analytically evaluate the fractal dimension of the
(almost) backflow-maximizing probability current. The ana-
lytically predicted value is 7/4, consistent with the numerical
analysis.

The numerical and analytical findings presented in
this study strongly suggest that particle-in-a-ring states
approaching the probability transfer bound (of approxi-
mately 0.116816) exhibit fractal characteristics in the time-
dependence of the probability current. This observation is not
only interesting in its own right but also offers a signature
of quantum backflow. Such a signature could be valuable
for future experimental investigations that measure instan-
taneous current directly (as proposed in Ref. [4]) rather
than focusing on integrated probability transfer. Our findings
suggest that the instantaneous current will show a highly
noisy and irregular time dependence as the system’s state
approaches backflow-maximizing conditions. This distinctive
feature could serve as a guide for exploring the parameter
space of the system in search of quantum states that give rise
to significant probability backflow.
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APPENDIX A: DERIVATION OF EQ. (17)

Real constants A±, normalizing

|χ±〉 = A±
N∑

m=0

(m + a±)|m〉 (A1)

to unity are found from the requirement that

1 = 〈χ±|χ±〉

= A2
±

N∑
m=0

(m + a±)2

= A2
±

(
N∑

m=0

m2 + 2a±
N∑

m=0

m + (N + 1)a2
±

)
.

Using the identities
∑N

m=0 m = 1
2 N (N + 1) and

∑N
m=0 m2 =

1
6 N (N + 1)(2N + 1) = (N + 1)a2

±, we find

A± = [(N + 1)(2a2
± + Na±)]−1/2. (A2)

In view of Eq. (14), the above expression for the normalization
constants coincides with the one given by Eq. (17).

APPENDIX B: DERIVATION OF EQ. (18)

Starting from Eq. (A1), we rewrite the right-hand side of
Eq. (18) as

λ+|χ+〉〈χ+| + λ−|χ−〉〈χ−| =
∞∑

m,n=0

|m〉Jmn〈n|,

where

Jmn = λ+A2
+(m + a+)(n + a+) + λ−A2

−(m + a−)(n + a−).

Our objective is to establish that Jmn equals (m + n)/2π [cf.
Eq. (10)]. We have

Jmn = (λ+A2
+ + λ−A2

−)mn

+ (λ+A2
+a+ + λ−A2

−a−)(m + n)

+ λ+A2
+a2

+ + λ−A2
−a2

−. (B1)

Using Eqs. (13) and (A2), we get

λ±A2
± = (N + 1)(N + 2a±)

4π

1

(N + 1)(2a2± + Na±)

= 1

4πa±
. (B2)

In view of this identity, Eq. (B1) becomes

Jmn = 1

4π

(
1

a+
+ 1

a−

)
mn + 1

2π
(m + n) + a+ + a−

4π
.

Finally, using fact that a+ = −a− [see Eq. (14)], we arrive at
the sought result:

Jmn = m + n

2π
.

APPENDIX C: DERIVATION OF EQS. (24) AND (25)

Substituting the diagonal representation of the probability
current, given by Eq. (19), into Eq. (20), we get

PN = λ+
∫ α

−α

dt |〈χ+|ψN (t )〉|2 + λ−
∫ α

−α

dt |〈χ−|ψN (t )〉|2.

In view of Eqs. (9) and (A1), we have

〈χ±|ψN (t )〉 = A±
N∑

m=0

cm(m + a±)e−im2t ,

so that

PN = λ+A2
+

∫ α

−α

dt

∣∣∣∣∣
N∑

m=0

cm(m + a+)e−im2t

∣∣∣∣∣
2

+ λ−A2
−

∫ α

−α

dt

∣∣∣∣∣
N∑

m=0

cm(m + a−)e−im2t

∣∣∣∣∣
2

.

Then, taking into account Eq. (B2), we arrive at

PN = 1

4πa+

∫ α

−α

dt

∣∣∣∣∣
N∑

m=0

cm(m + a+)e−im2t

∣∣∣∣∣
2

+ 1

4πa−

∫ α

−α

dt

∣∣∣∣∣
N∑

m=0

cm(m + a−)e−im2t

∣∣∣∣∣
2

= P(+)
N + P(−)

N ,

which is the representation given by Eqs. (24) and (25).
To better understand the connection between the last rep-

resentation and the one given by Eq. (21), let us perform the
integration over t explicitly and demonstrate that the nonneg-
ative and nonpositive components of the probability transfer
indeed add up to the value given by Eq. (21). We have

P(±)
N = 1

4πa±

N∑
m,n=0

c∗
mcn(m + a±)(n + a±)

∫ α

−α

dt ei(m2−n2 )t

= α

2πa±

N∑
m,n=0

c∗
mcn(m + a±)(n + a±) sinc[α(m2 − n2)].

Then,

P(+)
N + P(−)

N = α

π

N∑
m=0

N∑
n=0

c∗
mcnSmn sinc[α(m2 − n2)],

where

Smn = (m + a+)(n + a+)

2a+
+ (m + a−)(n + a−)

2a−
.

Finally, using the fact that a− = −a+ [see Eq. (14)], we obtain

Smn = (m + a+)(n + a+)

2a+
− (m − a+)(n − a+)

2a+
= m + n.

This implies that

P(+)
N + P(−)

N = α

π

N∑
m=0

N∑
n=0

c∗
mcn(m + n) sinc[α(m2 − n2)].

The expression in the right-hand side of this equality coincides
with the one in the right-hand side of Eq. (21).
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