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Reverse engineering control of the relative phase and populations of two-level quantum systems
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We consider the simultaneous control of the relative phase and populations of two-level quantum systems by
an external field. We apply a reverse engineering approach, obtaining an analytical expression for the control field
depending upon two user-defined functions that dictate the population and the relative phase dynamics. We show
that, in general, the prescribed functions for the dynamics cannot be chosen arbitrarily, but still there is plenty
of room for choice. We illustrate the reverse engineering technique for several target states using different kinds
of functions to specify the system dynamics. We show that by adjusting these dynamical functions, we produce
different kinds of control fields. These controls can be easily built, needing, apart from the dynamical function
themselves, only their first derivatives. The methodology presented here will certainly find many applications
that go beyond simple two-level systems.
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I. INTRODUCTION

The investigation of two-level quantum systems is of fun-
damental interest for physics [1–4]. Despite their simplicity,
two-level systems can represent to a very good approximation
diverse practical situations and have proven to be adequate
to understand the physics content of a variety of coherent
phenomena. For instance, a two-level quantum system that
interacts with an external time-dependent field can represent
an atom under the action of a laser field [5]. The study of
two-level systems is also crucial for the development of new
technologies as evidenced by the fact that quantum computing
faces this kind of system as the fundamental unit of informa-
tion, the qubit [6–8]. Thus it is not a surprise that the search for
analytical solutions of driven two-level systems, which started
since the early days of quantum mechanics, remains to the
present days: these solutions provide deep understanding of
the dynamics and also play an essential role in applications
[9–13].

A particularly central problem for most applications is the
control of the two-level system, i.e., the search of control
fields that can drive the initial state to a desired target state
at some finite time [14]. The special case of population inver-
sion, where the population of the levels are swept at the final
time, can be achieved by several means, e.g., using π pulses
[15,16], chirped pulses [17], or adiabatic passage [18,19], to
name a few. A more general approach is provided by the op-
timal quantum control framework, which allows one to drive
any initial state to an arbitrary final state [20–23]. The optimal
quantum control equations are usually solved numerically and
one is often interested in reaching the desired state regardless
of the detailed system dynamics.

In an alternative procedure, often referred to as a re-
verse engineering technique, the control field is designed to
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follow a dynamical constraint [24–27]. This methodology is
encompassed by quantum tracking control, which seeks to
find control fields to drive an expectation value of an observ-
able along a prescribed time-dependent track [28–32]. This
is performed by inverting the equations of motion in order to
solve for the control field. Such an approach avoids iterative
optimization and thus can be computationally less demanding,
although it suffers from the potential appearance of singulari-
ties presented in the inversion of the dynamical equations.

The reverse-engineering control of the population dynam-
ics of two-level systems by a resonant pulse has been proposed
in Ref. [33]. In this work, an analytical expression for the
control field was obtained as a function of an a priori specified
population dynamics. Apart from the rotating wave approxi-
mation (RWA), the phases of the dynamical coefficients were
assumed to be fixed, which restricted the applicability of the
deduced formula. This work has been followed by investi-
gations considering a two-level system under the influence
of dissipative effects [34–36]. Recently [37], the problem of
controlling both the populations and phases of a two-level
quantum system has been tackled, extending the formula
derived in Ref. [33]. In this approach, two functions are
prescribed, one for the population and another for the phase
of one of the coefficients of the quantum levels. From an
analytical integration, the phase of the remaining coefficient is
obtained which results in an analytical formula for the control
field. One drawback of this approach is the need of performing
an integration analytically, which, even when it is possible,
in general yields a quite complicated formula for the control
field.

In the present work, we address the problem of the simul-
taneous control of the population and the relative phase of
two-level quantum systems through the reversing engineering
technique extending previous results [33,37]. The expression
of the control field obtained by inverting the equations of
motion depends only on the population, the relative phase, and
their time derivatives. As a consequence, the control field is
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determined by prescribing two functions for each one of these
quantities. However, additional constraints also follow from
the dynamical equations, which implies that the dynamical
functions for the population and relative phase cannot be
chosen completely arbitrarily. We show that by appropriately
choosing these dynamical functions, we obtain analytical ex-
pression for the control field without the need of performing
any integration. Several initial and target states are chosen to
illustrate the approach.

II. CONTROL FRAMEWORK

We consider a two-level system interacting with a linearly
polarized, time-dependent external field acting from an initial
time t = t0 to a final time t = t f . This system can model,
for instance, a two-level atom interacting with a laser pulse.
From the knowledge of the initial conditions, our goal will
be to specify the system dynamics until a desired target final
state is reached. We remark that the present development
follows closely Refs. [33,37], but with some key differences.
We denote the ground level by |g〉, with energy Eg, and the
excited level by |e〉, with energy Ee. In atomic units, we write
the corresponding total time-dependent Hamiltonian as

H = H0 − με(t )(|g〉〈e| + |e〉〈g|), (1)

with H0 being the unperturbed Hamiltonian of the two-level
system,

H0 = Eg|g〉〈g| + Ee|e〉〈e| (2)

and μ the projection of the electric dipole moment along
the field polarization axis. The time-dependent function ε(t )
stands for the electric field and plays the role of the control
function. This external field, assumed to be real and with a
carrier frequency ω, can be expressed for convenience as two
complex-conjugated parts,

ε(t ) = ε(t )e−iωt + ε∗(t )eiωt , (3)

where the complex function ε(t ) ultimately defines the enve-
lope and amplitude of the field and the asterisk denotes the
complex conjugate.

The wave function can be written in the basis of the eigen-
states of the unperturbed Hamiltonian as

|ψ (t )〉 = Cg(t )e−iEgt |g〉 + Ce(t )e−iEet |e〉, (4)

where the time-dependent coefficients Cg(t ) and Ce(t ) are
the complex amplitudes of the ground and excited levels,
respectively, in the interaction picture. Upon substitution of
this expansion and Eq. (3) in the time-dependent Schrödinger
equation, while invoking the RWA, we obtain the following
coupled system of differential equations for the coefficients:

Ċg(t ) = iCe(t )με∗(t )ei(ω−ω0 )t ,

Ċe(t ) = iCg(t )με(t )e−i(ω−ω0 )t , (5)

where ω0 = Ee − Eg is the resonance frequency between the
energy levels and the dots denote the time derivative.

We can express each complex coefficient in terms of a
time-dependent amplitude and phase,

Cj (t ) = c j (t )eiφ j (t ), (6)

with the index j denoting either the level g or e, c j (t ) = |Cj (t )|
the absolute value, and φ j (t ) the phase of the corresponding
complex coefficient.

Our goal in the work is to derive control fields that yield a
prescribed system dynamics. To this end, we rewrite each one
of the Eq. (5) in terms of ε(t ) and ε∗(t ) using Eq. (6),

ε∗(t ) = − i

μ

ċg(t ) + iφ̇g(t )cg(t )

ce(t )
e−i[(ω−ω0 )t−φ(t )],

ε(t ) = − i

μ

ċe(t ) + iφ̇e(t )ce(t )

cg(t )
ei[(ω−ω0 )t−φ(t )], (7)

where we have defined the relative phase between the coeffi-
cients as φ(t ) = φg(t ) − φe(t ). Substituting Eq. (7) in Eq. (3)
and using the conservation of the norm, cgċg = −ceċe yields

ε(t ) =− i

μ

[(
ċg(t )

ce(t )
+ iφ̇g(t )cg(t )

ce(t )

)
ei[ω0t+φ(t )]

+
(

− ċg(t )

ce(t )
+ iφ̇e(t )ce(t )

cg(t )

)
e−i[ω0t+φ(t )]

]
. (8)

Since we have assumed that the field is a real function, we
obtain the following relation among the time derivatives of
the phases:

φ̇e(t ) = cg(t )2

ce(t )2
φ̇g(t ) = cg(t )2

ce(t )2 − cg(t )2
φ̇(t ). (9)

An important point revealed by the above equation is that
when the populations of the levels are equal to each other,
the derivative of the relative phase has to vanish.

Equation (9) and the fact that ce(t )2 + cg(t )2 = 1 allow us
to write the control field in Eq. (8) as

ε(t ) = 2

μ

ċg(t )

|ċg(t )|√1 − cg(t )2

√
ċg(t )2 + φ̇g(t )2cg(t )2

× sin [ω0t + φ(t ) + λ(t )], (10)

where the phase λ(t ) is given by

λ(t ) = arctan
φ̇g(t )cg(t )

ċg(t )
= arctan

1 − cg(t )2

1 − 2cg(t )2

cg(t )

ċg(t )
φ̇(t ).

(11)

We are now in a position to apply the reverse engineering
idea to our control problem. The dynamical Eq. (5) are to be
accompanied by a set of initial conditions specifying the initial
populations, cg(t0)2 ≡ Pi, ce(t0)2 = 1 − cg(t0)2, and the initial
phases φg(t0), φe(t0) and φ(t0) = φg(t0) − φe(t0) ≡ 	i. From
these initial conditions, we set up the population dynamics
of the levels and also of the relative phase until they reach
the desired target values cg(t f )2 ≡ P f and φ(t f ) ≡ 	 f . To
accomplish this task, we define two dynamical functions P(t )
and 	(t ) as

cg(t ) =
√

P(t ),

φ(t ) = 	(t ), (12)

such that they match the initial and final conditions:
P(t0) = Pi, 	(t0) = 	i, P(t f ) = P f , and 	(t f ) = 	 f .
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FIG. 1. Schematic drawing of possible dynamical functions P(t )
and 	(t ). The system is driven from P(t0) = Pi and 	(t0) = 	i

to the target values P(t f ) = P f and 	(t f ) = 	 f . Note that 	(t )
is chosen such that 	̇(t̃ ) = 0, while t̃ is defined by the condition
P(t̃ ) = 1/2.

From Eq. (10), the engineered external field can be ex-
pressed in terms of the dynamical functions P(t ) and 	(t ),

ε(t ) = V0(t ) sin [ω0t + 	(t ) + 
(t )], (13)

where the amplitude and the phase are written as

V0(t ) = 2

μ

Ṗ(t )

|Ṗ(t )|
[

Ṗ(t )2

4P(t )[1 − P(t )]
+ 	̇(t )2P(t )[1−P(t )]

[1−2P(t )]2

]1/2

,

(14)


(t ) = arctan

[
P(t )[1 − P(t )]

Ṗ(t )

2	̇(t )

1 − 2P(t )

]
. (15)

Note that there will be no singularity in expression (14) if
	̇(t ) = 0 when P(t ) = 1/2 and Ṗ(t ) = 0 in the extrema P =
1 and P = 0. More formally, we mean that for every t̃ such
that P(t̃ ) = 1/2 the quantity 	̇(t )/[1 − 2P(t )] should be finite
in the limit t → t̃ .

Therefore, in the present approach, two dynamical func-
tions P(t ) and 	(t ) are chosen so that they match the initial
conditions and reach the desired values of population and
relative phase at the final time. The control field that yields
the desired dynamics is then given by Eq. (13). However, in
addition to the expected smoothness of the dynamical func-
tions, they have to satisfy other constraints: (i) P(t ) has to take
into account the conservation of the norm cg(t )2 + ce(t )2 = 1,
so that 0 � P(t ) � 1; (ii) Ṗ(t ) = 0 whenever the population
reaches an extremum, i.e., P(t ) = 0 or P(t ) = 1; (iii) as no-
ticed in Eq. (9), the derivative of the relative phase has to
vanish whenever the populations are equal, that is, 	̇(t̃ ) = 0
for all t̃ such that P(t̃ ) = 1/2; (iv) we must have in mind that
we are under the RWA, so that abrupt changes in the functions
compared to the system’s natural period can break the approx-
imation. Despite these constraints, there is still enough room
for choosing the functions to govern the dynamics, as we shall
see in the next section.

Figure 1 depicts the possible choice of the dynamical
functions P(t ) and 	(t ). In this case, it is intended to drive
the system from P(t0) = Pi and 	(t0) = 	i to the target val-
ues of population P(t f ) = P f and relative phase 	(t f ) = 	 f .

FIG. 2. P(t ) is a constant at Pi = P f = 0.3. The initial relative
phase is 	i = 0 and the target phase is 	 f = π/4. A linear polyno-
mial is chosen for the dynamical function 	(t ) and formula (17) is
used. (a) Levels population dynamics |c j (t )|2 and (b) relative phase
dynamics φ(t ) (continuous line) compared to the chosen dynamics
function 	(t ) (dotted line with points).

The dynamical functions are chosen in order to satisfy the
constraints. Especially, the fact that the time derivative of the
relative phase is zero when the level populations are equal is
highlighted. Note that a myriad of possible functions could
be chosen and that the value of t̃ is defined by the selection
of P(t ).

Finally, it is worth considering two limiting cases. First, if
the relative phase is intended to be constant, 	̇(t ) = 0 in the
whole interval, and we obtain for the control field

ε	(t ) = 1

μ

Ṗ(t )√
P(t )[1 − P(t )]

sin [ω0t + 	]. (16)
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FIG. 3. P(t ) is a linear function joining Pi = 0.8 to P f = 0.3. The initial relative phase is 	i = 0 and the target phase is 	 f = π/4. A
quadratic polynomial is chosen for the relative phase such that 	(t0) = 	i, 	(t f ) = 	 f , and 	̇(t̃ ) = 0, where t̃ = 60 fs. (a) Levels population
dynamics along with P(t ); (b) relative phase dynamics φ(t ) (continuous line) compared to the chosen dynamics function 	(t ) (dotted line with
points); (c) applied electric field, Eq. (13), and (d) detuning from the resonance frequency 	̇(t ) + 
̇(t ).

Since this result has been explored in previous works, we will
not consider this case here [33,38,39].

Now, if it is desired to have the population fixed during the
whole interval, the control field can be expressed as

εP(t ) = 2

μ

	̇(t )
√

P(1 − P)

1 − 2P
cos [ω0t + 	(t )], (17)

with P(t ) = P a constant. Note that Eq. (17) will not be useful
if P = 1/2, because it is not possible to change the relative
phase while keeping equal populations; see Eq. (9). In fact,
Eq. (17) should be avoided if the population is to be kept too
close to 1/2 due to the small denominator.

III. SIMULTANEOUS CONTROL OF RELATIVE
PHASE AND POPULATIONS

Here, we illustrate several cases for the choice of the
dynamical functions P(t ) and 	(t ) for different objectives.
Following Ref. [37], the parameters of the two level system
are chosen to model the 3s → 3p atomic transition of sodium,
for which ω0 = 2.1 eV and μ = 2.479 atomic units. In all
cases, we set t0 = 0. The engineered control field is used to
solve numerically the Schrödinger equation without the RWA.

Initially, we consider the situation in which one desires to
change only the relative phase, while keeping the populations
constants during the whole time interval. We assume the pop-
ulation of the ground level is to be fixed in 0.3 and a change of
the relative phase from 	i = 0 to 	 f = π/4 is desired, with

t f = 100 fs. Thus the function P(t ) is just a constant equal to
Pi = P f = 0.3 and we chose 	(t ) as a straight line joining 	i

and 	 f . We then apply formula (17) for the control field. Note
that, in this case, the control field is a square pulse with con-
stant amplitude of 0.9 × 108 V/m and blueshifted from the
resonance frequency ω0 by 5.17 meV. Figure 2 shows the nu-
merical results obtained. Panel (a) shows that the populations
are essentially constants, despite small fast oscillations. The
desired relative phase is also reached as shown in panel (b).
Similar good results are obtained for different values of the
target relative phase, maintaining the other parameters fixed.
But for larger values of 	 f the oscillations in the populations
increases. This is expected since the amplitude of the control
field depends on 	̇(t ), so the larger the changes in the relative
phase the larger the control field amplitude. However, formula
(17) is not practical for the populations close to 1/2 due to the
singularity at P(t ) = 1/2.

Now consider a linear function for the populations P(t ) and
a quadratic function for the relative phase 	(t ). We again set
t f = 100 fs. Assume it is desired to drive the population of
the ground level from Pi = 0.8 to P f = 0.3, while the relative
phase should go from 	i = 0 to 	 f = π/4. Figure 3 shows
the results of applying formula (13) to this case. Note that,
since P(t ) is a linear function, the time at which P(t ) = 1/2
is t̃ = 60 fs. Thus 	(t ) is built to match the initial and fi-
nal phases and also 	̇(t̃ ) = 0. The corresponding results are
shown in Fig. 3. In panel (a), apart from small oscillations
of the populations, the dynamics follows reasonably well the

022201-4



REVERSE ENGINEERING CONTROL OF THE RELATIVE … PHYSICAL REVIEW A 110, 022201 (2024)

FIG. 4. P(t ) is a quadratic polynomial joining Pi = 0.1 to P f = 0.8 and such that P(t̃ ) = 1/2 for t̃ = 30 fs. The initial relative phase
is 	i = 0 and the target phase is 	 f = π/4. A quadratic polynomial is chosen for the relative phase such that 	(t0) = 	i, 	(t f ) = 	 f , and
	̇(t̃ ) = 0. (a) Levels population dynamics along with P(t ); (b) relative phase dynamics φ(t ) (continuous line) compared to the chosen dynamics
function 	(t ) (dotted line with points); (c) applied electric field, Eq. (13), and (d) detuning from the resonance frequency 	̇(t ) + 
̇(t ).

prescribed linear behavior. The dynamics of the relative phase
is quadratic with a maximum at t = t̃ as shown in panel (b).
Panel (c) shows that the control field has an almost constant
envelope. In panel (d) is shown the detuning 	̇(t ) + 
̇(t ),
which represents the instantaneous deviation of the field fre-
quency from ω0. This panel shows that the control field is
essentially a linear chirped pulse. This scheme works satis-
factorily for several target values of population and phase. It
should be noted, however, that the choice of a linear function
for the population dynamics precludes Pi or P f of being equal
to zero or one, because, as already mentioned, Ṗ(t ) should be
zero at the extrema. Also note that 	(t ) cannot be chosen as a
quadratic function if 	i �= 	 f and t̃ is exactly in the middle of
the time interval, because 	(t ) could not interpolate the initial
and target values while satisfying 	̇(t̃ ) = 0.

Let us examine the choice of P(t ) as a quadratic poly-
nomial. Since P(t ) has to connect the initial population Pi

to the target population P f , there is an additional point that
can be arbitrarily chosen to specify P(t ). This extra point
may be used to define the value of t̃ for which P(t̃ ) = 1/2
and 	̇(t̃ ) = 0. Figure 4 shows the results for this case, where
	(t ) is also a quadratic polynomial t̃ = 30 fs and t f = 100 fs.
We set Pi = 0.1, P f = 0.8, 	i = 0, and 	 f = π/4. In panel
(a), apart from imperceptible oscillations of the populations,
the dynamics follows reasonably the intended quadratic be-
havior. Panel (b) shows the dynamics of the relative phase
with a minimum at t = t̃ . Panel (c) shows that the control
field decreases its amplitude roughly until t = 20 fs, then

stays approximately constant up to t = 80 fs and increases its
amplitude from t = 80 fs. Panel (d) shows that the detuning
is roughly constant in the interval t = 50 fs to t = 80 fs and
increases approximately linearly from 0 to t = 50 fs and from
t = 80 fs to t = 100 fs. This choice for the dynamical func-
tions works very well for several target values of population
and phase. However, despite the freedom to set the value of
t̃ , there is still a drawback if the values of Pi or P f are either
zero or one, as in the previous case, since we cannot generally
set Ṗ(t ) = 0 at the extrema.

We consider now the choice of P(t ) as a hyperbolic tangent
function given by

P(t ) = A tanh(αt + β ) + B, (18)

where A = (P f − Pi )/2, B = (P f + Pi )/2, and

β = 1

2
ln

1 + γ

1 − γ
− αt̃,

where γ = (1/2 − B)/A. With this setup, P(t ) approaches
asymptotically the initial and the target values of the popula-
tions Pi and P f , while satisfying P(t̃ ) = 1/2. As in the case of
the quadratic polynomial, the hyperbolic function allows one
to tune the value of t̃ , but in addition the derivatives of P(t )
at the initial and final times can be approximately zero. The
parameter α > 0 sets how fast the transition rate is between
the levels, which occurs around t̃ . Figure 5 shows a specific
situation, where we have set Pi = 0.1, P f = 1, 	i = 0, and
	 f = π/2. Once again, t f = 100 fs. Additionally, we have
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FIG. 5. P(t ) is a hyperbolic tangent joining asymptotically Pi = 0.1 to P f = 1 and such that P(t̃ ) = 1/2 for t̃ = 60 fs; see Eq. (18). The
initial relative phase is 	i = 0 and the target phase is 	 f = π/2. A quadratic polynomial is chosen for the relative phase such that 	(t0) = 	i,
	(t f ) = 	 f , and 	̇(t̃ ) = 0. (a) Levels population dynamics along with P(t ); (b) relative phase dynamics φ(t ) (continuous line) compared to
the chosen dynamics function 	(t ) (dotted line with points); (c) applied electric field, Eq. (13), and (d) detuning from the resonance frequency
	̇(t ) + 
̇(t ).

selected α = 0.068 fs−1 and t̃ = 60 fs. From panels (a) and
(b), we note that the population and the relative phase follows
the prescribed dynamical functions. Panels (a) to (c) show
that up to t = 40 fs the field acts to change the relative phase
and only then starts to effectively change the populations. The
detuning shown in panel (d) has a marked depression around
t = 45 fs combined with an overall decrease.

In the previous applications, the pulses generated by the
dynamical functions have the inconvenience of abrupt turning
on and turning off. In order to design a smooth switch on and
off of the pulses, we must choose both Ṗ(t ) and 	̇(t ) close
to zero at t0 and t f and with slow increasing or decreasing
around these times. In order to illustrate this scenario, we
chose for 	(t ) the following functional form which combines
two hyperbolic secant functions:

	(t ) =
{

χ1sech[η1(t − t̃ )] + σ1, if t < t̃,

χ2sech[η2(t − t̃ )] + σ2, if t � t̃,
(19)

where χ1 = (	max − 	i )/[sech(η1t̃ ) − 1], χ2 = (	max −
	 f )/{sech[η1(t f − t̃ )] − 1}, σ1 = 	max − χ1, and σ2 =
	max − χ2. The parameters η1 and 	max as well as t̃ are
freely chosen. 	max sets the maximum value of 	(t ) at t = t̃ ,
while η1 relates to how fast this maximum is approached
from the left. Furthermore, the relation η2 = η1

√
χ1/χ2

guarantees the continuity of the second derivative of 	(t )
at t = t̃ . Figure 6 presents the results with this choice of
Eq. (19) for the dynamical function 	(t ) and Eq. (18) for
P(t ). We have selected Pi = 0.99 and P f = 0.01, while
α = 0.04 fs−1, t f = 200 fs, and t̃ = 100 fs. For the relative
phase, we choose 	i = 0 and 	 f = π/4. Note that the
chosen values for Pi and Pf avoid the extrema. The reason is
that we must have Ṗ(t ) = 0 whenever P(t ) = 0 or P(t ) = 1,
but the hyperbolic tangent function cannot strictly satisfy this
condition for finite times. The parameters in Eq. (19) have
been set to 	max = 1.4	 f and η1 = 1.65α. Panels (a) and
(b) shows that the population and relative phase follow the
prescribed dynamics. Panel (c) shows that the control pulse
has the desired bell-shaped envelope. Panel (d) shows that
the detuning has a change in sign around the peak of the
pulse.

Finally, we return to the problem of having the same ini-
tial and final populations but with distinct initial and final
relative phase. As seen before, it is not possible to keep the
populations constant during the whole time interval if they
are equal or very close to 1/2, while changing the relative
phase. However, it is possible to set Pi = P f = 1/2, without
P(t ) being a constant. We address this situation by choosing
the hyperbolic secant function for P(t ),

P(t ) = G sech[η(t − tp)] + F, (20)
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FIG. 6. P(t ) is a hyperbolic tangent function joining asymptotically Pi = 0.99 to P f = 0.01 and such that P(t̃ ) = 1/2 for t̃ = 100 fs;
see Eq. (18). The initial relative phase is 	i = 0 and the target phase is 	 f = π/4. A hyperbolic secant function is chosen for the relative
phase such that 	(t0) = 	i, 	(t f ) = 	 f , and 	̇(t̃ ) = 0; see Eq. (19). (a) Levels population dynamics along with P(t ); (b) relative phase
dynamics φ(t ) (continuous line) compared to the chosen dynamics function 	(t ) (dotted line with points); (c) applied electric field, Eq. (13),
and (d) detuning from the resonance frequency 	̇(t ) + 
̇(t ).

where G = Pmax − Pi, F = Pi, and with tp = (t f − t0)/2. The
parameter η sets how sharp the function is, while Pmax =
P(tp) defines its maximum or minimum value, which can be
arbitrarily chosen in the interval 0 < Pmax < 1, except for
1/2. Thus the function P(t ) connects the same initial and final
values. Note that since we will set Pi = P f = 1/2, the time
derivative of 	(t ) does not need to vanish in the interval t0 <

t < t f . Therefore, we select a hyperbolic tangent function for
	(t ) joining asymptotically 	i to 	 f ,

	(t ) = R tanh[ξ (t − t∗)] + S, (21)

where R = (	 f − 	i )/2 and S = (	 f + 	i )/2. The parame-
ter ξ controls the transition time between the initial and final
relative phase and t∗ is such that 	(t∗) = S. We set t∗ = tp,
which produces a pulse with an apparent symmetry around
tp. Figure 7 illustrates the application of this scheme with
the following set of parameters: 	i = 0, 	 f = π/8, Pmax =
0.7, t f = 200 fs, tp = t f /2, and η = ξ = 0.08 fs−1. As in the
previous cases, panels (a) and (b) show that the dynamics
follows the prescribed dynamical functions. The envelope of
the generated field in panel (c) has the expected bell shape
with a small plateau around t = tp. The detuning presented
in panel (d) indicates that the modulation of the frequency of
the control field consists of adding a constant frequency to

ω0; then there occurs an abrupt change around the time of the
transition to a new constant frequency.

IV. CONCLUSION

In this work, we have derived an analytic expression for
the external field acting on a two-level quantum system aimed
at controlling simultaneously the population and the rela-
tive phase dynamics. The control field is engineered from
two user-defined dynamical functions P(t ) and 	(t ) which
join initial conditions to the target values. These functions
must satisfy a series of conditions, but there is still great
flexibility in their choices. It is worth emphasizing that the
obtained expression can be easily built, needing, apart from
the dynamical function themselves, only their derivatives.
We have applied our approach to several initial and target
values of population and relative phase, utilizing different
dynamical functions. Although the obtained fields may not
be experimentally accessible at the present, due, for instance,
to high chirp rates [40,41], our calculations demonstrate the
general applicability of the approach, with the only essen-
tial limitation being the validity of the RWA. We expect
the present result to be used beyond the simple two-level
system, e.g., in the strong-field control and for the control
of many-level molecular systems [39,42]. In particular, our
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FIG. 7. P(t ) is a hyperbolic secant function joining asymptotically Pi = 0.5 to P f = 0.5 and such that Pmax = 0.7 for tp = 100 fs; see
Eq. (20). The initial relative phase is 	i = 0 and the target phase is 	 f = π/8. A hyperbolic tangent function is chosen for the relative phase
joining asymptotically 	i to 	 f and such that 	(tp) = (	 f − 	i )/2; see Eq. (21). (a) Levels population dynamics along with P(t ); (b) relative
phase dynamics φ(t ) (continuous line) compared to the chosen dynamics function 	(t ) (dotted line with points); (c) applied electric field,
Eq. (13), and (d) detuning from the resonance frequency 	̇(t ) + 
̇(t ).

scheme can be applied to engineer external fields to gener-
ate Rabi oscillations in atomic systems, which is currently
attracting great interest [43,44]. Finally, the robustness of the
engineered fields with respect to perturbations in the values of
the system parameters should be considered in future works,
as it is important for practical applications of the present
methodology.
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