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Effect of the readout efficiency of quantum measurement on the system entanglement
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Monitored quantum systems evolve along stochastic trajectories correlated with the observer’s knowledge
of the system’s state. Under such dynamics, certain quantum resources like entanglement may depend on
the observer’s state of knowledge. Here, we quantify the entanglement for a particle on a one-dimensional
(1D) quantum random walk under inefficient monitoring using a mixed state-entanglement measure: the
configuration coherence. We find that the system’s maximal mean entanglement at the measurement-induced
quantum-to-classical crossover is suppressed in different ways by the measurement strength and inefficiency.
In principle, strong measurements can lower the amount of entanglement indefinitely. However, at a given
measurement strength, efficient readout can crucially increase the system entanglement, making high-fidelity
detectors essential for successful quantum computing. Our results bear impact for a broad range of fields,
ranging from quantum simulation platforms of random walks to questions related to measurement-induced phase
transitions.
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I. INTRODUCTION

In the noisy intermediate-scale quantum (NISQ) era of
quantum computing [1], quantum measurement has become
of crucial practical importance, as it is imperative for har-
nessing the potential power of quantum devices, as well
as for steering quantum systems into desirable states [2–4].
Quantum measurements involve a detector performing the
measurement and an observer reading out the corresponding
measurement outcome. Due to the coupling of the detector
with the system, this process is accompanied by an inherent
backaction onto the system [5–9]. Subsequently, the observer
infers the system’s state from the measurement record. Hence,
a quantum state reflects the observer’s knowledge of the sys-
tem. The amount of the observer’s gained information on the
system’s state is determined by the efficiency of the measure-
ment process [2,10]. For example, efficient measurements do
not degrade the state of knowledge of the observer, while
incomplete information about the measurement outcome for
inefficient measurements will lead to mixed states of (clas-
sical) probabilities associated with possible postmeasurement
quantum states. The average over such realizations gives the
average system state, which is independent of the readout effi-
ciency and evolves according to a continuous master equation.

Quantum computing relies on harnessing resources en-
coded in the system’s quantum state, like entanglement [11].
As entanglement depends nonlinearly on the system state, it
will also depend on the readout efficiency and, consequently,
on the observer’s available information. One prominent
manifestation of such effects is the measurement-induced en-
tanglement phase transition, where a quantum system under
fully efficient measurements undergoes a transition from a
volume (critical) law to an area law (Zeno) phase with in-
creasing measurement strength [12–17]. Such a measurement-
induced transition has been observed in several pioneering

experiments [18–20]. Strikingly, this transition is strictly ab-
sent for the average state, which develops into a complete
statistical mixture for any finite measurement strength. This
discrepancy was analyzed in measurement-induced transitions
at finite inefficiency in specific models [21,22]. Recently, the
discrepancy was quantified using a mixed-state entanglement
measure, where both the fully efficient and fully inefficient
descriptions feature a measurement-strength-dependent co-
herence length at intermediate times [23]. Apart from these
two extreme limits, the dependence of the state’s entangle-
ment on the efficiency of the quantum measurement remains
to be explored.

In this work, we quantify how the measurement and the
observer’s knowledge of its outcome impact the system entan-
glement. We describe inefficient local density measurements
using a stochastic master equation [10]. The measurement
tends to Zeno-localize the system, whereas inefficient readout
leads to mixed-state quantum trajectories. We analyze these
effects using the mixed-state entanglement, which we measure
by the recently developed configuration coherence [24,25].
First, we find that for a weakly measured particle that is coher-
ently oscillating between two sites (the case of charge qubit
experiments [9,26–28]), the stationary entanglement solely
depends on the readout efficiency. At high measurement
strengths, localization drastically suppresses entanglement.
Second, we consider the measurement-induced quantum-to-
classical crossover of a particle performing a quantum random
walk on a chain, which is a showcase example realized
within a diverse range of experimental platforms [29–38].
At the quantum-to-classical crossover, the system’s mean
entanglement assumes a maximal value. We find that this
maximal mean entanglement depends on both the mea-
surement strength as well as the readout efficiency, albeit
in quantitatively different ways: the measurement strength
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FIG. 1. (a) Setup: Spinless particle hopping on a chain of length
L with amplitude J . The particle is measured with strength k and
efficiency η at each site, cf. Eq. (2). (b)–(e) Probability densities,
p, of the stationary state of trajectories for L = 2 [see rectangle in
(a)]. The Bloch sphere poles correspond to the localized states |1〉
(north) and |2〉 (south). (b) For high efficiency η = 0.99 and small
measurement strength k = 0.01, the trajectories remain almost pure
and can cover the full surface of the Bloch sphere. (c) For η = 0.99
and high measurement strength k = 10, the particle gets projected
onto the poles of the Bloch sphere (Zeno effect). (d) For η = k =
0.01, the trajectories are highly mixed and distributed symmetrically
around the fully mixed state 1/2. (e) For η = 0.01 and k = 10, the
trajectories get mixed and at the same time projected on the z axis
due to the measurement.

suppresses the maximal mean entanglement in a power-law
fashion, whereas the readout efficiency increases it exponen-
tially. Our results demonstrate that the entanglement of a
monitored system can increase due to the observer’s knowl-
edge of the measurement outcome.

II. INEFFICIENT QUANTUM MEASUREMENT
PROTOCOL

We consider a spinless particle hopping on a chain subject
to local inefficient density measurements, see Fig. 1(a). The
particle’s free evolution follows the Hamiltonian

H = J

2

L−1∑
i=1

a†
i ai+1 + H.c., (1)

with J the hopping amplitude, a†
i (ai) the creation (annihila-

tion) operators, and L the chain’s length. For convenience, we
set J = 1. We now couple the sites to inefficient detectors that
measure the local densities 〈ni〉 = Tr[ρa†

i ai], i = 1, . . . , L,
with strength k � 0. The detector efficiency 0 � η � 1 de-
scribes the amount of measurement outcome information
available to the observer. With this, the particle’s dynamics
is described by the stochastic master equation (SME) [10]

dρ = −i[H, ρ]dt +
L∑

i=1

k

(
niρni − 1

2
{ni, ρ}

)
dt

+
√

ηk(niρ + ρni − 2〈ni〉ρ)dW i
t , (2)

where the dW i
t are independent Wiener increments with

dW i
t dW j

t ′ = δi, jδt,t ′dt . The second term on the right-hand side

in Eq. (2) describes the measurement’s backaction on the
system, which only depends on the measurement strength.
The third term on the right-hand side in the SME characterizes
the change of the state due to the observer’s information gain
from the measurement readout.

Due to the randomness underlying the measurement, this
term is stochastic and depends on both the measurement
strength and the readout efficiency η. The evolution of the
state ρm under a single sequence of measurement outcomes
(a single realization of increments dW i

t ) is called a quan-

tum trajectory. Due to dW i
t = 0, the ensemble state ρ ≡

(
∑M

m=1 ρm)/M averaged over many trajectories, M � 1, is
independent of the individual measurement outcomes, and
evolves according to the standard (continuous) Lindblad mas-
ter equation [2,39]. Therefore, the average state is independent
of the efficiency η. An alternative interpretation of Eq. (2)
involves two density measurements per site, one with a per-
fectly efficient detector (η1 = 1) and strength k1, and a second
with an inefficient detector (η2 = 0) and strength k2. This
two-measurement picture relates to the inefficient single mea-
surement by k = k1 + k2, η = k1/(k1 + k2). Moreover, the
inefficient measurement with strength k2 is equivalent to ca-
pacitive coupling to a dephasing environment [10].

III. RABI OSCILLATIONS BETWEEN TWO SITES

To understand the simultaneous effects of measurement
and readout efficiency, we first consider the simple example
of two sites, see the rectangle selection in Fig. 1(a). Without
measurement, the particle performs Rabi oscillations with
frequency J = 1 between the two sites. In general, the mea-
surement tends to localize individual trajectories to one of
the two sites (quantum Zeno effect [40]), whereas inefficient
readout will lead to an increasingly mixed state due to the ob-
server’s lack of information on the particle’s exact location. To
illustrate this effect, we employ a Bloch sphere picture, where
the z poles correspond to the localized states |1〉 = a†

1|0〉 and
|2〉 = a†

2|0〉. For a localized initial state, the x component of
the Bloch vector vanishes at all times, and the sphere can be
reduced to a disk, see Appendix B.

At high efficiencies, the trajectories following Eq. (2) re-
main almost pure, i.e., on the surface of the Bloch sphere,
see Figs. 1(b) and 1(c). This is a consequence of the wave-
function collapse due to the efficient readout: the observer
knows which is the specific pure state that corresponds to the
measurement outcome with high fidelity. At small measure-
ment strengths, the Rabi oscillations persist, and at long times
the trajectories reach any state on the surface of the Bloch
sphere with approximately equal probability [cf. Fig. 1(b)].
Conversely, strong measurements localize the particle on one
of the two sites, and the probability distribution at long times
is focused at the poles [cf. Fig. 1(c)]. In contrast, for small
efficiencies, the restricted amount of the observer’s knowl-
edge on the measurement outcomes leads to a mixed-state
trajectory, see Figs. 1(d) and 1(e). In combination with a
small measurement strength, the trajectories end up close to
and symmetrically distributed around the maximally mixed
state 1/2 = (

∑2
i=1 |i〉〈i|)/2 located at the center of the Bloch

sphere [cf. Fig. 1(d)]. At high measurement strengths, the
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individual trajectories’ mixing is suppressed by Zeno localiza-
tion and the probability distribution skews towards the poles
[cf. Fig. 1(e)]. To quantize these effects, we are interested in
the entanglement between the two sites. Interestingly, as we
shall see, both the localization and the mixing tend to decrease
the amount of entanglement in the system. Next, we move
to discuss how entanglement scales with the measurement
strength and the readout efficiency, with consequences on the
interpretation of entanglement; we find that it is a resource
depending on the amount of information available to the ob-
server rather than a system-inherent quantity.

For a general mixed state ρ of the chain, bipartite entangle-
ment quantifies the quantum correlations across a cut at some
bond 1 � b � L − 1. It can be quantified by the configuration
coherence [24,25]

CN (ρ, b) = 2
∑

i=1,...,b
j=b+1,...,L

|〈i|ρ| j〉|2, (3)

where | j〉 = a†
j |0〉. For systems with a fixed number of parti-

cles and Hermitian jump operators such as the SME (2), the
configuration coherence is a convex entanglement measure.
For a single particle, it relates to the negativity N (ρ) [41]
as N (ρ) = √

CN (ρ)/2. For our example of two sites, the
configuration coherence reads CN = 2|〈1|ρ|2〉|2. Without
measurement, the Rabi oscillations lead to alternating coher-
ent (entangled) and incoherent (nonentangled) configurations
of the particle on the two sites. This persists for small mea-
surement strengths at short times [see Fig. 2(a)] before the
entanglement saturates at a stationary value depending on the
measurement strength and the efficiency. As expected, pure
Lindblad evolution (η = 0) drives the state to the separable
(nonentangled) infinite temperature state 1/2. In conjunction
with the persisting Rabi oscillations, the stationary entangle-
ment for k = 0.1 and η = 1 is CN ≈ 1/4, which corresponds
to the average entanglement on the surface of the Bloch
sphere, see Appendix C.

Whereas the stationary entanglement vanishes for all k > 0
when η = 0, it remains finite if the observer obtains any
information about the measurement outcome [cf. Fig. 2(b)].
As discussed above, both high measurement strengths and low
efficiencies decrease the stationary entanglement, the first due
to localization and the second due to mixing, see Fig. 2(c).
Interestingly, for small measurement strengths k � 0.3, the
entanglement solely depends on the efficiency, see Fig. 2(d).
Above a critical measurement strength, the measurement suc-
ceeds in increasingly localizing the particle. This can be
understood in the following way: the measurement damps
the Rabi oscillation and gives it a lifetime. When the life-
time becomes shorter than half the Rabi cycle necessary
to bring the particle into a coherent superposition between
the two sites, the measurement starts to decrease the sta-
tionary entanglement. This observation of an efficiency-only
dependent stationary entanglement at small-to-intermediate
measurement strengths is a first main result of our work.

IV. QUANTUM RANDOM WALK ON A CHAIN

After having analyzed the effect of measurement and its
readout efficiency on the illustrative example of two sites,

FIG. 2. (a,b) Time evolution of the configuration coherence for
different measurement strengths k and efficiencies η = 1, 0.5, 0 (top
to bottom). (a) For small measurement strength k = 0.1, the config-
uration coherence strongly oscillates at first and then saturates at a
finite value (for η > 0, marker 1©) or vanishes (for η = 0, marker

2©). For η = 1, the stationary value is the average pure state entan-
glement CN = 1/4 (dashed line). (b) For high measurement strength
k = 2, the entanglement approaches the stationary value in a damped
way. For efficiencies η = 0, 0.5, there is a maximum at intermediate
times (markers 3©, 4©). (c) Stationary state configuration coherence
as a function of measurement strength and efficiency. Small effi-
ciencies and high measurement strengths suppress the entanglement.
Horizontal lines highlight the values of the efficiency used in (d).
(d) Stationary state configuration coherence from (c) for specific
values of the efficiency η = 1, 0.75, 0.5, 0.25 (top to bottom). At
small measurement strengths, the entanglement only depends on
the efficiency, and is equal to the average pure state entanglement
CN = 1/4 for η = 1 (dashed line). At large measurement strengths,
the measurement-induced localization suppresses the entanglement.

we consider the single-particle hopping on a chain of length
L. In that case, the particle performs a quantum random
walk [42] governed by the competition between hopping and
measurement, see Figs. 3(a)–3(c). For vanishing efficiency,
η = 0, the measurement backaction increasingly mixes the
state. As a consequence, the particle undergoes a quantum-
to-classical crossover from a coherent ballistic evolution at
short times t � 1/k to a classical diffusive evolution at long
times t � 1/k [43] [cf. Fig. 3(a)]. With knowledge of the
measurement outcomes, η > 0, the quantum random walk be-
comes interrupted by stochastic jumps whenever the particle
is measured at a specific site with high fidelity [cf. Figs. 3(b)
and 3(c)]. As the crossover is a consequence of the mixing
of the state, the evolution between jumps retains its diffusive
characteristics for η < 1 [cf. Fig. 3(b)]. At full efficiency
η = 1, however, the intermediate evolution is ballistic, see
Fig. 3(c). If the measurement is strong enough, the particle
does not have time for coherent spreading between jumps
and localizes. To summarize, the three effects at play act as
follows: (i) the hopping tries to coherently spread the parti-
cle, (ii) the measurement suppresses such spreading, and (iii)
the readout efficiency determines whether the measurement
leads to diffusive spreading (low efficiency) or localization
(high efficiency). One natural candidate to analyze such

022214-3



CARISCH, ZILBERBERG, AND ROMITO PHYSICAL REVIEW A 110, 022214 (2024)

FIG. 3. (a)–(c) Local densities 〈ni〉 of a quantum trajectory cor-
responding to a quantum random walk of a single particle injected
on site 11 on a chain of length L = 21, measured with strength
k = 0.5 and efficiencies η = 0, 0.5, 1 [cf. Eq. (2)]. (d)–(f) Config-
uration coherence CN of the random walks in (a)–(c), respectively.
(g)–(i) Configuration coherence CN averaged over many quantum

trajectories as in (a)–(c). (j)–(l) Mean configuration coherence CN

[cf. Eq. (4)] for the evolutions (g)–(i). For η = 0 (first column), the
particle undergoes a coherent-to-diffusive crossover. Thereby, the
evolution changes from ballistic to diffusive, and the entanglement
is absent in the second condition. There is no difference between a
single trajectory and the average state. The mean entanglement has a
maximal value at intermediate times [marker 1© in (j)]. For η = 0.5
(second column) and η = 1 (third column), the trajectories’ evolution
is interrupted by stochastic jumps. In contrast to η = 0, the average
configuration coherence in (h,i) shows long-time entanglement. For
η = 0.5, we observe a maximal mean entanglement at intermediate
times [marker 2© in (k)], whereas for η = 1 the maximum is obtained
in the stationary limit.

effects is entanglement, which revealed that the particle has
a measurement-dependent coherence length for efficiencies
η = 0, 1 [23].

Notably, the quantum-to-classical crossover for η = 0
manifests in the entanglement dynamics of the particle: the
ballistic evolution is supported by entanglement, whereas in
the classical diffusive evolution, entanglement is absent, see
Figs. 3(d) and 3(g). The absence of stationary entanglement is
expected as the mixed state approaches the separable (nonen-
tangled) infinite temperature state, (

∑L
i=1 |i〉〈i|)/L = 1/L, for

any finite measurement strength k > 0. For η > 0, how-
ever, the intermediate ballistic evolution between jumps leads
to finite long-time entanglement [cf. Figs. 3(e), 3(f), 3(h),
and 3(i)]. To characterize this effect, we consider the mean
entanglement over all bonds,

CN (t ) ≡ 1

L − 1

L−1∑
b=1

CN [ρ(t ), b]. (4)

Interestingly, at intermediate times, the mean entanglement

can assume a maximum CN,max ≡ maxt CN (t ) before reaching

FIG. 4. (a) Maximal mean entanglement CN,max [cf. Eq. (4)] for
a chain of length L = 21 for different values of efficiency η and
measurement strength k [cf. Eq. (2)]. (b) Same as (a) plotted as a
function of measurement strength k for different values of readout
efficiency η using a log-log scale. Straight lines at high measurement

strengths k � 1 hint at power-law scaling, CN,max ∝ 1/ka. (c) Same
as (a) plotted as a function of readout efficiency η for different
values of measurement strength k using a semi-log scale. Straight

lines at low efficiencies η � 1/2 hint at exponential scaling, CN,max ∝
exp(bη). We ascribe deviations from straight lines at small measure-
ment strengths and high efficiencies to finite-size effects.

a stationary value [cf. Figs. 3(j) and 3(k)], similar to the
single-bond entanglement in Fig. 2(b) for η = 0, 0.5. For
small measurement strengths and high readout efficiency, this
maximal value is not reached at intermediate times, but in the
stationary limit [cf. Fig. 3(l)]. Figure 4 shows the effect of the
measurement and the readout efficiency on this maximal mean
entanglement. We find that, in general, increasing measure-
ment strength and decreasing readout efficiency suppress the
maximal mean entanglement in the system, see Fig. 4(a). For
a given efficiency, the maximal mean entanglement follows
a power-law decline with increasing measurement strength,

CN,max ∝ 1/ka, for some exponent a [cf. Fig. 4(b)]. Con-
versely, for a fixed value of the measurement strength, the
maximal mean entanglement scales exponentially with the

readout efficiency, CN,max ∝ exp(bη) [cf. Fig. 4(c)]. However,
due to the readout efficiency being bounded, 0 � η � 1, the
total entanglement is limited even at maximal efficiency η =
1. As the measurement strength can be increased indefinitely,
0 � k < ∞, the maximal mean entanglement can be lowered
below any limit even at perfect readout efficiency. The differ-
entiated analysis of the effect of quantum measurement and its
readout efficiency on the entanglement of the one dimensional
quantum random walk is the second main result of our work.

V. CONCLUSION

We analyzed the impact of inefficient quantum measure-
ments of a particle hopping on a one-dimensional (1D) chain.
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To quantify the effect of the measurement and the corre-
sponding readout efficiency, we employed the configuration
coherence, a convex mixed state entanglement measure [25].
For a weakly monitored particle performing Rabi oscillations
between two sites, we find that the stationary entanglement
solely depends on the readout efficiency. At high mea-
surement strengths, the measurement-induced quantum Zeno
localization of the particle leads to suppressed entanglement.
The quantum Zeno effect in two-level systems is relevant to
a broad range of charge qubits [9,26–28], and has also been
experimentally observed, e.g., in trapped ions [44], Bose-
Einstein condensates [45], and waveguide arrays [46]. Also
for a particle performing a quantom random walk on a chain
of arbitrary length, the maximal amount of entanglement in a
system can be arbitrarily limited by using high measurement
strengths. For a fixed measurement strength, however, we find
that the observer’s knowledge of the measurement outcome
exponentially increases the maximal available amount of
entanglement.

Our results show that the effect of quantum measurement
on the system entanglement depends strongly on the ob-
server’s access to the measurement records, over the full range
of zero knowledge to perfect readout efficiency. This has
strong implications on how quantum measurement influences
the ability of a system to perform tasks demanding entangle-
ment as a resource. To experimentally analyze such effects,
quantum random walks provide an excellent illustration, as
they have been realized on a variety of quantum information
processing platforms, including superconducting qubits [29],
linear [30] and nonlinear optics [31], trapped atoms [32] and
ions [33,34], nuclear magnetic resonance [35,36], beam split-
ter arrays [37], and fiber loop configurations [38]. In future
work, we will address the effect of inefficient measurements
for many-body and higher-dimensional systems.
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APPENDIX A: KRAUS OPERATOR EVOLUTION SCHEME
FOR THE STOCHASTIC MASTER EQUATION

Here, we explain the numerical procedure used to evolve a
state in time according to the stochastic master equation (2).
To this end, we make use of a more general stochastic master
equation with (not necessarily hermitian) jump operators Li,
i = 1, . . . , m and local inefficiencies ηi, i = 1, . . . , m,

dρ = −i[H, ρ]dt +
m∑

i=1

(
LiρL†

i − 1

2
{L†

i Li, ρ}
)

dt

+ √
ηi(Liρ + ρL†

i − Tr(Liρ + ρL†
i ))dW i

t . (A1)

The SME (2) follows from (A1) by taking Li = √
kni and

ηi = η. In general, Eq. (A1) can be integrated using any

stochastic differential equation solver, for example, Euler or
Euler-Milstein methods [47]. Such methods, however, lead
to unphysical states because they do not generally conserve
the unit trace and the positivity of the density matrix due to
numerical errors. To guarantee physical states in the evolution,
we use the tool of Kraus operators [11]. The Kraus operator
update of Eq. (A1) is given by [48,49]

ρ + dρ = M̃ρM̃† + ∑m
i=1(1 − ηi )LiρL†

i dt

Tr
[
M̃ρM̃† + ∑m

i=1(1 − ηi )LiρL†
i dt

] , (A2)

with Kraus operator

M̃ = 1 −
(

iH + 1

2

m∑
i=1

L†
i Li

)
dt

+
m∑

i=1

√
ηiLi

(√
ηiTr(Liρ + ρL†

i )dt + dW i
t

)

+
m∑

i, j=1

√
ηiη j

2
LiL j

(
dW i

t dW j
t − δi jdt

)
. (A3)

This update automatically conserves the unit trace and pos-
itivity of the density matrix. If the time evolution operator
U = exp(−iH�t/2) is available, the update scheme can be
improved to [50]

ρ + dρ = U
(
MUρU †M† + ∑m

i=1(1 − ηi )LiUρU †L†
i dt

)
U †

Tr
[
MUρU †M† + ∑m

i=1(1 − ηi )LiUρU †L†
i dt

] ,

(A4)

where M = M̃ + iHdt . Inserting Li = √
kni, i = 1, . . . , L and

using nin j = δi jni, n†
i = ni, as well as

∑L
i=1 ni = 1, we finally

find the update scheme

ρ + dρ = U
(
MUρU †M†+ (1− η)k

∑L
i=1 niUρU †nidt

)
U †

Tr
[
MUρU †M†+ (1− η)k

∑L
i=1 niUρU †nidt

] ,

(A5)

with

M = M† =
(

1 − kdt

2

)
1+

√
ηk

L∑
i=1

ni
(
2
√

ηk〈ni〉dt + dW i
t

)

+ ηk

2

L∑
i=1

ni
[(

dW i
t

)2 − dt
]
, (A6)

where we introduced the expectation value 〈ni〉 = Tr[ρni].

APPENDIX B: BLOCH SPHERE DESCRIPTION
OF TWO-SITE TRAJECTORIES

In our work, we study the probability distribution of the
stationary state of trajectories of a single particle on two sites
subject to the SME (2) [cf. Figs. 1(b) to 1(e)]. Here, we derive
the corresponding Bloch sphere picture and show the dynam-
ics of individual trajectories and how the competing effects
of measurement and its efficiency impact their evolution, see
Fig. 5.

First, we note that for a single particle on L = 2 sites, the
Hilbert space is spanned by the site-index states (|1〉, |2〉) due
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FIG. 5. Bloch sphere trajectories following Eq. (2) for different
values of the measurement strength k and the efficiency η. (a) For
small measurement strength and high efficiency, the trajectory per-
forms Bloch oscillations around the surface of the sphere. (b) For
high measurement strength and high efficiency, the trajectory can
still reach all states on the surface of the sphere, but ends up close
to one of the poles due to the Zeno effect. (c) For small measurement
strength and small efficiency, the Bloch oscillations of (a) get damped
by the mixing, and the trajectory ends up close to the center of the
sphere (corresponding to the maximally mixed state 1/2. (d) For
high measurement strength and small efficiency, the trajectory moves
between residing close to the |1〉 pole and turning into the maximally
mixed state due to the competition between the measurement’s Zeno
effect and the mixing due to the inefficiency.

to the particle number conserving nature of Eq. (2). We can
then employ a Bloch sphere interpretation of the general two-
site mixed state in the basis {|1〉, |2〉},

ρ = 1

2

[
1 + z x − iy
x + iy 1 − z

]
, (B1)

where the vector �v = (x, y, z) with |�v|2 = x2 + y2 + z2 =
2Trρ2 − 1 � 1 describes a point on (or inside) the Bloch
sphere.

In terms of x, y, z, the SME (2) can be written as

dx = −xkdt − xz
√

2ηkdWt ,

dy = −ykdt − zdt − yz
√

2ηkdWt ,

dz = ydt + (1 − z2)
√

2ηkdWt , (B2)

where dWt = (dW 1
t − dW 2

t )/
√

2 is a Wiener increment with
〈dW 2

t 〉 = [〈(dW 1
t )2〉 + 〈(dW 2

t )2〉]/2 = dt . Equations (B2)

describe coupled stochastic differential equations with a
quadratic diffusion term.

Next, we inject the particle in the left site, ρ(t = 0) =
|1〉〈1|. For this initial state, we have x = 0, ∀t , and we can
restrict the Bloch sphere to the x = 0 disk. For small mea-
surement strength and high efficiency, the particle performs
Rabi oscillations between the two sites, and remains almost
in a pure state, see Fig. 5(a). If, on the other hand, the
particle is measured strongly, the particle can initially still
tunnel between the two sites, but becomes localized close to
one of the sites (Zeno effect). In Fig. 5(b), the localization
happens on the left site. For small efficiencies, the state be-
comes more mixed due to the lack of information from the
measurement readout. For small measurements, this results
in Rabi oscillations towards the center of the Bloch sphere,
i.e., the maximally mixed state ρ = (|1〉〈1| + |2〉〈2|)/2, see
Fig. 5(c). For high measurements and small efficiencies, the
measurement projects the state onto the z axis of the Bloch
sphere, and the small efficiency leads to highly mixed states,
as seen in Fig. 5(d).

For small efficiencies, we can simplify the stochastic dif-
ferential equations (B2) in the steady-state regime. It is known
that for η = 0, the steady state is ρ = 1/2, i.e., x = y = z =
0 [51]. We can therefore assume that for η � 1, the steady
state is close to the identity and we can neglect the second-
order terms ∝ z2 and ∝ yz. As x = 0, we find the following
set of equations:

dy = −ykdt − zdt,

dz = ydt +
√

2ηkdWt , (B3)

and the stochastic equations for the quadratic terms read

dy2 = 2ydy + (dy)2 = −2y2kdt − 2yzdt,

dz2 = 2zdz + (dz)2

= 2zydt + 2z
√

2ηkdWt + 2ηkdt,

d (yz) = zdy + ydz + dydz = −yzkdt − z2dt + y2dt, (B4)

where we use the rules of Itô calculus, dW 2
t = dt , and neglect

all terms of higher order than dt .
Next, we calculate the expectation values of the quadratic

terms E[y2], E[z2], and E[yz] in the stationary limit, where
the left-hand sides of the Eqs. (B4) vanish. Using E[dWt ] = 0,
we find

0 = −2E[y2]k − 2E[yz],

0 = 2E[yz] + 2ηk,

0 = −E[yz]k − E[z2] + E[y2], (B5)

with stationary solutions E[yz] = −ηk, E[y2] = η, E[z2] =
η(1 − k). These solutions justify that we can neglect the
quadratic terms from the stochastic differential equations for
η � 1. In terms of the trajectory-averaged entanglement, our
analysis yields

CN = 2|〈1|ρ|2〉|2 = E[y2]/2 = η/2. (B6)

Crucially, we thus find that for small η, our numerical results
from the main text approach this analytical limit independent
of the measurement strength k, see Fig. 6.
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FIG. 6. Configuration coherence as a function of the efficiency
η for several values of the measurement strength k. For small η, the
scaling approaches the analytical result, CN = η/2, cf. Eq. (B6).

APPENDIX C: AVERAGE PURE-STATE ENTANGLEMENT

In our work, we find that for small values of the mea-
surement strength k, the long-time entanglement of the single
particle on two sites with efficiency η = 1 is CN ≈ 1/4. Here,
we show that this value corresponds to the average entan-
glement of a pure state, in agreement with the fact that for
small measurement strengths, the trajectories can explore the
whole surface of the Bloch sphere. Here, too, we can re-
strict the derivation to the x = 0 disk if we assume an initial
state |ψ (t = 0)〉 = |1〉, i.e., we can parametrize any pure state
on the circle using a single angle θ , |ψ (θ )〉 = cos(θ )|1〉 +
i sin(θ )|2〉. This state’s configuration coherence is given as
CN (θ ) = 2 cos(θ )2 sin(θ )2. For the average state, we find

CN = 1

2π

∫ 2π

0
dθ2 cos(θ )2 sin(θ )2

= 1

8π

∫ 2π

0
dθ [1 − cos(4θ )] = 1

4
, (C1)

in conjunction with our numerical findings for small measure-
ment strengths and high efficiency in the main text.

APPENDIX D: DETAILS OF THE NUMERICAL
IMPLEMENTATION

In Table I, we provide numerical details for the simulations
leading to the results in the figures of the main text as well as
the Appendix. Our numerical simulations employ the Kraus
operator update (A5) with varying values of the timestep dt ,
stopping times t f , and number of trajectories that are averaged
over. The timestep has to be small compared to the measure-
ment strength, i.e., kdt � 1, and the number of trajectories
that we average over to obtain a faithful averaged statement
has to be larger for higher efficiency η, as the stochastic terms
in the increment dρ scale with

√
ηk.

To make statements about the stationary state of average
quantities, we run the simulation until the quantities converge.
For the two-site example of Figs. 5 and Figs. 1(b)–1(e), 2(c)
and 2(d) of the main text, we make use of the analytical
solution of Eq. (2) at efficiency η = 0 as a reference. From
this solution, the configuration coherence can be calculated
analytically [23]

CN (t ) =

⎧⎪⎪⎨
⎪⎪⎩

e−kt

2 (1−(k/2)2 ) sin2(
√

1 − (k/2)2t ), k < 2,

1
2 t2e−2t , k = 2,

e−kt

2 ((k/2)2−1) sinh2(
√

(k/2)2 − 1t ), k > 2.

(D1)

We use this result to estimate a stopping time t f for our
trajectory simulations for k < 2. As the average state of the
trajectories follows the SME (2) independent of the efficiency
η, the trajectories’ stationary state is reached when the average
state has reached its steady state, i.e., when the configuration
coherence (D1) is very close to zero. We set as a condition for

TABLE I. Details of the numerical implementation leading to the presented results in the figures in the main text and the Appendices.

Fig. dt t f # of trajectories

5 min(1, 1/k) × 10−3

{−ln{2 × 10−3[1 − (k/2)2]}/k, k < 2
5k, otherwise

1

1(b) to 1(e) min(1, 1/k) × 10−3

{−ln{2 × 10−3[1 − (k/2)2]}/k, k < 2
5k, otherwise

10 000

2(a) 10−3 10/k

⎧⎨
⎩

1, η = 0
1800, η = 0.5
2200, η = 1

2(b) 5 × 10−4 10/k

⎧⎨
⎩

1, η = 0
1900, η = 0.5
1700, η = 1

2(c) and 2(d), 6 min(1, 1/k) × 10−3

{−ln{2 × 10−3[1 − (k/2)2]}/k, k < 2
5k, otherwise

max(1000η, 100)

3(a) to 3(f) 10−3 15 1
3(g) to 3(l) 10−3 15 100

4(a) to 4(c) min(1, 1/k) × 10−2 max[(L/4)2k, L]

{
1, η = 0
200�10ηk�, otherwise
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t f that CN (t f ) � 10−3 and find

e−kt f

2 (1 − (k/2)2)
� CN (t f ) � 10−3

⇒ t f = −ln{2 × 10−3[1 − (k/2)2]}/k. (D2)

For measurement strenghts k � 2, we find good convergence
for t f = 5k.

For chain lengths L > 2, an analytical solution does not
exist. However, if we are interested in the intermediate time
dynamics rather than the stationary limit, we can infer a
reasonable stopping time t f from the dynamics. In the
main text, we are interested in the maximal mean

entanglement, CN,max. At each bond, the maximal value
will be realized shortly after the particle reaches that bond
(the entanglement damping due to the measurement will
thereafter monotonously decrease the entanglement). Until
the quantum-to-classical crossover at t ≈ 1/k, the particle
evolves ballistically with velocity J = 1. For small measure-
ment strengths, the particle will thus hit the wall (and thereby
pass the outermost bonds) at t f = L/2. If the quantum-to-
classical crossover happens before the particle reaches the
wall, the subsequent evolution is diffusive, with diffusion con-
stant D = 4/k [52]. Then, the particle reaches the wall at time
t f = 1/D(L/2)2 = k(L/4)2. The corresponding numerics re-
sult in the main text of a chain with length L = 21 shows a
converged outcome for a stopping time t f = max[(L/4)2k, L]
taking into account both types of dynamics.
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