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Entanglement of bosonic systems under monitored evolution
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The evolution of noninteracting bosons in the presence of repeated projective measurements is studied.
Following the established approach, this monitored evolution is characterized by the first detected return and
the first detected transition probabilities. We show that these quantities are directly related to the entanglement
entropy and the entanglement spectrum of a bipartite system. Calculations with specific values for the number
of bosons, the number of measurements, and the time steps between measurements reveal a sensitive and often
strongly fluctuating entanglement entropy. In particular, we demonstrate that in the vicinity of special values for
the time steps, the evolution of the entanglement entropy either is stationary or performs dynamical switching
between two or more stationary values. In the entanglement spectrum, on the other hand, this complex behavior
can be associated with level crossings, indicating that the dominant quantum states and their entanglement
respond strongly to a change of the system parameters. We discuss briefly the role of time averaging to remove
the fluctuations of the entanglement entropy.

DOI: 10.1103/PhysRevA.110.022208

I. INTRODUCTION

Repeated measurement on a quantum system has been used
to determine the first detected return (FDR) to the initial
state or the first detected transition (FDT) to a state that is
different from the initial state. The idea is to prepare the
quantum system in an initial state |ψ0〉, let it evolve unitarily
to the state e−iHτ |ψ0〉, and perform a projective measurement
with the projector � = 1 − |ψ〉〈ψ |, where 1 is the identity
operator and |ψ〉 a state that defines the measurement. This
operation yields the state |ψ ′

1〉 = �e−iHτ |ψ0〉, which either
is orthogonal to |ψ〉 or vanishes when e−iHτ |ψ0〉 = eiϕ |ψ〉
with some phase ϕ. A further unitary evolution for the time τ

yields |ψ1〉 = e−iHτ�e−iHτ |ψ0〉 and φ1 = 〈ψ |ψ1〉. If φ1 �= 0
the system was not in the state eiϕ |ψ〉 when the projection
was applied. This means that our measurement to detect |ψ〉
was not successful. In this case we apply another projec-
tion to |ψ1〉, followed by a unitary evolution to get |ψ2〉 =
e−iHτ�|ψ1〉 and φ2 = 〈ψ |ψ2〉. Again, if φ2 �= 0 the system
was not detected in the state eiϕ |ψ〉. These steps can be re-
peated m times until φk = 0 for all k � m. In other words,
if the measurement is unsuccessful by not detecting the state
|ψ〉, the experiment continues by another measurement, fol-
lowed by the evolution for time step τ . This protocol was
discussed in Ref. [1] and has been applied to single-particle
states to detect the particle location on a graph [2–8].

For the evolution of a system with more than one particle,
the entanglement of the quantum state is a fundamental prop-
erty. It can be characterized, for instance, by Rényi entropy,
which measures the quantum correlations between two sub-
systems under a spatial bipartition [9–13]. Probing the entan-
glement entropy (EE) has become an important and popular
concept to study measurement-induced entanglement transi-
tions, to characterize many-body evolution and many-body

localization [14–29], and to classify the topology of quantum
systems.

In this paper we study the Rényi entropy in a system of
noninteracting bosons, which is subject to periodically re-
peated projective measurements. This enables us to study the
FDR and FDT probabilities, as well as the EE and entangle-
ment spectrum (ES), and to investigate the relation between
both quantities.

The focus of this paper is on the physical aspects of the
monitored evolution that can also be applied to quantum com-
puting [30]. Although quantum computing is typically based
on qubits (i.e., spin states), potentially bosonic systems could
also be used [31]. A promising example is photonic states. In
particular, we consider N noninteracting bosons, distributed
in two wells which are coupled by tunneling. This can be
experimentally realized as a pair of photonic cavities that are
coupled by an optical fiber [32–36]. The underlying Hilbert
space is N + 1 dimensional and enables us to study the scaling
behavior of the entanglement with N .

The structure of the paper is as follows. In Sec. II we
provide a general theory with the definitions of the FDR and
FDT probabilities and their relations to the reduced density
matrix, the EE, and the ES. More details for the calculation of
the FDR and FDT probabilities are provided in Sec. II. This
includes an approach that connects the monitored evolution
due to repeated measurements to the unitary evolution. The
reader who is not interested in the theoretical concepts but
more in the results of the monitored evolution can skip this
section. In Sec. III our approach to the monitored evolution
is applied to the tunneling of N noninteracting bosons in
a double well. For this specific model, the eigenvalues and
spectral weights are calculated. In Sec. IV specific examples
in terms of the parameters of the model are presented for the
EE and the ES. We summarize in Sec. V.
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II. GENERAL CONCEPT OF PROJECTED
MEASUREMENTS

The quantum system is characterized by the density oper-
ator that in the presence of repeated projective measurements
reads

ρm(τ ) = 1

N e−iHτ (�e−iHτ )m−1|ψ0〉〈ψ0|(eiHτ�)m−1eiHτ ,

(1)

with the normalization N = Tr[e−iHτ (�e−iHτ )m−1|ψ0〉
〈ψ0|(eiHτ�)m−1eiHτ ]. This density operator describes a
quantum walk [37], where after each time step τ a projective
measurement � is applied. The latter prevents the visit to
the Hilbert space after a time step τ that is orthogonal to the
�-projected Hilbert space. Although in general the projector
� is independent of the initial state |ψ0〉 and can be chosen
freely, in this paper we focus on the case discussed in the
Introduction, where � projects onto the Hilbert space which
is orthogonal to a given state |ψ〉 as � = 1 − |ψ〉〈ψ |.

For the following discussion we start from a product space
H1 ⊗ H2 with n1 bosons in the left reservoir and n2 bosons
in the right reservoir. Then we assume that the Hamiltonian
obeys particle conservation n1 + n2 = N , which implies that
it acts inside the Hilbert space that is spanned by the basis
{|n, N − n〉}0�n�N . The basis states can also contain additional
quantum numbers, which are not relevant for the general dis-
cussion. In Sec. III we consider the special case in which the
Hilbert space represents a double well, where n bosons are in
the left well and N − n bosons are in the right. Then the basis
is constructed from Fock states as |n, N − n〉 ≡ |n〉|N − n〉
without additional quantum numbers.

Returning to the general case, in the basis {|n, N−n〉}0�n�N

the (N + 1) × (N + 1) density matrix reads ρm
n,n−N ;n′,N−n′ =

〈n, N − n|ρm(τ )|n′, N − n′〉, with n, n′ = 0, . . . , N . After
summing over all basis states of H2, the reduced density
matrix ρ̂ becomes an (N + 1) × (N + 1) diagonal matrix with
elements

ρ̂m
nn =

N∑
n′=0

〈n, n′|ρm(τ )|n, n′〉 = 〈n, N − n|ρm(τ )|n, N − n〉

= 1

N 〈n, N − n|e−iHτ (�e−iHτ )m−1|ψ0〉
× 〈ψ0|(eiHτ�)m−1eiHτ |n, N − n〉. (2)

With the projector Pn := |n, N − n〉〈n, N − n| the density ma-
trix elements can also be written as a trace expression

ρ̂m
nn = 1

N Tr[Pne−iHτ (�e−iHτ )m−1P0(eiHτ�)m−1eiHτ ], (3)

where we have assumed |ψ0〉 = |0, N〉 for the initial state. One
should note that the right-hand side of Eq. (2) with � replaced
by �n = 1 − Pn is either the FDR probability (for n = 0) or
the FDT probability (for n > 0). Therefore, known results of
the FDR and FDT probabilities [6,38,39] can be directly used
for the reduced density matrix through the relation

ρ̂m
nn = |φm;n0|2∑N

n=0 |φm;n0|2
, (4)

with the FDT amplitude for |0, N〉 → |n, N − n〉 (n �= 0) after
m measurements

φm;n0 := 〈n, N − n|e−iHτ (�ne−iHτ )m−1|0, N〉 (5)

and the corresponding FDR amplitude φm;00 for |0, N〉 →
|0, N〉. It is crucial to note that

∑N
n=0 |φm;n0|2 � 1 for m > 1

due to the projection �. Some known results for the FDR and
FDT amplitudes are summarized in Sec. II.

With this expression for ρ̂m
nn we can introduce the Rényi

entropy [23] as a quantitative measure for the entanglement of
the two Hilbert spaces H1 and H2,

Sα (τ, N, m) = 1

1 − α
log2 Tr[(ρ̄m)α (τ )]. (6)

In general, α is a free parameter and typical values used are
α = 2, 3 [23]. For the subsequent calculations we set α = 2,
i.e., we calculate S2(τ, N, m) as the EE.

While the EE reveals a global measure for the monitored
evolution, the ES [40] provides a local measure of the evo-
lution for the transition between individual states |0, N〉 →
|n, N − n〉. In other words, it reveals the contribution of indi-
vidual states to the entangled state of the evolving quantum
system. It is defined as the logarithm of the reduced density
matrix eigenvalues. In the present case the reduced density
matrix is already diagonal such that

ξm;n = − ln
(
ρ̄m

nn

) = −2 ln(|φm;n0|) + ln

(
N∑

n=0

|φm;n0|2
)

. (7)

The smallest value of ξm;n corresponds to the dominant transi-
tion |0, N〉 → |n, N − n〉 after m measurements. A crossing of
the lowest levels upon changing the time step τ or m is remi-
niscent of a phase transition in classical statistical systems due
to a crossing of the ground-state energies.

The FDR or FDT amplitude in Eq. (5) is written in the Fock
basis. It is convenient to express the evolution operator in the
eigenbasis {|Ek〉} of the Hamiltonian as

φm;n0 =
N∑

{k j=0}
〈ψn|Ek1〉e−iEk1 τ 〈Ek1 |�n|Ek2〉e−iEk2 τ

· · · 〈Ekm−1 |�n|Ekm〉e−iEkm τ 〈Ekm |ψ0〉. (8)

For the projector �n = 1 − |n, N − n〉〈n, N − n|, a typical
matrix element then reads

〈Ek|(1 − |n, N − n〉〈n, N − n|)|Ek′ 〉
= δkk′ − q∗

n,kqn,k′ =: (1 − Q∗
nEQn)kk′ , (9)

with qn,k = 〈n, N − n|Ek〉 and q∗
n,k = 〈Ek|n, N − n〉. Here E is

the (N + 1) × (N + 1) matrix, whose matrix elements are 1.
Moreover, Qn is a diagonal matrix, consisting of the elements
{qn,k}. Then the FDR or FDT amplitude of Eq. (5) can be
written as

φm;n0 =
N∑

k,k′=0

qn,kDk[(1 − Q∗
nEQn)D]m−1

kk′ q∗
0,k′ , (10)

with Dk = e−iEkτ . It should be noted that (Q∗
n )−1(D −

Q∗
nEQnD)m−1Q∗

n is a function of QnQ∗
n (cf. Ref. [41]): Since
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Qn and D are diagonal matrices, they commute and we get the
relation

(D − Q∗
nEDQn)m−1 = Q∗

n(D − EDQnQ∗
n )m−1(Q∗

n )−1, (11)

which is proved by complete induction. Moreover, we
can write (D − Q∗

nEDQn)m−1 = D−1/2T m−1
n D1/2, with Tn :=

D1/2(1 − Q∗
nEQn)D1/2, and for Eq. (10)

φm;n0 = Tr
(
D1/2T m−1

n D1/2Q∗
0EQn

)
. (12)

Thus, the matrix Tn represents the monitored evolution under
repeated measurements, which is the analog of the unitary
evolution matrix U = exp(−iHτ ) in the Fock basis. Its largest
eigenvalues control the large-m (i.e., stationary) behavior of
φm;n0, while the smaller eigenvalues decay quickly. Therefore,
the task is to identify those largest eigenvalues for the given
parameters of the model.

The matrix Tn has some important properties that are useful
for the calculation of φm;n0. First, since

∑
k qn,kq∗

n′,k = δnn′ ,
there is a complete set of right and left eigenvectors of the
Hermitian matrix 1 − Q∗

nEQn with an eigenvalue 0 and N
eigenvalues 1 due to∑

k′
(δkk′ − q∗

n,kqn,k′ )q∗
n′,k′ = (1 − δnn′ )q∗

n′,k,

∑
k

qn′,k (δkk′ − q∗
n,kqn,k′ ) = (1 − δnn′ )qn′,k′ . (13)

Defining the vector qn := (qn,0, qn,1, . . . , qn,N )T , we get
Q∗

nEQnq∗
n′ = qnδnn′ , which implies, for the vector x :=∑

n′ an′D−1/2q∗
n′ ,

Tnx =
{

Dx for an = 0
0 for an′ = 0 (n′ �= n). (14)

It is possible that Tnx = Dx reduces to Tnx = eiϕx when we
have Dx = eiϕx, which can happen in the presence of degener-
ate Ejτ (mod2π ) or when some components of the vectors qn′

vanish. In this case x is an eigenvector of Tn whose eigenvalue
lies on the unit circle of the complex plane. This means that x
does not decay but accumulates only a phase. This eigenvector
does not contribute to the FDR or FDT amplitude though,
since x is orthogonal to qn and therefore EQnx = 0.

Besides these special vectors, the eigenvalues of Tn can be
quite complex in general. On the other hand, even a two-level
system (i.e., N = 1 and n = 0, 1) with energies E0,1 is already
instructive. In this case Tn has two eigenvalues

λ0 = 0, λ1 = (1 − |qn,0|2)e−2iE0τ + |qn,0|2e−2iE1τ , (15)

where |qn,1|2 = 1 − |qn,0|2 and |λ1|2 = 1−2(1−|qn,0|2)|qn,0|2
{1 − cos[2(E1 − E0)τ ]}. Thus, the eigenvalues of Tn are on
the unit disk, one at the center and the other one only for spe-
cial values on the unit circle, namely, for |qn,0| = 0, 1 and/or
for (E1 − E0)τ = 0 (modπ ). This means that, except for the
special values with |λ1| = 1, T m−1

n decays exponentially fast.
We will see subsequently that this type of behavior exists also
for larger systems. In particular, we will study a system of N
noninteracting bosons.

FDR and FDT amplitudes

Next we discuss the connection between the unitary and the
monitored evolution by a linear relation. We consider only the
FDR or FDT amplitude, since this is the building block for
the other physical quantities, according to our discussion in
the preceding section. The first detected passage time prob-
lem, as discussed in Refs. [1,4] for a single particle on a
tight-binding graph, can be directly generalized to the evo-
lution in a general Hilbert space. The unitary evolution of the
transition |ψ0〉 → |ψn〉 for the time τ provides the amplitudes

vm := φ1;n0(mτ ) = 〈ψn|e−iHmτ |ψ0〉,
um := φ1;00(mτ ) = 〈ψ0|e−iHmτ |ψ0〉. (16)

There exists a mapping from the unitary amplitudes in
Eq. (16) to the FDR or FDT amplitudes φm;n0 as (cf.
Appendix B)


φ = (1 + )−1
v, (17)

with the m-component vectors 
φ = (φ1;n0, φ2;n0, . . . , φm;n0)
and 
v = (v1, v2, . . . , vm) and with the triangular matrix 

whose elements are

i j =
{

ui− j for 1 � i − j � m − 1
0 otherwise. (18)

In other words, the FDR or FDT amplitudes can be recursively
constructed from the unitary amplitudes in Eq. (17). This is
solved by a discrete Fourier transformation with

∑
m�1

zmφm;n0 = φ̂(z) = v̂(z)

1 + û(z)
(19)

for z inside the complex unit disk (i.e., |z| < 1) and with the
Fourier transformed unitary amplitudes of Eq. (16):

û(z) = z
N∑

j=0

|〈�0|Ej〉|2
eiEjτ − z

, v̂(z) = z
N∑

j=0

〈�|Ej〉〈Ej |�0〉
eiEjτ − z

.

(20)

The advantage of using a continuous function φ̂(z) rather
than a discrete function φm;n0 is that analytic tools, such as
integration or perturbation theory, can be employed to exploit
its properties.

Once the function φ̂(z) is known, φm;n0 can be retrieved
as the residue of the Cauchy integral: Since φ̂(z) does not
have poles inside the unit disk due to 1 + û = ∑

j |〈�0|Ej〉|2/
[1 − z exp(−iE jτ )], the FDR or FDT amplitude reads

φm;n0 = 1

2π i

∫
C

z−m−1 v̂

1 + û
dz, (21)

with a contour C around z = 0 smaller than the unit circle
in order to avoid the poles of v̂/(1 + û). The function φ̂u =
û/(1 + û) is a unimodular function of the form φ̂u(eiω ) =
ei f (ω) with a characteristic winding number that is equal to the
dimensionality of the underlying Hilbert space in the absence
of degeneracies for Ejτ (mod2π ) [6]. The example of N = 8
noninteracting bosons is visualized in Fig. 1.
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Im

FIG. 1. Plot of φ̂r (eiω ) = ei f (ω) for −π � ω < π (vertical axis)
with winding number 9 for eight noninteracting bosons. The density
of points is inverse to the sensitivity of the phase f (ω) to a change
of ω.

III. PHYSICAL MODEL: NONINTERACTING BOSONS
IN A DOUBLE WELL

Within the single-mode approximation [42], the double
well with N bosons can be described as a two-site Bose model

H = −J (a†
l ar + a†

r al ), (22)

where a†
L,R (aL,R) are the bosonic creation (annihilation) oper-

ators in the left or right potential wells, with nl,r = a†
l,ral,r the

corresponding number operators, and J is the tunneling rate of
bosons between the two wells. Using Fock states |n, N − n〉 ≡
|n〉|N − n〉 (n = 0, . . . , N) as a basis of the Hilbert space, the
corresponding Hamiltonian matrix has a tridiagonal structure
with

Hn,n′ = 〈n, N − n|H |n′, N − n′〉
= −J

√
n(N + 1 − n)δn,n′−1 − J

√
n′(N + 1 − n′)δn,n′+1.

(23)

These matrix elements represent an (N + 1)-site tight-binding
chain with broken translational invariance and nearest-
neighbor tunneling rates −J

√
n(N + 1 − n). The sites n and

n′ are connected by hopping of a single particle.
For noninteracting bosons we can calculate ρ̂m;nn explic-

itly, since the energy levels and the spectral weight factors
〈n, N − n|Ek〉 are known. This system can be realized for
photons at a beam splitter [43,44] or in two harmonic cav-
ities, which are connected through an optical fiber [32–36].
Then the tunneling Hamiltonian H = −J (a†

l ar + a†
r al ) for N

bosons has N + 1 equidistant energy levels Ek = −J (N − 2k)
(k = 0, 1, . . . , N) with eigenstates

|Ek〉 = 2−N/2

√
k!(N − k)!

(a†
l + a†

r )k (a†
l − a†

r )N−k|0, 0〉, (24)

where the normalization follows directly from (a†)l |0〉 = √
l!

|l〉. Thus, the fastest oscillations occur with frequency NJ and
the characteristic parameter for the evolution is Jτ . The spec-
tral weights qn,k := 〈n, N − n|Ek〉 are explicitly calculated in
Eq. (A2) of Appendix A. In particular, for the special cases

n = 0 and n = N we have

q0,k = 2−N/2

√
N!√

k!(N − k)!
(−1)N−k,

qN,k = 2−N/2

√
N!√

k!(N − k)!
. (25)

These specific expressions can be entered into the FDR
or FDT amplitude φm;n0 of Eq. (12), using Dk = e−iEkτ =
eiJ (N−2k)τ . Moreover, Qn, the diagonal matrix with elements
qn,k for fixed n, is real here, which enables us to write

φm;n0 = Tr[D(D − QnEDQn)m−1Q∗
0EQn]

= Tr[D1/2T m−1D1/2Q∗
0EQn]. (26)

This gives immediately the reduced density matrix of Eq. (4),
the EE of Eq. (6), and the ES of Eq. (7). Some examples for the
eigenvalues of the monitored evolution matrix T are presented
in Fig. 2.

Returning to the unitary evolution, the amplitudes um and
vm of Eq. (16) are determined by multiples of the frequency
Jτ ,

um = 〈0, N |e−iHmτ |0, N〉 = cosN (mJτ ),

vm = 〈N, 0|e−iHmτ |0, N〉 = (−i)N sinN (mJτ ), (27)

which are periodic with mτJ/h̄ = 2π or periodic with
mτJ/h̄ = π for even N (cf. Fig. 3). For a very short time
(i.e., for mJτ � 1/

√
N) we have a Gaussian decay of the

Fock state |0, N〉 as

um = cosN (mJτ ) ∼ e−Nm2J2τ 2/2, (28)

as also illustrated in Fig. 3. This nonexponential behav-
ior in τ reflects the quantum Zeno effect [45]. Finally, the
Fourier transformed unitary amplitudes for |ψ0〉 = |0, N〉 and
|ψ〉 = |N, 0〉 read

û(z) = 2−N
N∑

k=0

(
N

k

)
z

eiEkτ − z
,

v̂(z) = (−2)−N
N∑

k=0

(
N

k

)
(−1)kz

eiEkτ − z
. (29)

They can be used to calculate the FDR or FDT amplitudes as
the residue of the corresponding Cauchy integrals.

IV. DISCUSSION OF THE RESULTS

The results of the preceding section will now be used to
calculate the FDR or FDT probabilities, the EE, and the ES
for specific realizations of the model. To this end we note
that the parameters of the bosonic system are the number
of bosons N , the number of measurements m − 1, and the
time steps between measurements τ . The latter always appears
in combination with the tunneling rate J as Jτ . This is a
consequence of the fact that we have noninteracting bosons,
where tunneling is the only mechanism of the evolution. The
combination Jτ/h̄ provides a dimensionless time step in our
system, which we will use subsequently.

The characteristic features of the unitary dynamics defined
in Eq. (27) are visualized in Fig. 3, which indicates a smooth
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FIG. 2. Plots of 51 eigenvalues z of T for N = 50 bosons with (a) Jτ = 0.7h̄, (b) Jτ = 0.5h̄, (c) Jτ = π h̄/6, (d) Jτ = (π/6 + 10−2)h̄, (e)
Jτ = π h̄/7, and (f) Jτ = (π/7 + 10−2)h̄. Very small changes in Jτ have a strong effect on the eigenvalues and their degeneracy. This can be
seen by comparing (c) and (d) or (e) and (f).

variation of the amplitudes over time for the return to the
initial state |0, N〉 → |0, N〉 and for the transition of all bosons
to the other well |0, N〉 → |N, 0〉. This periodic behavior is
also reflected by the unitary evolution of the EE in Fig. 4(a),
which vanishes when all bosons are either in the left or in the
right well. Repeated measurements will substantially affect
this periodic behavior.

FIG. 3. Unitary evolution. Real parts of the return ampli-
tude u1(τ ) (|0, N〉 → |0, N〉) and the transition amplitude v1(τ )
(|0, N〉 → |N, 0〉) are plotted as a function of the dimensionless time
Jτ/h̄ for 50 noninteracting bosons.

Without measurement (i.e., for m = 1) the EE is de-
termined by the unitary amplitudes for all transitions
|0, N〉 → |n, N − n〉, which are smooth and periodic in time

φ1,n0 = eiNJτ

N∑
k=0

e−2ikJτ qn,kq0,k . (30)

This expression, together with Eq. (A4), gives, for Jτ = 0
(mod2π ) and Jτ/h̄ = π (mod2π ),

φ1,n0 = eiNJτ δn0, (31)

implying S2(τ, N, 1) = 0. This is reflected in the plot of
S2(τ, N, 1) of Fig. 4(a), which indicates also a vanishing EE
at Jτ/h̄ = π/2 (mod2π ). The periodicity does not depend
on the number of bosons N , while the value of the EE in-
creases with N . This is remarkable because the eigenvalues
as well as the weight qn,k depend strongly on N . The be-
havior of the EE is affected by measurements depending on
the time steps between the measurements. As visualized in
Fig. 4(b) for N = 20 bosons, for a very short time step Jτ/h̄
between measurements, the periodic behavior of the unitary
evolution disappears. The corresponding ES in Fig. 5 reveal
that the level crossings are more complex in the case of the
monitored evolution and they take place on a much shorter
timescale.

As already mentioned in the discussion of the FDR and
FDT probabilities, the unitary evolution between measure-
ments is characterized by the phase factor exp(−iJτm/h̄),
which is periodic for m = l if Jτ = 2π h̄/l . In other words,
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FIG. 4. (a) The unitary evolution of N = 20 bosons for the time Jτ/h̄ is periodic. (b) The monitored evolution of the entanglement entropy
for a high frequency of measurements reflects the quantum Zeno effect, where an increasing measurement frequency reduces the entanglement
entropy (green solid curve).

if the time step is a fraction of π , we expect a special behavior
of the monitored evolution, which might be reminiscent of the
periodic behavior of the unitary evolution. However, how does
the monitored evolution depend on l? We will analyze this
for N = 4 bosons, by comparing l = 3 and l = 4. Figure 6
visualizes how the ES changes from Jτ = π h̄/l at the center
to (π/l ± 5×10−5)h̄ at the boundaries. Figures 6(a) and 6(c)
represent the ES for m = 50 measurements and Figs. 6(b)
and 6(d) the ES for m = 51 measurements. There are level
degeneracies only at π h̄/l , while in the narrow vicinity the
levels are well separated and the spectrum is symmetric with
respect to π h̄/l . It should be noted though that for l = 4
[Fig. 6(a)] the lowest level is twofold degenerate, whereas
for l = 3 [Fig. 6(b)] there is no such a degeneracy. Another
remarkable difference between l = 3 and l = 4 consists in
the level change when the number of measurements changes
from m = 50 [Figs. 6(a) and 6(c)] to m = 51 [Figs. 6(b) and
6(d)]. While the two lowest levels for l = 4 are not affected
by this change, there is a drastic change for l = 3. The latter
has two low levels for m = 50 but three low levels for m = 51.
The qualitative difference between these two m values reflects
the fact that for an odd l only an odd m can satisfy the

condition mJτ = 2π h̄ for periodicity of the phase factor. To
understand the effect of this m dependence on the EE, we use
the definitions of the ES and the EE in Eqs. (6) and (7) and
express the EE by the levels of the ES as

S2 = − log2

(
N∑

n=0

e−2ξm;n

)
, (32)

where the sum is reminiscent of the sum of Boltzmann
weights in statistical mechanics. Therefore, only small values
of ξm;n (i.e., low levels of the ES) contribute substantially to
the EE. This means that the EE changes for m → m + 1 when
l = 3 but it remains unchanged for l = 4. This is what we see
in Fig. 7. After some fluctuations for small values of m, the
EE becomes stationary: For l = 4 there is just one stationary
value [Fig. 7(a)], while for l = 3 the EE switches between two
stationary values [Fig. 7(b)].

The above analysis relies on the fractional form Jτ/h̄ =
π/l . The behavior of the EE for other values of the time step
between measurements can change drastically and may lead to
a strongly fluctuating behavior of the EE. In general, repeated
measurements have two major effects on the evolution: They

FIG. 5. Entanglement spectrum for the five levels of N = 4 bosons for (a) m = 1 and (b) m = 50 measurements as a function of the time
step units πJτ/h̄ and 10−3Jτ/h̄, respectively.
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FIG. 6. Entanglement spectrum for N = 4 centered around (a) Jτ = π h̄/4 and (b) Jτ = π h̄/3 for (a) and (c) m = 50 and (b) and (d)
m = 51 measurements. The jump of the green dashed level in (b) causes the switching effect of the entanglement entropy between two values,
as illustrated in Fig. 7(b).

destroy the periodicity (recurrence) and they lead to more
level crossings in the ES, as illustrated in Fig. 5. The origin
of these effects is that the noninteracting bosons are cou-
pled repeatedly in time to the measurement apparatus, which

provides an effect similar to a local boson-boson interaction,
since the measurement is performed on the same quantum
state at different times. The situation can be compared with
the unitary evolution of bosons with an interaction U �= 0 in

FIG. 7. Plot of the entanglement entropy for N = 4 and (a) Jτ = π h̄/4 and (b) Jτ = π h̄/3.
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the Bose-Hubbard Hamiltonian

H = −J (a†
l ar + a†

r al ) + U

2

(
n2

l + n2
r

)
. (33)

We previously studied this system and found similar behav-
ior of a fluctuating EE and level crossings in the ES [27]. The
fluctuations were removed by averaging over time intervals,
an approach we could also apply in the present case with
U = 0. For the monitored evolution we could also introduce
random time steps between measurements and average over
their distribution [41,46–49]. As a disadvantage of such a
time averaging, though, we would not be able to detect the
switching of the EE in Fig. 7(b).

V. CONCLUSION

We have studied the monitored evolution of N noninteract-
ing bosons which tunnel between two wells. The monitoring
is carried out by repeated projective measurements. The effect
of these measurements is studied in terms of FDR and FDT
probabilities to determine quantitatively the monitoring. From
the FDR and FDT probabilities we derived the reduced den-
sity matrix for one well, the EE, and the ES. This was based
on the relation (4) and enabled us to evaluate the EE and the
ES directly from the FDR and FDT probabilities. It turns out
that the EE is quite sensitive to a change of model param-
eters, i.e., the number of bosons and the time step between
two measurements. The rather complex behavior of the EE
indicates that a single quantity, such as the EE, is quite limited
for the characterization of the entanglement in the present
system. More details were revealed by the ES of Eq. (7). It
enabled us to identify the statistical weight of each transition
|0, N〉 → |n, N − n〉 to the monitored evolution individually.
A characteristic feature of the ES is level crossing. Although
it already appears in the unitary evolution [cf. Fig. 5(a)], it
becomes much more complex for the monitored evolution
in Fig. 5(b). Except for the crossing points, there is always
a unique lowest level, representing the dominant transition
|0, N〉 → |n, N − n〉. The excitation to higher levels is impor-
tant as long they are close to the lowest levels. This effect is

important when the level ξm;n changes quickly with m. This
can happen near the special values Jτ = π h̄/l (l integer), as
demonstrated in Fig. 6.

Although our approach was employed only to noninter-
acting bosons, it is directly applicable to interacting bosons
as well. For instance, we can consider the two-site Bose-
Hubbard model with the Hamiltonian of Eq. (33). New
regimes might appear due to the competition of particle tun-
neling, particle-particle interaction, and the interaction with
the measurement apparatus. This is an ambitious project for
the future, in which, among other aspects, the role of Hilbert-
space localization should be addressed.
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APPENDIX A: EIGENSTATES

With the rotated basis {a±, a†
±},

a†
± := 1

2 (a†
l ± a†

r ), a± = 1
2 (al ± ar ),

we obtain, for the tunneling operator a†
l ar + a†

r al ,

a†
l ar + a†

r al = 1
2 [(a†

l + a†
r )(al + ar ) − (a†

l − a†
r )(al − ar )]

= 1
2 (a†

+a+ − a†
−a−), (A1)

where (a†
l ± a†

r )(al ± ar ) are number operators. Then we can
directly show that a+ and a− and their Hermitian conjugate
commute when al and ar commute. As a consequence, the
eigenstate reads

|Ek〉 = 2−N/2

√
k!(N − k)!

(a†
+)k (a†

−)N−k|0, 0〉

and the application of the tunneling operator yields
1
2 (a†

+a+ − a†
−a−)|Ek〉 = (N − 2k)|Ek〉.

The knowledge of the eigenstates enables us to calculate
the spectral weights as scalar products

qn,k := 〈n, N − n|Ek〉 = 2−N/2

√
k!(N − k)!

〈n, N − n|(a†
l + a†

r )k (a†
l − a†

r )N−k|0, 0〉

= 2−N/2

√
k!(N − k)!

〈n, N − n|
k∑

l=0

(
k

l

)
(a†

l )l (a†
r )k−l

N−k∑
l ′=0

(
N − k

l ′

)
(a†

l )l ′ (−a†
r )N−k−l ′ |0, 0〉,

and since the left and right operators commute, we obtain, after reordering,

2−N/2

√
k!(N − k)!

k∑
l=0

(
k

l

) N−k∑
l ′=0

(
N − k

l ′

)
(−1)N−k−l ′ 〈n, N − n|(a†

l )l+l ′ (a†
r )N−l−l ′ |0, 0〉. (A2)

Due to the orthogonality of the states, the sum vanishes unless l + l ′ = n. Then from the l summation there are two constraints
for l ′, 0 � l ′ = n − l and n − l = l ′ � N − k, which are equivalent to n + k − N � l � n such that

n + k − N � l � n for n + k − N > 0,

0 � l � n for n + k − N � 0.
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This result, together with (a†)l |0〉 = √
l!|l〉, implies for the scalar product

qn,k = 2−N/2

√(
N

k

)/(
N

n

)
×

⎧⎨
⎩

∑min{k,n}
l=0

(k
l

)(N−k
n−l

)
(−1)N−k−n+l for n + k � N∑min{k,n}

l=n+k−N

(k
l

)(N−k
n−l

)
(−1)N−k−n+l for n + k > N.

(A3)

The orthonormal condition of the states |n, N − n〉 and the states |Ek〉 lead to

N∑
n=0

qn,kqn,k′ = δkk′ ,

N∑
k=0

qn,kqn′,k = δnn′ , (A4)

respectively.

APPENDIX B: EXPANSION OF THE FIRST RETURN OR TRANSITION AMPLITUDE

For the FDR or FDT amplitude

φm+1,1 := 〈ψ |(e−iτH�)me−iτH |ψ0〉 = 〈ψ |e−iτH (�e−iτH )m|ψ0〉, � = 1 − |ψ0〉〈ψ0|, (B1)

we obtain two equivalent recursion relations, namely,

φm+1,1 = φ′
m,2 − u1φm,1 with φ′

m,k = 〈ψ |e−ikτH (�e−iτH )m−1|ψ0〉, uk = 〈ψ0|e−iHkτ |ψ0〉 (B2)

from the third expression in Eq. (B1) and

φm+1,1 = φm,2 − φm,1v1 with φm,k = 〈ψ |(e−iτH�)m−1e−ikτH |ψ0〉, vk = 〈ψ |e−iHkτ |ψ0〉 (B3)

from the second expression in Eq. (B1). Then the iteration of
Eq. (B2) yields, with φm ≡ φm,1,

φm = vm −
m−1∑
j=1

um− jφ j, φ1 = v1, (B4)

and from the iteration of Eq. (B3),

φm = vm −
m−1∑
j=1

φm− jv j, φ1 = v1. (B5)

Using the vector notation 
φ := (φ1, φ2, . . . , φm) and 
v =
(v1, v2, . . . , vm), with the matrix  of Eq. (18) and with the
matrix φ̂ = (φm− j ), we can write, for Eqs. (B4) and (B5),

(1 + ) 
φ = 
v, 
φ = (1 − φ̂)
v, (B6)

which yields (1 − φ̂)(1 + ) = 1 and Eq. (17), respectively.
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