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Quantum Wasserstein divergences are modified versions of quantum Wasserstein distances defined by chan-
nels and they have been conjectured to be genuine metrics on quantum state spaces by De Palma and Trevisan.
We prove triangle inequality for quantum Wasserstein divergences for every quantum system described by a
separable Hilbert space and any quadratic cost operator under the assumption that a particular state involved is
pure and all the states have finite energy. We also provide strong numerical evidence suggesting that the triangle
inequality holds in general for an arbitrary choice of states.
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I. INTRODUCTION

A. Motivation and main result

Although the classical problem of transporting mass in an
optimal way was formulated in the 18th century by Monge,
the theory of classical optimal transport (OT) has become one
of the central topics of analysis only in the last few decades
with intimate links to mathematical physics [1–3], partial dif-
ferential equation (PDE) theory [4–6], and probability [7–9],
not to mention the countless applications in artificial intel-
ligence, image processing, and many other fields of applied
sciences (see, e.g., [10–12] and the references therein). In this
time the quantum counterpart of classical OT has emerged.
As always, the correspondence between the classical world
and the quantum world is not one to one. Noncommutative
optimal transport is a flourishing research field these days
with several different promising approaches such as those of
Biane and Voiculescu [13], Carlen and Maas [14–16], Datta
and Rouzé [17,18], Golse and co-workers [19–24], De Palma
and Trevisan [25,26], Życzkowski and co-workers [27–30],
and Duvenhage et al. [31,32]. Separable quantum Wasserstein
distances have also been introduced recently [33]. From our
viewpoint, the most relevant approach is the one of De Palma
and Trevisan involving quantum channels, which is closely
related to the quantum optimal transport concept of Golse and
co-workers based on quantum couplings.

It is a common feature of both the channel-based and the
coupling-based quantum optimal transport distances that they
are not genuine metrics; in particular, states may have a posi-
tive distance from themselves. This phenomenon is natural, on
the one hand, considering the nature of quantum mechanics,
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but, on the other hand, has counterintuitive consequences.
One of these consequences is that there exist nonsurjective
and even noninjective quantum Wasserstein isometries (i.e.,
distance preserving maps) on the compact space of states of a
finite-level quantum system [34]; none of these could possibly
happen in a genuine metric setting.

As a response to this phenomenon, De Palma and Trevisan
introduced quantum Wasserstein divergences [35], which are
appropriately modified quantum Wasserstein distances [see
(13) for a precise definition]. They conjectured that quantum
Wasserstein divergences are genuine metrics on quantum state
spaces. This paper is devoted to the question whether the
triangle inequality holds for these divergences. We formulate
our main result in an informal way below; see Theorem 1 for
the precise statement.

Main result. For every quantum system described by a
separable Hilbert space H and for every finite collection A of
observable quantities, the corresponding quadratic quantum
Wasserstein divergence dA satisfies

dA(ρ, τ ) � dA(ρ, ω) + dA(ω, τ ) (1)

for any triplet (ρ, ω, τ ) of states, assuming that ω is pure or
both ρ and τ are pure, and all the states involved are of finite
energy. Moreover, numerical results strongly indicate that (1)
holds for any triplet (ρ, ω, τ ) of states without any further
assumptions.

This paper is organized as follows. In Sec. I B we introduce
all the necessary notions and notation. Section II is dedicated
to the analytical proof of Theorem 1, which is a precise
formulation of the above main result. In Sec. III we present
numerical evidence suggesting that the conclusion of Theo-
rem 1 holds without any extra assumptions about the states
involved. Encouraged by the numerics presented in Sec. III,
we make steps in the direction of an analytic proof of the
triangle inequality in full generality; this material is presented
in Sec. IV.
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Finally, we discuss the analogy of our present problem to
the problem of the metric property of the quantum Jensen-
Shannon divergence. In that case, the triangle inequality was
proved for pure states analytically and for mixed states numer-
ically [36] (see also [37]). Eventually, the problem was settled
by an analytical proof in full generality (see [38,39]).

B. Basic notions and notation

The classical OT problem is to arrange the transportation
of goods from producers to consumers in an optimal way,
given the distribution of production and consumption (de-
scribed by probability measures μ and ν), and the cost c(x, y)
of transporting a unit of goods from x to y. Accordingly, a
transport plan is modeled by a probability distribution π on
the product of the initial and the target space, where dπ (x, y)
is the amount of goods to be transferred from x to y and hence
the marginals of π are μ and ν. So the optimal transport cost
is the infimum of a convex optimization problem with linear
loss function

Cost(μ, ν, c) = inf

(∫∫
X×Y

c(x, y)dπ (x, y)

∣∣∣∣
(π )1 = μ, (π )2 = ν

)
, (2)

where (π )i denotes the ith marginal of π , X is the initial space,
and Y is the target space. Under mild continuity assumptions
on c(x, y) (lower semicontinuity does the job) the infimum in
(2) is actually a minimum as it is realized by a transport plan.
These minimizing plans are called optimal transport plans.

One has great freedom in choosing the cost function
c(x, y). However, the quadratic cost c(x, y) = r2(x, y), which
is simply the square of the distance, plays a distinguished role.
Its importance comes mainly from fluid dynamics and the dy-
namical theory of optimal transportation; the exponent p = 2
is distinguished by the fact that the kinetic energy is propor-
tional to the square of the velocity. Accordingly, the relevance
of quadratic Wasserstein spaces has grown dramatically in
recent decades due to their close connection with PDE theory
and gradient flows. Recall that if (X, r) is complete and sep-
arable metric space, then the classical quadratic Wasserstein
space W2(X ) is the collection of those probability measures
on the Borel σ -algebra B that satisfy

∫
X r(x, x0)2dμ(x) < ∞

for some x0 ∈ X , endowed with the quadratic Wasserstein
distance

d2
W2

(μ, ν) := inf
π

∫
X×X

r2(x, y)dπ (x, y), (3)

where the infimum runs over all couplings of μ and ν.
In classical mechanics, the state of a particle moving in Rd

is described by a probability measure μ on the phase space
Rd × Rd which is the collection of all possible values of the
position and momentum variables q, p ∈ Rd . In this concrete
setting, the quadratic Wasserstein distance (3) of the classical
states μ, ν ∈ P (R2d ) is given by

d2
W2

(μ, ν) = inf
π

(∫∫
R2d ×R2d

|(q1, p1)

− (q2, p2)|2dπ ((q1, p1), (q2, p2))
)

, (4)

where π ∈ P (R2d × R2d ) and (π )1 = μ, (π )2 = ν; here (π )i

denotes the ith marginal of π . Recall that Wasserstein dis-
tances admit a picturesque probabilistic interpretation as they
are defined by optimization over couplings of probability
measures. Let us stick to the concrete case of 2-Wasserstein
distances between states of classical mechanical systems. In
this case, the probabilistic version of (4) reads

d2
W2

(μ, ν) = inf{E|(Q1, P1) − (Q2, P2)|2 |
law(Q1, P1) = μ, law(Q2, P2) = ν}. (5)

In the above formula, the random variables Qj and Pj rep-
resent the position and the momentum of the jth particle
( j = 1, 2). More specifically, we minimize the sum of the
expected squared differences between the positions of the two
particles and the momenta of them.

In quantum mechanics, the state of a particle moving in Rd

is described by a wave function ψ ∈ L2(Rd ) of unit norm or,
more generally, by a normalized, positive, trace-class operator
ρ on H = L2(Rd ). Measurable physical quantities corre-
spond to (possibly unbounded) self-adjoint operators on H =
L2(Rd ). The spectrum of such an operator is precisely the col-
lection of all possible outcomes of a quantum measurement. In
the following, we denote by L(H)sa the set of self-adjoint but
not necessarily bounded operators on H, and S (H) stands for
the set of states, that is, the set of positive trace-class operators
on H with unit trace. The space of all bounded operators
on H is denoted by B(H), and we recall that the collection
of trace-class operators on H is denoted by T1(H) and de-
fined by T1(H) = {X ∈ B(H) | trH(

√
X ∗X ) < ∞}. Similarly,

T2(H) stands for the set of Hilbert-Schmidt operators defined
by T2(H) = {X ∈ B(H) | trH(X ∗X ) < ∞}. When measuring
an observable quantity A ∈ L(H)sa on a quantum system be-
ing in the state ρ ∈ S (H), the probability of the outcome
lying in an interval [a, b] ⊂ R is trH{ρEA([a, b])}, where
EA is the spectral measure of A. Consequently, a quantum
state encapsulates a bunch of classical probability distri-
butions, each corresponding to a physical quantity we are
interested in.

Let us single out a few observable quantities A1, . . . , Ak ∈
L(H)sa we are interested in and let X (ρ)

j denote the random
variable obtained by measuring Aj in the initial state ρ and
X (ω)

j denote the random variable obtained by measuring Aj in
the final state ω. According to (5), the squared OT distance of
the quantum states ρ, ω ∈ S (H) should read

D2(ρ, ω) = inf

⎛
⎝ k∑

j=1

E
(
X (ρ)

j − X (ω)
j

)2⎞⎠, (6)

where the infimum is taken over all possible couplings of the
quantum states ρ and ω. According to the convention intro-
duced by De Palma and Trevisan [26], the set of all couplings
of the quantum states ρ, ω ∈ S (H) is denoted by C(ρ, ω) and
is given by

C(ρ, ω) = {	 ∈ S (H ⊗ H∗) | trH∗ (	) = ω, trH(	) = ρT },
(7)

where the transpose AT of a linear operator A acting on H is a
linear operator on the dual space H∗ defined by the identity
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(AT η)(ϕ) ≡ η(Aϕ), where η ∈ H∗ and ϕ ∈ dom(A). More
specifically, a coupling of ρ and ω is a state 	 on H ⊗ H∗
such that

trH⊗H∗ [(A ⊗ IH∗ )	] = trH(ωA)

and

trH⊗H∗ [(IH ⊗ BT )	] = trH∗ (ρT BT ) = trH(ρB) (8)

for all bounded A, B ∈ L(H)sa. Note the clear analogy of
the above definition of quantum couplings to the definition
of classical couplings that can be rephrased as follows: π ∈
P (X 2) is a coupling of μ ∈ P (X ) and ν ∈ P (X ) if∫∫

X 2
f (x)dπ (x, y) =

∫
X

f (x)dμ(x),∫∫
X 2

g(y)dπ (x, y) =
∫

X
g(y)dν(y)

for every continuous and bounded function f or g defined on
X . We remark that C(ρ, ω) is never empty, because the trivial
coupling ω ⊗ ρT belongs to C(ρ, ω).

Note that the definition of couplings (7) proposed by De
Palma and Trevisan [26] is different from the definition pro-
posed by Golse et al. [21] in the sense that it involves the
dual Hilbert space H∗ and hence the transpose operation. For
a clarification of this difference, see Remark 1 in [26]. For
more detail on the latter concept of quantum couplings, the
interested reader should consult [19–22,24,40,41].

Let us return to (6) and note that by Born’s rule on quantum
measurement, if the state of our composite quantum system is
described by 	 ∈ C(ρ, ω), then

E
(
X (ρ)

j − X (ω)
j

)2 = trH⊗H∗
[(

Aj ⊗ IH∗ − IH ⊗ AT
j

)
× 	

(
Aj ⊗ IH∗ − IH ⊗ AT

j

)]
. (9)

Here we use the convention that the right-hand side of (9)
is defined to be +∞ if there is an eigenvector of 	 outside
the domain of Aj ⊗ IH∗ − IH ⊗ AT

j for some j ∈ {1, . . . , k}.
Therefore, in view of (6), (7), and (9), the quadratic Wasser-
stein distance of ρ and ω with respect to the measurable
quantities {Aj}k

j=1 =: A is given by

D2
A(ρ, ω) = inf

	∈C(ρ,ω)

(
k∑

j=1

trH⊗H∗
[(

Aj ⊗ IH∗ − IH ⊗ AT
j

)

× 	
(
Aj ⊗ IH∗ − IH ⊗ AT

j

)])
. (10)

We recall (see Definition 6 in [26]) that the energy of a
state ρ ∈ S (H) with respect to the observable A ∈ L(H)sa is
given by EA(ρ) =∑∞

j=1 p j‖Aψ j‖2, where
∑∞

j=1 p j |ψ j〉〈ψ j |
is the spectral decomposition of ρ and EA(ρ) = +∞ if
ψ j /∈ dom(A) for some j. The energy of ρ with respect to
the collection of observables A = {A1, . . . , Ak} is defined
by EA(ρ) =∑k

j=1 EAj (ρ). Recall that classical quadratic
Wasserstein spaces consist of probability measures with a
finite second moment. As the natural quantum analogs of them
are states with finite energy, we restrict our attention to such
quantum states in the following.

By Proposition 3 in [26], if the states ρ, ω ∈ S (H) have
finite energy, then any quantum coupling 	 ∈ C(ρ, ω) has
finite cost. Moreover, both AjρAj and AjωAj are trace-
class operators for every j ∈ {1, . . . , k} (see Lemma 3 in
[26]). Consequently, by the definition of Hilbert-Schmidt and
trace-class operators,

√
ρAj and

√
ωAj are Hilbert-Schmidt

operators, and so are Aj
√

ρ and Aj
√

ω as taking the adjoint
is an involution of T2(H). Note furthermore that both

√
ρ and√

ω are Hilbert-Schmidt operators by definition, and hence the
operators ρAj , Ajρ, ωAj , and Ajω are trace-class operators as
they are products of two Hilbert-Schmidt operators.

A prominent coupling of a state ρ ∈ S (H) with itself is
the canonical purification ||√ρ〉〉〈〈√ρ|| ∈ S (H ⊗ H∗), which
is the rank-1 projection corresponding to the unit vector
||√ρ〉〉 ∈ H ⊗ H∗ obtained from

√
ρ ∈ T2(H) by the canoni-

cal isomorphism between T2(H) and H ⊗ H∗.
An important feature of the quadratic Wasserstein dis-

tances is that the distance of a state ρ from itself (which may
be positive) is always realized by the canonical purification
(see Corollary 1 in [26]), that is,

D2
A(ρ, ρ) =

k∑
j=1

trH⊗H∗
[(

Aj ⊗ IH∗ − IH ⊗ AT
j

)||√ρ〉〉

× 〈〈√ρ||(Aj ⊗ IH∗ − IH ⊗ AT
j

)]
=

k∑
j=1

trH⊗H∗ (||Aj
√

ρ − √
ρAj〉〉〈〈Aj

√
ρ − √

ρAj ||)

=
k∑

j=1

‖Aj
√

ρ − √
ρAj‖2

HS.

We have seen that the finite-energy condition on ρ implies
that both Aj

√
ρ and

√
ρAj are Hilbert-Schmidt operators,

and hence not only AjρAj but also
√

ρAj
√

ρAj , Aj
√

ρAj
√

ρ,
and

√
ρA2

j
√

ρ are trace-class operators. We note that tak-
ing the adjoint leaves both the Hilbert-Schmidt norm and
the trace invariant, and hence ‖Aj

√
ρ‖HS = ‖√ρAj‖HS and

trH(Aj
√

ρAj
√

ρ ) = trH(
√

ρAj
√

ρAj ). Consequently,

D2
A(ρ, ρ) =

k∑
j=1

trH(2AjρAj − 2
√

ρAj
√

ρAj ). (11)

Moreover, the following concavitylike result is true for any
choice of A = {A1, . . . , Ak} and for any ρ, ω ∈ S (H) with
finite energy:

D2
A(ρ, ω) � 1

2

[
D2

A(ρ, ρ) + D2
A(ω,ω)

]
. (12)

Indeed, Eq. (12) is an easy consequence of Theorem 1 and
Corollary 1 of [26]. The following conjecture was popularized
by Trevisan and De Palma (see also [35]).

Conjecture 1. A modified version of the quantum optimal
transport distance (10) defined by

dA(ρ, ω) :=
√

D2
A(ρ, ω) − 1

2

[
D2

A(ρ, ρ) + D2
A(ω,ω)

]
(13)

is a true metric for all finite collections of observables A =
{A1, . . . , Ak} on the set of those states on H that have finite
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energy with respect to A, up to some nondegeneracy assump-
tions on the A′

js to ensure the definiteness of dA, that is, that
dA(ρ, ω) = 0 only if ρ = ω.

Let us denote by P1(H) the set of rank-1 orthoprojec-
tions on H, that is, the set of pure states. Note that if either

ρ or ω is a pure state, then the only coupling of them
is the tensor product, that is, C(ρ, ω) = {ω ⊗ ρT }. There-
fore, by (10), the quadratic quantum Wasserstein distance
DA(ρ, ω) has the following explicit form in this special
case:

D2
A(ρ, ω) =

k∑
j=1

trH⊗H∗
[(

Aj ⊗ IH∗ − IH ⊗ AT
j

)
(ω ⊗ ρT )

(
Aj ⊗ IH∗ − IH ⊗ AT

j

)]

=
k∑

j=1

trH⊗H∗
(
AjωAj ⊗ ρT − ωAj ⊗ AT

j ρ
T − Ajω ⊗ ρT AT

j + ω ⊗ AT
j ρ

T AT
j

)
= trH(AjωAj ) + trH(AjρAj ) − 2 trH(ωAj )trH(ρAj ). (14)

Here we use that trH⊗H∗ (X ⊗ Y ) = trH(X )trH∗ (Y ) if X ∈ T1(H) and Y ∈ T1(H∗), that trH∗ (X T ) = trH(X ) for X ∈ T1(H), and
that the operators ρAj , Ajρ, ωAj , and Ajω are trace-class operators.

II. TRIANGLE INEQUALITY FOR QUANTUM WASSERSTEIN DIVERGENCES: PROOF OF THEOREM 1

Having introduced all the necessary notions and notation, we are in the position to state and prove our main result.
Theorem 1. Let H be a separable Hilbert space, A = {Aj}k

j=1 ⊂ L(H)sa be an arbitrary finite collection of observable
quantities, and dA the corresponding quadratic quantum Wasserstein divergence defined by (13) and (10). Let ρ, ω, τ ∈ S (H)
and assume that ω ∈ P1(H) or both ρ and τ are in P1(H). Moreover, assume that ρ, ω, and τ have finite energy with respect to
A. Then the triangle inequality

dA(ρ, τ ) � dA(ρ, ω) + dA(ω, τ ) (15)

holds true.
Proof . If ω is pure or both ρ and τ are pure, then by (14) and (11) we have

d2
A(ρ, ω) =

N∑
j=1

[trH(
√

ρAj
√

ρAj ) + trH(
√

ωAj
√

ωAj ) − 2 trH(ρAj )trH(ωAj )] (16)

and

d2
A(ω, τ ) =

N∑
j=1

[trH(
√

ωAj
√

ωAj ) + trH(
√

τAj
√

τAj ) − 2 trH(ωAj )trH(τAj )]. (17)

By relaxing the infimum in the definition of the quantum Wasserstein divergence to the tensor product coupling, we get

d2
A(ρ, τ ) �

N∑
j=1

[trH(
√

ρAj
√

ρAj ) + trH(
√

τAj
√

τAj ) − 2 trH(ρAj )trH(τAj )]. (18)

By (12) the quantum Wasserstein divergence is a non-negative real number and hence Eq. (15) is equivalent to

2dA(ρ, ω)dA(ω, τ ) � d2
A(ρ, τ ) − [d2

A(ρ, ω) + d2
A(ω, τ )

]
. (19)

If X ∈ S (H) is a state having finite energy with respect to the observable Y ∈ L(H)sa, then X 1/4Y X 1/4 is a Hilbert-Schmidt
operator. Indeed, let

∑∞
j=1 λ j |ϕ j〉〈ϕ j | be the spectral resolution of X and let us compute the trace of the positive operator

(X 1/4Y X 1/4)2 by

trH[(X 1/4Y X 1/4)2] =
∞∑
j=1

〈ϕ j |X 1/4Y X 1/4X 1/4Y X 1/4|ϕ j〉 =
∞∑
j=1

‖X 1/4Y X 1/4ϕ j‖2 =
∞∑
j=1

(
λ

1/4
j

)2‖X 1/4Y ϕ j‖2.

Note that this is precisely the trace of
√

XY
√

XY that we already have shown to be a trace-class operator. This latter statement
can be checked by the direct computation

trH(
√

XY
√

XY ) =
∞∑
j=1

〈ϕ j |
√

XY
√

XY |ϕ j〉 =
∞∑
j=1

〈
√

Xϕ j |Y
√

XY |ϕ j〉 =
∞∑
j=1

√
λ j‖X 1/4Y ϕ j‖2.
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So both
√

X and X 1/4Y X 1/4 are Hilbert-Schmidt operators, and by the Cauchy-Schwarz inequality for the Hilbert-Schmidt inner
product of them we get

trH(
√

XY
√

XY ) = trH[(X 1/4Y X 1/4)2]trH[(
√

X )2] � [trH(X 1/4Y X 1/4X 1/2)]2 = [trH(XY )]2,

where we used that both X 1/4Y X 3/4 and XY are trace-class operators and hence their traces coincide, and hence we get the
following upper bound for the right-hand side of (19) (RHS):

RHS �
N∑

j=1

[trH(
√

ρAj
√

ρAj ) + trH(
√

τAj
√

τAj ) − 2 trH(ρAj )trH(τAj )]

−
N∑

j=1

[trH(
√

ρAj
√

ρAj ) + trH(
√

ωAj
√

ωAj ) − 2 trH(ρAj )trH(ωAj )]

−
N∑

j=1

[trH(
√

ωAj
√

ωAj ) + trH(
√

τAj
√

τAj ) − 2 trH(ωAj )trH(τAj )]

�
N∑

j=1

{−2 trH(ρAj )trH(τAj ) − 2[trH(ωAj )]
2 + 2 trH(ρAj )trH(ωAj ) + 2 trH(ωAj )trH(τAj )}

=
N∑

j=1

2[trH(ωAj ) − trH(ρAj )][trH(τAj ) − trH(ωAj )]. (20)

Now a Cauchy-Schwartz for the Euclidean space RN tells us that

N∑
j=1

2[trH(ωAj ) − trH(ρAj )][trH(τAj ) − trH(ωAj )]

� 2

⎛
⎝ N∑

j=1

[trH(ωAj ) − trH(ρAj )]
2

⎞
⎠

1/2(
N∑

k=1

[trH(τAk ) − trH(ωAk )]2

)1/2

� 2

⎛
⎝ N∑

j=1

[trH(
√

ωAj
√

ωAj ) + trH(
√

ρAj
√

ρAj ) − 2 trH(ωAj )trH(ρAj )]

⎞
⎠

1/2

×
⎛
⎝ N∑

j=1

[trH(
√

τAj
√

τAj ) + trH(
√

ωAj
√

ωAj ) − 2 trH(τAj )trH(ωAj )]

⎞
⎠

1/2

= 2dA(ω, ρ)dA(τ, ω),

where we use again the Cauchy-Schwarz inequality for
the Hilbert-Schmidt inner product trH(

√
XY

√
XY ) �

[trH(XY )]2 for X = ρ, τ, ω and Y = Aj . This completes
the proof of (19) and hence that of Theorem 1. �

III. NUMERICAL EVIDENCE FOR THE TRIANGLE
INEQUALITY FOR GENERIC TRIPLETS OF STATES

The quantum optimal transport problem is a semidefinite
programming task and we used Wolfram’s Mathematica [42]
to perform numerical simulations. The data generated during
our experiments ( Mathematica notebooks, their PDF images,
and the raw data exported from the notebooks) are available
online (see [43]).

In the quantum bit (H = C2) case, we ran the following ex-
periment. We chose four pairs of random states (ρ(0,1), τ(0,1)),
(ρ(0,2), τ(0,2)), (ρ(0,3), τ(0,3)), and (ρ(0,4), τ(0,4)) and four triples
of random self-adjoint operators: A(0,1), A(0,2), A(0,3), and
A(0,4). The random states are normalized Wishart matrices;
they are of the form X ∗X

tr(X ∗X ) , where X is a 2 × 2 random
matrix with independent and identically distributed complex
standard Gaussian entries. The random self-adjoint operators
are defined similarly: They are of the form Y + Y ∗, where
the elements of Y are independent and identically distributed
complex Gaussians. Then we let ω ∈ S (H) run on the follow-
ing lattice within the state space:

Lat[S (C2)] := { 1
2

[
I + 1

10 ( jσ1 + kσ2 + lσ3)
]∣∣ j, k, l

∈ Z, j2 + k2 + l2 � 100
}
. (21)
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We computed the minimal gap between the two sides of the
triangle inequality

min
ω∈Lat(S(C2 ))

[
dA(0,m) (ρ(0,n), ω) + dA(0,m) (ω, τ(0,n) )

− dA(0,m) (ρ(0,n), τ(0,n) )
]

(22)

for every m, n ∈ 1, 2, 3, 4. We found the following 4 × 4 =
16 element long list of minimal gaps:⎡
⎢⎢⎢⎢⎣

m/n 1 2 3 4
1 0.310 819 0.528 506 0.760 247 0.352 543
2 0.218 016 0.715 538 0.590 063 0.453 942
3 0.280 697 0.642 319 0.669 042 0.800 527
4 0.195 821 0.443 850 0.447 589 0.401 331

⎤
⎥⎥⎥⎥⎦.

Then we turned to the case of higher dimensions d :=
dim(H) = 3, 4, 5. In each dimension, we generated 4000
triples of random states

(ρ(d,n), ω(d,n), τ(d,n) ), n = 1, . . . , 4000,

which are independent and identically distributed normalized
d × d Wishart matrices, and 4000 triples of random self-
adjoint matrices A(d,n) (1 � n � 4000). Then we computed
the minimal gap

min gap(d ) := min
n∈{1,...,4000}

[dA(d,n) (ρ(d,n), ω(d,n) )

+ dA(d,n) (ω(d,n), τ(0,n) ) − dA(0,m) (ρ(d,n), τ(d,n) )].

(23)

We found that min gap(3) = 0.854 168, min gap(4) =
1.898 92, and min gap(5) = 2.695 51. In other words,
we found strong numerical evidence indicating that the
conclusion of Theorem 1 holds in full generality, without any
additional assumption about the states ρ, ω, and τ involved.
These minima are convincing but do not tell too much about
how the gap depends on the states involved. Therefore, we
worked out the following illustrative examples.

In the first example, we considered H = C2 and chose the
deterministic states

ρ(1,1) = 1

2

(
I + 1√

2
σ1 + 1√

3
σ2

)
,

τ(1,1) = 1

2

(
I + 1

3
σ2 + 1

4
σ3

)
.

We singled out the section z = 1√
2

of the Bloch ball, that is,
we took ω′s of the form

ω = 1

2

(
I + xσ1 + yσ2 + 1√

2
σ3

)
,

where x2 + y2 � 1
2 . The set of self-adjoint matrices generating

the quadratic cost operator was chosen to be A(1,1) = {σ1, σ3}.
We considered the gap

dA(1,1) (ρ(1,1), ω(1,1)(x, y)) + dA(1,1) (ω(1,1)(x, y), τ(1,1))

− dA(1,1) (ρ(1,1), τ(1,1)),

where ω(1,1)(x, y) = 1
2 (I + xσ1 + yσ2 + 1√

2
σ3), and plotted it

as a function of x and y in Fig. 1.

FIG. 1. Plot of the gap in the first scenario H = C2, with the
states and the cost chosen to be nice.

The second example deals with H = C4. We chose

ρ(1,2) = 1
4

(
I + 1

10σ1 ⊗ σ1 + 1
5σ2 ⊗ σ0 + 3

10σ3 ⊗ σ0
)

and

τ(1,2) = 1
4

(
I + 3

10σ0 ⊗ σ3 + 1
5σ1 ⊗ σ3 + 1

10σ3 ⊗ σ0
)
.

We considered ω′s of the form

ω(1,2)(x, y) = 1
4

(
I + xσ0 ⊗ σ1 + yσ0 ⊗ σ2 + 1

10σ1 ⊗ σ0

+ 1
10σ1 ⊗ σ1 + 1

10σ1 ⊗ σ2 + 3
10σ2 ⊗ σ0

+ 1
5σ2 ⊗ σ2

)
(24)

and the cost governed by the collection of all possible tensor
products of Pauli matrices:

A(1,2) = {σ j ⊗ σk | j, k ∈ 0, 1, 2, 3, ( j, k) 
= (0, 0)}.

Figure 2 shows the plot of the gap

dA(1,2) (ρ(1,2), ω(1,2)(x, y)) + dA(1,2) (ω(1,2)(x, y), τ(1,2))

− dA(1,2) (ρ(1,2), τ(1,2)).

Figure 3 concerns the qubit case again, but now the states
ρ(1,3) and τ(1,3) are random (independent normalized Wishart)
densities, the quadratic cost operator is generated by random
self-adjoint operators, and ω(1,3) = ω(1,3)(x, y) runs over the
section z = 1

5 , that is, ω(1,3)(x, y) = 1
2 (I + xσ1 + yσ2 + 1

5σ3),
where x2 + y2 � 24

25 . Finally, Fig. 4 shows the behavior of the
gap in the H = C4 case, with random states ρ(1,4) and τ(1,4)

and random quadratic cost. The third state ω(1,4) runs over the
region described in (24).
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FIG. 2. Plot of the gap in the second scenario H = C4, with the
states and the cost chosen to be nice.

IV. STEPS TOWARDS AN ANALYTIC PROOF OF THE
TRIANGLE INEQUALITY IN FULL GENERALITY

The positive numerical results presented in Sec. III encour-
aged us to take steps towards an analytical proof of the general
case. In Sec. IV A we study the special case when H = C2

and the cost operator C is the symmetric cost. As we will
see, it is vital to get useful lower bounds for quantum Wasser-
stein distances. One way to get these lower bounds is to find
(not necessarily optimal) solutions of the dual optimization
problem (see Proposition 2). Another way of getting lower
bounds is described in Sec. IV B. The starting point of this
method is the observation that the summands of the quadratic
cost operators are gaps between the arithmetic and geometric
means of certain operators.

A. Triangle inequality for qubits: Case of symmetric cost

In the special case H = C2, elements of S (H) can be
represented by vectors using the Bloch representation. The

FIG. 3. Plot of the gap in the third scenario H = C2, with the
states and the cost random.

FIG. 4. Plot of the gap in the second scenario H = C4, with the
states and the cost random.

Bloch vector bρ of a state ρ ∈ S (H) is defined by

R3 � bρ := [trH(ρσ j )]
3
j=1,

where the σ ′
js are the Pauli operators

σ1 =
[

0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
. (25)

The positivity condition ρ � 0 is equivalent to the Euclidean
length of bρ being at most 1.

In this section we stick to H = C2 and we choose the cost
operator to be

Cs =
3∑

j=1

(
σ j ⊗ IT

C2 − IC2 ⊗ σ T
j

)2
, (26)

where the s subscript of Cs refers to the symmetry of Cs,
meaning that it involves all the Pauli matrices. The induced
quantum Wasserstein distance (10) is denoted by Ds and
the corresponding modified quantum Wasserstein distance, or
Wasserstein divergence (13), is denoted by ds.

We aim to prove the triangle inequality

ds(ρ, τ ) � ds(ρ, ω) + ds(ω, τ ) (27)

for a reasonably large class of states ρ, ω, τ ∈ S (C2). As we
have seen, Eq. (27) is equivalent to

2ds(ρ, ω)ds(ω, τ ) � d2
s (ρ, τ ) − [d2

s (ρ, ω) + d2
s (ω, τ )

]
.

(28)
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By the very definition of the Wasserstein divergence (13), Eq. (28) can be written as

2
{
D2

s (ρ, ω) − 1
2

[
D2

s (ρ, ρ) + D2
s (ω,ω)

]}1/2{
D2

s (ω, τ ) − 1
2

[
D2

s (ω,ω) + D2
s (τ, τ )

]}1/2

� D2
s (ρ, τ ) − 1

2

[
D2

s (ρ, ρ) + D2
s (τ, τ )

]− D2
s (ρ, ω) + 1

2

[
D2

s (ρ, ρ) + D2
s (ω,ω)

]
− D2

s (ω, τ ) + 1
2

[
D2

s (ω,ω) + D2
s (τ, τ )

]
= D2

s (ρ, τ ) − D2
s (ρ, ω) − D2

s (ω, τ ) + D2
s (ω,ω). (29)

Our strategy to prove (29) is to give a lower bound to the left-hand side of (29) and an upper bound to the right-hand side of
(29) such that the lower bound is greater than or equal to the upper bound. The following statement will turn out to be useful in
deriving such lower and upper bounds.

Proposition 1. We have the lower bound

D2
s (ρ, ω) � 4|bρ − bω|2 (30)

for any ρ, ω ∈ S (C2), where bρ is the Bloch vector of ρ and | · |2 denotes the (Euclidean) l2-norm.
Proof . The first step is to prove that

Cs � X ⊗ IT
C2 − IC2 ⊗ X T (31)

for any X ∈ Lsa(C2) satisfying −4IC2 � X � 4IC2 . A crucial observation of [34] is that the symmetric cost operator Cs defined
in (26) is unitary invariant, that is,

[U ⊗ (U T )∗]Cs(U
∗ ⊗ U T ) = Cs (32)

for any U ∈ U(2). Therefore, the spectral resolution of Cs, which is computed in [34] in the computational basis, is valid in any
orthonormal basis.

Let {e1, e2} ⊂ C2 be the eigenbasis of X and let { f1, f2} ⊂ (C2)∗ be the corresponding dual basis. Then we have

CS = 0|v0〉〈v0| + 8(|v1〉〈v1| + |v2〉〈v2| + |v3〉〈v3|), (33)

where

v0 = 1√
2

(e1 ⊗ f1 + e2 ⊗ f2), v1 = 1√
2

(e1 ⊗ f2 + e2 ⊗ f1),

v2 = 1√
2

(−ie1 ⊗ f2 + ie2 ⊗ f1), v3 = 1√
2

(e1 ⊗ f1 − e2 ⊗ f2).

Now let us note that X ⊗ IT
C2 − IC2 ⊗ X T always annihilates v0 = 1√

2
(e1 ⊗ f1 + e2 ⊗ f2). Indeed,(

X ⊗ IT
C2 − IC2 ⊗ X T

)
(e1 ⊗ f1 + e2 ⊗ f2) = (λ1e1) ⊗ f1 + (λ2e2) ⊗ f2 − e1 ⊗ (λ1 f1) − e2 ⊗ (λ2 f2) = 0.

In addition, on the subspace orthogonal to v0 it is enough to guarantee that

X ⊗ IT
C2 − IC2 ⊗ X T � 8I,

which is clear as both X ⊗ IT
C2 and −IC2 ⊗ X T are bounded from above by 4I . So we have proved (31) and now we use it to

get useful lower bounds on quantum Wasserstein distances by appropriate choices of X . The lower bound on the symmetric cost
(31) implies that for any ρ, ω ∈ S (C2) we have

D2
s (ρ, ω) = trH⊗H∗ (	0Cs) � trH⊗H∗

[
	0
(
X ⊗ IT

C2 − IC2 ⊗ X T
)]

= trH(ωX ) − trH(ρX ) = trH[(ω − ρ)X ].

We aim for the highest possible lower bound on D2
s (ρ, ω), so let us choose X as follows:

X := 4
bω − bρ

|bω − bρ |2
· σ. (34)

This choice satisfies the condition −4IC2 � X � 4IC2 and

trH[(ω − ρ)X ] = trH

[(
1

2
(bω − bρ ) · σ

)(
4

bω − bρ

|bω − bρ |2
· σ

)]

= 2

|bω − bρ |2
2|bω − bρ |22 = 4|bω − bρ |2,

which is precisely the lower bound appearing in (30). �
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Moreover, we have the following explicit formula for the self-distance D2
s (ρ, ρ).

Proposition 2. We have

D2
s (ρ, ρ) = 2

(
1 −

√
1 − |bρ |22

)
, (35)

where | · |2 denotes the Euclidean l2-norm.
Proof . The purification of ρ realizes the self-distance: D2

s (ρ, ρ) = 〈〈√ρ||Cs||√ρ〉〉. The spectral decomposition of Cs is

Cs = 4(||σ1〉〉〈〈σ1|| + ||σ2〉〉〈〈σ2|| + ||σ3〉〉〈〈σ3||)
and it follows from the spectral resolution of ρ that

√
ρ =

√
λ

1

2

(
I + bρ

|bρ |2
· σ

)
+ √

1 − λ
1

2

(
I − bρ

|bρ |2
· σ

)
,

where λ = 1
2 (1 + |bρ |2). Therefore,

〈〈√ρ||Cs||√ρ〉〉 = 4

∥∥∥∥1

2
(
√

λ − √
1 − λ)

bρ

|bρ |2
· σ

∥∥∥∥
2

HS

=
(

1 − 2

√
1

2
(1 + |bρ |2)

1

2
(1 − |bρ |2)

)
2|bρ |22
|bρ |22

= 2
(
1 −

√
1 − |bρ |22

)
.

�
With (30) and (35) in hand, we can give the following upper bound on the right-hand side of (29):

D2
s (ρ, τ ) − D2

s (ρ, ω) − D2
s (ω, τ ) + D2

s (ω,ω) � 6 − 2bρ · bτ − 4|bρ − bω|2 − 4|bω − bτ |2 + 2
(
1 −

√
1 − |bω|22

)
.

Here D2
s (ρ, τ ) is bounded by the cost of the independent coupling.

The lower bound on the left-hand side of (29) that we can obtain by Propositions 1 and 2 reads

2
{
D2

s (ρ, ω) − 1
2

[
D2

s (ρ, ρ) + D2
s (ω,ω)

]}1/2{
D2

s (ω, τ ) − 1
2

[
D2

s (ω,ω) + D2
s (τ, τ )

]}1/2

� 2
[
4|bρ − bω|2 − (1 −

√
1 − |bρ |22

)− (1 −
√

1 − |bω|22
)]1/2

× [4|bω − bτ |2 − (1 −
√

1 − |bω|22
)− (1 −

√
1 − |bτ |22

)]1/2
.

We summarize the above computations in the following corollary.
Corollary 1. Let us choose ρ, ω, τ ∈ S (C2) such that their Bloch vectors satisfy

6 − 2bρ · bτ − 4|bρ − bω|2 − 4|bω − bτ |2 + 2
(
1 −

√
1 − |bω|22

)
� 2
[
4|bρ − bω|2 − (1 −

√
1 − |bρ |22

)− (1 −
√

1 − |bω|22
)]1/2

× [4|bω − bτ |2 − (1 −
√

1 − |bω|22
)− (1 −

√
1 − |bτ |22

)]1/2
. (36)

Then the quantum Wasserstein divergence corresponding to the symmetric cost operator satisfies the triangle inequality

ds(ρ, τ ) � ds(ρ, ω) + ds(ω, τ ).

Remark 1. There are various ways to obtain easy-to-check examples of states ρ, ω, τ,∈ S (C2) that satisfy the assumption
of Corollary 1. One way is to set ω = 1

2 I , that is, bω = 0. In this case, simple two-variable calculus shows that (36) is satisfied
whenever both |bρ |2 and |bτ |2 are at least 1

2 , no matter what the angle between bρ and bτ is. Moreover, a numerical test shows if
we choose a random triplet of states (the states are chosen independently according to the uniform distribution on the Bloch ball),
it will satisfy (36) with high probability (around 96%). The details of these numerics are presented in the subfolder Corollary-4
of [43]. Note, however, that there are states that do not satisfy (36); the easiest example is ρ = ω = τ = 1

2 I .
Remark 2. Note that the estimate (31) may be sharp: The numerics tell us that it gives the precise transport cost in the special

cases of (i) ρ = 1
2 (I + 1

2σ j ) and ω = 1
2 (I + 1

2σk ), with j 
= k, and (ii) ρ = 1
2 (I + ασ j ) and ω = 1

2 (I + βσ j ), with sgn(α) =
−sgn(β ).
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B. Lower estimation of the cost function

Assuming that Aj � 0 for every j ∈ {1, . . . , k}, we can
write the cost operator as the difference of an arithmetic and a
geometric mean as

C =
k∑

j=1

(
Aj ⊗ IH∗ − IH ⊗ AT

j

)2

=
k∑

j=1

[
A2

j ⊗ IH∗ + IH ⊗ (AT
j

)2 − 2Aj ⊗ AT
j

]

= 2
k∑

j=1

(
A2

j ⊗ IH∗ + IH ⊗ (AT
j

)2
2

− {(A2
j ⊗ IH∗

)[
IH ⊗ (AT

j

)2]}1/2

)
.

Introducing the function

f (t ) = 1 + t

2
− √

t, t � 0,

the cost operator can be written as

C = 2
k∑

j=1

(
A2

j ⊗ IH∗
)

f
(
A−2

j ⊗ (AT
j

)2)
.

Note that f is an operator convex function on [0,∞) and its
tangent line at s is given by

gs(t ) = 1 − √
s

2
+

√
s − 1

2
√

s
t .

By the convexity of f we have

f (t ) � gs(t ), s > 0, t � 0

and

C = 2
k∑

j=1

(
A2

j ⊗ IH∗
)

f
(
A−2

j ⊗ (AT
j

)2)

� 2
k∑

j=1

(
A2

j ⊗ IH∗
)
gs

(
A−2

j ⊗ (AT
j

)2)

=
k∑

j=1

(
(1 − √

s)A2
j ⊗ IH∗ +

√
s − 1√

s
IH ⊗ (AT

j

)2)

= (1−√
s)

⎛
⎝ k∑

j=1

A2
j

⎞
⎠⊗ IH∗ +

√
s − 1√

s
IH ⊗

⎛
⎝ k∑

j=1

(
AT

j

)2⎞⎠.

We can use this estimation to give a lower bound for the cost
function in the state 	,

trH⊗H∗ (	C) � trH⊗H∗

⎧⎨
⎩	

⎡
⎣(1 − √

s)

⎛
⎝ k∑

j=1

A2
j

⎞
⎠⊗ IH∗ +

√
s − 1√

s
IH ⊗

⎛
⎝ k∑

j=1

(
AT

j

)2⎞⎠
⎤
⎦
⎫⎬
⎭

= (1 − √
s)

⎧⎨
⎩trH

⎡
⎣
⎛
⎝ k∑

j=1

A2
j

⎞
⎠ω

⎤
⎦− 1√

s
trH∗

⎡
⎣
⎛
⎝ k∑

j=1

(
AT

j

)2⎞⎠ρT

⎤
⎦
⎫⎬
⎭

= (1 − √
s)

(
α(ω) − 1√

s
β(ρ)

)

for all s > 0, where α(ω) = trH[(
∑k

j=1 A2
j )ω] and

β(ρ) = trH∗

⎡
⎣
⎛
⎝ k∑

j=1

(
AT

j

)2⎞⎠ρT

⎤
⎦ = trH

⎡
⎣
⎛
⎝ k∑

j=1

A2
j

⎞
⎠ρ

⎤
⎦.

The function

h(s) = (1 − √
s)

(
α(ω) − 1√

s
β(ρ)

)

has a maximum at s = β(ρ)
α(ω) . Since

h

(
β(ρ)

α(ω)

)
= 2

(
α(ω) + β(ρ)

2
−
√

α(ω)β(ρ)

)
,

we deduce that the cost function can be estimated from below
by the Hellinger distance of α(ω) and β(ρ), that is,

trH⊗H∗ (	C) � 2

(
α(ω) + β(ρ)

2
−
√

α(ω)β(ρ)

)
.

V. APPLICATIONS

The aim of this section is to highlight a direct application
of our main result in quantum complexity theory (Sec. V A)
and to present a brief description of the role of quantum op-
timal transport distances in mathematical physics (Secs. V B
and V C).

A. Wasserstein complexity

We may define the Wasserstein complexity of quantum
channels relying on quantum Wasserstein divergences. Given
a finite collections of observables A = {A1, . . . , Ak}, let us
define the Wasserstein complexity of a channel � : S (H) →
S (H) by

CW (�) := max
ρ∈S(H)

dA(ρ,�(ρ)). (37)

In [44] the quantum Wasserstein complexity was intro-
duced in a similar way, using the quantum generalization
of the Hamming-Wasserstein classical metric. A connec-
tion between this complexity and the circuit cost of unitary
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channels is provided, the latter being bounded from below
by the former. The argument of this bound relies heavily on
the triangle inequality of the Wasserstein distance used. We
suggest now that (37) may have a similar application in light
of the triangle inequality proposed in this paper.

To justify our suggestion we now prove a few useful prop-
erties of (37) that are desirable of a complexity quantity. It
follows from the definition, the positive definiteness of dA,
and the lack of self-distance in terms of dA that the Wasser-
stein complexity is faithful: CW (�) = 0 if and only if � is
the identity. The Wasserstein complexity is subadditive under
concatenation: CW (�2 ◦ �1) � CW (�2) + CW (�1). Indeed,

CW (�1 ◦ �2) = max
ρ∈S(H)

dA(ρ,�1 ◦ �2(ρ))

� max
ρ∈S(H)

[dA(ρ,�2(ρ))

+ dA(�2(ρ),�1 ◦ �2(ρ))]

� max
ρ∈S(H)

dA(ρ,�2(ρ))

+ max
ρ∈S(H)

dA(�2(ρ),�1 ◦ �2(ρ))

� max
ρ∈S(H)

dA(ρ,�2(ρ))

+ max
ρ∈S(H)

dA(ρ,�1(ρ))

= CW (�2) + CW (�1), (38)

where the first inequality follows from the triangle inequality
for the Wasserstein divergence dA, the second inequality is
due to maximizing terms of a sum separately, and the last
inequality follows from broadening the domain of the second
maximum. From this it also follows directly that the Wasser-
stein complexity is subadditive under tensor products in the
following sense:

CW (�1 ⊗ �2) � CW (�1 ⊗ I ) + CW (I ⊗ �2).

We note that whether the Wasserstein complexity (37) is con-
vex or not is an open question.

B. Mean-field approximations of evolution equations

Among the many applications of classical optimal trans-
port, one is particularly important for the development of
quantum optimal transport theory. In [45] Dobrushin em-
ployed a special approximation based on a transport-related
metric, the so-called Kantorovich-Rubinstein metric, to prove
the uniqueness of the solution to the Vlasov equation.

The Vlasov equations, which describe the limiting situa-
tion of weakly interacting particles with a large radius of
interaction, are among the most frequently used kinetic equa-
tions in statistical mechanics. More recently, Golse et al .
extended Dobrushin’s approach to the quantum setting. Since
Dobrushin used an optimal transport metric to compare N-
particle densities and their mean-field limits, it was a natural
idea to define a transport-related quantity for the purpose
of comparing quantum states [21]. The significance of the
quantum counterpart of optimal transport (and the Wasserstein
metric) in addressing various problems in quantum dynamics
became even more evident later through their subsequent pa-
pers (see, e.g., [19–22,46,47]).

C. Luttinger model

The nonequilibrium dynamics of the Luttinger model, de-
scribing the low-energy physics in Luttinger liquid, is a field
studied extensively. The question of how much the time-
evolved state described by ρ(t ) differs from the initial state
ρ(0) is often investigated. Reference [48] studied the time
evolution of Uhlmann fidelity (or the Loschmidt echo), which
measures the overlap between the time evolved and the ini-
tial thermal equilibrium states, evaluated for arbitrary initial
temperatures and quench protocols. Instead of fidelity we
can consider other dissimilarity measures between states to
describe these effects. With zero initial temperature, i.e., the
initial state is the pure ground state of the Hamiltonian, the
Wasserstein distance is easily computable and can be used for
further investigations.
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APPENDIX: CODE USED FOR THE NUMERICAL STUDY

Here we present the Wolfram Mathematica [42] code that we used to obtain the numerical results discussed in Sec. III.
RandSelfadjMatrix[l_] := Module[{A, i},
A = RandomVariate[NormalDistribution[], {l, l}] +
I * RandomVariate[NormalDistribution[], {l, l}];
A = A + ConjugateTranspose[A];
A = Chop[A];
A]
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RandPositive[l_, r_] := Module[{A},
A = RandomVariate[NormalDistribution[], {l, r}] +
I * RandomVariate[NormalDistribution[], {l, r}];
A = A.ConjugateTranspose[A];
A]

RandState[l_, r_] := Module[{A},
A = RandPositive[l, r];
A = A / Tr[A];
A]

CostfromObservable[Observables_, transpose_] := Sum[
MatrixPower[KroneckerProduct[Observables[[k]],
IdentityMatrix[Length[Observables[[1]]]]] -
KroneckerProduct[IdentityMatrix[Length[Observables[[1]]]],
If[transpose,Transpose[Observables[[k]]], Observables[[k]]]], 2],
{k, 1, Length[Observables]}]

SaMCNB[dim_] :=
SaMCNB[dim] = Flatten[{{Table[SparseArray[{{k, k} -> 1,
{dim, dim} -> 0}], {k, 1, dim}]},
Table[Table[SparseArray[{{k, m} -> Sqrt[2] / 2,
{m, k} -> Sqrt[2] / 2, {dim, dim} -> 0}],
{m, k + 1, dim}], {k, 1, dim - 1}],
Table[Table[SparseArray[{{k, m} -> -I * Sqrt[2] / 2,
{m, k} -> I * Sqrt[2] / 2, {dim, dim} -> 0}],
{m, k + 1, dim}], {k, 1, dim - 1}]}, 2];

SaMPB[2] = {{{1, 0}, {0, 1}}, {{0, 1}, {1, 0}},
{{0, -I}, {I, 0}}, {{1, 0}, {0, -1}}};
SaMPB[dim_] := SaMPB[dim] = Flatten[Table[
KroneckerProduct[SaMPB[dim / 2][[j]], SaMPB[2][[k]]],
{j, 1, dim^2 / 4}, {k, 1, 4}], 1];

SaMPNB[dim_] := SaMPNB[dim] = SaMPB[dim] / Sqrt[dim];

QOT[rho_, omega_, C_, dual_, transpose_]
:= Module[{dim, sol, Pi, x, y, X, Y},
dim = Length[rho];
If[
dual, {x = Table[Symbol[‘‘x’’ <> ToString[n]], {n, dim^2}];
y = Table[Symbol[‘‘y’’ <> ToString[n]], {n, dim^2}];
sol = SemidefiniteOptimization[-Tr[(y.SaMCNB[dim]).omega
+ (x.SaMCNB[dim]).rho],
{VectorGreaterEqual[{C - KroneckerProduct[(y.SaMCNB[dim]),
IdentityMatrix[dim]] -
KroneckerProduct[IdentityMatrix[dim], If[transpose, Transpose[
(x.SaMCNB[dim])], x.SaMCNB[dim]]], 0}, {‘‘SemidefiniteCone’’, dim^2}]},
Flatten[{x, y}]];
X = Chop[sol[[1 ;; dim^2, 2]].SaMCNB[dim], 10^-3];
Y = Chop[sol[[dim^2 + 1 ;; 2 * dim^2, 2]].SaMCNB[dim], 10^-3];
Chop[Sqrt[Tr[X.omega + Y.rho]], 10^-3],
X // MatrixForm, Y // MatrixForm},
{x = Table[Symbol[‘‘x’’ <> ToString[n]], {n, dim^4}];
sol = SemidefiniteOptimization[
Chop[Simplify[Tr[(x.SaMCNB[dim^2]).C]], 10^-3],
{ResourceFunction[‘‘MatrixPartialTrace’’]
[x.SaMCNB[dim^2], 2, {dim, dim}] -> omega,
ResourceFunction[‘‘MatrixPartialTrace’’]
[x.SaMCNB[dim^2], 1, {dim, dim}] ->
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If[transpose, Transpose[rho], rho],
VectorGreaterEqual[{x.SaMCNB[dim^2], 0},
{‘‘SemidefiniteCone’’, dim^2}] },x];
Pi = Chop[Sum[sol[[n, 2]]SaMCNB[dim^2][[n]], {n, 1, dim^4}], 10^-3];
Chop[Sqrt[Tr[C.Pi]], 10^-3], Pi // MatrixForm}]]

ModQOT [rho_, omega_, cost_, dual_, transpose_]
:= Sqrt[QOT[rho, omega, cost, dual, transpose][[1]]^2 -
(QOT[rho, rho, cost, dual, transpose][[1]]^2
+ QOT[omega, omega, cost, dual, transpose][[1]]^2) / 2]

TriIneq[rho_, omega_, tau_, C_, dual_, transpose_]
:= ModQOT[rho, omega, C, dual, transpose] +
ModQOT[omega, tau, C, dual, transpose]
- ModQOT[rho, tau, C, dual, transpose]
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