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Why quantum correlations are shocking
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A simple minimalist argument is given for why some correlations between quantum systems boggle our
classical intuition. The argument relies on two elementary physical assumptions, and recovers the standard
experimentally testable Bell inequality in a form that applies equally well to correlations between six-sided dice
and between photon polarizations. The first assumption, that measurement selection in a first laboratory leaves
the measurement statistics in a remote laboratory invariant (no signaling), has been empirically verified, and is
shown to be equivalent to the existence of a corresponding joint probability distribution for quantities measured
in the first laboratory. The observed violation of the Bell inequality is then equivalent to the failure of a second
assumption, that measurement selection in the remote laboratory leaves such a joint distribution invariant. Indeed,
the degree of violation lower-bounds the variation of the joint distribution. It directly follows there are just three
possible physical mechanisms underlying such violations—action at a distance (superluminality), unavoidable
common factors linking measurement choice and distant properties (conspiracy), and intrinsically incompatible
physical quantities (complementarity). The argument extends to all Bell inequalities, and is briefly compared
with other derivations.
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I. INTRODUCTION

Bohr is famously quoted as saying that “Those who are not
shocked when they first come across quantum theory cannot
possibly have understood it” [1]. The nature of correlations
between distant quantum systems is particularly shocking,
as repeatedly demonstrated in a long line starting from the
Einstein-Podolsky-Rosen argument for the incompleteness of
quantum mechanics [2], passing through Bell’s demonstration
that quantum mechanics is incompatible with a statistical
inequality for local realistic theories [3], to the experimental
violation and remarkable applications of further such Bell in-
equalities [4], and most recently leading to the awarding of the
2022 Nobel Prize for Physics for “experiments with entangled
photons, establishing the violation of Bell inequalities and
pioneering quantum information science” [5].

There are several nice expositions on the remarkable na-
ture of quantum correlations that derive forms of Bell’s
original 1964 inequality [6,7] (or illuminate other aspects
of such correlations [8–11]), which rely on an assumption
of perfect correlations between measurement outcomes—
something that cannot be achieved in practice [12]. In con-
trast, the well-known Clauser-Horne-Shimony-Holt (CHSH)
Bell inequality [13] does not require perfect correlations, and
its violation by quantum systems has been observed in many
experiments [14–21], including photon polarization experi-
ments suitable for advanced undergraduates [22,23]. Such
real-world violations are not only of fundamental physical
interest, but also provide an essential resource for perform-
ing classically impossible tasks in quantum cryptography and
random number generation [4].

However, the simplest approaches in the literature for
deriving the CHSH Bell inequality rely on a restrictive
assumption of predetermined or counterfactual values for

measurable quantities [22,24–27]. Further, while the inequal-
ity may alternatively be derived from various general sets
of assumptions [4,12,13,28], including for example hidden
variables, local causality, parameter independence, outcome
independence, measurement independence, and/or the exis-
tence of formal joint probability distributions, the abstract
nature of these assumptions leads to seemingly endless de-
bates about the physical significance of each. Hence there is
value in providing an elementary and direct derivation that
does not rely on any of the above assumptions.

To emphasize that mere formal simplicity is not enough,
suppose that four measurable quantities A, A′, B, B′ have a
joint probability distribution for their possible measurement
outcomes. At most three of the propositions A = B, A = B′,
A′ = B, and A′ �= B′ can hold for any member of an ensemble
generated by this distribution (since the first three imply A′ =
B = A = B′, which contradicts the fourth), i.e., the arithmetic
sum of their truth values is no more than 3 for any member.
Averaging this sum over the ensemble then gives

p(A = B) + p(A = B′) + p(A′ = B) + p(A′ �= B′) � 3, (1)

which is a form of the celebrated CHSH Bell inequality [4,29]
(see also Sec. III). Yet, although this derivation is very
simple and general, it only allows one to conclude that if
measured probabilities on the left-hand side violate the in-
equality then there is no formal joint probability distribution
for A, A′, B, B′—the physical meaning of which is not imme-
diately apparent, nor the physical contexts in which it might
be expected to hold.

With the above in mind, the CHSH Bell inequality (1) is
derived here from two minimal and physical assumptions,
building on a result of Fine [28]. The approach is motivated
in Sec. II via a basic conundrum: If certain correlations are
observed, then the probability that two possible measurements
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in one laboratory have equal outcomes appears to depend
upon the choice of measurement in a distant laboratory. This
conundrum is sharpened in Sec. III to yield a simple yet
rigorous derivation of the CHSH Bell inequality, based on
two very intuitive assumptions related to the invariance of
probabilities in one laboratory with respect to actions carried
out in the other laboratory, where one of these assumptions (no
signaling) has been empirically verified. Observed violations
of the inequality then correspond to violations of the second
assumption (joint invariance), implying our world is highly
nonintuitive: Its explanation requires one of faster-than-light
influences, common factors that correlate measurement se-
lection with remote properties, or intrinsically incompatible
measurable quantities, as discussed in Sec. IV. Brief conclud-
ing remarks are made in Sec. V, and the generalization of the
derivation and its close connections with Fine’s general ap-
proach to Bell inequalities [28,30] are noted in an Appendix.

II. THE BASIC CONUNDRUM

Suppose that two experimenters, Alice and Bob, perform a
joint experiment of the following type. Alice measures one
of two measurable quantities or observables, A and A′, on
each run of the experiment. For example, Alice may receive
a six-sided die on each run, with A referring to the outcome
of rolling the die with her eyes open and A′ to the outcome of
rolling the die with her eyes closed, with possible outcomes
1, 2, . . . , 6. In a quantum example Alice may receive a photon
on each run, with A referring to whether it passes through a
polarizer that is oriented at some angle to the vertical and A′ to
whether it passes the polarizer when oriented at some different
angle, with possible outcomes y or n.

Similarly, Bob, located in a distant laboratory, measures
one of two measurable quantities, B and B′, on each run of the
experiment. For example, Bob may receive and roll a second
die on each run, with his eyes open or closed, or measure
whether a second photon passes through a polarizer oriented
at one of two different angles (see Fig. 1).

Experiments of the above type are sufficient for motivating
why some correlations can surprise or even shock our intu-
ition. As an extreme example, suppose that whenever Alice
measures the quantity A, then Bob obtains the same outcome
as Alice, whether he measures B or B′. It thus seems reason-
able to conclude that B = B′ when Alice measures A. Suppose
further, however, that whenever Alice measures the quantity
A′, then Bob obtains the same outcome as Alice if he measures
B but a different outcome if he measures B′. It is then just
as reasonable to conclude that B �= B′ when Alice measures
A′. But how can the truth or otherwise of B = B′ in Bob’s
laboratory be dependent on Alice’s choice of measurement in
a distant laboratory, e.g., on whether she opens or closes her
eyes? Clearly something unreasonable, or at least unexpected,
is going on [31].

Weaker correlations—including quantum correlations—
can be just as unexpected. To see this, assume that Alice
and Bob get together after many runs of an experiment of
the above type, and calculate some measurement statistics. In
particular, they estimate the probability p(A = B) of obtaining
equal outcomes, from the subset of runs where Alice mea-
sured A and Bob measured B, and they similarly estimate the

FIG. 1. Two examples of joint experiments. In the upper panel,
Alice and Bob each receive a six-sided die on each run, roll their
die with their eyes open or closed, and record the outcome. In the
lower panel, Alice and Bob each receive a photon on each run, orient
a polarizer at one of two angles to the vertical, and record whether
or not their photon passes through the polarizer. By making many
runs they can estimate the probability that they each get the same
outcome, for each of the four possible joint measurement settings
(eyes open/closed, or polarizers oriented at first/second angles, on
each side). These probabilities quantify the correlations between the
outcomes, and in some cases have highly counterintuitive properties.

probabilities p(A = B′), p(A′ = B), and p(A′ �= B′) from the
corresponding subsets of runs. We then have a basic conun-
drum that lies at the heart of the CHSH Bell inequality: If the
probabilities p(A = B) and p(A = B′) are sufficiently high,
then p(B = B′) is expected to be high, while if p(A′ = B)
and p(A′ �= B′) are also sufficiently high, then p(B �= B′) is
expected to be high.

A physically testable example of this conundrum is pro-
vided by the photon polarization scenario depicted in Fig. 1. In
particular, experimental data show that it is possible to physi-
cally prepare the photons on each run such that the measured
probabilities p(A = B), p(A = B′), p(A′ = B), and p(A′ �= B′)
are each greater than 75% [32–34]. But if the probabilities
of two propositions each occupy more than 75% of a sample
space, then their common overlap must occupy over 50% of
the sample space (since the first proposition leaves less than
25% of the sample space unoccupied that might be occupied
by the second). Noting that B = B′ in the common overlap of
A = B and A = B′, it follows that

p(A = B) > 75% and p(A = B′) > 75%

implies p(B = B′) > 50% (2)

for a measurement of A. Similarly, B �= B′ in the common
overlap of A′ = B and A′ �= B′, yielding

p(A′ = B) > 75% and p(A′ �= B′) > 75%

implies p(B �= B′) > 50% (3)

for a measurement of A′. Thus, to avoid the contradiction
p(B = B′) + p(B �= B′) > 1 in these real-world experiments,
it seems that the probability of B = B′ is influenced by Alice’s
choice of polarizer angle in a distant laboratory. As will be
seen, however, there is a hidden assumption in the above
reasoning, and alternative but equally surprising conclusions
can be made.
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The next section clarifies and strengthens the basic conun-
drum to obtain the CHSH Bell inequality (1). Further, the
assumptions underpinning the derivation are clearly identi-
fied, leading to a discussion in Sec. IV of the possible physical
mechanisms that permit quantum correlations to shock our
classical intuition.

III. MINIMALIST DERIVATION OF THE CHSH
BELL INEQUALITY

The derivation of the Bell CHSH inequality (1) given here
relies on two natural minimal assumptions (connected to those
used in Proposition 1 of Fine [28]). The first is that Bob
cannot signal to Alice via his choice of measurement. As will
be discussed, this “no-signaling” assumption has the virtues
of being experimentally verified and of being equivalent to
the existence of joint probability distributions for Bob’s ob-
servables that are compatible with the measured correlations,
leading to a simple yet rigorous generalization of the conun-
drum posed by Eqs. (2) and (3). The second assumption has
a similar flavor, requiring that there is at least one such joint
distribution that is invariant with respect to Alice’s choice of
measurement. It leads directly to the CHSH Bell inequality,
implying that the experimental violation of this inequality
is due to the failure of this “joint invariance” assumption.
The derivation throws significant light on the physical conse-
quences of violating Bell inequalities (discussed in Sec. IV).

A. The no-signaling assumption and joint compatibility

The basic conundrum of the previous section, exemplified
in Eqs. (2) and (3), refers to the probabilities of B = B′ and
B �= B′, and hence implicitly requires that such probabilities
exist. This existence is nontrivial for the joint experiments
depicted in Fig. 1, since B and B′ are not jointly measured
and indeed are physically incompatible in these experiments.
In particular, Bob cannot roll his die with both eyes simulta-
neously open and shut, nor can he simultaneously orient his
polarizer in two different directions. Remarkably, however,
the existence of the required joint probabilities for B and B′
is assured by the following physical and testable assumption.

Assumption 1. No signaling from Bob to Alice. Alice’s
measurement statistics are invariant with respect to Bob’s
measurement selection.

This no-signaling assumption is well motivated whenever
the two laboratories are sufficiently separated, and is con-
sistent with both quantum and relativistic predictions [4].
Importantly, it has been experimentally verified for quantum
correlations [35], by checking that the measured joint distri-
butions p(a, b), p(a, b′), p(a′, b), p(a′, b′) satisfy

p(a) :=
∑

b

p(a, b) =
∑

b′
p(a, b′),

p(a′) :=
∑

b

p(a′, b) =
∑

b′
p(a′, b′), (4)

up to statistical errors, where a, a′, b, b′ denote outcomes of
A, A′, B, B′, respectively. The first of these equations states
that Alice’s statistics for A do not depend on whether Bob
measures B or B′, and the second states the same for A′. Thus
Bob cannot signal to Alice by, e.g., measuring B for many runs

to transmit a “0,” or measuring B′ to transmit a “1”: Alice’s
statistics will be the same regardless of which measurement
Bob performs.

The existence of the required joint probabilities for the co-
nundrum, even for physically incompatible B and B′, follows
from the equivalence of no signaling from Bob to Alice to the
following property.

Joint compatibility property. The measurable quantities A,
B and B′ have a joint probability distribution compatible with
the measured joint probability distributions, as do A′, B and
B′.

Here, denoting these joint distributions by q(a, b, b′) and
q′(a′, b, b′),1 “compatible with” means that the measured dis-
tributions p(a, b), p(a, b′), p(a′, b), p(a′, b′) are recovered as
marginal distributions of q(a, b, b′) and q′(a′, b, b′), i.e., that

p(a, b) = q(a, b) =
∑

b′
q(a, b, b′),

p(a, b′) = q(a, b′) =
∑

b

q(a, b, b′),

p(a′, b) = q′(a′, b) =
∑

b′
q′(a′, b, b′),

p(a′, b′) = q′(a′, b′) =
∑

b

q′(a′, b, b′). (5)

To show the equivalence of the no-signaling assumption
and the joint compatibility property, note first that the latter
implies, via Eq. (5), that

∑

b

p(a, b) =
∑

b,b′
q(a, b, b′) =

∑

b′
p(a, b′),

∑

b

p(a′, b) =
∑

b,b′
q′(a′, b, b′) =

∑

b′
p(a′, b′),

and hence no-signaling conditions (4) are satisfied. Con-
versely, if the no-signaling conditions (4) are satisfied then,
for example, the joint probability distributions

q̃(a, b, b′) := p(a, b)p(a, b′)
p(a)

,

q̃′(a′, b, b′) := p(a′, b)p(a′, b′)
p(a′)

, (6)

are easily checked to satisfy the joint compatibility condi-
tions (5), as required (as do other examples [36]). The results
derived below hold for any and all joint distributions q and
q′ satisfying joint compatibility, i.e., Eq. (5) (with their exis-
tence being equivalent to the no-signaling assumption). The
question of their physical significance is left until Sec. IV.

1The labels q and q′ correspond to Alice measuring A and
A′, respectively, where these labels are used to clearly distin-
guish q(a, b, b′) and q′(a′, b, b′) from the measured distributions
p(a, b), p(a, b′), p(a′, b), p(a′, b′).
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B. Generalization of the basic conundrum
via the no-signaling assumption

The basic conundrum in Sec. II can now be generalized
and made rigorous, as a consequence of the no-signaling
assumption, based on elementary properties of joint proba-
bilities. In particular, similarly to the derivation of Eq. (1),
note for any member of an ensemble generated from a joint
probability distribution q(a, b, b′) (guaranteed to exist by the
no-signaling assumption), that at most two of A = B, A = B′,
and B �= B′ can hold. Thus the arithmetic sum of their truth
values is at most 2, and averaging this sum over the ensemble
gives q(A = B) + q(A = B′) + q(B �= B′) � 2, implying im-
mediately from Eq. (5) that

q(B = B′) � p(A = B) + p(A = B′) − 1, (7)

generalizing Eq. (2). Similarly, replacing A, B, B′ by B, A′, B′
and q by q′ in the argument yields

q′(B �= B′) � p(A′ = B) + p(A′ �= B′) − 1, (8)

generalizing Eq. (3). Equations (7) and (8) are central to
deriving the CHSH Bell inequality, and may be obtained in
various alternative ways [37].

Inequalities (7) and (8) immediately recover the basic
conundrum of the previous section when the measured proba-
bilities p(A = B), p(A = B′), p(A′ = B), and p(A′ �= B′) are
each greater than 75%: q(B = B′) and q′(B �= B′) are then
both greater than 50% in this case, i.e., equality of B and B′
is likely if Alice measures A, whereas inequality is likely if
Alice measures A′. More generally, adding Eqs. (7) and (8)
and using q′(B �= B′) = 1 − q′(B = B′) gives

q(B = B′) − q′(B = B′) � p(A = B) + p(A = B′)

+ p(A′ = B) + p(A′ �= B′) − 3
(9)

for any and all q and q′. Hence, one has a generalized co-
nundrum whenever the sum of the experimental probabilities
on the right-hand side is greater than 3: One must then have
q(B = B′) �= q′(B = B′) for any choice of q and q′, i.e., the
probability of equality of Bob’s observables is correlated with
the measurement selection made in a distant laboratory.

C. The joint invariance assumption and the CHSH
Bell inequality

The generalized conundrum in Eq. (9) can be reformulated
in terms of the following assumption.

Assumption 2. Joint invariance for Bob. There is a joint
probability distribution for Bob’s measurements, compatible
with the measured correlations, that is invariant with respect
to Alice’s measurement selection.

Thus, there are joint probability distributions q(a, b, b′)
and q′(a′, b, b′) (as guaranteed by the equivalence of joint
compatibility and no signaling), such that the joint distribu-
tions q(b, b′) = ∑

a q(a, b, b′) and q′(b, b′) = ∑
a′ q′(a′, b, b′)

of Bob’s observables satisfy

q(b, b′) = q′(b, b′). (10)

Note that summing this condition over b′ (b) immediately
implies that Bob’s measurement statistics for B (B′) are

invariant with respect to Alice’s measurement selection, i.e.,
that there is no signaling from Alice to Bob. However, joint
invariance is a stronger requirement, since it also constrains
the joint distribution of B and B′. It nevertheless has a similar
flavor to no signaling, and likewise appears natural if the
separation between Alice and Bob is sufficiently large (or if
Alice is free to choose her measurement independently of any
physical factor that might influence Bob’s joint distribution).
Its physical significance is discussed further in Sec. IV.

Substituting joint invariance condition (10) into Eq. (9)
immediately yields the form of the CHSH Bell inequality in
Eq. (1),

p(A = B) + p(A = B′) + p(A′ = B) + p(A′ �= B′) � 3.

(11)
Note that it is valid for any number of outcomes for each
measurable quantity, and whether or not the ranges of these
outcomes overlap [38]. It is more typically written in the
form [4]

SAA′BB′ := E (A, B) + E (A, B′) + E (A′, B) − E (A′, B′) � 2,

(12)

where E (A, B) is the measure of correlation defined by

E (A, B) := p(A = B) − p(A �= B). (13)

Thus E (A, B) = 1 when A and B are always equal (per-
fect correlation), and E (A, B) = −1 when they are never
equal (perfect anticorrelation). The equivalence of Eqs. (11)
and (12) follows immediately from the linear relation p(A=
B) = 1

2 [1 + E (A, B)]. Further inequalities, such as SA′ABB′ �2,
may be obtained via permutations of quantities and out-
comes [39].

The CHSH Bell inequality (11) is clearly violated if each
of the probabilities is greater than 75%, as expected from
Eqs. (2) and (3), but it can also be violated more gener-
ally (e.g., for measured probabilities 80%, 80%, 80%, and
70%). The maximum in-principle violation corresponds to
each of the four measured probabilities being equal to 1, as
per the extreme example discussed in Sec. II. However, as
is well known, for quantum systems the maximum possible
violation is smaller, corresponding to each of the four mea-
sured probabilities being equal to 1

2 (1 + 1/
√

2) ≈ 85.36%,
yielding maximum values of 2 + √

2 ≈ 3.4142 and 2
√

2 ≈
2.8284 for the left-hand sides of inequalities (11) and (12),
respectively [4].

Crucially, violations of the CHSH Bell inequality have
been observed in several loophole-free experiments [18–21],
which have very high detection efficiencies (avoiding the need
to further assume that the statistics are not skewed by a detec-
tion bias), and with the labs located at a sufficient distance to
prevent any sub-light-speed influences propagating between
them on each run (avoiding the need to further assume the
statistics are not skewed by such influences). Recalling that
such experiments also show that the no-signaling assumption
is valid [35], this immediately implies that the joint invariance
assumption is physically invalid. This has significant conse-
quences, as discussed in the next section.
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IV. PHYSICAL IMPLICATIONS

As noted above, loophole-free experimental violations of
the CHSH Bell inequalities (11) and (12) imply that the joint
invariance assumption fails: Any joint probability distribution
of Bob’s observables compatible with the measurement statis-
tics (guaranteed to exist via the equivalence of no-signaling
and joint compatibility), is correlated with the selection of
measurement in Alice’s laboratory. This has a number of
interesting implications, some of which are briefly discussed
here.

First, the violation of the CHSH Bell inequality by a given
set of correlations immediately implies there is no local deter-
ministic or local causal model for the correlations, in which
the statistics of A, A′, B, B′ are determined by local probabil-
ities p(a|λ), p(a′|λ), p(b|λ), p(b′|λ) that depend on the value
of a “hidden” variable λ having some prior probability distri-
bution p(λ) [3,4,12,13]. In particular, for any such model one
may take

qL(a, b, b′) =
∑

λ

p(λ)p(a|λ)p(b|λ)p(b′|λ),

q′
L(a′, b, b′) =

∑

λ

p(λ)p(a′|λ)p(b|λ)p(b′|λ) (14)

(replacing sums by integrals for continuous ranges), for which
qL(b, b′) = q′

L(b, b′) = ∑
λ p(λ)p(b|λ)p(b′|λ). Thus joint in-

variance condition (10) holds, implying the CHSH Bell
inequality holds for any such model of the correlations. It is
similarly straightforward to show that quantum correlations
can violate the inequality only if Bob’s observables are not
compatible [40].

Second, there is a simple numerical link between the de-
gree of violation of the CHSH Bell inequality and the degree
of violation of joint invariance condition (10). In particular,
the generalized conundrum in Eq. (9) is equivalent to

q(B = B′) − q′(B = B′) � 1
2 (SAA′BB′ − 2), (15)

where SAA′BB′ denotes the left-hand side of CHSH Bell in-
equality (12). Thus, the amount of violation sets a lower bound
on the variation of the probability of B = B′ with Alice’s mea-
surement selection. For example, for the maximum quantum
violation SAA′BB′ = 2

√
2 one has q(B = B′) − q′(B = B′) �√

2 − 1 ≈ 41% for all q and q′. It may be shown that the quan-
tity 1

2 (SAA′BB′ − 2) is also a lower bound for the separation
between the joint distributions q(b, b′) and q′(b, b′) [41].

Third, noting the critical role of the joint invariance as-
sumption, it is natural to consider how the experimental failure
of this assumption, implied by the violation of the CHSH Bell
inequality, can be interpreted. There are essentially just three
possibilities in this regard, examined in turn below.

The first possibility for explaining the failure of joint in-
variance in loophole-free experiments is that Alice’s choice of
measurement transmits a faster-than-light physical influence
that acts on the joint statistics of Bob’s observables (“su-
perluminality”). A simple model of this sort, for the photon
polarization example in Fig. 1, has been given by Toner and
Bacon [42]. Such influences are, however, difficult to recon-
cile with notions of relativistic causality.

The second possibility is that the unavoidable correlation
between measurement choice in one laboratory and joint prob-
abilities in a distant laboratory is due to a common cause
(or retrocause)—some shared physical factor or variable that
acts to correlate Alice’s measurement selection with the joint
statistics of Bob’s observables (“conspiracy”). Simple models
of this sort are known for the photon polarization example
in Fig. 1 [43,44], and such a model may also be given for a
maximal violation of the CHSH Bell inequality in the context
of the dice-rolling example in Fig. 1, with the dice colors
providing the common physical factor [45]. This possibility
has been described by Bell as “even more mind boggling than
one in which causal chains go faster than light” [12], but it
nevertheless merits equally serious consideration [46,47].

The third (and rather different) possibility is that the joint
invariance assumption concerns unphysical distributions, so
that its failure is only a formal issue (“complementarity”).
In particular, the existence of joint distributions q(b, b′) and
q′(b, b′) is guaranteed by the no-signaling assumption, but
these distributions can be regarded as purely formal if there
is no method of directly estimating them as the relative fre-
quencies of some joint measurement, i.e., if B and B′ are
intrinsically incompatible. This possibility is consistent with
standard quantum mechanics, since Bell inequalities can only
be violated by quantum systems if there is no accurate joint
measurement of Bob’s observables within the theory [30,40].

Finally, the astute reader may have noted the standard
rules of probability have been assumed to apply throughout.
It is therefore possible to model Bell inequality violation by
allowing the joint distribution of B and B′ to be invariant but
nonclassical in some way, e.g., by allowing it to take negative
values [8,48,49]. Note, however, that this possibility is just an
alternative expression of complementarity, as it again rules out
direct estimates of the joint distribution as relative frequencies
of some joint measurement [50]. Instead, such negative values
act as a useful marker of intrinsic incompatibility, with a
number of related applications [51].

The above three possibilities arise solely from the form
and failure of the joint invariance assumption, without any
reference to concepts or assumptions typically considered in
hidden-variable approaches to Bell inequality violation (in-
deed there is not even a hidden-variable decomposition to
base a comparison on). This has the advantage of avoiding
the (sometimes contentious) interpretations of such concepts.
However, it may be noted that the three options of super-
luminality, conspiracy, and complementarity broadly capture
notions expressed by the respective failures of parameter
independence, measurement independence, and determinism
in hidden-variable approaches [4]. More general discussion
on the implications of Bell inequality violation, including
for the interpretation of quantum mechanics, may be found
elsewhere [52,53].

V. CONCLUSIONS

The nature of quantum correlations has been called “mind
boggling” [10,12], and the main aim of this paper has been to
make the underlying reasons transparent via an approach that
uses minimal assumptions. The basic conundrum described
in Sec. II makes clear what type of correlations shock our
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classical intuition; and the sharpening and generalization of
this conundrum in Sec. III then leads to a simple derivation
of CHSH Bell inequality (12), via two assumptions related to
the invariance of probabilities in one laboratory with respect
to the measurements made in a distant laboratory. No other
assumptions (e.g., counterfactuality, hidden variables, local
causality, measurement independence, etc.) are required, mak-
ing the physical implications of the violation of the inequality
straightforward, as discussed in Sec. IV. The generalization to
arbitrary numbers of measurements on each side and the close
connection of the assumptions with Fine’s approach to Bell
inequalities are discussed in the Appendix.

The first assumption, that Alice’s measurement statistics
are invariant with respect to Bob’s measurement selection (no
signaling), has been verified by experiment and implies that
joint probability distributions exist for Bob’s measured quan-
tities (even when they are physically incompatible). Hence the
observed violations of the CHSH Bell inequality imply it is
the second assumption, that there is such a joint probability
distribution which is invariant with respect to Alice’s mea-
surement selection (joint invariance), that fails. Further, the
degree of violation of the inequality directly determines the
degree to which Bob’s joint probability distribution must vary
with Alice’s measurement selection, as per Eq. (15).

A virtue of the CHSH Bell inequality is that it requires
no assumptions about the validity of quantum theory: The
latter is only relevant in guiding the design of corresponding
experiments. Hence, the derivation in Sec. III, coupled with
experimental results, implies that the joint invariance assump-
tion must be rejected in any physical theory of the observed
correlations, making the implications discussed in Sec. IV
applicable to any such theory.

It is natural to ask, following the discussion in Sec. IV,
which is the least implausible option available for explaining
Bell inequality violations: faster-than-light influences (super-
luminality), common causes correlating measurement choices
with system properties (conspiracy), or the intrinsic incom-
patibility of some measurable quantities (complementarity)?
Each one is shocking to a classical palate, making the an-
swer largely a matter of taste. Nevertheless, the observed
violations—even seen, remarkably enough, in undergraduate-
level experiments [22,23]—implies that one such possibility
must be swallowed.

In this regard it is probably fair to say that most physicists
working in quantum information theory (and most adherents
of the completeness of quantum mechanics) would prefer the
complementarity option. In particular, unlike the superluminal
and conspiratorial options, any joint probability distribution of
B and B′ is thereby regarded as unphysical, not corresponding
to the statistics of any accurate joint measurement of these
quantities, thus making the variation of such distributions with
Alice’s measurement selection physically moot (see Sec. IV).
This has the advantages of being able to consistently maintain
the speed of light as an upper bound on the propagation
of physical influences; to permit experimental choices to be
independent of system properties; and to allow Bell inequality
violation to be exploited as a resource for classically impos-
sible tasks. In particular, under this option such violations
preclude an external eavesdropper or other physical system
from gaining complete information about outcomes via an

accurate joint measurement, allowing Alice and Bob to cer-
tifiably generate secure cryptographic keys and truly random
numbers [4].

Finally, the approach here suggests several future research
directions. For example, no signaling from Bob to Alice as
per the first assumption is again natural (and experimentally
verified) when Alice’s measurements are made in the past
of Bob’s measurements. Hence the latter have a joint distri-
bution, and Leggett-Garg and temporal Bell inequalities [54]
can then be obtained by replacing the usual macrorealism and
noninvasive measurability assumptions with joint invariance
(reinterpreted as a nondisturbance assumption). The approach
may also be extendable to noncontextuality inequalities on
hypergraphs [55], with the no-signaling and joint invari-
ance assumptions reinterpreted in terms of nondisturbance. It
would further be of interest to investigate maximally efficient
models of CHSH Bell inequality violation, in the sense of
saturating the bound in Eq. (15).
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APPENDIX: GENERALIZATION AND CONNECTION
WITH FINE’S GENERAL APPROACH

TO BELL INEQUALITIES

The approach in the main text is easily extended to general
Bell inequalities, based on its connections to Fine’s charac-
terization of such inequalities in terms of joint probability
distributions [28,30].

Proposition 1 of Ref. [28] considers the case of two mea-
surement choices in each laboratory, while Theorem 1 of
Ref. [30] generalizes to arbitrary numbers of measurement
choices. In the latter case, suppose on each run of a joint ex-
periment that Alice measures one of m measurable quantities
A1, A2, . . . , Am and Bob measures one of n measurable quan-
tities B1, B2, . . . , Bn. After many runs they can then estimate
the joint probability distribution p(aj, bk ) of outcomes Aj =
a j and Bk = bk , for each j = 1, 2, . . . , m and k = 1, 2, . . . , n.
The joint compatibility property in Sec. III A then generalizes
naturally as follows.

Generalized joint compatibility property. The measurable
quantities Aj , B1, . . . Bn have a joint probability distribution
q j (a j, b1, . . . , bn) compatible with the measured probabili-
ties, for each j = 1, . . . m.

Fine’s Theorem 1 states that the combination of gener-
alized joint compatibility and joint invariance for Bob are
equivalent to the existence of a formal joint probability dis-
tribution for A1, . . . , Am, B1, . . . Bn that is consistent with the
measured probabilities [30]. His proof is straightforward, but
a modified version will be given here noting that, similarly to
the main text, generalized joint compatibility is equivalent to
the physically more transparent (and experimentally verified)
equivalent assumption of no-signaling from Bob to Alice,
i.e., to

p(a j ) =
∑

bk

p(a j, bk ) (A1)
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for each j = 1, 2, . . . , m and k = 1, 2, . . . , n. One has, e.g.,
the example distributions

q̃ j (a j, b1, . . . , bn) := p(a j, b1) · · · p(a j, bn)

p(a j )n−1
, (A2)

in analogy to the example in Eq. (6). Together with the
joint invariance assumption that the marginal joint distribution
q(b1, . . . , bn) of Bob’s quantities is invariant with respect
to Alice’s measurement choice Aj , i.e., that q(b1, . . . , bn) =∑

a j
q j (a j, b1, . . . , bn) for each j = 1, . . . , m, it follows that

q(a1, . . . , am, b1, . . . , bn)

:= q1(a1, b1, . . . , bn) . . . qm(am, b1, . . . , bn)

q(b1, . . . , bn)m−1
(A3)

is a formally well-defined joint probability distribution for
A1, . . . , Am, B1, . . . , Bn that is compatible with the mea-
sured probabilities. Conversely, given such a joint probability

distribution, then it is straightforward to check that no signal-
ing from Bob to Alice and joint invariance for Bob both hold.

General Bell inequalities are now defined as the set of
nontrivial constraints imposed on the measured probabilities
by the formal existence of such a classical joint probability
distribution q(a1, . . . , am, b1, . . . , bn) [4,28,30]. Any viola-
tion of such inequalities then immediately implies, recalling
that the no-signaling assumption is experimentally verified,
that the joint invariance assumption fails, leading to similar
physical implications as discussed in Sec. IV for the CHSH
Bell inequality.

Note that the CHSH Bell inequality (11) may alternatively
be obtained via the construction of a formal joint distribution
q(a, a′, b, b′) from the two assumptions, as per Eq. (A3), by
applying the method given in Sec. I. However, the derivation
in Sec. III via Eqs. (7) and (8) has the advantage of being able
to directly link the degree of violation of the inequality with
the degree to which the joint invariance assumption fails, as
per Eqs. (9) and (15).
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