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Spatiotemporal effects in heralded state preparation
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Heralding, which is often used for preparing quantum optical states, is studied to determine the effects of the
spatiotemporal properties of the process. Incorporating all the spatiotemporal degrees of freedom, we follow a
Wigner functional approach to consider cases where these states are prepared to have Wigner functionals with
negative regions, being suitable resources for quantum information technologies. General expressions are derived
for single-photon-subtracted and single-photon-added states. As examples, we consider the photon-subtracted
squeezed vacuum state, the photon-added coherent state, the photon-added thermal state, and the photon-added
squeezed vacuum state. The Wigner functional approach reveals the importance of the spatiotemporal transfor-
mations imposed by the experimental conditions.
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I. INTRODUCTION

Quantum information technology involves complex mea-
surements performed on the outputs from quantum processing
systems, applied to special quantum states serving as quantum
resources. In photonic quantum information systems, such
quantum resources often require sophisticated preparation
techniques, such as heralded quantum state preparation [1,2].
The quality of such quantum information systems depends on
the quality of the quantum states used as resources.

A heralded quantum optical state is produced conditioned
on a suitable detection made on a portion of an input state.
The portion is separated off from the input state by some
means and then subjected to a heralding measurement. A
successful detection registered by the heralding measurement
system signals that the remainder of the state has attained
the required form or property. Heralded state preparation has
been used to prepare Fock states [3–5], photon subtracted
states [6,7], and photon-added states [8,9]. Photon subtraction
has been used to produce states with Wigner functions that
resemble those of Schrödinger cat states. In the limit of a small
number of photons, a photon-subtracted state is equivalent
to a Schrödinger cat state [10–12]. The quantum nature of
such states that makes them suitable resources for quantum
information processing is associated with the fact that their
Wigner functions have negative regions.

The basic mechanism of heralded state preparation in-
volves only the particle-number degrees of freedom [13].
Although this mechanism provides some insight into the
quantum properties of the states that are produced, for exam-
ple, the fact that the number of negative regions is determined
by the number of photons that are added or subtracted,
the other degrees of freedom also play significant roles in
such experiments [14]. The effects of various experimental
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parameters can only be revealed through an analysis that in-
corporates the spatiotemporal degrees of freedom.

Here, the effects of the spatiotemporal degrees of freedom
in heralded state preparation is investigated by analyzing the
process with a Wigner functional formalism, which combines
the spatiotemporal degrees of freedom with the particle-
number degrees of freedom [15,16]. Although heralded state
preparation, including photon subtraction, was considered
in [13], it only addressed the particle-number degrees of
freedom. Here, we consider the effects of the spatiotem-
poral degrees of freedom in both photon-subtracted and
photon-added states. The Wigner functional formalism, which
was developed in [15,16] to incorporate the spatiotemporal
degrees of freedom with the particle-number degrees of free-
dom, provides a powerful approach for this purpose. For this
purpose, we focus on those applications where heralded state
preparation is used for the experimental implementation of
photon subtraction and photon addition. As an example of
the first, we consider the heralded preparation of a photon-
subtracted squeezed vacuum state [6]. Examples of the second
that are considered here are photon-added coherent states [17],
photon-added thermal states [9], and photon-added squeezed
vacuum states.

Inevitably, the incorporation of the spatiotemporal degrees
of freedom in the analysis implies a significant increase in the
complexity of such an analysis. Fortunately, the complexity
can be significantly alleviated with the aid of generat-
ing functions [13]. In addition, we introduce some further
simplifications that are relevant under general experimental
conditions.

II. HERALDING

First, we provide a general model for the processes
whereby states are prepared with the aid of heralding. The
idea is that the required state is only produced when a spe-
cific measurement is performed successfully. In that case, the
measurement heralds the existence of the required state. The
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later state is then processed and subsequently measured. The
final measurements are done in coincidence with the heralding
measurement, ensuring the existence of the heralded state dur-
ing the final measurements. The requirement for coincidence
implies that the heralding measurement and the final measure-
ments combine into a measurement protocol performed on the
initial state.

Generic process

In terms of quantum mechanics, we can express the state
that is produced by the heralding process as

ρ̂her = trB{P̂BÛbs(ρ̂in ⊗ ρ̂vac)Û †
bs}, (1)

where P̂B is the projection operator for the heralding mea-
surement, Ûbs is a unitary operator for the (homogeneous or
inhomogeneous) beam splitter, and ρ̂in ⊗ ρ̂vac is the tensor
product of the initial state and the vacuum state, respectively,
entering the two input ports of the beam splitter. A partial trace
is evaluated over the part of the state that is received from the
output port of the beam splitter on which the projection oper-
ator is applied. The difference between a homogeneous beam
splitter and an inhomogeneous beam splitter is that the first
applies the splitting ratio indiscriminately on all photons and
the second uses the spatiotemporal properties of the photons
to determine the splitting ratio. Inhomogeneous beam splitters
come in handy when modeling loss processes introduced by
structures such as apertures.

To analyze the effects of the physical system, incorporating
any physical restrictions associated with the spatiotemporal
degrees of freedom of the system, we use Wigner functionals.
The effect of the beam splitter on such Wigner functionals is
represented by transformations of the field variables on which
they depend.

The heralding measurement is modeled with generalized
projection operations expressed in terms of a generating func-
tion for the Wigner functionals of such projection operators.
It is given by

P (J ) = N tr{D} exp (−2J α∗ � D � α), (2)

where α and α∗ represent the field variables. We define

N = 2

1 + J
and J = 1 − J

1 + J
, (3)

in terms of J , the auxiliary parameter used to generate the
individual Wigner functionals of the projection operators, and
use � contractions to represent

α∗ � D � α =
∫

α∗(k1)D(k1, k2)α(k2)
d3k1

(2π )3

d3k2

(2π )3
, (4)

with D(k1, k2) denoting a detector kernel.
Heralding is a postselection process, which is not trace-

preserving. As a result, the raw heralded state is not
normalized and thus needs to be normalized by dividing it by
its trace.

III. PHOTON-SUBTRACTED STATES

One way to produce a Wigner functional with a negative
region is to subtract a photon from a squeezed state; the later

FIG. 1. Diagrammatic representation of the experimental setup
for heralded photon subtraction.

state having a Wigner functional that is positive everywhere in
the functional phase space. Formally, a photon subtraction is
done by applying an annihilation operator to an initial state. In
a practical experiment, photon subtraction is performed with
the aid of heralding. A small portion of the state is separated
off by an unbalanced homogeneous beam splitter, having
a small reflectivity, and sent to a photon-number-resolving
detector, as shown in Fig. 1. The detection of n photons by this
detector then heralds the formation of an n-photon subtracted
state.

The unitary transformation imposed by the homogeneous
beam splitter on the input state is implemented by the trans-
formations of the field variables of the Wigner functional on
which it operates. For the unbalanced beam splitters with a
small reflectivity, we represent the amplitude reflectivity by ζ ;
the intensity reflectivity is ζ 2. The transformation of the field
variables is given by

α →
√

1 − ζ 2α + iζβ, β →
√

1 − ζ 2β + iζα, (5)

where α and β represent the field variables of the respective
input ports or the respective output ports. This transformation
is applied to the product of the Wigner functionals of the
input state and a vacuum state. The Wigner functional of the
vacuum state is

Wvac[β] =N0 exp (−2β∗ � β ), (6)

where the field variables are β and β∗ and N0 is a (divergent)
normalization constant. After applying the beam splitter trans-
formation, the combined state becomes

Wbs[α, β] = N0 exp[−2(
√

1 − ζ 2β∗ − iζα∗)

� (
√

1 − ζ 2β + iζα)]Win[
√

1 − ζ 2α + iζβ].
(7)

Assuming a small reflectivity, we expand the Wigner func-
tional of the state after the beam splitter as a power series
in ζ . Then we use Eq. (2) as a functional of β to apply
measurements on the β degrees of freedom, tracing over β.
It produces a generating function for the Wigner functionals
of the heralded state associated with the detection of a certain
number of photons. To detect n photons, we need to expand
the transformed Wigner functional to ζ 2n. Here, we consider
single-photon subtraction only, for which we need to make the
expansion up to ζ 2. The procedure can be readily generalized
for larger numbers of photon subtractions.

All the uneven order terms in the expansion are removed by
the trace over β. The zeroth-order term represents the vacuum,
which does not contribute to the measurement. So, for single-
photon subtraction, we only need to compute the second-order
term in the expansion. The two derivatives with respect to ζ
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produce functional derivatives of the Wigner functional Win. The result for the second-order term is

1

2
ζ 2 ∂2

ζ Wbs[α, β]
∣∣
ζ=0

= 1

2
ζ 2

[
2β∗ �

(
δ2Win

δα∗δα
+ 2α

δWin

δα
+ 2

δWin

δα∗ α∗ + 2Win1 + 4αWinα
∗
)

� β − β∗ �
(

δ2Win

δα∗δα∗

+4
δWin

δα∗ α + 4αWinα

)
� β∗ − β �

(
δ2Win

δαδα
+ 4α∗ δWin

δα
+ 4α∗Winα

∗
)

� β

−δWin

δα
� α − α∗ � δWin

δα∗ − 4α∗ � αWin

]
N0 exp (−2β∗ � β ), (8)

where 1 is the identity, defined such that 1 � α = α.
For the heralding measurements on the β degrees of free-

dom, we multiply Eq. (8) by Eq. (2), expressed as a functional
of β, and perform a functional integration over β. The latter
produces a superposition of moment integrals of the form

Mm,n =
∫

β∗mβnV[β] D◦[β], (9)

where

V[β] = N tr{D}N0 exp (−2β∗ � β − 2J β∗ � D � β ). (10)

Such moment integrals can be computed with the aid of a
generating functional, given by

M[μ∗, ν] = N tr{D}N0

∫
exp (−2β∗ � β

−2J α∗ � D � α + β∗ � ν + μ∗ � β ) D◦[β]

= exp

[
1

2
μ∗ � ν − 1

4
(1 − J )μ∗ � D � ν

]
. (11)

The moments are produced by functional derivatives with
respect to the auxiliary field variables μ∗ and ν producing
factors of β and β∗, respectively, after which the auxiliary
field variables are set equal to zero. For example,

M1,1 =
∫

β∗(k)β(k′)V[β] D◦[β]

= δ2M[μ∗, ν]

δν(k)δμ∗(k′)

∣∣∣∣
μ∗=ν=0

= 1

2
1(k′, k) − 1

4
(1 − J )D(k′, k). (12)

Similarly, we obtain M2,0 = M0,2 = 0 and M0,0 = 1. With
these moments, the generating function of the heralded single-
photon subtracted state becomes

W1ps[α] = 1

2
tr

{
δ2Win

δα∗δα

}
+ 1

2

δWin

δα
� α + 1

2
α∗ � δWin

δα∗

+ 
Win − 1

4
(1 − J )

(
tr

{
D � δ2Win

δα∗δα

}

+ 2tr{D}Win + 4α∗ � D � αWin

+2
δWin

δα
� D � α + 2α∗ � D � δWin

δα∗

)
, (13)

where we discard the factor of ζ 2, and 
 = tr{1}. Note that
the resulting generating function is linear in the auxiliary

parameter J . It can therefore only produce the single-photon-
subtracted state. The result obtained from the generating
function still needs to be normalized. Assuming that the de-
tector can be modeled by a single-mode kernel D(k1, k2) =
M(k1)M∗(k2), which implies that tr{D} = 1, we obtain the
single-photon-subtracted state as

W1ps[α] = N{∂JW1ps|J=0}

= 1

4
N

(
M∗ � δ2Win

δα∗δα
� M + 2Win

+ 4α∗ � MM∗ � αWin + 2
δWin

δα
� MM∗ � α

+2α∗ � MM∗ � δWin

δα∗

)
, (14)

for an arbitrary initial state Win, where N{·} is a normalization
process and N is the normalization constant.

The normalization can be computed with the generating
function that is obtained by integrating Eq. (13) over α. If
the integrant is a total derivative, the result is 0 because the
Wigner functional tends to 0 at infinity. Hence,∫

δ2Win

δα∗δα
D◦[α] = 0. (15)

With the aid of partial functional integration, we get∫
α(k)

δWin

δα(k′)
D◦[α] =

∫
α∗(k)

δWin

δα∗(k′)
D◦[α]

= −δ(k − k′). (16)

Using these identities, we obtain

N−1 = ∂J

∫
W1ps D◦[α]|J=0

=
∫

α � D � α∗Win D◦[α] − 1

2
tr{D}. (17)

We are left with one integral to evaluate, for which we need to
know the initial Wigner functional.

Considering different input states, we note that to have neg-
ative regions, an input Gaussian state needs to be squeezed.
Without squeezing, the most general Gaussian state is a ther-
mal state, with a possible displacement. A photon-subtracted
thermal state does not have negative regions because the
eigenvalues of its kernel are all smaller than 1, unlike those of
squeezed states. It thus follows that, while thermal states are
affected by such a photon-subtraction process, their Wigner
functionals remain positive everywhere. Coherent states are
unaffected by any photon-subtraction process.
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Photon-subtracted squeezed vacuum state

The Wigner functional of a squeezed vacuum state is

Wsv = N0 exp (−2α∗ � A � α − α∗ � B � α∗

−α � B∗ � α), (18)

where A and B are a hermitian kernel and a symmetric kernel,
respectively. The purity of the state ensures that

A − B � A∗−1 � B∗ = A−1. (19)

Substituting Eq. (18) into Eq. (14), we obtain a Wigner func-
tional for a single-photon subtracted squeezed vacuum state in
the form of a polynomial Gaussian state that becomes negative
at the origin.

To compute the normalization factor, we produce a gen-
erating functional for the moments in the same way we did
in Eq. (11). For the squeezed vacuum state, this generating
functional is given by

WN [μ∗, ν] =
∫

N0 exp (−2α∗ � A � α − α∗ � B � α∗

−α � B∗ � α + α∗ � ν + μ∗ � α) D◦[α]

= exp

(
1

2
μ∗ � A � ν − 1

4
ν � A∗ � B∗ � A−1 � ν

−1

4
μ∗ � A−1 � B � A∗ � μ∗

)
. (20)

The inverse normalization constant thus becomes

N−1 = tr

{
D � δ2WN

δνδμ∗

}∣∣∣∣
μ∗=ν=0

− 1

2
tr{D}

= 1

2
tr{D � (A − 1)} = 1

2
M∗ � E � M, (21)

for a single-mode detector, where E = A − 1.
The normalized heralded state is now given by

W (sv)
1ps =

(
2|α∗ � ME + M∗

B � α|2
η

− 1

)
Wsv, (22)

where we define

ME = E � M, M∗
B = B∗ � M,

η = M∗ � E � M. (23)

At the origin (α = 0), we get W (sv)
1ps [0] = −1, showing that

there is a region where the Wigner functional is negative. For
larger numbers of subtracted photons, the number of regions
where the Wigner functional is negative increases, but for even
numbers of subtracted photons, the origin does not lie in a
negative region [13].

Although the functional phase space on which the Wigner
functional is defined is infinite dimensional, the � contractions
in the polynomial prefactor in Eq. (22) reduces it to a four-
dimensional subspace of the functional phase space defined
by the two transformed modes ME and MB. When the Wigner
functional is measured with a homodyne tomography pro-
cess [14,18,19], the best results are obtained when the mode
of the local oscillator lies within this subspace. Knowledge
of the detector mode M and the expressions of the E and B

FIG. 2. Diagrammatic representation of the experimental setup
for heralded photon addition with stimulated parametric down-
conversion (PDC).

kernels [20] make it possible to compute these transformed
modes.

IV. PHOTON-ADDED STATES

The addition of photons to states is more powerful in
producing Wigner functionals with negative regions than pho-
ton subtraction. Photon additions produce negative regions in
Wigner functionals when applied to initial states that do not
produce negative regions with photon subtraction. While an
initial Gaussian state needs to be squeezed to produce negative
regions with photon subtraction, any initial Gaussian state
produces negative regions with photon addition. Comparing
the amplitudes at the origin of a single-photon-subtracted
Gaussian state to that of a single-photon-added Gaussian state,
we see that the former has a values of −tr{(A − 1) � D} at
the origin where A represents the hermitian kernel with pos-
itive eigenvalues of the state. The value is only negative if
tr{A � D} > tr{D}. The single-photon-added Gaussian state,
on the other hand, has a value of −tr{(A + 1) � D} at the
origin, which is always negative.

Photon addition is formally represented by the application
of a creation operator to an initial state. Experimentally, it is
done by using the state as the seed in stimulated parametric
down-conversion [21] and then heralding the photon-added
state (in the signal beam) by detecting a certain number of
photons in the difference-frequency (idler) beam, as shown in
Fig. 2.

In terms of quantum mechanics, the process of heralded
photon addition is represented by

ρ̂hpa = trB{P̂BÛibs[(Ûsqρ̂inÛ
†
sq) ⊗ ρ̂vac]Û †

ibs}. (24)

The input state is squeezed by stimulated parametric down-
conversion and, together with a vacuum state, sent through an
inhomogeneous beam splitter to separate the squeezed state
into two beams, one of which is subjected to a measurement
by a number-resolving detector, represented by the projection
operator P̂B.

In terms of Wigner functionals, the stimulated parametric
down-conversion process, together with the inhomogenous
beam splitter, can be performed with a twin-beam Bogoliubov
transformation, which separates the signal and idler beams
into two different phase spaces. To suppress the production
of multiple photon pairs, the squeezing (i.e., the efficiency of
the stimulated parametric down-conversion) is designed to be
weak. Therefore, the squeezing parameter can be used as an
expansion parameter, similar to the way we used the reflec-
tivity as an expansion parameter in Sec. III. The Bogoliubov
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kernels [21] can then be expressed as

U → 1 + ξ 2F and V → ξV, (25)

where we display the squeezing parameter ξ explicitly, and
F represents the subleading part of U . The twin-beam
Bogoliubov transformation is thus given by

α → (1 + ξ 2F ) � α + ξV � β∗,

β → (1 + ξ 2F ) � β + ξV � α∗. (26)

After applying this transformation to the combination of the
Wigner functionals for the seed state and the vacuum state,

we have

Wibs[α, β] = Win[α + ξ 2F � α + ξV � β∗]

× N0 exp[−2(β∗ + ξ 2β∗ � F + ξα � V ∗)

� (β + ξ 2F � β + ξV � α∗)]. (27)

Similar to what we had with photon subtraction, we only need
to compute the second-order term for single-photon addition.
It reads

1

2
ξ 2 ∂2

ξ Wibs[α, β]
∣∣
ξ=0

= ξ 2

[
β∗ � V � δ2Win

δαδα∗ � V ∗ � β + 1

2
β∗ � V � δ2Win

δαδα
� V � β∗ + 1

2
β � V ∗ � δ2Win

δα∗δα∗ � V ∗ � β

− 2(α � V ∗ � β + β∗ � V � α∗)

(
δWin

δα∗ � V ∗ � β + β∗ � V � δWin

δα

)

− 2(2β∗ � F � β + α � V ∗ � V � α∗)Win + 2(α � V ∗ � β + β∗ � V � α∗)2Win

+δWin

δα
� F � α + α∗ � F � δWin

δα∗

]
N0 exp (−2β∗ � β ). (28)

We again use Eq. (2) for the photon measurements. As in Sec. III, the functional integration over β produces a superposition
of moment integrals, which can be computed with the aid of Eq. (11). It leads to

W1pa = tr

{
F � δ2Win

δα∗δα

}
− δWin

δα
� F � α − α∗ � F � δWin

δα∗ − 2tr{F }Win − 1

4
(1 − J )

(
tr

{
V ∗ � D � V � δ2Win

δαδα∗

}

−4tr{D � F }Win + 4α � V ∗ � D � V � α∗Win − 2α � V ∗ � D � V � δWin

δα
− 2

δWin

δα∗ � V ∗ � D � V � α∗
)

. (29)

Here we dropped the factor of ξ 2 and we replaced V �
V ∗ → 2F . This identity can be derived under weak squeez-
ing conditions from Eq. (19) and the relationships between
the Bogoliubov kernels and the squeezed state kernels given
by [21]

A = U � U + V � V ∗ and B = U � V + V � U ∗. (30)

Being linear in the generating parameter J , the generating
function only allows single-photon addition. Higher-order ex-
pansions are required for the addition of more photons. The
expression for the single-photon-added state with a single-
mode detector kernel reads

W1pa = N
[

1

4
M∗ � V � δ2Win

δαδα∗ � V ∗ � M

+ (α � V ∗ � MM∗ � V � α∗ − M∗ � F � M )Win

− 1

2
α � V ∗ � MM∗ � V � δWin

δα

−1

2

δWin

δα∗ � V ∗ � MM∗ � V � α∗
]
, (31)

where N is the normalization constant, which is required
because heralded photon addition is not a trace-preserving
process. With the aid of the same calculation used in Sec. III

to compute the normalization constant, we obtain

N−1 =
∫

(α � V ∗ � D � V � α∗)Win D◦[α] + tr{D � F }.
(32)

It again requires knowledge of the initial Wigner functional to
evaluate the functional integral.

A. Single-photon-added coherent state

Contrary to the situation with photon subtraction, photon
addition applied to Gaussian states produces Wigner func-
tionals with negative regions. We substitute the coherent state
Wigner functional

Wcoh[α] = N0 det{T } exp[−2(α∗ − γ ∗) � (α − γ )], (33)

with parameter function γ , into Eq. (31). Then we compute
the normalization constant, with a generating functional for
the moments, produced in the same way we did in Eq. (11).
For the coherent state, this generating functional is given by

WN [μ∗, ν] =
∫

N0 exp (−2(α∗ − γ ∗) � (α − γ )

+α∗ � ν + μ∗ � α) D◦[α]

= exp

(
γ ∗ � ν + μ∗ � γ + 1

2
μ∗ � ν

)
, (34)
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FIG. 3. Wigner function of photon-added coherent state.

leading to

δ2WN
δν(k)δμ∗(k′)

∣∣∣∣
0

= γ ∗(k)γ (k′) + 1

2
1(k′, k). (35)

So, the normalization constant comes out to be

N−1 = M∗
V � γ γ ∗ � MV + ‖MV ‖2, (36)

where the transformed detector mode is MV = V � M∗. The
resulting expression for the Wigner functional of the normal-
ized photon-added coherent state is

W (coh)
1pa = M∗

V � (2α − γ )(2α∗ − γ ∗) � MV − ‖MV ‖2

M∗
V � γ γ ∗ � MV + ‖MV ‖2

Wcoh.

(37)

This Wigner functional is negative at α = 1
2γ . However, for

‖γ ‖ 	 1, the negative amplitude of the Wigner functional at
α = 1

2γ is severely suppressed by the Gaussian shape of the
coherent state Wigner functional [17].

The polynomial factor in Eq. (37) exists in a subspace of
the functional phase space associated with a single mode,
namely, MV . Therefore, only the parts of the field variable
α and the parameter function γ that are proportional to MV

play a role in the shape of the Wigner functional. We can
substitute MV → m0G, α → α0G, and γ → γ0G, where G
is a normalized mode, α0 is a complex variable and γ0 and
m0 are constants. After tracing over the part of the func-
tional phase space that is orthogonal to G, we end up with a
two-dimensional Wigner function (not a functional anymore),
given by

W (coh)
1pa (α0) = |2α0 − γ0|2 − 1

|γ0|2 + 1
2 exp(−2|α0 − γ0|2). (38)

The magnitude of the transformed mode |m0| = ‖MV ‖ cancels
out everywhere. If we assume that the coherent state is weak
so that |γ0| ≈ 1, we can plot the two-dimensional Wigner
function of the single-photon-added coherent state. It is shown
in Fig. 3, as a function of q and positive p, representing the real
and imaginary parts of α0, so that

α0 = 1√
2

(q + ip). (39)

We can see that there is a negative region lying between the
origin and maximum of the Wigner function.

B. Single-photon-added thermal state

We also consider a thermal state as the initial state for the
photon-addition process [9]. Its Wigner functional is

Wth[α] = N0 det{T } exp(−2α∗ � T � α), (40)

where T is the thermal state kernel. Substituted into Eq. (31),
with a single-mode detector kernel, it gives

W (th)
1pa = N [M∗

V � (T + 1) � αα∗ � (T + 1) � MV

− 1
2 M∗

V � (T + 1) � MV ]Wth. (41)

Following the same steps as before, we produce a generating
functional for the moments, given by

WN [μ∗, ν] =
∫

det{T } exp (−2α∗ � T � α

+α∗ � ν + μ∗ � α) D◦[α]

= exp

(
1

2
μ∗ � T −1 � ν

)
, (42)

so that

δ2WN
δν(k)δμ∗(k′)

∣∣∣∣
0

= 1

2
T −1(k′, k). (43)

The normalization constant is then given by

N−1 = 1
2 M∗

V � (T −1 + 1) � MV , (44)

leading to a normalized Wigner functional for the photon-
added thermal state given by

W (th)
1pa = M∗

V � (T + 1) � αα∗ � (T + 1) � MV − �0

�1
Wth,

(45)

where

�0 = 1
2 M∗

V � (T + 1) � MV ,

�1 = 1
2 M∗

V � (T −1 + 1) � MV . (46)

For simplicity, we consider a single-mode thermal state,
which is often encountered in experiments where the thermal
source is represented by a beam of thermal light with a spe-
cific spatiotemporal mode. The kernel of such a single-mode
thermal state can be represented by

T = (1 + τ��∗)−1 = 1 − τ

1 + τ
��∗, (47)

where τ is the average number of photons in the thermal
state and � is a normalized mode. The determinant becomes
det{T } = (1 + τ )−1. Assuming that the transformed detector
mode is proportional to the mode of the thermal state, we
replace MV → m0�. With the part orthogonal to � traced out,
the photon-added thermal state’s Wigner function becomes

W (th)
1pa (α0) = 2

(1 + τ )2

(
2

2 + τ

1 + τ
|α0|2 − 1

)
exp

(
−2|α0|2

1 + τ

)
,

(48)

where α0 = �∗ � α. In Fig. 4, the Wigner function of the
photon-added thermal state is shown for τ = 5, plotted as a
function of q and positive p. It shows the negative region at
the origin.
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FIG. 4. Wigner function of photon-added thermal state.

C. Single-photon-added squeezed vacuum state

Using the squeezed vacuum state as initial state, we substi-
tute Eq. (18) into Eq. (31). It gives

W (sv)
1pa = N

{
[M � V ∗ � (A + 1) � α + M � V ∗ � B � α∗]

× [α∗ � (A + 1) � V � M∗ + α � B∗ � V � M∗]

− 1
2 M � V ∗ � (A + 1) � V � M∗}Wsv, (49)

where we replace F → 1
2V � V ∗. Using the generating func-

tion in Eq. (20), we compute the associated normalization
constant as

N−1 = 1
2 M � V ∗ � (A + 1) � V � M∗. (50)

The normalized Wigner functional for the single-photon-
added squeezed vacuum state thus reads

W (sv)
1pa =

{
2|M∗

V � [(A + 1) � α + B � α∗]|2
M∗

V � (A + 1) � MV
− 1

}
Wsv. (51)

Comparing this result to the equivalent for photon subtrac-
tion in Eq. (22), we see that it is qualitatively similar. The
polynomial part is again rendered in a four-dimensional sub-
space of the functional phase space. The only difference is
the transformations of the detector mode that defines this
four-dimensional subspace.

V. CONCLUSION

The effect of the spatiotemporal degrees of freedom in
the experimental implementations of heralded quantum state
preparation is investigated. The Wigner functional formalism
is used to derive general expressions for the states produced

by heralded photon subtraction and heralded photon addition.
While the initial states are parameterized in terms of kernels
and parameter functions, the heralding measurement is rep-
resented by a detector kernel, which can be parameterized in
terms of a single spatiotemporal detector mode.

The heralded experimental preparation of photon-
subtracted squeezed vacuum states, photon-added coherent
states, photon-added thermal states, and photon-added
squeezed vacuum states are considered as examples. In
all these cases, the single-mode measurements reduce the
dimensionality of the domain of the Wigner functional of
the heralded state to become finite-dimensional Wigner
functions. The Wigner functions of the photon-subtracted
and photon-added squeezed vacuum states are represented
within four-dimensional subspaces of the functional phase
space spanned by two complex-valued transformed detector
modes, formed by the two kernels in terms of which the initial
squeezed vacuum state is parameterized. The photon-added
coherent states and the photon-added thermal states are
rendered in two-dimensional subspaces of the functional
phase space, represented as a complex plane associated
with the complex-valued transformed detector mode. It is
produced by measuring the difference-frequency component
of the Bogoliubov transformed input state in the heralded
photon-addition process, thus involving only one Bogoliubov
kernel, together with one kernel from the initial state. The
two-dimensional Wigner functions of these photon-added
states are shown in plots.

Although the domains of these heralded states are signif-
icantly reduced by the single-mode heralding measurements,
there is still enough variability in the properties of the detector
modes and the initial states to provide much diversity for the
properties for the heralded states. With the aid of this analysis,
one can investigate these properties for optimal design of the
quantum information systems involved.

One of the important aspects resulting from this analysis
is that the finite-dimensional domain on which the heralded
state’s Wigner function is represented, is defined by trans-
formed detector modes. When such a Wigner function is sent
into a subsequent system for further processing (for example,
being measured with the aid of homodyne tomography), it is
important that the spatiotemporal degrees of freedom of the
modes used in such a subsequent process (such as the local
oscillator in the homodyne tomography system) match the
transformed detector mode of the heralding detector, and not
the original heralding detector mode. Any mismatch between
these modes and the transformed detector mode would lead to
losses and distortions [19].
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