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The quantum brachistochrone problem addresses the fundamental challenge of achieving the quantum speed
limit in applications aiming to realize a given unitary operation in a quantum system. Specifically, it looks
into optimization of the transformation of quantum states through controlled Hamiltonians, which form a small
subset in the space of the system’s observables. Here we introduce a broad family of completely integrable
brachistochrone protocols, which arise from a judicious choice of the control Hamiltonian subset. Furthermore,
we demonstrate how the inherent stability of the completely integrable protocols makes them numerically
tractable and therefore practicable as opposed to their nonintegrable counterparts.
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I. INTRODUCTION

Determining the optimal time required to achieve a uni-
tary operation in a given quantum system holds fundamental
significance, particularly in the context of the quantum dpeed
limit [1,2]. It also carries important implications in the context
of quantum control [3–5] such as quantum computing [6,7],
shortcuts to adiabaticity [8], and quantum state preparation
[9,10]. The quantum brachistochrone problem belongs to the
class of formal problems aiming to facilitate this task. It was
first introduced by Carlini et al. [11]. It can also incorpo-
rate other optimization approaches, like the quantum Zermelo
navigation [12]. Moreover, it has been used to realize experi-
mentally different optimal quantum qubit gates [13–15].

At a conceptual level, the quantum brachistochrone prob-
lem stems from the challenge of realizing a specific unitary
transformation within a quantum system through a process
known as “driving.” This process entails a time-dependent ma-
nipulation of the system’s Hamiltonian within a constrained
parameter space defined by the architecture of quantum hard-
ware. While numerous trajectories exist in this Hamiltonian
parameter space that yield the same unitary evolution oper-
ator, of primary importance is the one that accomplishes the
desired outcome with the smallest effort possible. In essence,
the quantum brachistochrone is defined as the global mini-
mum of a quantum cost function, which is the dimensionless
product of the quantum computation time and the spectral
norm of the control Hamiltonian. The mathematical intricacy
of the quantum brachistochrone problem arises from the limi-
tation imposed on the space of control Hamiltonians, typically
confined to a small subset of all system observables.

The formal statement of the brachistochrone problem con-
sists in specifying the Hilbert space, the choice of the subset
of allowed Hamiltonians, and the desired unitary. Given such
data one proceeds to solving the optimization problem, which
translates into a boundary value problem for a system of non-
linear ordinary differential equations (ODEs). Several cases
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that can be solved analytically were presented in [16–19].
However, the problem in its generality remains analytically
intractable and, in the case of moderately large systems, nu-
merically hard as the common numerical recipes such as the
shooting method [20] fail when the initialization of the search
starts away from true solution [21,22]. In an attempt to tackle
this difficulty, an alternative numerical approach was explored
in [23], where the problem was reformulated into searching
for geodesics curves in the unitary group. Moreover, in [24],
they reformulated the problem by exploiting the additional
symmetries of the prolem. Successful as this numerical recipe
may be, it is naturally limited to gates of small dimensionality.

It is worth noting that the dimension of the system of quan-
tum brachistochrone ODEs scales exponentially with the size
of the quantum system, due to the exponential dependence
of the Hilbert space with the number of particles. As the
number of dynamical variables increases and the dynamics
becomes more unstable solving the problem in full generality
eventually becomes a formidable task. In fact, computational
complexity endemic to all chaotic nonlinear equations [25] is
likely to place the quantum brachistochrone problem into the
same category of numerically hard problems as, e.g., the long-
term forecast in the Lorenz system [26]. For this reason, it is
important to identify special cases, which demonstrate stable
dynamics, and which can be scaled to large system sizes. A
particularly important subset of such cases is formed of com-
pletely integrable systems. Not only do such systems exhibit
numerically stable trajectories, but they also (at least in princi-
ple) admit for various reductions and solutions by quadratures.
Furthermore, by virtue of the phenomenon of Kolmogorov-
Arnold-Möser (KAM)-stability [27–31], such systems
give access to a much broader class of numerically easy
nonintegrable brachistochrone problems achieved through
small deformations of the space of allowed Hamiltonians.

In this paper, we present a class of completely integrable
brachistochrone problems. This class, in particular, contains
the exactly solved cases discovered in previous literature
[16–19]. Complete integrability is achieved through the suit-
able choice of the space of control Hamiltonians, which are
regarded as a generating set of a Lie algebra. Complete
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integrability arises from a relationship between the the con-
trol Hamiltonian subspace and Cartan decompositions of the
associated Lie group [su(n) in our case]. The construction
of the integrable cases is inspired by the classical integrable
Lie-Poisson Hamiltonian systems [32,33]. After describing
the general construction of the class of completely integrable
quantum brachistochrone problems, we proceed to the inves-
tigation of the numerical stability of quantum brachistochrone
equations in systems with a small Hilbert space. We find that
the numerical stability of integrable protocols is significantly
better than of an arbitrary chaotic protocol. Furthermore, the
numerical data hint that, with increasing dimension of the
Hilbert space, the boundary value problem in a generic nonin-
tegrable case becomes increasingly hard to solve.

The structure of the paper is as follows. First we give a
general overview of the quantum brachistochrone and discuss
its general properties. Thereafter we describe the construction
of a class of integrable brachistochrone protocols. Then we
perform numerical investigation of the stability of integrable
and nonintegrable protocols showing the qualitative differ-
ence. We, furthermore discuss evidence that the solution of the
problem becomes increasingly more difficult with increasing
dimension of the Hilbert space.

II. GENERAL OVERVIEW

A. Optimization problem and the cost function

In this paper we only consider quantum systems having
a finite-dimensional computational Hilbert space. In practical
hardware problems, such a space is usually associated with the
soft (low-energy) part of the spectrum of a physical Hamilto-
nian. The soft spectrum needs to be separated from the rest
of the energy eigenvalues by a sufficiently large energy gap to
avoid unwanted excitations of the system outside the confines
of the computational space. All observables discussed below
are restrictions of the experimentally accessible physical ob-
servables to the computational Hilbert space.

Imagine that we want to realize a unitary operator Ûd ∈
SU(n) on an n-dimensional computational Hilbert space as
an evolution operator generated by a time-dependent control
Hamiltonian. More precisely, consider the evolution operator
U (t ) satisfying the Schrödinger equation

i∂tÛ (t ) = Ĥ (t )Û (t ), Û (0) = I. (1)

We are looking for a time-dependent Hamiltonian H (t ) such
that at the end of computation t = t f , the unitary evolution
operator will satisfy Û (t f ) = Ûd . Generally, for a given Ud

there are infinitely many such Hamiltonians. The optimiza-
tion problem arises from the task of finding the “shortest”
trajectory Ĥ (t ), which is crudely the one that minimizes the
protocol duration t f (see below for clarification). The problem
becomes nontrivial if we assume that Ĥ (t ) can only be chosen
from a subspace of the space of all quantum observables.

Before proceeding to the mathematical specifics we recall
some basic facts about the quantum brachistochrone problem.
First, we note that trivial multiplication of H (t ) by a number
λ leads to the rescaling of the computation time t f �→ t f /λ.

For this reason, the computation time itself is not a good
choice of the optimisation functional. Rather, one introduces a

dimensionless cost function t f × maxt ||Ĥ (t )|| where || . . . ||
stands for the Frobenius norm of an operator. The dimension-
less optimisation functional admits for further simplification
owing to a gauge symmetry of the original optimisation
problem. We note that the Schrödinger equation is invari-
ant under the redefinition t �→ t ′ = ϕ(t ) and Ĥ (t ) �→ Ĥ ′(t ) =
ϕ̇(t )H[ϕ(t )], where ϕ(t ) is any monotonically increasing
function of time satisfying ϕ(0) = 0. This implies that one
solution H∗(t ) to the quantum brachistochrone problem one
generates a family of equivalent solutions parameterized by
the gauge function ϕ(t ). In particular, one can easily see
that there exists a gauge choice such that ϕ̇(t )||Ĥ∗[ϕ(t )]|| =
t f maxt ||Ĥ∗(t )||, while ϕ(t f ) = 1. With this choice of gauge
the cost function can be written as

S =
∫ 1

0
dt ||Ĥ (t )|| (2)

and the quantum brachistochrone problem becomes a vari-
ational problem for the functional S with the boundary
conditions Û (0) = I, Û (1) = Ûd .

B. AB decomposition

The space of all physical observables constrained to the
n-dimensional computational Hilbert space coincides with the
space of all Hermitian endomorphisms of that space. In a
given basis, the nontrivial endomorphisms are represented by
traceless Hermitian n × n matrices, which form a vector space
naturally endowed with a structure of the Lie algebra su(n).
Let γ̂k be some basis in the vector space of n × n traceless
Hermitian matrices, for instance, the generalized Gell-Mann
matrices [34], then {êk}, where êk = −iγ̂k, will form a basis in
the defining representation of su(n). In the following we will
assume the trace-form orthonormality condition Tr(γ̂iγ̂ j ) =
δi j . In a given basis, the time-dependent Hamiltonian can be
represented by a trajectory in a n2 − 1-dimensional Euclidean
coordinate space

Ĥ (t ) =
n2−1∑
j=1

a j (t )γ̂ j . (3)

If one had access to the entire Lie algebra, the extremals of
the functional (2) would be delivered by the time-independent
Hamiltonians of the form Ĥ0 = i log(Ûd ), labeled by the
choice of the branch of the logarithm function. In prac-
tice, however, the space of available Hamiltonians may be
restricted, in which case time-independent solutions to the op-
timization problem do not generally exist. In such as situation,
the optimization problem for the functional (2) may still admit
for a solution, albeit with a time-dependent trajectory aj (t )
lying within the permitted component of the operator space.
Obviously, in order for the optimization problem to have a
solution for any Ûd ∈ SU(n), the permitted subspace of the
operator space should generate the entire space of observables
su(n) in the Lie-algebraic sense. To formalize the constrained
optimization problem we introduce the following definition.

Definition 1. The AB decomposition: Let G be the vector
space of all observables (that is traceless Hermitian operators)
on the computational space and let A ⊂ G be the subspace
of physically accessible Hamiltonians, that is any Ĥ (t ) has
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to satisfy Ĥ (t ) ∈ A at all t . Then the following orthogonal
decomposition will be called the AB decomposition of G :

G = A ⊕ B. (4)

Here the A and B subspaces are assumed to be orthogonal
relative to the trace form.

We note, that the AB decomposition of the space of
observables directly translates into a decomposition of the cor-
responding Lie algebra. Let g be the defining representation
of su(n). Then the decomposition (4) induces the following
decomposition of g:

g = a + b, (5)

where a = {−iÂ|Â ∈ A}, and b = {−iB̂|B̂ ∈ B}.
Given an AB decomposition, we can choose the orthonor-

mal basis of G in the form {γ̂i} = {Âi} ∪ {B̂ j}, where {Âi} and
{B̂ j} are the orthonormal bases of A and B, respectively. The
constraint on the control Hamiltonian can then be stated as

Tr(Ĥ (t )B̂ j ) = 0, j = 1, . . . , dim B (6)

with an explicit solution in the form

Ĥ =
∑

i

αiÂi. (7)

Definition 2. Operator controllable AB decomposition: An
AB decomposition is called operator controllable if for every
Ûd ∈ SU(n), there exists a continuous trajectory Ĥ : [0, 1] →
A that generates Ûd in the sense of the boundary value
problem (1).

Obviously, for the AB decomposition to be operator-
controllable the Lie algebra g = su(n) must not have any
proper subalgebras containing a. In other words, a has to be a
generating set of g [35]. It is worth noting that operator con-
trollability, which we focus on here, is a stronger requirement
than the (pure) state controllability [4].

To construct Ûd , we have to perform a constrained optimi-
sation of the functional (2). It is advantageous to state such an
optimization problem in terms of the Lagrangian calculus of
variations on the Lagrangian manifold SU(n). To this end, we
note that

Ĥ (t ) = i∂tÛ (t )Û †(t ) (8)

is an element of the tangent space, which has the meaning of
the velocity, and that the condition (6) is a set of m = dim B
nonholonomic constraints, which can be imposed with the
help of m Lagrange multipliers. The corresponding Lagrange
functional takes the local form

S =
∫ 1

0
dt

⎡
⎣√Tr(∂tÛ∂tÛ †) + i

dimB∑
j=1

λ jTr(B̂ j∂tÛÛ †)

⎤
⎦. (9)

The Lagrange functional (9) can be viewed as an action de-
scribing constrained motion of a point particle on a group
manifold.

The Euler-Lagrange equations for the functional (9) (see
the Appendix for details) consist of Eqs. (6), due to variation
with respect to the Lagrange multipliers λi, and the quantum

brachistochrone equation

d

dt
(Ĥ + D̂) + i[Ĥ, D̂] = 0, (10)

where we introduce the operator

D̂ =
∑

i

λiB̂i. (11)

Equation (10) was first derived in [11,36] using a slightly
different approach. In a given orthonormal basis {γ̂i} Eq. (10)
is equivalent to a system of nonlinear differential equations for
the coordinates αi, λi on the tangent bundle of the unitary
group [23]

ȧi(t ) = i
∑

j

λ jTr(Ĥ[Âi, B̂ j]),

λ̇i(t ) = i
∑

j

λ jTr(Ĥ[B̂i, B̂ j]). (12)

The Euler-Lagrange equations are supplemented by the initial
condition Û (0) = I and the condition that Û (1) = Ûd . One
can see that the brachistochrone problem turns into the bound-
ary value problem for a set of nonlinear ODEs. The form of
these equations is completely determined by the choice of the
AB decomposition.

Generally, Eqs. (12) do not admit for an analytic solution.
TIn order to solve the boundary value problem, one typically
employs numerical methods, such as the shooting method or
gradient descent routines [20–22]. However, as the number
of dynamical variables (αi, λ j ) increases quadratically with
the rank of the group, chaos kicks in making the numerical
routines increasingly inefficient. Still, even for large n one
can identify particularly serendipitous AB decompositions,
for which numerical convergence remains very good within
either the entire phase space or, at least, a sufficiently large
basin of stability. A natural class of such good AB decom-
positions is the one associated with completely integrable
quantum brachistochrone equations. It is worth noting, that,
apart from being well behaved in terms of the Lyapunov sta-
bility, completely integrable cases admit, at least, in principle,
for solutions in terms of purely algebraic equations. Further-
more, small nonintegrable deformations of such integrable
cases will give rise to equations with large stability islands.
These observations prompt a natural task of identification and
classification of all completely integrable AB decompositions.

In the following sections, we present a Lie-algebraic con-
struction of a large class of AB decompositions leading to
completely integrable brachistochrone equations. However,
before delving into these details, we shall conclude the present
section with discussion of some general properties of the
brachistochrone problem.

C. Properties of the quantum Brachistochrone equations

First, we derive two useful conservation laws associated
with Eqs. (12). By multiplying Eqs. (12) to ai and λi, re-
spectively, performing summations over all i and utilizing the
cyclicity of trace, we find

d||Ĥ (t )||2F
dt

= 0,
d||D̂(t )||2F

dt
= 0. (13)
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This implies that the initial conditions, both on Ĥ (t ) and
D̂(t ), determine the cost function of the protocol. Actually this
stems from a wider symmetry. Equation (10) is essentially

d (Ĥ + D̂)

dt
= i

2
[Ĥ + D̂, Ĥ − D̂]. (14)

Therefore the operators Ĥ + D̂, Ĥ − D̂ form a Lax pair. This
means that quantities Fk = Tr[(Ĥ + D̂)k] for k ∈ N are con-
served, even though not all F ′

k s are algebraically independent.
Next, we remark that the Lagrange functional (9) is in-

variant under global right shifts U �→ Ug, where g ∈ SU(N).
By virtue of Noether’s theorem, this symmetry results in the
conservation of the generalized angular momentum

∂t [Û
†(Ĥ + D̂)Û ] = 0. (15)

This equation can help determining the evolution of the opti-
mal Ĥ (t ), D̂(t ). If one knows the initial state at t = 0 and the
unitary at t = t f (and not the path from [0, t f ]) one can find
the final state. This conservation law is useful in our problem
since it creates a relationship between the initial, final config-
uration of Ĥ (t ) + D̂(t ) and the final unitary operator Ûd . Note
that a similar property holds for the operator Û−D the operator
that is generated through the −D operator: i∂Û−D = −D̂Û−D,

Û †
−D(t )(Ĥ (t ) + D̂(t ))Û−D(t ) = Ĥ (0) + D̂(0). (16)

Combining these we can get the commutation relation

[Û †
−DÛ , Ĥ (0) + D̂(0)] = 0. (17)

Moreover, by expressing the conservation law (15) and using
Eq. (1)

i∂tÛ (t ) = Û (t )[Ĥ (0) + D̂(0)] − D̂(t )Û (t ), (18)

we can rewrite the evolution operator in the following form
[considering Û (0) = Û−D(0) = I]:

Û (t ) = Û−D(t ) exp{−i[Ĥ (0) + D̂(0)]t}. (19)

We shall use this equation later in our discussion of a special
case of completely integrable brachistochrone equation.

Conservation laws and related equations following from
the general symmetries of the problem are useful, however,
they are not sufficient to make the problem completely solv-
able. In the next section we show how to narrow down the set
of brachistochrone problems to those, which are completely
integrable in the Arnold-Liouville sense.

III. INTEGRABLE SU(N) BRACHISTOCHRONE
EQUATION

Various definitions of integrability exist. Historically, inte-
grability emerged as the property of equations of motion to
admit for an analytic solution, achieved through techniques
like separation of variables. Subsequently, a mathematical
framework evolved, wherein integrability is construed as the
commutativity of a sufficient number of independent Hamilto-
nian flows within a system’s phase space. Both manifestations
of integrability engender a stable and predictable behavior in a
system. Both perspectives will be used in the present section.

We begin with examining the special case of time-
independent Lagrange multipliers. The AB decomposition
resulting in this integrable system was introduced in [19].

A. Complete integrability with time-independent
Lagrange multipliers

Consider a class of trajectories such that Lagrange multi-
pliers λi are constants of motion, i.e.,

λ̇i = 0, for all i = 1, . . . , dim B. (20)

For such trajectories the corresponding differential equa-
tions for α′

is in Eqs. (12) can be solved explicitly

a(t ) = exp(Ĉ t )a(0), Ĉab =
∑

i

faibλi. (21)

In this expression f is the structure constant of the Lie alge-
bra of observables, i.e., [êi, ê j] =∑k fi jk êk, the index i runs
through the basis of the B subspace, while the indices a and b
run through the elements of the subspace A. Also we denote
the set of all a′

is in a vector a(t ) = (a1(t ) · · · aN (t ) )
T

.
The explicit solution (21) of the reduced system (12), is

a significant step forward, however, it does not automatically
guarantee the existence of an algebraic solution for the evo-
lution law of the group element given in Eq. (1). Next we
demonstrate that in the case of time-independent Lagrange
multipliers such an algebraic solution does indeed exist. We
note that if Lagrange multipliers are constants of motion
then the operator D̂ is also time independent. This simplifies
Eq. (19)

Û (t ) = exp[iD̂(0)t] exp{−i[Ĥ (0) + D̂(0)]t}. (22)

For t = 1 this becomes an algebraic equation defining the
initial values ai(0) and λi in terms of the desired operator Ûd .

In combination with Eq. (21) it provides a complete algebraic
solution for the brachistochrone problem. It is worth noting
that, despite a tremendous reduction in the complexity of
the original problem, Eq. (22) remains nontrivial due to its
nonlinearity and multivaluedness of its solutions.

A comprehensive exploration of the conditions leading to
trajectories (20) presents an intriguing task, one that remains
far from being exhaustively addressed. Nonetheless, a dis-
tinctive case stands out, in which these trajectories emerge
directly from the structure of the AB decomposition, envelop-
ing the entirety of the phase space. One general way to achieve
this is by choosing the b to be a subalgebra of g. In such a case,
Eq. (20) follows from Eqs. (12) and the fact that i[B̂i, B̂ j] ∈ B,

which is orthogonal to Ĥ ∈ A with respect to trace inner
product. This class of brachistochrone equations, along with
Eq. (22) were first found in [19].

We conclude the recap of the exactly solvable case of
constant Lagrange multipliers with a discussion of a special
case of the AB decomposition having a pseudo-Cartan form.
In such a case, the algebraic equations arising from the bound-
ary value problem admit for some further simplifications.
Consider a Lie algebra g. Then a decomposition g = l + p is
pseudo-Cartan if

[l, l] ⊆ l, [p, p] ⊆ l, [p, l] ⊆ p. (23)

It is easy to confirm that if in the decomposition (5) one
chooses a = p and b = l then a brachistochrone protocol is
generated with time-independent Lagrange multipliers. More-
over, when l = su(N − 1), its orthogonal compliment p is the
smallest generating set in su(N ), that is, the smallest set of
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controlled Hamiltonians giving access to the computation on
the whole unitary group. We note that to the best of our knowl-
edge the pseudo-Cartan decomposition was first employed in
the context of optimal quantum control in [37].

For AB decompositions having a pseudo-Cartan form it
is possible to get some further insights into the structure of
Eq. (22).

Proposition 1. Let a brachistochrone problem with an AB
decomposition a pseudo-Cartan decomposition. Given two
different Ûd , Û ′

d , where Û ′
d = exp(iX̂ )Ûd exp(−iX̂ ) and X̂ ∈

B. The two unitary operators have the same cost function.
Proof. Take Eq. (22) at t = 1 for Ûd . We assume that

its solution is Ĥ0, D̂0. By multiplying both sides with
exp(iX̂ ), exp(−iX̂ ) from left and right, respectively, we get
Û ′

d in the left-hand side (lhs). By considering the defining
properties (23) we know that

Ĥ ′
0 = eiX̂ Ĥ0e−iX̂ , D̂′

0 = eiX̂ D̂0e−iX̂ (24)

belong in A,B, respectively. This means that this is the solu-
tion for the Û ′

d . Therefore the cost function, i.e., the Frobenius
norm of Ĥ ′

0 is the same with Ĥ0. �

B. Liouville-integrable brachistochrone equations

In the previous section, the integrability of the protocol
stemmed directly from the conservation of the Lagrange mul-
tipliers. Here we introduce a more general AB decomposition
that does not require conservation of λi and thus gener-
ates a wider class integrable brachistochrone protocols. The
construction will exploit the Lax representation of the equa-
tions of motion for the generalized Euler-Arnold top [32,33].
To streamline discussion, we will not distinguish between
su(n) and its defining matrix representation. Furthermore, will
not distinguish between su(n) and its dual space, making use
of the isomorphism between the two due to the trace-form
inner product.

We begin by introducing the time-dependent element t̂ =
−i(Ĥ + D̂), and writing its expansion in a given orthonormal
basis su(n), as

t̂ =
∑

j

x j (t )ê j . (25)

Here xi(t ) is either a dynamical variable or a Lagrange
multiplier, depending on which subspace, A or B, the cor-
responding ê j lies in. The brachistochrone equation can then
be written in the form

d

dt
t̂ = [t̂,PBt̂]. (26)

In this equation PB ∈ End(g) is the projector onto the B sub-
space, which implies PBt̂ = −iD̂. Our goal is to demonstrate
that, given an appropriate choice of the projector PB, Eq. (26)
can be viewed as a certain limit of a known completely inte-
grable dynamical system. To this end we recall the general
construction of the Lax representation of the Euler-Arnold
top.

Let g = l + p be a pseudo-Cartan decomposition of su(n)
[38]. We can then write the element t̂ in the form t̂ = l̂ + ŝ

where l and s lie in l, p, respectively,

l̂ =
∑
l

xi(t )êi, ŝ =
∑
p

xi(t )êi. (27)

Now, let us fix some element â ∈ p and introduce the follow-
ing Lax matrix:

L̂ = âλ + l̂ + ŝ

λ
, λ ∈ C, (28)

where λ ∈ C is the spectral parameter. This matrix will be
used to construct the brachistrochrone equation in the Lax
form.

To obtain the second matrix in the Lax pair, we introduce a
scalar function

φ(x̂) = Tr ϕ(x̂), (29)

where

ϕ(z) =
K∑

k=0

ckzk (30)

is a degree K polynomial. Note that according to Eq. (14), φ(t̂ )
is a constant of motion under the brachistochrone evolution.
For a given set of coefficients {ck}, we define the element

b̂ = ∇φ(x̂)|x̂=â = ϕ′(â), (31)

which is the gradient of the function φ at x̂ = â. One can
easily see that [â, b̂] = 0 holds for any choice of â and {ck}.

Within the subgroup of l we perform a further decomposi-
tion l = la + l⊥, where la is the centraliser of â

la : {x̂ ∈ l, [x̂, â] = 0}, (32)

which is a subalgebra of l.
The structure of the subalgebra la depends on the order of

su(n), the choice of the pseudo-Cartan decomposition and the
choice of the element â. We now define the function φa : la →
R,

φa(x̂) = φ(â + x̂), x̂ ∈ la,

and introduce its Hessian tensor at the point l = 0:

φ′′
a :=

∑
i, j∈la

êi ⊗ ê j
∂2φa

∂xi∂x j

∣∣∣∣∣
x̂=0

. (33)

With the help of the Hessian, we define a linear map ω̂ from l̂
to itself by

ω̂(l̂ ) =
{

φ′′
a l̂, if l̂ ∈ la,

adb(ada)−1 l̂, if l̂ ∈ l⊥.
(34)

With these ingredients we complete the Lax pair with the
matrix M̂ :

M̂ = b̂λ + ω̂(l̂ ), ∀λ ∈ C. (35)

The following Lax equation

dL̂

dt
= [L̂, M̂] (36)

describes a class of completely integrable systems known as
generalized Euler-Arnold tops [32,33].

We are ready to provide the following theorem.
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Theorem 1. For a given element p̂ ∈ p, define â = ε p̂,
where ε ∈ R. Let

la = l(A)
a + l(B)

a (37)

be some, possibly trivial, decomposition of the centralizer of
â into a direct sum of semi-simple subalgebras of g. Then
with an appropriate choice of the polynomial ϕ(z), Eq. (30),
the ε → 0 limit of the Lax equation (36) coincides with the
brachistochrone equation (26) where the AB decomposition
takes the form

a = p + l(A)
a , b = l⊥ + l(B)

a . (38)

Proof. Let Spec(â) = {a1, a2, . . . , }, be the eigenvalue
spectrum of â in the defining representation of g = su(n) on
the complex vector space v = Cn. To each eigenvalue ai there
corresponds an eigenspace vi ∈ v and a simple subalgebra
l(i)a ⊆ la, which is the largest subalgebra of la preserving vi

and acting trivially on its orthogonal complement v⊥
i . The

centralizer of â has the semi-simple decomposition

la = l(1)
a + · · · + l(Q)

a , (39)

where Q � n. Without loss of generality, we may assume a
numbering such that

l(A)
a = l(1)

a + · · · + l(q)
a , l(B)

a = l(q+1)
a + · · · + l(Q)

a . (40)

Consider now the following choice of the polynomial ϕ :

ϕ(z) = z2

2
+ 1

2
ψ (z)

Q∏
i=1

(z − ai )
2, (41)

where

ψ (z) = −
Q∑

k=q+1

Q∏
s=1
s �=k

z − as

(ak − as)3
. (42)

One can easily see that with this choice of ϕ, the eigenvalues
of b̂ coincide with the eigenvalues of â therefore b̂ = â. It
follows immediately that the restriction of ω̂(l̂ ), as defined
in Eq. (34), to the space l⊥ acts as the identity.

For the restriction of ω̂(l̂ ) to the subspace la we have

φ′′
a =

Q∑
i=1

ϕ′′(ai )P (i), (43)

where P (i) ∈ End(g) is the orthogonal projector onto the sub-
space l(i)a . A straightforward calculation shows that for ϕ given
in Eq. (41) one has ϕ′′(ai ) = 0 for i = 1, . . . , q and ϕ′′(ai ) =
1 for q < i � Q. Therefore, with ϕ(z) given by Eq. (41) we
have

ω̂ = P⊥ + P (B) = PB, (44)

where P (B) = P (q+1) + · · · + P (Q).

Finally, substituting the Lax matrices into the Lax equa-
tion and (36) and gathering coefficients at different powers of
λ, we obtain the following set of equations:

[â, b̂] = 0, [â, ω̂(l̂ )] = [b̂, l̂],

˙̂l = [l̂, ω̂(l̂ )] + [ŝ, b̂], ˙̂s = [ŝ, ω̂(l̂ )]. (45)

The first pair of equations is satisfied automatically thanks
to the definitions (31) and (34). In the second pair of equa-
tions we use the the definition of t̂ = l̂ + ŝ, the fact that
b̂ = â = ε p̂, and the specific form of ω̂, Eq. (44) to obtain

d

dt
t̂ = [t̂,PBt̂] + ε[ŝ, p̂]. (46)

Taking the ε → 0 limit we finally obtain the brachistochrone
equation in the form (26), with the AB decomposition given
by Eq. (38). �

C. Cases admitting for reduction to a linear system

There are two special types of the decomposition (38),
which admit for a straightforward reduction to a linear system.

Type I. In AB decompositions of this type, the b subspace
is a subalgebra of g. This is achieved by choosing l(A)

a = 0 and
l(B)
a = la in Eq. (38). This case was analyzed in the literature

[19] and we discuss it here in the section on time-independent
Lagrange multipliers.

Type II. By choosing l(A)
a = la and l(B)

a = 0 one gets b = l⊥.

Clearly, in this case the b subspace is not a subalgebra of g.
However, the system (10) can still be reduced to a linear one.

Proposition 2. Consider the AB decomposition such that
b = l⊥. Then the dynamical variables, which are the pro-
jections of t̂ onto the la subspace are integrals of motion.
Furthermore, the system of ODEs (10) reduces to a linear
system with time-dependent coefficients.

Proof. If l(B)
a = 0, then PBt̂ = l̂⊥ is the orthogonal projec-

tion of t̂ onto l⊥. In this case, the orthogonal projection l̂a
of t̂ = ŝ + l̂ onto the subspace la is a constant of motion. To
see that, consider the commutator [ŝ + l̂, l̂⊥] on the right-hand
side of Eq. (26). The only potentially nontrivial projection
of this commutator on the la subspace is due to the element
x̂ = [l̂a, l̂⊥]. However, this element lies in l⊥ because for any
l̂ ′
a ∈ la one has Tr(l̂ ′

ax̂) = Tr(l̂⊥[l̂ ′
a, l̂a]) = 0, where we use the

cyclicity of trace and the fact that la is closed under the Lie
bracket.

We further note that the system of equations for the dynam-
ical variable l̂⊥ takes the form

d

dt
l̂⊥ = [l̂a, l̂⊥]. (47)

Since l̂a are integrals of motion, this is a linear system, which
has an explicit solution in the form

l̂⊥(t ) = el̂at l̂⊥(0)e−l̂at . (48)

The remaining equation for the ŝ component of t̂ takes the
form

d

dt
ŝ = [ŝ, l̂⊥(t )], (49)

where l̂⊥(t ) is given by Eq. (48). This is a linear equation with
variable coefficients, which is formally solved in the form of
a time-ordered exponential. �

Protocols derived based on Proposition 2 fall under the
type-II protocols. An example of such a construction is pre-
sented in the Appendix for the su(3) algebra.

The AB decompositions we presented rely on the Car-
tan decomposition of su(n) algebras. In the next section we
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FIG. 1. Stability of brachistochrone equations for su(4).
(a) Given a particular Ûd the respective x(0) are found for the
three protocols. The stability of those initial points are shown after
averaging E (t ) for 2000 random small d. (b) The time dependence
of Oi(t ) for the same Ûd . The dashed lines fit the chaotic E (t ),
providing estimations for the effective Lyapunov exponent.

present examples for n = 3, 4, but it can be extended for
arbitrary n. A question of practical importance, which is worth
mentioning here, is how the integrable protocols could be re-
alized with local operators in multiqubit systems. This brings
up the issue of the construction of pseudo-Cartan decompo-
sitions of su(2n) with maximally local gates: a mathematical
problem, where few results are known today [39].

IV. NUMERICAL STABILITY

Stability of equations of motion

We embarked on the search for integrable brachistochrone
equations due to their inherent stability. A well-known issue
in general nonlinear problems is the instability of trajectories
under slightly varied initial conditions. Specifically, if we
solve equations with initial conditions x′(0) = x(0) + d with
|d| � |x(0)| the respective variation for the solutions versus
time DH (t ) = ||x′(t ) − x(t )||. Stability can be quantified us-
ing the following measure:

E (t ) ≡ |DH (t )|
|DH (0)| . (50)

In Fig. 1(a) we show how E (t ) of the brachistochrone equa-
tions (12) behave for the three different cases. The initial
conditions have been chosen so that they realize a particular
Ûd for the integrable decompositions of types I and II, and
a general chaotic case, respectively. We observe that for a
generic AB decomposition, even for SU(4) case, we observe
Lyapunov exponents λe � 1, i.e., E ch(t ) ∝ exp(λet ). where
the “ch” superscript refers to the particular general chaotic de-
composition. This indicates that the chaotic behavior becomes
relevant for the brachistochrone problem since it kicks in for
time t < 1.

To exclude the role of exceptional perturbations, we sam-
pled many different perturbations and we sampled DH (t ) over
them. Moreover, we tried numerous other AB decompositions.
We confirm, therefore, the expected exponential divergence
for a general AB decomposition.

It is instructive to see how the instability of the brachis-
tochrone equations (12) propagates to the generated unitary
operator through Eq. (1). To this end we look into the

following measure of the divergence of to nearby trajectories

Oi(t ) = 〈∣∣∣∣ log
((

Û i
b

)†
(x0, t )Û i

b[x0 + d, t]
)∣∣∣∣

F

〉
d. (51)

Here U i
b(x0, t ) is the generated unitary operator at time t for

the initial conditions x0 to the boundary value problem of
Eq. (12) for the ith case (integrable or chaotic). By doing
so [see Fig. 1(b)], we can see when the nonlinear behavior
appears for the chaotic case. For short-enough times, the
divergence of Ûb(x0 + d) from Ûb(x0) is linear for all three
cases. For the chaotic one, we confirm this stops at time
t ≈ λ−1

e . We confirm, therefore, that indeed the instability
of the brachistochrone equation propagates to the generated
unitary operator.

This comes as no surprise. If we assume

Û i
b(x0 + d, t ) = Û i

b(x0, t )û(t ), (52)

where the unitary operator û is the (conjugate transpose) of the
argument in the log of Oi. It obeys the Schrödinger equation

i∂ û = (Û i
b(x0, t )

)†
̂Û i

b(x0, t )û, û(0) = I, (53)

where ̂ = Ĥ (t )′ − Ĥ (t ) is the difference of the two Hamil-
tonians for different initial conditions. This means that
û is driven by the Hamiltonian (in the rotated frame)
Û †

b (x0, t )̂Ûb(x0, t ). Therefore, one can explain why there
is similar (albeit latent) Lyapunov exponent for the same
equation.

Lyapunov instability is a fundamental manifestation of
chaos in brachistochrone problems with nonintegrable AB
decompositions. However, a given AB decomposition is not
generally characterized by a given largest Lyapunov exponent.
Rather, the Lyapunov exponent is a function of the initial con-
dition of the trajectory. To illustrate this point we investigate
the statistics of the largest Lyapunov exponents in a chaotic
system with a given AB decomposition. First, we notice that
the brachistochrone equations (12) are invariant under the
transformation a′ → κa, λ′ → κλ, t ′ → t/κ where κ ∈ R+.
This means that, under this transformation, the left-hand side
of

||x1(t ) − x0(t )||
||x1(0) − x0(0)|| ≈ exp(γ0t ) (54)

remains invariant, while the right-hand side becomes
exp(κγ0t ). Therefore, the transformed solution has a Lya-
punov exponent λ′

e = κγ0. For this reason it is only meaning-
ful to talk about the distribution of Lyapunov exponents on the
basin of initial conditions defined by the constraint ||x0|| = 1.

In Fig. 2 we show the distribution of Lyapunov exponents
for random sampling of x′

0s with ||x0|| = 1. For random sam-
pling we assume the probability distribution invariant under
the adjoint action of SU(n).

We observed that, for a chaotic protocol, close initial
conditions diverge exponentially, while integrable protocols
diverge polynomially. We expect, thus, between these two a
qualitative difference regarding the closeness of two different
unitary operators Û0, Û1 derived from close initial configu-
rations [a0(0),λ0(0)], [a1(0),λ1(0)], respectively. Thus we
introduce the measure

F i(Û0, d) = ∣∣∣∣ log
{[

(Û0)†Û i
b(x0 + d, 1)

]}∣∣∣∣
F , (55)
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FIG. 2. Histogram of Lyapunov exponents for an SU(4) chaotic
AB decomposition. The histogram of distribution of Lyapunov ex-
ponents for configurations x0 with ||x0|| = 1. Twenty-five thousand
random configurations are sampled.

where x0 is the configuration that generates Û0 through the
brachistochrone equations for some particular protocol, and d
is a small perturbation. The index i refers to which protocol
is used (an integrable or a chaotic one). For a fixed x0, we
are going to constrain ourselves to d of fixed (small) norm.
Essentially x0 determines the nature of the measure (55).
Thus, as we explained above, the norm of x0 is the parameter
that determines the closeness of the measure F i. When the
norm of configuration x0 is sufficiently small the statistical
behavior of ln(F ) between integrable and chaotic protocols
for different d [see Fig. 3(a)] will not be significant. However,
when the norm of x0 becomes bigger, there is an exponential
separation and small deformations of configurations lead to
bigger F [Fig. 3(b)]. The difference in the behavior between
the two cases is because for small Lyapunov exponents (small
norm of x0) the chaos does not play an important role by the
end of the protocol (for times t ≈ 1).

This observation hints at the impact of the increase in
the rank of the unitary group and the number of constraints

FIG. 3. Histogram of ln[F i(Û0, d)] for an integrable and a
chaotic SU(4) AB decomposition and a given Û0 (generated by x0)
over random deformations d. Panel (a): A configuration x0 is used
norm 1 is used. The behavior of F between chaotic and integrable is
qualitatively the same. (b) A x0 is used that solves the boundary value
problem for some some random operator (i.e., not close enough to the
identity operator). We observe some exponential separation between
the integrable and the chaotic one.

FIG. 4. Histogram of the eventual values of ln Ci(x) for an SU(4)
chaotic and integrable AB decomposition. Some random initial val-
ues x0 are used along with standard optimizing routines, giving the
final x.

on the numerical hardness of computing the brachistochrone
reaching an arbitrary unitary Ûd . Generally, the higher the
dimensionality of the Hilbert space, the greater the norm of
the typical driving Hamiltonian. Furthermore, by introducing
extra constraints one replaces “physical” degrees of freedom
with Lagrange multipliers, which typically take bigger values.
Both factors essentially increase the norm of the configura-
tions x0, which makes the brachistochrone path to a given Ûd

more unstable, as we established previously. We would like to
stress, however, that no quantitative claim is made at this point
and is an open question to be investigated.

Instability with respect to small variations in the initial con-
ditions makes the boundary value problem a numerically hard
task. Essentially it turns out to be an optimization problem,
where a high precision of the parameter landscape is required
to converge to the desired unitary operator. To quantify this
we introduce the cost function

Ci
Û0

(x) := || log[Û †
0 Ûb,i(x, 1)]||F . (56)

After fixing Û0 and the AB decomposition, the minimiza-
tion of C requires some minimization routine. We employed
certain preconstructed ones for the the chaotic and the inte-
grable cases, respectively. Since certain initial guesses may
get stuck at some local minima, and not at the global one, we
sampled over many initial points x0 and study their statistics.
From Fig. 4 one can see that for the integrable case, there are
many initial guesses that converge to the desired solution, with
certain accuracy (of order of 10−6). However, in the chaotic
case the optimization gets stuck to suboptimal solutions and
need extra resources to reach to the desired solution. So we
deduce how immensely more difficult is to solve the boundary
value problem for a generic decomposition, even for the SU(4)
group, let alone higher ones.

V. CONCLUSION

We investigated quantum brachistochrone equations de-
scribing the optimal realization of an SU(n) gate with the help
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of a protocol utilising a constrained set of driving Hamiltoni-
ans. We found that, for a certain class of driving Hamiltonians,
the quantum brachistochrone equation can be viewed as a
limiting case of a completely integrable system known as the
generalized Euler-Arnold top. We give an explicit prescription
for the associated AB decomposition of the algebra of physical
observables into the space of driving Hamiltonians and its
orthogonal complement.

To demonstrate the utility of the completely integrable
AB decompositions, we compare the numerical stability of
generic brachistochrone equations with the completely in-
tegrable ones. In contrast to the integrable case, generic
brachistochrone equations are found to exhibit exponential
divergence of nearby trajectories characteristic of chaotic
behaviour. We quantify such divergence by the Lyapunov ex-
ponents and investigate the statistical distribution and scaling
properties of such exponents for small groups. We propose
arguments as to why such exponential divergence poses an
increasing numerical challenge for the solution of the bound-
ary value problem as one increases the size of the unitary
group or the number of constraints. This should motivate
further investigation of completely integrable protocols and
their small nonintegrable deformations.

Notwithstanding the intriguing link between integrable
brachistochrone equations and the classical integrable models,
many questions remain unanswered. For instance, it is unclear
how far one can advance with the program of developing an
explicit solution of the completely integrable brachistochrone
equations, in particular, with finding an explicit relationship
between the initial conditions and the generated unitary oper-
ator at the end of the protocol. One systematic approach to this
problem employs the Baker-Akhiezer functions and a factori-
sation method based on the matrix Riemann-Hilbert problem
[32,33]. Furthermore, even if a formal algebraic solution to
the boundary value problem is found, the actual computation
of the initial conditions may still present a certain challenge as
is evidenced by Eq. (19). It is also important to note that the
completely integrable cases of AB decompositions identified
here may not cover all integrable brachistochrone problems,
making further investigation into this area an interesting and
relevant problem in its own right.
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APPENDIX A: ACQUIRING THE BRACHISTOCHRONE
EQUATIONS

Let’s consider the action with the Lagrange multipliers
{λi}:

S0 =
∫ T

0
dt

(
1

2
Tr(∂tÛ∂tÛ

†) + i
∑

κ

λκTr(Bk∂tÛÛ †)

)
.

(A1)

To facilitate our computations we adopt the index notation.
This way the matrix multiplication and Tr operation get sim-
pler. The integrand, then, is written

s = 1

2
(∂Û )ab(∂Û †)ba + i

∑
κ

λκ (Bκ )ab(∂Û )bc(U †)ca. (A2)

We are going to vary the “field” U to minimize the action
s. To keep it short we separate the action in two parts, s1,2,
respectively,

δs1 = 1
2 (∂δÛ )ab(∂Û †)ba + 1

2 (∂Û )ab(∂δÛ †)ba. (A3)

Up to boundary terms, δs1 can be written as

δs1 = − 1
2 ((∂2Û †)ba(δÛ )ab + (∂2Û )ab(δÛ †)ba). (A4)

Meanwhile the variation of s2:

δs2 = i
∑

κ

(λκ (Bκ )ab(∂δÛ )bc(Û †)ca

+ λκ (B̂κ )ab(∂Û )bc(δÛ †)ca). (A5)

Again up to boundary terms

δs2 = i
∑

κ

(−λ̇κ (B̂κ )ab(δÛ )bc(Û †)ca − λκ (B̂κ )ab(δÛ )bc

× (∂Û †)ca + λκ (B̂κ )ab(∂Û )bc(δÛ †)ca). (A6)

We want to collect all the variation wrt δU . So we need to
take into consideration ÛÛ † = I ⇒ δÛÛ † + ÛδÛ † = 0 ⇒
δÛ † = −Û †δÛÛ †. Moreover using the Tr properties, we can
rewrite δs1 = δÛabT 1

ba, δs2 = δÛabT 2
ba:

T 1 = −1

2
(∂2Û † − Û †∂2ÛÛ †), (A7)

T 2 = −i
∑

κ

λκ∂Û †B̂κ − i
∑

κ

λ̇κÛ †B̂κ − i
∑

κ

λκÛ †B̂κ∂ÛÛ †.

(A8)

So essentially the “equation of motion” is T 1 + T 2 = 0. To
simplify it further, we use ∂Û † = −Û †∂ÛÛ †. So we will have

T 1 = Û †∂2ÛÛ † + 1
2 (∂Û †∂ÛÛ † + Û †∂Û∂U †). (A9)

Multiplied with Û T 1 becomes

UT 1 = ∂2ÛÛ † + 1
2 (Û∂U †∂ÛÛ † + ∂Û∂U †). (A10)

The terms in the parentheses are equal (use two times the
property ∂ÛÛ † = −Û∂Û †). Actually, the entire term iÛT 1 =
∂t Ĥ . Similar manipulation of ÛT 2 gives

ÛT 2 =
∑

κ

(λκĤ B̂κ − iλ̇κ B̂κ − λκ B̂κĤ )

=
∑

κ

(λκ [Ĥ, B̂κ ] − iλ̇κ B̂κ ). (A11)

As a whole iÛ (T 1 + T 2) = 0 gives

∂t Ĥ +
∑

κ

(iλκ [Ĥ , B̂κ ] + λ̇κ B̂κ ) = 0. (A12)

This is the known quantum brachistochrone equation. Also the
second term we introduced implies:

Tr(ĤB̂k ) = 0, ∀k. (A13)
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Note. The variation of action S0 is equivalent to the varia-
tion of the action S1:

S1 =
∫

dt

(√
Tr(∂U∂U †) +

∑
i

λiTr(∂ÛÛ †)

)
. (A14)

The only thing that changes is that S0(λi ) → S1(λi/‖H‖2
F );

but as we show in a next section the Frobenius norm of H
remains constant along a trajectory. This means that we should
need to rescale the Lagrange multipliers.

APPENDIX B: EXAMPLE OF A LINEARIZABLE AB
DECOMPOSITION

We consider the su(3) algebra and its pseudo-Cartan
decomposition g = l + p such that ŝ ∈ p and l̂ ∈ l are
parametrized as follows:

ŝ =
⎛
⎝ 0 0 z1

0 0 z2

z∗
1 z∗

2 0

⎞
⎠, l̂ =

⎛
⎝ r1 ψ1 0

ψ∗
1 r2 0

0 0 −(r1 + r2)

⎞
⎠.

(B1)

Note that the subgroup l ∼= su(2) × u(1). Now let’s fix the
element â. Let that be (arbitrarily)

â =
⎛
⎝ 0 0 a1

0 0 0
a1 0 0

⎞
⎠, (B2)

where a1 ∈ R. From that we infer that the subset la consists of
the single (linearly independent) element

X̂ = 1√
3

diag(1,−2, 1). (B3)

Therefore Lp =∑i miYi, where Lp ∈ l⊥a and l⊥a :

l⊥a : = span

{
Ŷ1 =

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠, Ŷ2 =

⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠,

Ŷ3 = diag(1, 0,−1)

}
. (B4)

Moreover, the generic invariant polynomial can be generated
by

φ =
∑

i

ciTr((ŝ + l̂ )i ), (B5)

for arbitrary {ci}. From that on can define b = dφ(a) (i.e., the
gradient of φ at a). If one includes at least powers 2,3 basically
what they get is

b = κ1a + κ2X, (B6)

κ ′
i s are arbitrary (and dependent on all ci). From this, we can

get ω. In particular,

ω(l ) =
{

μX, if l ∈ la,

adb(ada)−1l, if l ∈ l⊥a ,
(B7)

again μ is related to c (but independent from κ ′
i s). Let’s see

that what happens first with (ada)−1. We want some opera-
tor Z that i[a, Z] = l (physics convention with multiplication

with i). So Z for each of the three cases is

Z =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎝

0 0 0

0 0 i
a1

0 − i
a1

0

⎞
⎟⎠, if l = Y1,

⎛
⎜⎝

0 0 0

0 0 − 1
a1

0 − 1
a1

0

⎞
⎟⎠, if l = Y2,

⎛
⎜⎝

0 0 i
2a1

0 0 0
−i
2a1

0 0

⎞
⎟⎠, if l = Y3.

(B8)

Consequently the last step is to get simply i[b, Z] for the three
different cases

ω(l ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μX if l ∈ la,
κ1
a1

Y1 if l = Y1,
κ1
a1

Y2 if l = Y2,
κ1
a1

Y3 if l = Y3.

(B9)

Note that to reach to this result we had to set κ2 = 0 since
with nonzero κ2 it would generate components of ω that do
not belong in l. With this is mind, we are able to write down
the final differential equations. By using the linearity of ω(l ):

l̇ = [l, ω(l )] + [s, b], ṡ = [s, ω]. (B10)

If we take the a1 → 0 limit (that is the matrix a → 0). The
system of equations becomes the brachistochrone equation

l̇ + ṡ = [l + s, ω]. (B11)

Note that the limit is legitimate since ω remains finite in
that limit. With this, we can set μ = 0, κ1 = α1 o make ω a
projector onto the l⊥. This way we create a new integrable
protocol. The system of equations one has to solve is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ȧ1

ȧ2

ȧ3

ȧ4

l̇

ṁ1

ṁ2

ṁ3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−a2m2 − a3(m1 + 2m3)

a1m2 − a3(m1 + m3)

a2m1 − a3m2 + 2a1m3

a1m1 + a3m2 + a2m3

0√
3lm2

−√
3lm1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Ĥ (t ) =

⎛
⎜⎜⎝

l√
3

0 a1 − ia3

0 − 2l√
3

a2 − ia4

a1 + ia3 a2 + ia4
l√
3

⎞
⎟⎟⎠. (B12)

Note that the system is linear. In particular, m1, m2 can
be solved exactly and are some linear combinations of
sin(

√
3lt ), cos(

√
3lt ). Also since m3 is time-independent, the

system of ai becomes a driven linear system. The explicit
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solution is given by⎛
⎜⎜⎝

a1(t )
a2(t )
a3(t )
a4(t )

⎞
⎟⎟⎠ = T exp

(∫ t

0
M̂(t ′)dt ′

)⎛⎜⎜⎝
a1(0)
a2(0)
a3(0)
a4(0)

⎞
⎟⎟⎠, M̂(t ) =

⎛
⎜⎜⎝

0 −m2(t ) −2m3(t ) −m1(t )
m2(t ) 0 −m1(t ) −m3(t )

2m3(t ) m1(t ) 0 −m2(t )
m1(t ) m3(t ) m2(t ) 0

⎞
⎟⎟⎠. (B13)

Since the matrix M̂ is antisymmetric, we know that the matrix remains finite and there are not exponential divergences.
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