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Supersensitive phase estimation by thermal light in a Kerr-nonlinear interferometric setup
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Estimation of the phase delay between interferometer arms is the core of transmission phase microscopy.
Such phase estimation may exhibit an error below the standard quantum (shot-noise) limit, if the input is an
entangled two-mode state, e.g., a N00N state. We show, by contrast, that such supersensitive phase estimation
(SSPE) is achievable by incoherent, e.g., thermal, light that is injected into a Mach-Zehnder interferometer via
a Kerr-nonlinear two-mode coupler. Phase error is shown to be reduced below 1/n̄, n̄ being the mean photon
number, by thermal input in such interferometric setups, even for small nonlinear phase shifts per photon pair or
for significant photon loss. Remarkably, the phase accuracy achievable in such setups by thermal input surpasses
that of coherent light with the same n̄. Available mode couplers with giant Kerr nonlinearity that stem either
from dipole-dipole interactions of Rydberg polaritons in a cold atomic gas, or from cavity-enhanced dispersive
atom-field interactions, may exploit such effects to substantially advance interferometric phase microscopy using
incoherent, faint light sources.
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I. INTRODUCTION

Quantum sensing generally denotes sensing protocols that
exploit nonclassical resources or operate in the domain of
quantum signals and noise [1–8]. One of the prominent direc-
tions in this emerging field is that of transmission microscopy
with phase resolution set by supersensitive phase measure-
ments, namely, measurements with uncertainty less than the
standard quantum limit (SQL) [9–13]. In conventional two-
mode interferometers, the SQL is set by the vacuum noise in
the empty input mode [14], corresponding to the shot-noise
error of phase-delay estimation �φ that scales as �φ ∼ n̄−1/2,
with n̄ being the mean input photon number in the populated
mode.

Phase estimation below SQL, also known as supersensitive
phase estimation (SSPE), is enabled by nonclassical two-
mode input states, e.g., squeezed vacuum states [11,12,15],
even- and odd-coherent states [16,17], N00N states [13], and
entangled coherent (“cat”) states (ECS) that consist of coher-
ently superposed N00N states [16]. Both N00N states and
ECS yield the phase-error bound �φ ∼ 1/n̄, which is com-
monly but inaccurately identified with the Heisenberg limit
(HL) [9–13,16–21]. However, the states with small n̄ and
large variance �n > n̄ may exhibit phase error below 1/n̄,
reflecting the fact that the HL as the ultimate limit for phase
estimation does not apply for such states [9,22–25].

To benefit from the input state nonclassicality, SSPE must
be inferred from high-order correlation measurements of the
two-mode output [26]. Progress over the years [27–47] has
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revealed the hurdles involved in the generation of such states:
especially challenging are the giant nonlinear phase shifts of
π per photon pair required for their deterministic preparation,
as well as their fragility under decoherence.

Here we break away from the underlying paradigm that
SSPE must employ interferometers with maximally entangled
states. We show that nonclassical or coherent sources are
not required for deterministic SSPE. Instead, it is achiev-
able by feeding a Mach-Zehnder interferometer (MZI) that
constitutes the core of a transmission phase microscope with
light derived from incoherent, e.g., thermal, input shined upon
another Mach-Zehnder interferometer with the Kerr-nonlinear
two-mode coupler. Not less remarkably, the nonlinear phase
shift per photon pair required to beat the SQL limit of phase
microscopy can be much less than the π shift, which trans-
forms a Fock state into a N00N state or a coherent state
into an ECS [21]. Such Kerr-nonlinear SSPE is also imper-
vious to decoherence and can withstand substantial photon
loss inside the interferometer. The discussed effects may be
experimentally realized by resorting to the strong optical Kerr
effects predicted [48,49] and demonstrated in setups based
on dipole-dipole interacting Rydberg polaritons in a cold gas
[31,44–46,50], or atom-field interactions in high-Q cavities
[51,52].

II. SCENARIO AND ANALYSIS PRINCIPLES

Consider a two-mode interferometer that incorporates a
phase-shifter with an unknown phase φ that we wish to es-
timate. The two-mode merger or coupler is endowed with
self-Kerr (SK) or cross-Kerr (CK) nonlinearity [Fig. 1(a)]: A
nonlinear phase shift 2χ is caused by SK for two photons in
the same mode, the CK counterpart being the phase shift χ for
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FIG. 1. (a) Schematic drawing of a Mach-Zehnder interferometer (MZI) preceded by either a self-Kerr (SK) or a cross-Kerr (CK) nonlinear
filter (two-mode coupler). The nonlinear filter of thermal input in modes ain, bin, prepares states allowing to estimate with high precision
the unknown phase shift (PS) φ in a linear MZI. The setup can act as transmission “microscope” (phase resolver). The phase is inferred
from photodetection of the output channels aout, bout or parity measurement of one of them. (b) The phase error (sensitivity) from parity
measurements as a function of φ for various input states in the SK and CK MZIs (with χ = π/2, n̄ = 5). (c) The minimal phase error
(maximum sensitivity), given by the inverse square root of the quantum Fisher information (QFI), as a function of n̄ for thermal state input to
the MZI with weak SK or CK nonlinearity (χ = π/10).

two photons in different modes. The overall unitary transfor-
mation for such a Mach-Zehnder interferometer (MZI) with
SK or CK nonlinearity [53,54] is, respectively,

USK = UBSUPS(φ)UBSeiχa†2a2
UPS(π/2)UBS, (1a)

UCK = UBSUPS(φ)UBSeiχa†ab†bUPS(π/2)UBS. (1b)

Here, UPS(φ) = eiφa†a is the operator that shifts the phase by
φ in mode a, and UBS is the operator of a 50:50 beam splitter
[55]. Both Hamiltonians HSK = χa†2a2 and HCK = χa†ab†b
commute with the photon-number operators a†a and b†b and
thus do not change the mean output photon numbers [56]. We
consider the simplest (both experimentally and calculation-
ally) case of one empty input mode and the other mode to be in
either number, coherent, or thermal states [55,57]. Analytical
results will be given for the strongest nonlinear phase shift per
photon pair, χ = π/2.

An insightful (but not optimal) phase estimation method is
based on measuring the mean value of the parity operator of
one of the output modes: �out = eiπb†

outbout [27,47]. Its direct
measurement by counting the corresponding photon number
is challenging. Instead, Kerr nonlinearity enables a simpler
parity measurement of an MZI output by sending it through a
second cross-Kerr interferometer along with a vacuum input
and detecting which of the two output detectors has clicked
[see Fig. 4] [27]. The phase error (sensitivity) obtained from
the parity-operator mean value 〈�out〉 is compactly expressed
as [27,47]

�φ =
√

1 − 〈�out〉2∣∣ ∂〈�out〉
∂φ

∣∣ . (2)

In an MZI with self-Kerr (SK) and χ = π/2, for num-
ber state input |n, 0〉, the state right after the phase shifter
[Fig. 1(a)], is

|ψ (φ)〉number = in

√
2

eiπ/4(in−1einφ |n, 0〉 + |0, n〉), (3)

which yields at the output of the microscope 〈�out〉 = sin nφ

(see Appendix A) and �φ = 1/n (Heisenberg scaling). One
owes this supersensitive phase resolution to the fact that a
number state is transformed after the second beam splitter or
merger in Fig. 1(a) into a state akin to a N00N state. Accord-
ingly, an input thermal state is transformed by the nonlinear
filter into a mixture of N00N states spanned by all n which
yields

〈�out〉 = 1

1 + n̄
+

∞∑
n=0

n̄n

(1 + n̄)(n+1)
sin nφ. (4)

The resulting minimum phase error [see Fig. 1(b) and
Appendix A]

�φ ≈
√

1 − 1
(n̄+1)2

n̄
, (5)

falls below the Heisenberg limit (HL) 1/n̄ [9,22–25]. Im-
portantly, similar arguments hold for a general input state
ρin = ∑

n,m ρnm|n〉〈m| ⊗ |0〉〈0| (see Appendix A). We note
that there is only a moderate difference in phase sensitivity
between the cross Kerr (CK) and SK, all parameters being
equal [Fig. 1(b)].

Independently of the measurement setting, the minimal
phase error attainable by a given input state is set by the
quantum Cramér-Rao bound [58], which is related to the
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quantum Fisher information (QFI) FQ through [47]

�φmin � 1√
FQ

. (6)

To evaluate FQ, we calculate the state right after the phase-
shift operation [Fig. 1(a)] through

ρ̃(φ) = UρinU
†, (7a)

where

U = UPS(φ)UBSeiχa†2a2
UPS(π/2)UBS, for SK, (7b)

U = UPS(φ)UBSeiχa†ab†bUPS(π/2)UBS, for CK. (7c)

Using Eqs. (3) and (7), the transformed states after the phase-
shifter in SK interferometer with χ = π/2 for coherent and
thermal states input correspondingly are calculated to be (see
Appendix A)

|ψ (φ)〉coherent = e
−|α|2

2

∞∑
n=0

(iα)n

√
2
√

n!
(in−1einφ |n, 0〉 + |0, n〉),

(8a)

ρ̃thermal(φ) = 1

2

∞∑
n=0

n̄n

(1 + n̄)(n+1)
[|n, 0〉〈n, 0| + |0, n〉〈0, n|

+ in−1einφ |n, 0〉〈0, n|
+ (−i)n−1e−inφ |0, n〉〈n, 0|]. (8b)

Similarly, one can obtain the transformed states for CK inter-
ferometer.

For ρ̃(φ), the QFI is given by the formula [47,59]

FQ(ρ̃) = 2
∑
k,l

λk+λl >0

(λk − λl )2

(λk + λl )
|〈k|a†a|l〉|2, (9)

where {λk, |k〉} are the eigenvalues and their corresponding
eigenvectors of ρ̃(φ). For a pure state input [11,60], Eq. (9)
reduces to

FQ = 4(〈ψ (φ)|(a†a)2|ψ (φ)〉 − |〈ψ (φ)|a†a|ψ (φ)〉|2)

= 4〈�a†a〉2, (10)

where |ψ (φ)〉 = U |ψin〉.
Using Eqs. (3), (9), (10), and (8), we obtain the following

FQ for thermal, coherent, and number states input, which
satisfy a remarkable analytical inequality (see Appendix C)

(FQ)thermal = 2n̄2 + n̄ > (FQ)coherent = n̄2 + 2n̄ > (FQ)number

= n̄2, for SK, (11a)

(FQ)thermal = n̄2 + n̄ > (FQ)number = n̄2 > (FQ)coherent

= 1
2 n̄2 + 2n̄, for CK, (11b)

with n̄ > 1 in Eq. (11a) or n̄ > 4 in Eq. (11b). This inequality
shows that the minimal phase error �φmin = 1/

√
FQ is below

the HL 1/n̄ for thermal input, and that thermal input allows
higher phase sensitivity than coherent- and number-state in-
puts. The phase sensitivity, which is determined by the QFI,
depends on the second moment of the photon number of the
probe state (see Appendix C). For a given mean number of
photons n̄, the state with the largest 〈a†2a2〉 exhibits maximum

FIG. 2. Fisher information for SK-filtered MZI (χ = π/2) ob-
tained by photon-number-resolving detectors: number-state (n = 5)
input with detector efficiencies (a) ηdet = 0.999, (b) ηdet = 0.95,
and thermal state (n̄ = 5) input with detector efficiencies (c) ηdet =
0.999, (d) ηdet = 0.95. The SQL (dot-dashed line) here corresponds
to FSQL = n̄ = 5 and the HL (dashed line) to FHL = n̄2 = 25. The
QFI (magenta line) for thermal input is 55 and for number input is
25. Red thick line: Single-detector photodetection, Blue thick line:
Intensity-difference detection, Black thick line: Photodetection of
both detectors. For ηdet � 0.95, thermal input yields F � 10 and thus
beats the SQL.

QFI. Since the probe state (after the second beam splitter)
generated from thermal input has 〈a†2a2〉 larger than that of
the coherent-state input, thermal input yields, surprisingly,
larger QFI.

SK outperforms CK for χ = π/2 in terms of QFI, since
all number states input are transformed to N00N states for
SK, whereas only odd number states do so for CK (see
Appendix A). Surprisingly, numerical calculations of the min-
imal phase error (1/

√
FQ), for weak χ 	 π/10 and small

average photon number n̄ 	 1, show that CK can beat the HL
and outperforms SK, and that both allow beating the SQL [see
Fig. 1(c)]. This supersensitivity achieved for χ � 1 although
N00N states is then not formed.

A. Photodetection efficiency

Numerical investigations of the Fisher information (Fig. 2)
for phase estimation, obtained either from the count difference
of the two photon-number-resolving detectors of aout and bout

in Fig. 1(a) or from their complete data, yield the following re-
sults for nonlinearity (χ = π/2) and imperfect detectors with
efficiency ηdet: (a) The Fisher information (F ) based on com-
plete data from both detectors is always higher than or equal
to the Fisher information based on partial data. (b) A decrease
in the detection efficiency leads to a fast drop of F and its
more pronounced dependence on φ. (c) With perfect detectors
ηdet = 1, photodetection on both output channels saturates the
QFI limit for thermal- and number-state inputs (Fig. 2), but not
for coherent state input(see Appendix D). With near-perfect
detectors ηdet � 0.97, mean photon numbers being equal, the
highest F is reached by thermal states, which then beat the
1/n̄ limit and surpass coherent and Fock states consistently
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FIG. 3. Inset: Lossy Kerr-nonlinear MZI mimicked by a fictitious
beam splitter in one arm. Plot: Minimal phase error, calculated for
thermal state from Eq. (6), as a function of the percentage of photon
loss in one arm of either CK or SK MZI. Here, n̄ = 10 and χ = π/2.

with the inequalities in Eq. (11). For ηdet � 0.97 the order
is reversed: the highest F is reached by Fock states and the
lowest by thermal. Yet, thermal input still beats the SQL
for ηdet � 0.9 (Fig. 7). We note that the FI based on parity
measurement reaches the QFI for CK MZI and not for SK
MZI (see Appendix D).

B. Photon loss

We mimic the loss of photons by a fictitious beam splitter
(BS) in one of the interferometer arms before the phase-shifter
(Fig. 3, inset) to check whether the phase sensitivity is reduced
by the vacuum noise incurred [61,62]. This loss is given by
the BS reflectivity, ηLoss = sin2 θ ; tan2 θ being the intensity
splitting ratio. The phase error obtained for thermal input in
either SK or CK MZI grows with the loss of photons, but
the minimal error still beats the SQL up to 25% loss in the
interferometer arm, thus featuring high resilience to loss.

III. CONCLUSION AND DISCUSSION

Imagine a phase microscope illuminated by faint thermal
light, say, under water or in space, without a bright coher-
ent light source to serve as a local oscillator or signal. It
is impossible at present to achieve subshot noise sensitivity
with such a device. Yet, we showed that Kerr-phase elements
in interferometry can yield supersensitive phase estimation
(SSPE), down to the Heisenberg limit (HL) and even below it,
using incoherent, particularly thermal, input. In the absence of
loss, the Kerr-nonlinear Mach-Zehnder interferometer (MZI)
conserves the total number of photons, and acts on each Fock
layer separately. Thus, fluctuations of the phases between
Fock layers do not have any effect on the output intensities,
only phases within a Fock layer affect the output photodetec-
tion. Hence, thermal input states are well suited for SSPE with
Kerr-nonlinear MZI, as long as the input phase and amplitude
fluctuate slower than the time difference between the interfer-
ometer arms. Consequently, the Kerr-nonlinear MZI described
here are resilient to low-frequency input noise, allowing the
use of unlocked lasers, or other spectrally filtered thermal light
sources.

Several important and unexpected results have emerged
from our analysis: (1) For any degree of nonlinearity and
low photon numbers [Eqs. (4), (5), and Fig. 1(c)], the 1/n̄
limit (the so-called HL) is attained by any input distribution
wherein the photon number variance grows as the mean pho-
ton number increases, be it pure or mixed. Remarkably, the
achievable phase sensitivity of thermal input surpasses that
of pure states in terms of the quantum Fisher information
[Eq. (11)] for highly efficient photodetection. For thermal
input, SSPE is achievable for detection efficiency down to 0.9
and up to photon loss levels of 25%. (2) Even for weak non-
linearity, the Kerr-nonlinear interferometer creates states that
can strongly improve phase sensitivity [Fig. 1(c)]. (3) While
SSPE is achievable for both cross-Kerr (CK) and self-Kerr
(SK) nonlinearities, CK provides better sensitivity when the
nonlinear strength per photon pair is much smaller than π/2
[Fig. 1(c)].

Comparison with previous SSPE schemes based on Gaus-
sian squeezed states plagued by noise [22,24,63,64] shows
the advantages of the present Kerr-nonlinear interferomet-
ric scheme that is (i) impervious to noise as opposed to
squeezed state schemes (Appendix G); (ii) does not require
the satisfaction of standard entanglement (Appendix E) or
nonclassicality criteria (Appendix F) and allows informa-
tion collection by photon-counting or parity measurements
without the resources employed by existing schemes [14,65]
(Appendix H).

Suitable Kerr-nonlinear MZI may be implemented based
on the giant dipole-dipole interaction between counterprop-
agating few-photon beams in a cloud of cold alkali atoms
excited to a Rydberg state [48,49]. The scheme invokes elec-
tromagnetically induced transparency (EIT) in the slightly off
resonant case. The detuning can be chosen such that, while
both with and without interaction the transmission is the same,
the group velocity, and hence, the induced phase, are different
depending on the photon numbers in the beam. This scheme
was implemented to yield a Kerr nonlinear phase of over π

for a single photon pair [45,46]. Similar two-photon phase
shifts have also been demonstrated in the dispersive regime of
atom-photon interactions in ultra high-Q cavities [51,52,66]
and tapered fibers [67].

A Kerr-nonlinear phase element can be used not only as
mode coupler within the MZI, but also as a parity filter of the
measured output mode (Appendix B). Such filters may by-
pass the need for photon-number-resolved detectors. Another
applicaton of Kerr-nonlinear interferometers proposed by us
[68] has been their use as nonlinear coherent heat machines.

The present findings constitute guidelines for nonlinear
interferometer implementation that can open new avenues in
phase sensing: the ability to achieve SSPE with classical,
incoherent, extremely faint light may bring about a paradigm
shift in this field.
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APPENDIX A: PARITY OPERATOR MEAN VALUES
IN KERR-NONLINEAR MACH-ZEHNDER

INTERFEROMETER

1. Self-Kerr MZI

For an input two-mode number state |n, 0〉, the state right
before the final beam splitter [Fig. 1(a)], is

|ψ (φ)〉 = in

√
2

eiπ/4(in−1einφ |n, 0〉 + |0, n〉). (A1)

To find the expectation value of the corresponding parity op-
erator at the output, we apply to the parity operator the beam
splitter (BS) transformation

�out = U †
BS�UBS

=
∑

M

(−i)M
M∑

k=0

(−1)k|k, M − k〉〈M − k, k|. (A2)

We then have for its expectation value

〈�out〉 = 1

2
[(−i)n−1e−inφ〈n, 0| + 〈0, n|]

×
[∑

M

(−i)M
M∑

k=0

(−1)k|k, M − k〉〈M − k, k|
]

× (in−1einφ |n, 0〉 + |0, n〉)

= 1

2
[(−i)n−1e−inφ〈n, 0| + 〈0, n|][(−i)nin−1einφ |0, n〉

+ (−i)n(−1)n|n, 0〉]
= sin nφ. (A3)

The phase error is then given by

�φ =
√

1 − 〈�out〉2∣∣ ∂〈�out〉
∂φ

∣∣ = 1

n
. (A4)

For coherent state |α, 0〉 input, we get

〈�out〉 = e−|α|2
[

1 +
∞∑

n=0

|α|2n

n!
sin nφ

]

= e−|α|2 [1 + e|α|2 cos φ sin(|α|2 sin φ)]. (A5)

As φ → 0, this expression becomes

〈�out〉 ≈ e−|α|2 + sin(|α|2φ), (A6)

so that for large |α|2

�φ ≈
√

1 − e−|α|2 + sin(|α|2φ)

||α|2 cos(|α|2φ)| ≈ 1

|α|2 = 1

n̄
. (A7)

For thermal state input, by averaging Eq. (A3) over the
thermal number-state distribution with average n̄, we have

〈�out〉 = 1

1 + n̄
+

∞∑
n=0

n̄n

(1 + n̄)(n+1)
sin nφ. (A8)

As φ → 0, this expression becomes

〈�out〉 ≈ 1

1 + n̄
, (A9)

and 〈
∂�out

∂φ

〉
≈ n̄, (A10)

which yields, for large n̄, the phase error

�φ ≈
√

1 − 1
(n̄+1)2

n̄
≈ 1

n̄
. (A11)

For a general input state

ρin =
∑

n

ρnm|n〉〈m| ⊗ |0〉〈0|, (A12)

the output expectation value of the parity operator becomes

〈�out〉 = |ρ00|2 +
∞∑

n=0

|ρnn|2 sin nφ. (A13)

As φ → 0,

〈�out〉 ≈ |ρ00|2, (A14)

and 〈
∂�out

∂φ

〉
≈ n̄, (A15)

which yields for large n̄

�φ ≈
√

1 − |ρ00|2
n̄

≈ 1

n̄
. (A16)

2. Cross-Kerr MZI

For input number state |n, 0〉, we have the output state right
before the final BS

|ψ (φ)〉 ∝ 1√
2

(einφ|n, 0〉 + |0, n〉) for odd n, (A17)

leading to

〈�〉 = −in+1 sin nφ for odd n. (A18)

For even n, the state |ψ (φ)〉 is proportional to a beam splitter
transformation, leading to

〈�〉 = sinn φ for even n. (A19)

Therefore, the number state with odd n yields the Heisen-
berg scaling (HL), �φ ∼ 1/n, while even n leads to the
standard quantum limit (SQL), �φ ∼ 1/

√
n.

For coherent state input, we get

〈�out〉 = e−|α|2
[

1−
∑
odd n

|α|2n

n!
in+1 sin nφ+

∑
even n

|α|2n

n!
sinn φ

]
.

(A20)
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Cross-Kerr coupler
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BS BS

FIG. 4. Nonlinear interferometer with cross-Kerr nonlinearity as
a parity filter device.

For φ ≈ π/2 with large n̄, we get

�φ ≈ 1

|α|2 . (A21)

Similarly, for thermal input, we get

〈�out〉 =
[

1

1 + n̄
−

∑
odd n

n̄n

(1 + n̄)(n+1)
in+1 sin nφ

+
∑

even n

n̄n

(1 + n̄)(n+1)
sinn φ

]
, (A22)

and the sensitivity for φ ≈ π/2, for large n̄, is then

�φ ≈ 1

n̄
. (A23)

APPENDIX B: CROSS-KERR NONLINEAR MZI
AS PARITY MEASUREMENT DEVICE

The parity of the output mode bout [Fig. 1(a)] can be
measured by sending this mode through a nonlinear interfer-
ometer containing cross-Kerr nonlinearity [27]. The nonlinear
CK MZI shown in Fig. 4, governed by the unitary operator
ŨCK = UBSeiχ n̂bn̂cUBS, transforms the two-mode number state
|nb, 0c〉, for χ = π , as

ŨCK|nb, 0c〉 = in|n1, 02〉, for even n,

ŨCK|nb, 0c〉 = in|01, n2〉 for odd n. (B1)

The subscripts b and c are the input modes, and 1 and 2 are the
output modes of this device. Hence, if the input field contains
an even number of photons, then only detector D1 clicks and,
only D2 clicks if the input field contains an odd number of
photons. The same holds true for an input that is a mixture
of |nb, 0c〉. Thus, the nonlinear interferometer can be used
as a parity measurement device merely by checking which
detector clicks.

APPENDIX C: QUANTUM FISHER INFORMATION
FOR CK AND SK MZI OUTPUTS

According to the quantum Cramér-Rao bound [58], the
optimal phase sensitivity is bounded by

�φmin � 1√
kFQ

, (C1)

where k is the number of measurements that can be taken to
be 1 and FQ is the quantum Fisher information that depends
neither on the measurement nor on the estimator and is solely
a function of the probing state.

The input state ρin is transformed after the phase-shift
operation [Fig. 1(a) in the main text] to

ρ̃(φ) = UρinU
†, (C2)

where U = UPS(φ)UBSeiχa†2a2
UPS(π/2)UBS for SK and U =

UPS(φ)UBSeiχa†ab†bUPS(π/2)UBS for CK.
The corresponding QFI is given by the formula [47,59]

FQ(ρ̃) = 2
∑
k,l

λk+λl >0

(λk − λl )2

(λk + λl )
|〈k|a†a|l〉|2, (C3)

where {λk, |k〉} are the eigenvalues and their corresponding
eigenvectors of ρ̃(φ).

For a pure state input [11,60], the above expression reduces
to

FQ = 4(〈ψ̇ (φ)|ψ̇ (φ)〉 − |〈ψ̇ (φ)|ψ (φ)〉|2), (C4)

where |ψ̇ (φ)〉 = ∂
∂φ

|ψ (φ)〉 = ia†a|ψ (φ)〉. Thus,

FQ = 4(〈ψ (φ)|(a†a)2|ψ (φ)〉 − |〈ψ (φ)|a†a|ψ (φ)〉|2)

= 4〈�a†a〉2, (C5)

whereas for a mixed state

FQ � 4〈�a†a〉2. (C6)

1. SK interferometer output QFI

For number-state input |n, 0〉, we get |ψ (φ)〉 as given in
Eq. (A1), and the expectation values are

〈ψ (φ)|(a†a)2|ψ (φ)〉 = 1
2 n2, 〈ψ (φ)|(a†a)|ψ (φ)〉 = 1

2 n.

(C7)

Using these expectation values, we get

(FQ)number = n2, �φmin = 1√
FQ

= 1

n
. (C8)

Similarly, for coherent-state input

〈ψ (φ)|(a†a)2|ψ (φ)〉 = 1
2 |α|4 + 1

2 |α|2,
〈ψ (φ)|(a†a)|ψ (φ)〉 = 1

2 |α|2, (C9)

and

(FQ)coherent = |α|4 + 2|α|2 = n̄2 + 2n̄,

�φmin = 1√
FQ

= 1√
n̄2 + 2n̄

. (C10)

For thermal-state input, using Eq. (C3), we get

(FQ)thermal = 2n̄2 + n̄, �φmin = 1√
FQ

= 1√
2n̄2 + n̄

.

(C11)

Our results do not depend on the choice of the phase
generator Hamiltonian [65]. This can be shown by com-
paring the QFI obtained for the two-mode phase-generator
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Hamiltonian H2mode = φNd/2, where Nd = a†a − b†b is the
two-mode number difference operator, with that obtained for
the single-mode (single arm) phase generator Hamiltonian,
H1mode = φa†a in our Kerr-nonlinear MZI scheme.

It is straightforward to show that H2mode yields the same
form of FQ for pure- or mixed-state input as Eqs. (C3) to (C6)
upon replacing a†a by Nd/2.

In the self-Kerr (SK) interferometer with χ = π/2 and
H2mode, we then obtain the following.

For number-state input〈
N2

d

〉 = n2, 〈Nd〉 = 0; (F ′
Q)number = n2; (C12a)

for coherent-state input〈
N2

d

〉 = n̄2 + n̄, 〈Nd〉 = 0; (F ′
Q)coherent = n̄2 + n̄;

(C12b)

and for thermal-state input

(F ′
Q)thermal = 2n̄2 + n̄. (C12c)

Comparing these results with Eq. (11a) of the main text, we
find that the above QFI values are the same as those obtained
with the single-mode phase generator H1mode for number-state
and thermal-state inputs. The QFI for the coherent-state input
is different for the two phase generators, but for both the phase
sensitivity still surpasses the HL. Importantly, the thermal
state input exhibits QFI higher than that of the coherent state
input, be it an interferometer with single-mode or two-mode
phase generator. Similar conclusions hold for the cross-Kerr
(CK) interferometer.

Thus, the QFI in SK or CK MZI for thermal- and
number-state input is independent of the choice of the phase
generators. Therefore, a local oscillator is not needed for
phase reference in the CK or SK MZI scheme.

2. CK interferometer output QFI

For number-state input |n, 0〉,
〈ψ (φ)|(a†a)2|ψ (φ)〉 = 1

4 (n2 + n) for even N, (C13)

〈ψ (φ)|(a†a)2|ψ (φ)〉 = 1
2 n2 for odd N, (C14)

〈ψ (φ)|(a†a)|ψ (φ)〉 = 1
2 n, (C15)

and

(FQ)number = n2, �φmin = 1√
FQ

= 1

n
, for odd N,

(C16)

(FQ)number = n, �φmin = 1√
FQ

= 1√
n
, for even N.

(C17)

For coherent-state input

〈ψ (φ)|(a†a)2|ψ (φ)〉 = 3
8 |α|4 + 1

2 |α|2,
〈ψ (φ)|(a†a)|ψ (φ)〉 = 1

2 |α|2, (C18)

and

(FQ)coherent = 1

2
|α|4 + 2|α|2 = 1

2
n̄2 + 2n̄,

�φmin = 1√
FQ

= 1√
1
2 n̄2 + 2n̄

. (C19)

For thermal-state input [from Eq. (C3)], we get

(FQ)thermal = n̄2 + n̄, �φmin = 1√
FQ

= 1√
n̄2 + n̄

. (C20)

FIG. 5. Fisher information for SK MZI (χ = π/2) obtained by photon-number-resolving detectors: (a) number-state (n = 5) input with
detector efficiency ηdet = 0.999, (b) coherent state (n̄ = 5) input with ηdet = 0.999, (c) thermal state (n̄ = 5) input with ηdet = 0.999,
(d) number-state (n = 5) input with ηdet = 0.95, (e) coherent state (n̄ = 5) input with ηdet = 0.95, and (f) thermal state (n̄ = 5) input with
ηdet = 0.95. The SQL (dot-dashed line) here corresponds to FSQL = n̄ = 5 and the HL (dashed line) to FHL = n̄2 = 25. The QFI (magenta line)
for thermal input is 55, for coherent input is 35 and for number input is 25. Red thick line: Single-detector photodetection, Blue thick line:
Intensity-difference detection, Black thick line: Photodetection by both detectors.
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FIG. 6. Fisher information for CK MZI (χ = π/2) obtained by photon-number-resolving detectors: (a) number-state (n = 5) input
with detector efficiency ηdet = 0.999, (b) coherent state (n̄ = 5) input with ηdet = 0.999, (c) thermal state (n̄ = 5) input with ηdet = 0.999,
(d) number-state (n = 5) input with ηdet = 0.95, (e) coherent state (n̄ = 5) input with ηdet = 0.95, and (f) thermal state (n̄ = 5) input with
ηdet = 0.95. The SQL (dot-dashed line) here corresponds to FSQL = n̄ = 5 and the HL (dashed line) to FHL = n̄2 = 25. The QFI (magenta line)
for thermal input is 30, for coherent input is 22.5, and for number input is 25. Red thick line: Single-detector photodetection, Blue thick line:
Intensity-difference detection, Black thick line: Photodetection by both detectors.

APPENDIX D: PHOTODETECTION
EFFICIENCY EFFECTS

With perfect detectors ηdet = 1, photodetection on both
output channels saturates the QFI limit for thermal and num-
ber inputs while not for coherent input (Figs. 5 and 6). With
near-perfect detectors, mean photon numbers being equal, the
highest F is reached by thermal states, which then beat the
HL and surpass coherent and Fock states. For ηdet � 0.97
the order is reversed: the highest F is reached by Fock states
and the lowest by thermal states. Yet thermal input still beats
the SQL for ηdet � 0.9 (Fig. 7). We note that the FI, based on
parity measurement achieves the QFI for CK MZI and not for
SK MZI (Fig. 8).

SQL

FIG. 7. Fisher information for SK MZI with thermal state (n̄ =
5) input for χ = π/2 and detector efficiency ηdet = 0.9. The SQL
(dashed line) here corresponds to FSQL = n̄ = 5. Red thick line:
Single-detector photodetection, Blue thick line: Intensity-difference
detection, Black thick line: Photodetection on both detectors.

APPENDIX E: SUFFICIENT CONDITIONS
FOR TWO-MODE ENTANGLEMENT

IN KERR-NONLINEAR MZI

To check whether the two-mode output states [after the
second beam splitter of the setup given in Fig. 1(a)] satisfy the
standard sufficient conditions of entanglement, we consider
the following quantities:

EHZ = 〈n̂an̂b〉out − |〈a†
outbout〉|2, (E1)

ESV =

∣∣∣∣∣∣∣
1 〈a†

out〉 〈b†
out〉

〈aout〉 〈a†
outaout〉 〈a†

outb
†
out〉

〈bout〉 〈aoutbout〉 〈b†
outbout〉

∣∣∣∣∣∣∣. (E2)

These quantities are constructed based on the Hillery-Zubairy
[69] and Shchukin-Vogels entanglement criteria [70], respec-
tively. The negativity of these quantities for a two-mode

FIG. 8. (a) Fisher information, based on parity measurement, for
SK MZI with thermal state (n̄ = 5) input for χ = π/2 and detector
efficiency ηdet = 0.999. (b) Similarly, for CK MZI. The SQL (dot-
dashed line) here corresponds to FSQL = n̄ = 5 and the HL (dashed
line) to FHL = n̄2 = 25. The QFI (magenta line) for thermal input in
SK MZI is 55 and in CK MZI is 30.
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,

FIG. 9. (a) Sufficient entanglement conditions, characterized by
the negativity of EHZ and ESV for the two-mode states after the second
beam splitter of the SK MZI, are not satisfied for thermal input
for any nonlinear Kerr strength χ . Here n̄a = 5. Inset: Similarly for
CK MZI. (b) The zero time-delay second-order coherence function
g(2)

a (0) of the mode a after the second beam splitter as a function
of χ for thermal input (n̄a = 5) does not feature sub-Poissonian
[g(2)

a (0) < 1] photon statistics.

state is a sufficient condition for entanglement. As shown in
Fig. 9(a), this condition is not satisfied by output states in
Kerr-nonlinear interferometers when the input is a thermal
state.

APPENDIX F: SUFFICIENT CONDITION FOR
SINGLE-MODE NONCLASSICALITY

A single-mode field state is nonclassical if the zero time-
delay second-order coherence function, defined by

g(2)(0) = 〈a†2a2〉
〈a†a〉 , (F1)

becomes less than 1 (sub-Poissonian).
We find that none of the output modes exhibit sub-

Poissonian [g(2)
a (0) < 1] photon statistics, which is a nonclas-

sical characteristic of the field, as seen in Fig. 9(b).

APPENDIX G: COMPARISON OF STATE PREPARATION
SCHEMES AND THEIR QFI

Quantum states with an undefined number of photons
are known to allow phase estimation with a sensitivity that
surpasses the Heisenberg limit (HL). The few quantum states
known to allow such supersensitivity are all Gaussian, and
among them, squeezed vacuum states are the optimal [22].
However, the experimental generation of squeezed vacuum
states with large photon numbers, without any noise, is an
inherently insurmountable challenge [63,71] because the gen-
erated state has inevitably extra noise in its antisqueezing
quadrature [72].

By contrast, in our case, the probe state generated from
thermal input in an interferometer with either cross-Kerr (CK)
or self-Kerr (SK) nonlinearity is very noisy but this does not
preclude its ability to surpass the HL.

Experimentally, the challenge for years has been to achieve
large Kerr nonlinearity per photon pair, but this challenge
has been overcome by our team in a Rydberg polariton setup
[45,46,73] and by others in circuit QED setups [66]. A large
mean photon number does not present an experimental chal-
lenge for Kerr nonlinear MZI, and our results show that, if
needed, bright noisy sources with n̄  1 can be employed

FIG. 10. The phase sensitivity �φ = 1/
√

FQ of CK/SK MZI
fed by thermal noise compared with that of the squeezed thermal
obtained from Eq. (G1). The inset in the figure shows the percentage
of thermal noise in the squeezed thermal state. Namely, in Eq. (G2)
we fix nr (the squeezed part), say, at nr = 4.5, and increase nb (the
thermal noise), thus increasing n̄. When the percentage of thermal
noise, nb/n̄ × 100, exceeds 6% (7%), the QFI values of the SK
(CK) interferometers are larger than that obtained in Eq. (G1) with
the squeezed thermal state having the same mean photon number.
Since our scheme can be fed by purely thermal noise, it is therefore
advantageous when thermal noise is appreciable.

with the same scaling of the quantum Fisher information
(QFI) as per Eqs. (11a) and (11b) in the main text.

We compare QFI achievable by thermal noise in our
scheme with that of squeezed states mixed with thermal noise,
which realistically occurs in experiments [72]. For a squeezed
thermal state [64], the QFI is

(FQ)SqThermal = 16nr (nr + 1)

(
1 + 1

(2nb + 1)2

)−1

, (G1)

where nr is the mean photon number associated with squeez-
ing and nb is the corresponding contribution of thermal noise,
the total mean photon number being

n̄ = nb + (2nb + 1)nr . (G2)

In Fig. 10, �φ = 1/
√

FQ is plotted as a function of n̄ and
compared with our results whereby

(FQ)thermal = (2n̄2 + n̄), for SK, (G3)

(FQ)thermal = (n̄2 + n̄). for CK. (G4)

This figure shows that when the thermal noise exceeds more
than 6 (7) percent of the total intensity, the phase sensitivity
achieved by the state generated in an SK (CK) interferometer
from thermal noise input outperforms that of the squeezed
thermal state.

Thus, state preparation by our Kerr-nonlinear scheme
has a salient metrological advantage compared to Gaussian
squeezed states.
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APPENDIX H: COMPARISON
OF MEASUREMENT SCHEMES

The best possible measurement schemes currently em-
ployed to surpass the HL using squeezed vacuum states are
either positive-operator valued measurement (POVM) or ho-
modyne measurements [22,63]

In the case of POVM, finding the optimal positive operators
for attaining such a precision is a highly nontrivial undertak-
ing. Even if they happen to be known, the optimal POVM
depends on the true value of the phase to be estimated [22].
Therefore, the measurement at a given step relies on the data
from previous steps.

In a homodyne measurement scheme, measuring a quadra-
ture operator X̂ for a squeezed vacuum input does not yield

any information about the phase because 〈X̂ 〉 = 0. One may
choose X̂ 2 as an estimator. However, the optimal phase to
be estimated then becomes dependent on the input photon
number [63]. As a result, for a given input photon number, one
needs to set a priori the phase to be estimated. Alternatively,
the Bayesian estimation process requires to estimate the phase
from the data obtained by measuring many samples [63].
However, due to the intrinsic nature of the squeezed vacuum,
homodyne measurements can attain the HL and surpass it only
for a small range of phases.

By contrast, the measurement techniques that we invoke
to attain the quantum Cramér-Rao bound are photon-count
and parity measurements. The Fisher information for these
measurements becomes almost independent of the phase to
be estimated for all photon numbers.
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