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The observables of a noisy quantum system can be estimated by appropriately filtering the records of their
continuous measurement. Such filtering is relevant for state estimation, and if the filter is causal, also relevant for
measurement-based feedback control. It is therefore imperative that a pair of conjugate observables estimated
causally satisfy the Heisenberg uncertainty principle. In this article, we prove this fact—without assuming
Markovian dynamics or Gaussian noises, in the presence or absence of feedback control of the system, and where
in the feedback loop (inside or outside) the measurement record is accessed. Indeed, causal estimators using the
in-loop measurement record can be as precise as those using the out-of-loop record. These results clarify the
role of causal estimators to non-Markovian quantum systems, restore the equanimity of in-loop and out-of-loop
measurements in their estimation and control, and simplify future experiments on measurement-based quantum
feedback control.
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I. INTRODUCTION

Estimating the state of a system from a noisy measure-
ment record is ubiquitous in engineering and science. For a
classical linear system driven by stationary Gaussian noise,
the optimal estimator of an observable—in the sense of mini-
mizing the mean-square error—is given by the Wiener filter
[1,2]. In essence, the Wiener filter weights the noisy mea-
surement record to get an estimate of the desired observable
such that parts of the record with higher signal-to-noise ratio
are emphasised. For prediction problems where only the past
measurement record is available, the Wiener filter is causal
and is given in terms of the spectrum of the measurement
record and a model of its cross-spectrum with the desired
observable. Additionally, if the dynamics are Markovian, a
state-space model of the system and its observation is avail-
able, and the Kalman filter uses that description to produce
an equivalent, more tractable estimate of the state [3]. State
estimation is also a crucial element in optimal control: the sep-
aration principle [4,5] asserts that the feedback controller that
minimizes a quadratic cost function of a linear system driven
by Gaussian noise can be split into a causal state estimator and
a linear regulator, with any error in the controlled state set by
that of the estimator.

These ideas have been fully transposed to quantum sys-
tems: the theory of quantum state estimation [6–11], feedback
control [12–16], and the separation principle [17] have been
developed. A central distinction between classical and quan-
tum systems is that the latter has to obey Heisenberg’s
uncertainty principle: a pair of conjugate observables cannot
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be determined with arbitrary precision simultaneously, even in
principle. Consequently, it is believed that causal estimation of
conjugate observables cannot be simultaneously more precise
than that allowed for the observables themselves. Violation
of this expectation would result in an unphysical conditional
state (i.e., a state estimated through the measurement record)
[10], and, by the separation principle, the possibility of trans-
muting the unphysical conditional state to an unphysical
steady state by feedback control.

The purpose of this paper is to prove, in general and ex-
plicitly, that the product of the variance of the errors in the
causal estimate of observables is lower bounded by the mini-
mum variance product of corresponding physical observables
allowed by the Heisenberg uncertainty principle. In other
words, the uncertainties of causal estimation errors respect the
uncertainty principle of the corresponding physical observ-
ables, and thus the causal conditional state has to be physical.
Prior work guarantees this in Markovian and Gaussian set-
tings [6–8,10,18] but only in the case where either a quantum
stochastic differential equation for the state is available. Sim-
ilar to the classical case, in the linear Gaussian Markovian
setting, the quantum version of Kalman filter is equivalent
to solving the quantum stochastic master equation to get the
observable dynamics [10]. However, for non-Markovian or
non-Gaussian cases, no mathematical framework is currently
available for solving for the observable dynamics directly,
and the previous proof of the uncertainty principle is not
valid any more. Recent experiments in quantum state esti-
mation and feedback control in systems ranging from atoms
[19–22] and solid state qubits [23–26] to mechanical oscilla-
tors [27–35] call for a simple and general guarantee that causal
state estimation and control of quantum systems will not
violate the basic tenet of the uncertainty principle, including
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non-Markovian cases. In particular, non-Markovian 1/ f noise
limits coherence of solid-state mechanical oscillators [36–40]
and superconducting qubits [41–44], both leading candidates
for measurement-based feedback control. Moreover, retro-
dictive (i.e., anti-causal) estimation is known for potential
violation of Heisenberg’s uncertainty principle [45], which,
as a matter of principle, calls for a proof of Heisenberg’s
uncertainty principle in the causal estimation scenario under
general conditions. In the following we address the validity
of the uncertainty principle in causal state estimation in the
non-Markovian setting generally.

II. STATEMENT OF PROBLEM AND MAIN RESULT

Consider a quantum system, and any pair of observables
Â(t ), B̂(t ), in the Heisenberg (or interaction) picture, which
will be the object of estimation via continuous linear mea-
surement. The uncertainties in them are lower-bounded by the
uncertainty principle [46–48]

σ 2
A(t )σ

2
B(t ) �

∣∣ 1
2 〈[Â(t ), B̂(t )]〉∣∣2 + ∣∣ 1

2 〈{Â(t ), B̂(t )}〉∣∣2

�
∣∣ 1

2 〈[Â(t ), B̂(t )]〉∣∣2
, (1)

where σ 2
O ≡ 〈Ô2〉 is the variance of the operator Ô, [·, ·] is the

commutator, and {·, ·} is the anticommutator. Here we assume,
without loss of generality, that observables are zero-mean. In
passing to the last line, we have also dropped an overall pos-
itive term on the right-hand side, which makes the resulting
bound weaker, but has the advantage that for bosonic (and
linearized fermionic [49–51]) systems the lower bound can
be state independent.

The premise of the uncertainty principle is the positivity
of the quantum state ρ̂: clearly, Tr[M̂(t )†M̂(t )ρ̂] � 0 for any
operator M̂(t ); in particular, also for M̂ = Â + λB̂ for any
constant λ. Further, the inequality must still hold for the
minimum value of its left-hand side as a function of λ; this
gives Eq. (1). So as long as the quantum state is guaranteed
to be positive, the uncertainty relation holds. The problem is
that in non-Markovian settings—i.e., where the system may
be driven by non-Markovian noises, its measurements may
be contaminated by non-Markovian noises, and/or feedback
may be non-Markovian—positivity of the conditional state is
difficult to extract from models of its evolution.

We therefore analyze the problem in the interaction picture
for the observables of interest, assuming only linearity of
measurement and feedback. In particular, we will show that
for causal linear measurement, the estimation errors �Â,�B̂
(to be defined below) of the observables Â, B̂ satisfy

σ 2
�A(t )σ

2
�B(t ) �

∣∣ 1
2 〈[Â(t ), B̂(t )]〉∣∣2

, (2)

i.e., causal estimates of conjugate observables are no more
precise than the observables themselves.

III. PROOF FOR CASE WITHOUT FEEDBACK

We now consider a setup for quantum state estimation
where the system is monitored continuously, the result of
which is described by the measurement record Ŷ [Fig. 1(a)].
The continuous monitoring condition (self-nondemolition

FIG. 1. (a) Schematic diagram for a general open-loop measure-
ment. F̂ is a general force coupling to the system through system
parameter D̂. The effect of this interaction is encoded in the outgoing
field Ŷout together with other system information. A general force Ĝ
coupling through Ŷout does not influence the system due to causality.
(b) Schematic diagram for an open-loop system (upper panel) and
a measurement-based feedback controlled system (lower panel). M
and K stand for the system and controller transfer functions respec-
tively. r̂, Ŷo, and Ŷc are the set point, the open-loop measurement
record, and the in-loop measurement record, respectively.

principle [6]) is that [52]

[Ŷ (t ), Ŷ (t ′)] = 0 for all t, t ′. (3)

The observables are estimated by filters WA,B acting linearly
on the record [2]:

Âe(t ) = (WA ∗ Ŷ )(t ), B̂e(t ) = (WB ∗ Ŷ )(t ), (4)

where ∗ stands for convolution. When WA,B are causal, i.e.,

WA,B(t � 0) = 0, (5)

they only act on the past record.
Equation (3) implies that the estimators commute with

each other, and so they do not need to obey the uncertainty
principle. That is, the uncertainty in the conditional state (i.e.,
the state estimated based on the measurement record) is not
contained in the estimators, but in the estimation errors, de-
scribed by the operators [10]

�Â(t ) ≡ Â(t ) − Âe(t ) = Â(t ) − (WA ∗ Ŷ )(t ) (6)

�B̂(t ) ≡ B̂(t ) − B̂e(t ) = B̂(t ) − (WB ∗ Ŷ )(t ), (7)

which characterize how closely the estimators follow the
physical operators. To see this, note that in the Heisenberg
picture, the positivity of the initial state suffices to guarantee
that

σ 2
�A(t )σ

2
�B(t ) �

∣∣ 1
2 〈[�Â(t ),�B̂(t )]〉∣∣2

. (8)

That is, the estimation errors cannot be determined simultane-
ously with arbitrary precision.

We will now show that causality of the estimation fil-
ters WA,B [Eq. (5)] and of the measurement implies that
〈[�Â(t ),�B̂(t )]〉 = 〈[Â(t ), B̂(t )]〉, so that the lower bound in
Eq. (8) becomes the lower bound in the uncertainty principle
for the observables Â, B̂.

Using Eqs. (6) and (8) together with Eq. (3), we have

〈[�Â(t ),�B̂(t )]〉 = 〈[Â(t ), B̂(t )]〉 − 〈
[Â(t ), B̂e(t )]

〉
− 〈[Âe(t ), B̂(t )]〉. (9)
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The key in determining the remaining average of equal-time
commutators is an understanding of the unequal-time commu-
tators between the system observable and the measurement
record. In the context of state estimation and measurement-
based quantum control, weak measurement applies to most of
the current experiments [19,20,23–32,34,35], thus we treat the
effect of measurement on the system as a perturbation, and
apply linear response theory [52–55]. The key result of the
theory is Kubo’s formula, which gives the linear response of
the average of a system observable 〈Ĉ(t )〉 to an external per-
turbation F̂ (t ), whose effect is described by the Hamiltonian
Ĥ (t ) = Ĥ0 − D̂F̂ (t ), where Ĥ0 is the free Hamiltonian and D̂
is a system observable. Kubo’s formula states

〈Ĉ(t )〉 = 〈Ĉ(0)(t )〉 + i

h̄

∫ t

−∞
χCD(t, t ′)〈F̂ (t ′)〉dt ′, (10)

where Ĉ(0)(t ) is the observable evolving under Ĥ0 and

χCD(t, t ′) = 〈[Ĉ(0)(t ), D̂(0)(t ′)]〉 (11)

is the linear response susceptibility, evaluated on the state of
the system evolving under Ĥ0 (i.e., Kubo’s formula holds in
the interaction picture).

Consider now the schematic diagram of a general measure-
ment as shown in Fig. 1(a), where Ŷout = Ŷ is the outgoing
measurement record and Ĝ is the generalized force coupling
to the system through Ŷout by the interaction Hamiltonian
−ŶoutĜ. Focusing on Â and using Eq. (10), we have

〈Â(t )〉 = 〈Â(0)(t )〉 + i

h̄

∫ t

−∞
χAY (t, t ′)〈Ĝ(t ′)〉dt ′, (12)

with χAY (t, t ′) = 〈[Â(0)(t ), Ŷ (0)
out (t ′)]〉. Now we bring in the

crucial ingredient of causality of the measurement: for an
open-loop measurement, i.e., where the measurement record
is not used for feedback, the measurement record Ŷ cannot
influence the system dynamics at a later time, implying that

χAY (t, t ′) = 〈[Â(0)(t ), Ŷ (0)(t ′)]〉 = 0 for t � t ′. (13)

Since the susceptibility is zero for t � t ′, the force Ĝ does not
influence the system for such times. Thus,

χAY (t, t ′) = 〈[Â(t ), Ŷ (t ′)]〉 = 0 for t � t ′, (14)

where we have dropped the superscripts “(0).”
Let us now consider 〈[Â(t ), B̂e(t )]〉. Without loss of gen-

erality, we evaluate it in the interacting picture, where the
arbitrary state sandwiching the commutator evolves under Ĥ0.
Using Eq. (4),

〈[Â(t ), B̂e(t )]〉 =
∫ +∞

−∞
WB(τ )〈[Â(t ), Ŷ (t − τ )]〉dτ. (15)

By causality of the estimation filter, WB(τ ) = 0 for τ < 0. For
τ � 0, Eq. (14) implies that 〈[Â(t ), Ŷ (t − τ )]〉 = χAY (t, t −
τ ) = 0. Thus, causality—of the measurement interaction and
of the estimation filter—implies that 〈[Â(t ), B̂e(t )]〉 = 0. Sim-
ilarly, it can be shown that 〈[Âe(t ), B̂(t )]〉 = 0.

In summary, for causal estimation using open-loop
measurements,

〈[�Â(t ),�B̂(t )]〉 = 〈[Â(t ), B̂(t )]〉, (16)

i.e., the estimation errors respect the uncertainty principle of
the corresponding physical observables.

IV. PROOF FOR CASE WITH FEEDBACK

We now consider the case where the system is feedback
controlled, and using the in-loop measurement record Ŷc for
state estimation [see the lower panel of Fig. 1(b)]. In this case
the in-loop record does affect the system at later times after
the measurement interaction. However, the open-loop record
Ŷo does not. In order to use this fact, note that the in-loop and
open-loop measurement records are related to each other as

Ŷc(t ) = (Kc ∗ Ŷo)(t ), (17)

where Kc(t ) is the inverse Fourier transform of (1 −
M[ω]K[ω])−1 [M and K are the transfer functions of the
system and the controller, respectively, as in Fig. 1(b)]. Im-
portantly, if M, K are causal, then so is Kc.

Imagine now estimation based on the in-loop measurement
record Ŷc: Âec(t ) = (W c

A ∗ Ŷc)(t ) and B̂ec(t ) = (W c
B ∗ Ŷc)(t ),

with W c
A and W c

B the estimation filters in the in-loop case.
Following the same line of reasoning as in the open-loop case,
the question of whether the estimated observables respect the
Heisenberg uncertainty principle of the original observables
boils down to whether 〈[Â(t ), Ŷc(t ′)]〉 = 0 for t � t ′. Clearly,

〈[Â(t ), Ŷc(t ′)]〉 =
∫ ∞

−∞
Kc(t ′ − τ )〈[Â(t ), Ŷo(τ )]〉dτ.

We consider the integrand in two complementary intervals,
t ′ < τ and t ′ � τ . In the former region, Kc(t ′ − τ ) = 0 since
Kc is causal. In the latter region, since t � t ′ � τ , we have that
〈[Â(t ), Ŷo(τ )]〉 = 0 using causality of open-loop dynamics. In
sum, the integral is zero in both intervals due to causality.
Thus, 〈[Â(t ), Ŷc(t ′)]〉 vanishes as long as t � t ′. A similar ar-
gument holds for 〈[B̂(t ), Ŷc(t ′)]〉. Thus, 〈[Â(t ), Ŷc(t ′)]〉 = 0 =
〈[B̂(t ), Ŷc(t ′)]〉 for t � t ′. In summary, the in-loop estimation
errors �Âc = Â − Âec,�B̂c = B̂ − B̂ec satisfy

〈[�Âc(t ),�B̂c(t )]〉 = 〈[Â(t ), B̂(t )]〉, (18)

just as in the open-loop case. Thus, the in-loop causal
estimation errors respect the uncertainty principle of the cor-
responding physical observables just as in the open-loop case.

V. EFFECT OF FEEDBACK ON ESTIMATION ERROR

The in-loop measurement record Ŷc is often deemed
untrustworthy for state estimation. Historically, this view
originated from the apparent violation of the Heisenberg un-
certainty principle by the in-loop field in linear measurement-
based feedback control of optical fields [56]. This behavior,
called “noise squashing” [57], arises because fields inside a
feedback loop are not freely propagating and so need not
satisfy the canonical commutation relations [58,59].

In fact, if a model of the feedback loop is available, then
state estimation using the in-loop measurement record is as
accurate as an estimate based on the out-of-loop record. We
can always write the system observable in the presence of
feedback Âc as the sum of the open-loop one Âo plus a feed-
back term:

Âc(t ) = Âo(t ) + Âfb(t ) = Âo(t ) + (K ∗ Ŷc)(t ), (19)
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where K is a causal feedback control filter. Now consider two
filters W i

A[ω] (i = c, o), one estimating the observable Â from
the in-loop record and the other from the out-of-loop record.
The respective errors are �Âi(t ) = Âi(t ) − (W i

A ∗ Ŷi )(t ). It is
straightforward to show that if the in-loop filter is chosen to
be

W c
A [ω] = W o

A [ω]

Kc[ω]
+ K[ω]

= (
1 − W o

A [ω]M[ω]
)
K[ω] + W o

A [ω],

then �Âc = �Âo. Note that if the feedback loop and W o
A

are stable and causal, so is W c
A . Therefore, by proper filter

design, state estimation can be performed using the in-loop
measurement record without loss of fidelity.

VI. EXAMPLE OF A STRUCTURALLY DAMPED
MECHANICAL OSCILLATOR

A canonical example of non-Markovian behavior of a sub-
ject of contemporary interest to quantum state estimation is a
structurally damped mechanical oscillator [33,36–40]. Such a
system is described by the linear response of its displacement
x̂[ω] = χ [ω]F̂ [ω], to the force F̂ , by the susceptibility [60]

χ [ω] = [
m

(−ω2 + ω2
0 + iω2

0φ[ω]
)]−1

, (20)

where m is the mass, ω0 is the resonance frequency, and φ is
the loss angle. The thermal displacement spectrum of the os-
cillator, given by the fluctuation-dissipation theorem [61,62],
is

Sth
xx[ω] = 2h̄

(
nth[ω] + 1

2

)
Imχ [ω]

= 2h̄
(
nth[ω] + 1

2

)
m

[(
ω2 − ω2

0

) + (ω0φ[ω])2
] , (21)

with nth[ω] = 1/(exp[h̄ω/kBT ] − 1) being the thermal occu-
pancy of the bath, where kB is the Boltzmann constant and T
the bath temperature.

The structural damping model is unphysical and incon-
sistent if the loss angle φ[ω] is frequency independent.
Unphysical, because the 1/ω scaling of the oscillator’s dis-
placement spectrum would preclude a finite variance for
the displacement. Mathematically inconsistent, because the
susceptibility between hermitian operators must have the
symmetry χ [ω]∗ = χ [−ω], or equivalently, Reχ−1[ω] =
Reχ−1[−ω] and Imχ−1[ω] = −Imχ−1[−ω]. For a struc-
turally damped oscillator, Imχ−1[ω] = mω2

0φ[ω] is not anti-
symmetric in frequency if the loss angle is finite and frequency
independent. In order to satisfy the antisymmetry, to leading
order, Imχ−1[ω → 0] ∝ ω, which precisely cancels the 1/ω

pathology in the spectrum. The simplest example of such a
loss angle is velocity-proportional damping, which however
is inconsistent with observations on high-quality elastic oscil-
lators. The Zener model [63]

φ[ω] = φ0
ωτ

1 + (ωτ )2
, (22)

although not frequency independent, is slowly varying around
ω ≈ τ−1, consistent with observations, and resolves the
pathologies of a truly frequency-independent loss angle. Since

FIG. 2. Product of the uncertainty in the errors of the causal
estimates of displacement and momentum of a structurally damped
oscillator estimated from an interferometric measurement (inset).

the 1/ω low-frequency divergence of the displacement spec-
trum is mollified, most of the thermal energy of the oscillator
is concentrated around resonance; thus, the approximation
χ [ω]−1 ≈ m[2ω0(−ω + ω0) + i
0ω0] is viable (here 
0 =
ω0φ[ω0]).

We will now show that a causal Wiener filter applied to an
interferometric measurement of a structurally damped oscil-
lator produces estimates of its position x̂(t ) and momentum
p̂(t ), whose estimation errors satisfy

σ 2
�x(t )σ

2
�p(t ) �

∣∣∣∣1

2
〈[�x̂(t ),�p̂(t )]〉

∣∣∣∣
2

=
∣∣∣∣1

2
〈[x̂(t ), p̂(t )]〉

∣∣∣∣
2

= h̄2

4
. (23)

We consider that the motion of the Zener-damped oscillator
is measured using a cavity interferometer [64], as shown in
the insert of Fig. 2. The motion of the oscillator changes the
resonance frequency of the cavity, and thus the phase of light
leaking out. Homodyne measurement of the light produces a
photocurrent that is linearly proportional to the oscillator’s
displacement, together with detection noise; we denote by ŷ
these photocurrent fluctuations referred to apparent displace-
ment. Applying a causal Wiener filter to ŷ gives an estimate
of the physical displacement x̂. The physical momentum p̂
is then (using the close-to-resonance approximation) p̂[ω] =
imω0x̂[ω]. The estimation errors �x̂ and � p̂ are related sim-
ilarly. The spectra of the errors in the estimate produced by
causal Wiener filtering is [2,65]

S�x��x�′ = Sx�x�′ −
[

Sx�y

S−
y

]
+

[
Sx�′ y

S−
y

]∗

+
, (24)

where x� ∈ {x̂ or p̂}; Sx�x�′ is the spectrum of the correspond-
ing observables; S−

y is the anticausal factor of the measured
spectrum Syy, such that Syy = S+

y S−
y with S+

y = {S−
y }∗; and

[.]+ takes the causal components of the expression in the
bracket. The variance in the estimate �x� is the integral of
the spectrum S�x��x�

.
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For measurement using a cavity interferometer, in the
bad-cavity regime (i.e.. cavity linewidth κ � ω0), with probe
laser on-resonance with the cavity and homodyne detection of
phase quadrature of the probe laser, direct computation using
standard techniques [64] shows that

Sxx[ω] = 2x2
zpf (
th + 
meas)

(ω − ω0)2 + (
0/2)2
= Sxy[ω] (25)[

Sxy

S−
y

]
+

= i
2xzpf

√
2
meas(
th + 
meas)

(
0/2 + 
W)(ω − ω0 + i
0/2)
, (26)

where xzpf = √
h̄/2mω0 is the zero-point fluctuation in dis-

placement, 
th = 
0(nth + 1/2) is the thermal decoherence
rate, and 
meas = 4g2/κ ≡ nmeas
0 is the measurement rate,
where nmeas = 4g2/(κ
0) is the occupation due to quan-
tum back-action of the measurement and g the multiphoton
optomechanical coupling rate. 
W is the characteristic es-
timation bandwidth of the Wiener filter, given by 
2

W =
4
th
meas + 4
2

meas + (
0/2)2. The spectrum of the estima-
tion error [Eq. (24)] is obtained using Eqs. (25) and (26):

S�x�x[ω] = 8x2
zpf (
meas + 
th )


2
0 + 4(ω − ω0)2

×
[

1 − 16
meas(
meas + 
th )

(
0 + 
W)2

]
. (27)

Integrating it gives the variance

σ 2
�x = x2

zpf
4(
meas + 
th )


0 + 2
W
. (28)

A similar computation for the momentum gives

σ 2
�p = p2

zpf
4(
meas + 
th )


0 + 2
W
, (29)

where pzpf = (h̄/2)/xzpf is the zero-point fluctuation in the
momentum. In both cases, straightforward analysis of the
right-hand side shows that the variances are bounded as

(2nth + 1)x2
zpf � σ 2

�x � x2
zpf

(2nth + 1)p2
zpf � σ 2

�p � p2
zpf ; (30)

here the lower bound is attained in the regime of strong
measurement (i.e., 
meas � 
th), which is favorable for es-
timation, while the upper bound is attained in the opposite

regime. It is worth noting that even though quantum back
action contributes to the physical motion of the oscillator, as
indicated by 
meas in Eq. (25), the estimated motion can be
free from it in the strong measurement regime for unity de-
tection efficiency. Clearly the variances of the estimate errors
satisfy

(2nth + 1)2 h̄2

4
� σ 2

�xσ
2
�p �

h̄2

4
, (31)

where the lower bound is the claim in Eq. (23). Figure 2 shows
how the product σ�xσ�p is bounded as the measurement rate

meas is increased.

VII. CONCLUSION

We have proved—with or without feedback, and with-
out invoking any Markovian or Gaussian character of the
system dynamics or measurement—that the errors in causal
estimation of quantum observables from a linear continu-
ous measurement respect the Heisenberg uncertainty principle
for the corresponding physical observables. We utilize linear
response theory, widely applicable to current experimental
measurement-based quantum control. Furthermore, in the sce-
nario with feedback control, we clarify that despite “noise
squashing,” the in-loop measurement record can provide as
faithful an estimate of an observable as the out-of-loop
record. As a matter of practice, this vastly simplifies exper-
iments and extends the reach of quantum state estimation to
non-Markovian scenarios [33,38,66]. Importantly, this insight
eliminates the compromise in measurement efficiency that is
required in having two simultaneous measurements on the
same system.
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