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We wish to correct an error in our article in the subprotocol verifying magic states. Specifically, the circuit used to implement
the verification cannot be implemented transversally for the chosen family of codes. In this erratum, we explain the error in detail
and propose a solution based on already existing techniques, i.e., distributed magic state distillation. This approach increases
the operational qubit workspace per node from n2 + 4n to n2 + �(s)n, where s is the security parameter. The increase is linear
in n, which means that the main result of our paper remains intact: the number of qubits per node necessary to implement the
multiparty quantum computation is still smaller than the previous protocol [1]. Moreover, the security proof in our manuscript
does not change.

I. THE ISSUE

In our article, we presented a protocol for distributed multiparty quantum computation (MPQC) of universal circuits. Our
method is based on quantum error correction, and we choose a subfamily of Calderbank-Steane-Shor (CSS) Ĉ that allows for a
transversal implementation of the Clifford gates. Tranversality is essential since we require that any operation � implemented
by the nodes locally should yield the same operation �̄ at a logical level.

To implement any circuit, we supplement the Clifford gates with logical magic states | ¯̄m〉, which need to be verified, i.e., the
nodes must collectively agree that there are at most t errors in the logical magic state. After this step the nodes can use the magic
state to implement the T gate transversally using gate teleportation.

The method we chose for the verification procedure is based on the so-called stabilizer measurement. Unfortunately, the
controlled gate C-XP† implementing the stabilizer measurement is not a Clifford gate, and for our chosen family of codes Ĉ
this gate is not transversal. This means that the procedure cannot be implemented transversally, and the magic state cannot be
verified with this procedure.

II. THE SOLUTION

To solve the problem, we propose a new protocol for the verification of magic states. Our new protocol is based on magic
state distillation [2] and statistical testing of randomly selected states. We note that this is a method inspired by distillation of
entangled pairs whose exact initial state is unknown [3]. A similar approach has recently been reported by [4]. In the following,
we first describe the new protocol on a high level and then provide a detailed description.

In the magic state verification procedure, one node produces M copies of the magic state |m〉. The nodes share and verify
the encoding of the state using the verifiable secret sharing protocol; see Protocol 1 in the original article. Then, using public
randomness, the nodes pick a fraction of states to be statistically tested. For each picked state, the nodes select a random
node who reconstructs the shared state and measures it in the {|m〉, |m⊥〉} basis. If all of the measurement results yield |m〉,
then the nodes have statistical evidence that the rest of the states are good with high probability. Next, the nodes perform
dephasing in the {|m〉, |m⊥〉} basis on the remaining states. This is done by randomly applying the PX gate, which is a Clifford
gate, and therefore it can be implemented transversally with the code Ĉ. This step is necessary, since to perform magic state
distillation the initial states must have a diagonal form in the {|m〉, |m⊥〉} basis. After this, the nodes perform magic state
distillation using the 15-to-1 Bravyi-Kitaev protocol [2]. Importantly, this protocol can also be realized using only Clifford gates
and measurements, both of which can be implemented essentially transversally for the chosen family of codes. Note that the
distillation procedure can be performed many times to get arbitrarily close to the perfect magic state.

We remark that the statistical testing is necessary to assess the quality of magic states before distillation, since the states can
be produced by cheaters. If this were the case, performing the distillation straightforwardly would not give a guarantee on the
quality of the final magic state.

III. IMPLICATIONS FOR THE RESULTS

Here we point out the implications of the change we make to the overall results of our work.
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Outline 1. (Multiparty quantum computation, repeated from our article)
Input: single-qubit state ρi from each node, CSS code Ĉ with transversal Cliffords, circuit R.
(1) Sharing and verification
Each node i = 1, . . . , n encodes her input ρi using code Ĉ into an n-qubit logical state, and sends one qubit (i.e., one single-

qubit share) of the logical state to every other node, while keeping one for herself. The nodes jointly verify the encoding done
by node i using a verifiable quantum secret sharing protocol (see Protocol 1 in our article).

(2) Computation
(i) For every Clifford gate in circuit R:
The nodes apply transversal Clifford gates locally to qubits specified by the circuit R.
(ii) For every T gate in circuit R applied to qubit i, the nodes run Verification of Magic States, Protocol 3 (the new

protocol). If the verification is successful, the nodes perform Distributed Gate Teleportation; see Protocol 2 in the original
article.
Every |0〉 ancilla state required for circuit R, which is prepared by node i, is jointly verified by the nodes using verifiable

quantum secret sharing, Protocol 1 in our article.
If the verification of any step fails, the nodes substitute their shares for |0〉 and abort the protocol at the end of the computation.
(3) Reconstruction
Each node i collects all shares of her part of the output. She corrects errors using code Ĉ and reconstructs her output.
Let M be the number of magic states produced for each T gate of the circuit one wishes to execute throughout the MPQC.

Let k be the number of these states that is measured in Testing of Protocol 3; see below.
(i) Security of MPQC. The security of our MPQC protocol remains unchanged. Theorem 1 below ensures that conditioned

on not aborting and for M = �(s) and k = �(s), the state after verification is 2−�(s) close to a logical magic state, where s is
the security parameter. This means that, as before, the overall security of the MPQC protocol can be quantified with a total error
probability of κ2−�(s), where κ = n + #T gates +#ancillas in a circuit executed in MPQC; see Theorem 1 in the original article.

(ii) Qubit workspace. The new scaling for the qubit workspace only has a linear overhead as compared to the previous version,
and it remains lower than the previous result by [1]. The qubit workspace required per node is now n2 + (M + 2)n = n2 + �(s)n
as opposed to the previously derived n2 + 4n. As before, sharing and verifying the n input qubits uses at most n2 + 2n qubits.
However, we must also consider the resources needed for the magic state verification. When sharing the magic state, the nodes
already hold n2 qubits corresponding to the inputs, and the magic state distribution and verification requires (M + 2)n qubits.

(iii) Quantum communication complexity. The quantum communication complexity is essentially unchanged. With the new
verification method each node sends [(M − 1)s2 + k]n·#T = �(s)ns2 · #T extra qubits. This means that the communication
complexity per node is now O((n + #ancillas + M · #T )ns2 + kn · #T ) = O([n + #ancillas + �(s) · #T ]ns2), as opposed to the
previous O((n + #ancillas + #T )ns2), where #T is the number of T gates.

In our MPQC protocol from our article, we introduced an “abort” event. That is, the protocol could abort if there were more
than t errors introduced by the cheaters, accumulated over all inputs. For comparison, now our MPQC protocol can abort either
because the verification of the magic state aborts or because more than t errors have been introduced by the cheaters, accumulated
over all inputs. We remark that the verification procedure below can be repeated until successful in the following way. Every
time the verification fails, two nodes are removed from the next execution: one node who created the state and one who measured
|m⊥〉. By repeating this t times, we would remove at most 2t nodes, and with certainty remove all of the cheaters. In the next
(t + 1)th execution, all the n − 2t remaining nodes would be honest and the procedure would necessarily succeed. This would
leave the MPQC aborting only in the latter case, i.e., when more than t errors occur.

Protocol 3 (Verification of Magic States (VMagic), new protocol). Input: set of apparent cheaters B, number M of magic
states to be created, number k of magic states to be measured.

Output: verified logical state | ¯̄m〉
Testing
(1) A randomly selected node i creates M copies of the magic state |m〉.
(2) The nodes run a verifiable secret sharing protocol using code Ĉ (VQSS, Protocol 1 in our article) M times, every time

with |m〉 as an input and with dealer i. They update the set B with apparent cheaters Bm revealed in verifying each copy of |m〉.
(3) The nodes use public randomness to decide

(i) which k of the M copies will be measured;
(ii) which node will measure each of the selected k copies.

(4) The nodes send the shares according to the division in the previous step, and use the reconstruction of the VQSS [1] to
reconstruct a state.

(5) Each node measures the reconstructed state in the {|m〉, |m⊥〉} basis. They announce the results of the measurement.
(i) If all measurements yield |m〉, continue.
(ii) If any measurement yields |m⊥〉, set B = [n] (this will cause the MPQC protocol to abort after the computation phase).

Distillation ([4], Circuit 2.8)
(1) The nodes use public randomness to apply PX to each share of the remaining M − k logical states with probability 1

2
(n.b. this brings the logical states into a form diagonal in the {|m〉, |m⊥〉} basis).

(2) The nodes use public randomness to permute the remaining M − k logical states.
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(3) The nodes apply the 15-to-1 magic state distillation protocol [2]. Any measurements throughout the protocol are broadcast
and the logical value is reconstructed using verifiable classical secret sharing (like in the verification phase of the VQSS; see
Protocol 1 in our article).

IV. PARAMETER ANALYSIS

In this section, we give technical details of the magic state verification protocol, Protocol 3. We point out that the security
proof in our manuscript does not change. The only alteration is in the derivation of the error that can be introduced by the
verification of the magic state (this corresponds to a different error in the “real protocol” at the end of Appendix A in our article).
In the following, we derive this error explicitly. We will first state a few useful lemmas necessary to prove the security of our
new verification protocol. Then we will proceed with stating the desired security in Theorem 1.

Let M be the number of magic states distributed by a randomly selected node; let k < M be the number of copies chosen to
be measured by all nodes, and k′ � k out of all of the measured copies be measured by the honest nodes. Note that selecting
a random node and selecting which copies to measure can be done using an already assumed public source of randomness and
classical multiparty computation; see our original article. The lemma below states that if a state is close to the subspace of a
state with a small “Hamming weight,” then Protocol 3 can distill it to a state close to a pure magic state. Since {|m〉, |m⊥〉} is a
basis of a qubit space, it follows that any M − k qubit pure state can be written as a superposition of tensor products of vectors
in {|m〉, |m⊥〉}. The Hamming weight then needs to be understood as the maximum number of |m⊥〉 showing in any term of the
superposition [5].

Lemma 3 (Lemma 2.7 of [4]). Let Vδ := span{Pπ (|T 〉⊗(M−k)−w|T ⊥〉⊗w ) : w
M−k � δ, π ∈ SM−k}, where SM−k is the set of

permutations of M − k elements, and Pπ is the operator that permutes M − k qubits according to the permutation π . Let 	Vδ
be

a projector onto Vδ . Let 
 be the CPTP map describing the action of Distillation of Protocol 3. Let ρ be an M − k qubit state
such that Tr(	Vδ

ρ) � 1 − ε; then,

‖
(ρ) − |T 〉〈T |‖1 � O
(
(M − k)(

√
35δ)(M−k)c/2 + ε

)
, (1)

where c ≈ 0.406 and δ is chosen such that δ � 0.14.
Now we will prove a lemma lower-bounding the number of copies of the magic state that must be measured in Testing,

Protocol 3, such that at least some minimum number s′ of them is measured by honest nodes with high probability.
Lemma 4. Let μ ∈ (0, 1), let s′ � 1 be some integer. Let H := (1 − 1

n� n−1
4 �) ∈ [3/4, 1]. In the testing procedure Protocol 3,

if the number of measured copies of the magic state k satisfies the following:

k � 2Hs′ + ln(μ−1)/2 +
√

2Hs′ ln(μ−1) + ln2(μ−1)/4

2H2
, (2)

then

Pr(k′ < s′) � μ, (3)

where k′ is the number of copies of the magic state measured by the honest nodes.
Proof. For a sequence of IID Bernoulli random variables X1, . . . , Xn, and some λ ∈ [0, 1], Hoeffding’s inequality [6] ensures

that

Pr

[
k∑
1

Xi � E

(
k∑
1

Xi

)
− λk

]
� e−2λ2k. (4)

In other words, Hoeffding’s inequality bounds the probability that the fraction of observed 1’s in the sequence of random variables
deviates from its expectation value by more than λk. In Protocol 3, we can define a Bernoulli variable for each measured copy
of the magic state as follows: The random variable Xi takes value 1 if and only if the copy i is sent to an honest node. Therefore,
we have k′ = 1

k

∑k
1 Xi and E( 1

k

∑k
1 Xi ) = (1 − 1

n� n−1
4 �) = H . Plugging this into Hoeffding’s inequality, we get

Pr[k′ � (H − λ)k] � e−2λ2k . (5)

Then by choosing λ and k such that λ = E(
∑k

1 Xi )−s′

k = Hk−s′
k and e−2λ2k = μ, we get

Pr(k′ < s′) � μ, (6)

and that k must satisfy

H2k2 − [2Hs′ + ln(μ−1)/2]k + s′2 � 0, (7)

from which, by solving the inequality for k, we get inequality (2). Note that since μ can take any value in (0,1), the probability
Pr(k′ < s′) can be made arbitrarily small.

Finally we restate a Theorem from [5] saying that if Testing of Protocol 3 does not abort, then the state before Testing was
already close to a space of states with a small Hamming weight.

019901-3



ERRATA PHYSICAL REVIEW A 110, 019901(E) (2024)

Lemma 5 (from Theorem 3 of [5]). Let |φAE 〉 ∈ (C2)M ⊗ HE be a quantum state and let β = {|v0〉, |v1〉} be a fixed single-qubit
basis. If we measure k random qubits of TrE (|φAE 〉〈φAE |) in the β-basis and all of the outcomes are |v0〉, then with probability
1 − e−δ2k , we have

|φAE 〉 ∈ span{Pπ (|T 〉⊗M−w|T ⊥〉⊗w ) ⊗ |ψ〉 :
w

M
� δ, π ∈ SM, |ψ〉 ∈ HE }. (8)

The lemma above has a useful corollary, namely that the state of remaining unmeasured qubits after Testing in Protocol 3 is
close to a space of states with a small Hamming weight.

Corollary 1 (from Lemma 5). Let |φAE 〉 ∈ (C2)M ⊗ HE be a quantum state and let β = {|v0〉, |v1〉} be a fixed single-qubit
basis. If among k randomly chosen qubits of TrE (|φAE 〉〈φAE |), k′ of them are correctly measured in the B-basis and all of the
outcomes are |v0〉 while k − k′ are measured with an arbitrary positive operator-valued measure, then the state ρ on the remaining
(M − k) qubits of TrE (|φAE 〉〈φAE |) is e−δ2k′

—close to the subspace

Vδ = span

{
Pπ (|T 〉⊗(M−k)−w|T ⊥〉⊗w ) :

w

M − k
� δ, π ∈ SM−k

}
. (9)

In other words, if 	Vδ
is a projector on the above subspace, then Tr(	Vδ

ρ) � 1 − e−δ2k′
.

Now we are ready to state the security of our new verification procedure.
Theorem 1. Let � be the completely positive trace-preserving (CPTP) map describing the action of Testing, Protocol 3, and

let 
 be a CPTP map describing the action of Distillation, Protocol 3. Then we have

‖
 ◦ �(ρ)|not abort − |T 〉〈T |‖1 � O
(
(M − k)(

√
35δ)(M−k)c/2 + e−δ2s′ + μ

)
, (10)

where c ≈ 0.406. Recall that s is the security parameter of the whole MPQC protocol. By setting M − k = s, s′ = s, and μ = 2−s,
Eq. (10) becomes

‖
 ◦ �(ρ)|not abort − |T 〉〈T |‖1 � O
(
2−�(s) + e−δs2 + 2−s

) = 2−�(s). (11)

Note that, by Lemma 4, setting s′ = s and μ = 2−s forces k to satisfy

k � 2Hs + s/2 +
√

2Hs2 + s2/4

2H2
=

(
2H + 1/2 + √

2H + 1/4

2H2

)
s = �(s). (12)

Overall, we have that Eq. (11) holds for M = (M − k) + k = �(s).

ACKNOWLEDGMENTS

We thank J. G. Hölting for point us to the error in the original article. We thank J. Helsen and B. Dirkse for useful comments
and feedback on this erratum.

[1] C. Crépeau, D. Gottesman, and A. Smith, in Advances in Cryptology—EUROCRYPT 2005, edited by R. Cramer (Springer, Berlin, 2005),
pp. 285–301.

[2] S. Bravyi and A. Kitaev, Phys. Rev. A 71, 022316 (2005).
[3] A. Pirker, V. Dunjko, W. Dür, and H. J. Briegel, New J. Phys. 19, 113012 (2017).
[4] Y. Dulek, A. B. Grilo, S. Jeffery, C. Majenz, and C. Schaffner, in Advances in Cryptology—EUROCRYPT 2020, edited by A. Canteaut and

Y. Ishai (Springer International, Cham, 2020), pp. 729–758.
[5] N. J. Bouman and S. Fehr, in Advances in Cryptology—CRYPTO 2010, edited by T. Rabin (Springer, Berlin, 2010), pp. 724–741.
[6] W. Hoeffding, J. Am. Stat. Assoc. 58, 13 (1963).

019901-4

https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1088/1367-2630/aa8086
https://doi.org/10.1080/01621459.1963.10500830

