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Quantum fluctuations and unusual critical exponents in a quantum Rabi triangle
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The quantum fluctuations of a quantum Rabi triangle are investigated using an analytical method that goes
beyond mean-field theory. An artificial magnetic field applied in three cavities leads to the breaking of time-
reversal symmetry, which is evident in the directional transfer of photons. In contrast to previous studies, we
focus on the scaling exponents of quantum fluctuations of the local photon number and the position variance near
the critical point. Specifically, the fluctuations of photons do not diverge as the coupling strength approaches the
critical value from below for the chiral superradiant phase transition. Attributing to geometric frustration, two
distinct scaling laws arise for the frustrated cavity and the remaining cavities. Specifically, in the frustrated cavity,
the scaling exponent in the chiral superradiant phase differs from that without an artificial magnetic field for
the frustrated antiferromagnetic superradiant phase. The unusual scaling exponents indicate distinct universality
classes in contrast to the single-cavity Rabi one. We suggest that accurate critical exponents in few-body systems
are useful for identifying exotic quantum phase transitions in light-matter coupling systems.
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I. INTRODUCTION

The interaction between light and matter has brought forth
a new class of quantum many-body systems in understanding
strongly correlated systems and the quantum phase transi-
tion [1–4]. The effect of quantum fluctuations driving the
quantum phase transitions is especially pronounced in char-
acterizing singularity and universality classes by universal
scaling laws [5–8]. A superradiant phase transition (SPT) is
a remarkable phenomenon in the Dicke mode [9–13], which
describes an ensemble of two-level atoms interacting with a
quantized single-mode cavity. Such a SPT has been found
in the quantum Rabi model of a single-atom system in the
infinite-frequency limit [14–19], which has the same critical
exponents as the Dicke model [12–14]. A few-body system
of light-atom interactions sheds new light on the quantum
simulation of quantum phase transitions because of its high
control and tunability.

Recently, much effort has been devoted to imposing an
artificial magnetic field on neutral atoms and photons [20],
which have brought forth remarkable phenomena, such as
chiral edge currents in atoms [21,22], chiral ground-state cur-
rents of interacting photons [23], and fractional quantum Hall
physics in the Jaynes-Cummings Hubbard lattice [24,25]. In
the presence of an artificial magnetic field, unusual superradi-
ant phases have been found in the generalized Rabi and Dicke
systems, including chiral superradiant phases in a quantum
Rabi ring [26,27] and anomalous superradiant phases in a
Dicke lattice model [28]. Such exotic SPTs exhibit unusual
scaling behaviors compared to the conventional SPT in the
Dicke model. In addition to the artificial magnetic field, geo-
metric frustration has been proved to induce counterintuitive
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critical phenomena. Different critical exponents of the ex-
citation energy have been found on the two sides of phase
transitions in the Rabi triangle [27] and in the Dicke trimer
[28,29], which are associated with frustrated geometry. How-
ever, there appear to be no clear scaling exponents of quantum
fluctuations near the critical value. Since there is a challenge
of an accurate solution beyond a mean-field approach for
the Rabi and Dicke lattices including interactions between
cavities.

In this paper, we perform an analytical solution beyond the
mean-field approximation for the quantum Rabi triangle with
an artificial magnetic field. In contrast to previous studies, we
present an analytical expression of quantum fluctuations and
obtain accurate scaling exponents near the critical point. In
the chiral superradiant phase (CSP), the frustrated cavity has
different photon numbers compared to the other two. Its corre-
sponding quantum fluctuation of the photons diverges with an
anomalous critical exponent, which is distinguished from the
conventional exponent of the remaining cavities. Strikingly, it
is different from the scaling exponent of the frustrated cavity
in the frustrated antiferromagnetic superradiant phase (FASP)
in the absence of an artificial magnetic field. It demonstrates
that the artifical magnetic field and geometric frustration play
a different role in the frustrated cavity. Thus, the scaling be-
havior of quantum fluctuations falls into two classes, one for
the frustrated cavity and the other for the remaining cavities.
Moreover, the scaling behavior below and above the transition
point is different due to geometric frustration. However, the
scaling exponents are equal to each other on the two sides of
the transition of the ferromagnetic superradiant phase (FSP),
which are the same as those in the Dicke model.

The rest of this paper is organized as follows. In Sec. II,
we introduce the Hamiltonian of the quantum Rabi triangle
and the dynamics of photons with an artificial magnetic field.
In Sec. III, quantum fluctuations of the mean photons and the
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position variance are derived in the normal phase and in the
superradiant phase, respectively. Section IV gives the scaling
exponents of the quantum fluctuations and excitation energies
beyond the mean-field approximation. The conclusion is given
in Sec. V.

II. AN ARTIFICAL MAGNETIC FIELD
IN A QUANTUM TRIANGLE

The quantum Rabi triangle model describes photon hop-
ping between neighboring cavities in N = 3 coupled cavities,
where each cavity contains a two-level atom and is described
by the quantum Rabi model. The Hamiltonian reads

HQRT =
3∑
n

HR,n +
3∑
n

J (eiθ a†
nan+1 + e−iθ ana†

n+1), (1)

where the quantum Rabi Hamiltonian of each cavity is de-
scribed as HR,n = ωa†

nan + g(a†
n + an)σ x

n + �
2 σ z

n . an (a†
n) is

the photon annihilation (creation) operator of the single-mode
cavity with the frequency ω at cavity n, and σ i

n are the Pauli
matrices of the two-level atom at site n with the transition
frequency �. g is the atom-cavity coupling strength. The
dimensionless coupling strength is defined as g1 = g/

√
�ω.

The quantum Rabi model exhibits a superradiant phase tran-
sition in the infinite frequency limit [14–17], where the
frequency ratio η = �/ω approaches ∞.

The second term of the Hamiltonian HQRT describes the
hopping of photons between neighboring cavities with the
hopping amplitude J and a phase θ . The nonzero hopping
phase θ arises from an artificial vector potential, A(r), which
leads the photon hopping terms between nearby cavities n
and m to become complex with the phase given by θ = ∫ rm

rn

A(r)dr. The effective magnetic flux is 3θ in three cavities,
which form a closed loop. The hopping phase θ can be real-
ized by a periodic modulation of the photon hopping strength
between cavities [26]. The complex hopping amplitude leads
to the breaking of the time-reversal symmetry (TRS) when
θ �= mπ (m ∈ Z).

To explore the effects of the artificial magnetic field, we
study the dynamics of a photon flowing in the closed-cavity
loop. At t = 0, a photon is prepared in the first cavity, and the
two-level atom in each cavity is in the down state, giving the
initial state |ϕ(0)〉 = |100〉|↓↓↓〉. Figure 1 shows the dynam-
ics of the mean photon in each cavity depending on θ . The
photon number Ni = 〈ϕ(t )|a†

i ai|ϕ(t )〉 is initially occupied in
the first cavity with N1 = 1. For θ = 0 in Fig. 1(a), the photons
transfer symmetrically from cavity 1 to cavity 2 and cavity 3
simultaneously and then transfer back to cavity 1. There is
no preferred circulation direction. Since TRS is preserved for
the trivial case θ = 0, the states at time t and T − t satisfy
ϕ(t ) = ϕ(T − t ) with a time-evolving period T . A completely
different dynamics is observed for θ = π/2 in Fig. 1(b). The
photon flows unidirectionally, first from cavity 1, to cavity 2,
to cavity 3, and finally back to cavity 1. Such a chiral current
direction is a signature of the breaking of TRS. Because the
evolution of the state from t = T backward is different com-
pared to going forward from t = 0, choosing θ = −π/2 leads
to the opposite direction of the chiral photon flow in Fig. 1(c).

FIG. 1. Mean photon number in each cavity N1 (black solid line),
N2 (red dashed line), and N3 (blue dotted line) as a function of time t
for three values of θ = 0 (a), θ = π/2 (b), and θ = −π/2 (c) for the
scaled coupling strength g1 = 0.1. In this paper we use �/ω = 50
and J/ω = 0.05 by choosing ω = 1 as the unit for frequency.

It shows that the artificial flux θ leads to the breaking of TRS,
which behaves similarly to a magnetic flux.

Besides TRS breaking induced by artificial magnetic flux,
rich superradiant phase transitions have been explored de-
pending on θ in the quantum Rabi triangle [26,27]. Unlike
previous studies, we study quantum fluctuations and extract
unusual critical exponents to classify the universality classes
of the nontrivial phase transition beyond a mean-field approx-
imation.

III. QUANTUM FLUCTUATIONS

Normal phase. For a weak coupling g1, the system is in the
normal phase (NP) with almost zero excitations. We perform a
Schrieffer-Wolff transformation with a unitary operator Sn =
exp[−iσ y

n g1
√

ω/�(a†
n + an)] [26]. The lower-energy Hamil-

tonian is obtained by projecting HNP to the spin subspace |↓〉,
giving

H↓
NP =

3∑
n=1

(
ω − 2ωg2

1

)
a†

nan − ωg2
1

(
a2

n + a†2
n

)

+ J
3∑

〈nn′〉
(eiθ a†

nan′ + H.c.) + E0, (2)

where the energy constant is E0 = 3[−�/2 − ωg2
1 + (ω +

J )ω2g2
1/�]. The approximated Hamiltonian is valid under the

conditions of η 
 1 and J/ω � 1.
By introducing the Fourier transformation a†

n =∑
q einqa†

q/
√

N with the quasimomentum q = 0 and ±2π/3,

the transformed Hamiltonian becomes H↓
NP

√
Nπ/2 =∑

q ωqa†
qaq − ωg2

1(aqa−q + a†
qa†

−q) + E0, with ωq = ω − 2ω
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g2
1 + 2J cos(θ − q). By performing a unitary transformation

Sq = exp[λq(a†
qa†

−q − aqa−q )] with a variational squeezing

parameter λq = − 1
8 ln ωq+ω−q−4ωg2

1

ωq+ω−q+4ωg2
1
, the Hamiltonian is ob-

tained in diagonal form as H↓
NP = √

2/(Nπ )
∑

q εqa†
qaq + Eg,

with the ground-state energy Eg. The excitation spectrum is
obtained as

εNP
q = 1

2

(√
�2+,q − 16ω2g4

1 + �−,q
)
, (3)

with the dispersion �±,q = ωq ± ω−q. The lowest excitation
energy is associated with the quasimomentum q dependent on
θ . For θ = 0, the excitation energy εNP

q=±2/3 with q = ±2π/3
becomes the lowest one and decreases to 0 for g1 approaching
gc from below in Fig. 3(a). As θ increases, the lowest energy
is εNP

q=−2/3 with q = −2π/3 in Fig. 3(b). Then it changes to
εNP

q=0 with q = 0 in Fig. 3(d). The vanishing of εNPq = 0 depen-
dent on θ and q-momentum gives the critical scaled coupling

strength g1c(q) = 1
2

√
1+4J/ω cos θ cos q+4J2/ω2 cos(θ+q) cos(θ−q)

1+2J/ω cos θ cos q .
The ground state in the NP is

|ϕnp〉 =
∏

q

eλq (a†
qa†

−q−aqa−q )|0〉q|↓〉, (4)

where |↓〉 is the lowest state of the atom. The average
number of photons in the ground state can be obtained
as 〈a†

qaq〉np = 〈ϕnp|a†
qaq|ϕnp〉 = (cosh 4λq − 1)/2, which de-

scribes the quantum fluctuation of photons for g1 approaching
the critical value g1c from below. The local mean photon
number in the nth cavity is obtained as

〈a†
nan〉np = 1

N

∑
q

〈a†
qaq〉np = 1

2N

∑
q

[
�+,q

2εq − �−,q
− 1

]
.

(5)

The variances of the position quadrature xq = aq + a†
q and

the momentum quadrature pq = i(a†
q − aq) are derived as

(�xq)2 = 〈ϕnp|x2
q |ϕnp〉 − 〈ϕnp|xq|ϕnp〉2 = e4λq and (�pq)2 =

〈p2
q〉 − 〈pq〉2 = e−4λq , respectively. The local variances of the

position and momentum quadratures in the nth cavity are
found to be

(�x)2 = 1

N

∑
q

(�xq)2 = 1

N

∑
q

�+,q + 4ωg2
1

2εq − �−,q
(6)

and (�pn)2 = 1
N

∑
q e−4λq .

This indicates that the singularity of the mean photon num-
ber 〈a†

nan〉np, the variance of (�xn)2 and (�pn)2, is determined
by the excitation energy εq and �−,q in the denominator.
Obviously, εq becomes 0 at the critical value g1c. It is interest-
ing to understand the divergence from �−,q = 4J sin θ sin q
dependent on q and θ . In the absence of the magnetic field
with θ = 0 or the momentum q = 0, we have �−,q = 0. It
leads to the singularity of quantum fluctuations of 〈a†

nan〉np

and (�xn)2 at the critical point. In contrast, for θ �= 0 and
q = ±2π/3, it gives a nonzero value of �−,q, which results
in a finite value of 〈a†

nan〉NP and (�xn)2
NP, respectively. There

appear nondivergent fluctuations in Figs. 4(b) and 5(b) for g1

approaching g1c from below.
These strikingly analytical results allow for some

interesting observations at the critical value g1c =

√
1 + 2 cos θJ/ω/2 for the momentum q = 0. As g1 → g1c,

the excitation energy vanishes as

εNP
q=0(g1 → g1c) ∼ 8ωg2

1c(g1c − g1)1/2. (7)

This reveals that the excitation energy vanishes as εNP
q=0 ∝

(g1c − g1)γ with the exponent γ = 1/2, which agrees well
with numerical values in Fig. 3(d). In the vicinity of g1c, we
find that the quantum fluctuations diverge as

〈a†
nan〉np ∼ 2g2

1c − g2
1√

8g3
1c

(g1c − g1)−1/2 (8)

and

(�xn)2
np ∼

√
g1c

2
(g1c − g1)−1/2. (9)

It yields the critical exponent 1/2 for the diverging of the
quantum fluctuations when g1 approaches g1c from below for
the case q = 0, which is consistent with numerical results in
Figs. 4(d) and 5(d).

Superadiant phase. As the atom-cavity coupling increases
g1 > g1c, rich superradiant phases emerge by adjusting
the flux θ [26,27]. The bosonic operator a†

n (an) is ex-
pected to shift by a displacement transformation D(α)
with a complex displacement αn = An + iBn, yielding ãn =
D†(αn)anD(αn) = an + αn. We consider the quantum fluctua-
tions of the shifted bosonic operator ãn (ã†

n), which is different
from the mean-field approximation. The effective low-energy
Hamiltonian is obtained as follows by projecting to the spin
subspace |↓〉 (see Appendix A):

H↓
eff =

3∑
n=1

ωã†
nãn − λ2

n

�n
(ã†

n + ãn)2

+ Jã†
n(eiθ ãn+1 + e−iθ ãn−1) + Eg, (10)

where the renormalized parameter �n = √
�2 + 16g2A2

n,
and the effective coupling strength is λn = g�/�n. The
ground-state energy is obtained as Eg = ∑

n ωα∗
nαn +

J
∑

n α∗
n (eiθαn+1 + e−iθαn−1) − �n/2. Minimizing the en-

ergy Eg with respect to the real and imaginary parts of αn

yields

0 = ωAn − g sin(2γn) + J[(An+1 + An−1) cos θ

+ (Bn−1 − Bn+1) sin θ ] = 0 (11)

and

0 = ωBn + J[cos θ (Bn+1 + Bn−1) + sin θ (An+1 − An−1)].

(12)

Thus, the mean value of αn can be accurately obtained by
solving the above equations.

The phase diagram is plotted in the θ -g1 plane for the
quantum Rabi triangle in Fig. 2(a). It contains three intrigu-
ing superradiant phases, which can be characterized by the
order parameter αn. First, for θ = 0 and g1 > gFASP

1c (±2π/3),
αn is real with Bn = 0. Geometric frustration in three cav-
ities induces a site-dependent αn. It is observed that one
cavity (n = 1) always has the sign of An opposite to the
other two due to J > 0 in Fig. 2(b). So the system forms
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FIG. 2. (a) Phase diagram in the θ -g1 plane for the quantum Rabi
triangle. There occurs a phase transition from the NP to the FASP
at θ = 0. The critical line g1c (solid black line) indicates the phase
boundary from the NP to the CSP and the FSP by varying θ . The
CSP, FSP, and NP join at the triple point (TP) at θc = 0.516π . (b) The
real part An and the imaginary part Bn of αn as a function of g1/g1c

at θ = 0 for the NP-FASP transition. (c) An and Bn as a function of
g1/g1c at θ = π/3 < θc for the NP-CSP transition. (d) An and Bn as
a function of g1/g1c at θ = 2π/3 > θc for the NP-FSP transition.

a frustrated antiferromagnetic order, the so-called frustrated
FASP. Second, for 0 < θ < θc, it is in the CSP. Unlike the
FASP, αn of the frustrated cavity (n = 1) is real with the
opposite sign, while it is complex for the remaining cavities
in Fig. 2(c). It results in different mean photon numbers in
the frustrated cavity. However, in the FSP with θc < θ � π ,
each cavity has the same mean photons with the same real
value of αn as in Fig. 2(d). It forms a ferromagnetic order
with the same displacement of neighboring cavities due to
the effective hopping strength J cos θ < 0 [27]. The critical
value gCSP

1c (q = −2π/3) in the CSP changes to gFSP
1c (q = 0) in

the FSP by varying the magnetic flux. It leads to the critical
flux θc = ± cos−1[−2J/(

√
8J2 + ω2 + ω)], which classifies

the phase boundaries between the CSP and the FSP.
The Hamiltonian in Eq. (10) is bilinear in the cre-

ation and annihilation operators ã†
n and ãn. We perform a

Bogoliubov transformation to diagonalize the Hamiltonian
by using the bosonic operators β = {b†

1, b†
2, b†

3, b1, b2, b3},
which are a linear combination of γ = {ã1, ã2, ã3, ã†

1, ã†
2, ã†

3}.
It satisfies γ † = T β† with a paraunitary matrix T . To ensure
the bosonic commutation relation, the paraunitary matrix T
satisfies the relations of T †�T = T �T † = �, where � =
(I3×3 0

0 −I3×3
), with I3×3 being the identity matrix of order 3.

Substituting for γ and γ † in terms of β† and β, one obtains
the diagonalized form as H↓

eff = 2
∑3

k=1 εkb†
kbk + (εk − ω)/2.

The eigenvalues ±εk are obtained by diagonalizing the matrix
�M as T −1�MT = �ε with the transformed Hamiltonian
matrix M in Appendix A. The corresponding eigenvector
gives the kth column vector of the paraunitary matrix as
Tk = [T1k, T2k, . . . , T6k]T .

The ground state of photons in the superradiant phases is
the vacuum state

|ϕSR〉 = |0〉b1 |0〉b2 |0〉b3 , (13)

where |0〉bn satisfies bn|0〉bn = 0. Note that the operator bn

corresponds to the original operator an with the displacement
transformation D(α) and the transformation T . It is straight-
forward to give ãn = ∑3

i=1 Tn,ibi + Tn,i+3b†
i + αn. The local

photon number in the nth cavity of the ground state |ϕSR〉 is
explicitly derived as

〈a†
nan〉 = |Tn4|2 + |Tn5|2 + |Tn6|2 + |αn|2. (14)

The variances of xn and pn are obtained as

(�xn)2 = |Tn1 + T ∗
n4|2 + |Tn2 + T ∗

n5|2 + |Tn3 + T ∗
n6|2 (15)

and (�pn)2 = |T ∗
n4 − Tn1|2 + |T ∗

n5 − Tn2|2 + |T ∗
n6 − Tn3|2,

which are derived in detail in Appendix B. Thus, the quantum
fluctuations of photons and the position variance are obtained
beyond the mean-field approximation. We calculate the
scaling behaviors of the critical fluctuations in the vicinity of
the critical value gc in the following.

IV. UNUSUAL CRITICAL EXPONENTS

Our major interests are the scaling exponents of quan-
tum fluctuations as g1 approaches g1c for the second-order
phase transitions from the NP to different superradiant phases.
Generally, the energy gap measured by the lowest excitation
energy ε1 vanishes as g1 approaches g1c:

ε1 ∝ |g1 − g1c|γ . (16)

Here, the critical exponent γ = zν is usually universal [6],
which is independent of most of the parameters of the Hamil-
tonian. The variance of position quadrature diverges as

�x ∝ |g1 − g1c|−ν (17)

with a critical exponent ν. Meanwhile, the fluctuations of the
local mean photons near the critical value diverge as

〈a†
nan〉 ∝ |g1 − g1c|−β, (18)

where β is a critical exponent. Using Bogoliubov’s diago-
nalization method, we calculate the scaling exponents of the
lowest excitation energy ε1, the fluctuation of position vari-
ance (�x)2 in Eq. (15), and the mean photon number 〈a†

nan〉
in Eq. (14).

For the NP-FSP transition, the exponents of the excitation
energy on the two sides of the phase transition are the same
γ = 1/2 in Fig. 3(d), ε1 ∝ |g1 − g1c|1/2, which is consistent
with the analytical results of Eq. (7). And the mean pho-
tons of the nth cavity diverge as 〈a†

nan〉 ∝ |g1 − g1c|−1/2 in
Fig. 4(d). The fluctuation of �xn at the critical value gives
the exponent ν = 1/4 in Fig. 5(d), which diverges as (�x)2

n ∝
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FIG. 3. The lowest excitation energy ε1 and the second excitation
energy ε2 below and above the critical coupling strength g1c for
the NP-AFSP transition (θ = 0) (a), the NP-CSR transition (θ =
π/3 < θc) (b), the triple point (θ = θc) (c), and the NP-FSP transition
(θ = 1.7 > θc) (d). The inset in panel (b) shows the second excitation
energy ε2 for the NP-CSP transition, which exhibits an obvious
energy gap in comparison to ε1. The analytical results of the lowest
excitation energy in Eq. (3) are shown for q = −2π/3 (black dashed
line), q = 2π/3 (solid green line), and q = 0 (blue dotted line) in
panels (a), (b), and (d) for the NP (g1 < g1c).

|g1 − g1c|−1/2. The exponent agrees well with the analytical
one in Eqs. (8) and (9). The scaling exponents of the NP-FSP
transition are the same as those of the conventional superradi-
ant phase transition of the Rabi model [14,16] and the Dicke
model [12,13]. The scaling laws hold with the same value of
the exponent γ for both g1 > g1c and g < g1c.

For the NP-FASP transition with θ = 0, Fig. 3(a) shows
both the excitation energies ε1 and ε2 closing the gap at g1c

with the exponent γ = 1/2 for g1 < g1c. In contrast, for g1 >

g1c, ε1 and ε2 vanish with different scaling behaviors:

ε1,FASP ∝ (g1c − g1)1, ε2,FASP ∝ (g1c − g1)1/2. (19)

It exhibits two different exponents γ+ (γ−) at the two sides
of the phase transition for g1 > g1c (g < g1c), which is dis-
tinguished from conventional second-order phase transitions.
Two different exponents γ+ = 1/2 and γ+ = 1 in Eq. (19)
appear for g1 > g1c, for which the latter is the unconventional
scaling exponent of the frustrated cavity n = 1. The distinct
scaling behavior is consistent with results in the Dicke trimer
[29]. Meanwhile, Fig. 4(a) shows the fluctuations of the mean
photons in each cavity diverging with the same exponent
β− = 1/2 for g1 < g1c. However, for g1 > g1c, the photon
number diverges locally dependent on n, which is associated
with the frustrated geometry. 〈a†

nan〉 for the nth cavity exhibits

FIG. 4. Quantum fluctuations of the local mean photons for the
nth cavity 〈a†

nan〉 as a function of g1/g1c for the NP-FASP transition
(θ = 0) (a), the NP-CSP transition (θ = π/3 < θc) (b), the triple
point (θ = θc) (c), and the NP-FSP transition (θ = 2π/3 > θc) (d).
The inset in panel (a) shows the scaling behavior of 〈a†

2(3)a2(3)〉 [blue
(green) triangles]. The right side of the inset in panel (b) shows
the behavior of 〈a†

1a1〉 (red circles) in the frustrated cavity, and the
left side shows the scaling exponents. The inset in panel (c) shows
the scaling results by the solution in the CSP, which is same as the
solution in the FSP. The inset in panel (d) shows the scaling exponent.

a different scaling law as follows:

〈a†
1a1〉FASP ∝ |g1 − g1c|−1,

〈a†
2(3)a2(3)〉FASP ∝ |g1 − g1c|−1/2. (20)

The scaling of the frustrated cavity (n = 1) produces an un-
usual exponent β = 1, while the remaining cavities (n = 2
and 3) diverge with the same exponent β = 1/2 as in the Rabi
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FIG. 5. Quantum fluctuation of the variance of position for the
nth cavity (�xn)2 as a function of g1/g1c for the NP-FASP transition
(θ = 0) (a), the NP-CSP transition (θ = π/3 < θc) (b), the triple
point (θ = θc) (c), and the NP-FSP transition (θ = 2π/3 > θc) (d).
The inset in panel (a) shows the scaling behavior of (�x2(3) )2. The
inset in panel (b) shows the fluctuations of the first frustrated cavity
(�x1)2 above g1c. The inset in panel (c) shows the scaling results by
the solution in the CSP, which is the same as the solution in the FSP.

model, respectively. The similar n-dependent fluctuation of
(�xn)2 is shown in Fig. 5(a). The scaling exponent of �xn of
each cavity below the critical value g1c is the same ν− = 1/4
for g1 < g1c. By contrast, for g1 > g1c the fluctuation diverges
respectively as

(�x1)2
FASP ∝ |g1 − g1c|−1,

(�x2(3))
2
FASP ∝ |g1 − g1c|−1/2. (21)

Thus, the scaling exponents for �xn are extracted as ν+ = 1/2
for the frustrated cavity (n = 1) and ν+ = 1/4 for the remain-
ing cavities (n = 2, 3) when g1 approaches the critical value
from above.

For the NP-CSP transition with the artificial magnetic
field (0 < θ < θc), the unusual mode ε1 closes the gap for
g1 approaching g1c from below or above in Fig. 3(b). It
behaves as

ε1,NP ∝ |g1 − g1c|, ε1,CSP ∝ |g1 − g1c|3/2. (22)

It gives two unconventional exponents γ− = 1 and γ+ = 3/2
below and above g1c, which are different from the results in
the NP-FASR transition. In contrast to the FASP, the artificial
magnetic field induces the nontrivial chiral phase with the
unusual critical exponent. Interestingly, nondivergent fluctu-
ations of 〈a†

nan〉NP and (�xn)NP for g1 < g1c are observed
in Figs. 4(b) and 5(b). The numerical results are consistent
with the analysis from Eqs. (5) and (6), which ascribe to the
nonzero value of the denominator dependent on the momen-
tum q. For g1 > g1c, the mean photon number on the frustrated
cavity is different from the other two due to geometric frus-
tration in Fig. 2(c). Figure 4(b) shows n-dependent scaling
behaviors of the local photon number:

〈a†
1a1〉CSP ∝ |g1 − g1c|−1/3,

〈a†
2(3)a2(3)〉CSP ∝ |g1 − g1c|−1/2. (23)

〈a†
1a1〉 of the frustrated cavity diverges with the exponents

1/3, which is different from that of the Dicke lattice [28].
Meanwhile, Fig. 5(b) shows the fluctuation of the position
variance of the nth cavity, which diverges as

(�x1)2
CSP ∝ |g1 − g1c|−1/3,

(�x2(3))
2
CSP ∝ |g1 − g1c|−1/2. (24)

The unusual exponent of the frustrated cavity (n = 1) ν+ =
1/6 for �xn is also different from ν+ = 1/2 in the FASP tran-
sition. It demonstrates that contributions from the geometry
frustration and the artificial magnetic field lead to different
unusual critical exponents. It exhibits distinct exponents of the
frustrated cavity by comparing it to the NP-FASP transition
without the magnetic flux.

At the triple point θc, there appear two excitation modes
that close the gaps at g1c. Figure 3(c) shows two different
behaviors of power laws:

ε1,TP ∝ |g1 − g1c|, ε2,TP ∝ |g1 − g1c|1/2. (25)

We obtain exponents γ± = 1 and γ± = 1/2. This is a signa-
ture of the coexistence of both the CSP and the FSP. And the
scaling exponents are the same on the two sides of the TP. We
calculate the fluctuation of 〈a†

nan〉 by the analytical solutions
in the FSP phase in Fig. 4(c), which behaves the same as
that in the CSR in the inset. Figure 5(c) shows the scaling
laws of (�xn)2

TP. Thus, the scaling behaviors of the quantum
fluctuations near the critical point can be expressed as

〈a†
nan〉TP ∝ |g1 − g1c|−1/2, (�xn)2

TP ∝ |g1 − g1c|−1/2.

(26)

Thus, we obtain the scaling exponents β = 1/2 and ν = 1/4
at the triple point, respectively.
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TABLE I. Scaling exponents γ± of the excitation energy εn, ν±,
and β± for quantum fluctuations of the �xn and 〈a†

nan〉 on two
sides of the phase transitions of the NP-FASP (θ = 0), the NP-CSP
(θ < θc), and the NP-FSP (θ > θc) as well as the triple point (TP)
(θ = θc). Especially, the symbol “−” denotes that a particular ex-
ponent is nondivergent when g1 approaches the critical value from
below for the NP-CSP phase transition.

γ− γ+ ν− ν+ β− β+

NP-FASP 1/2 1, 1/2 1/4 1/2, 1/4 1/2 1, 1/2

NP-CSP 1 3/2 − 1/6, 1/4 − 1/3, 1/2

TP 1, 1/2 1, 1/2 1/4 1/4 1/2 1/2

NP-FSP 1/2 1/2 1/4 1/4 1/2 1/2

Various critical exponents for g1 approaching g1c from
below and above are listed in Table I for different superradiant
phase transitions. Scaling exponents below and above g1c are
different for the NP-FASP and NP-CSP transitions, while they
are the same for the NP-FSP transition. In particular, for the
NP-CSP phase transition, the exponents ν− and β− are non-
divergent when g1 approaches the critical value from below.
For the special frustrated cavity, the unusual critical exponents
of the photon fluctuations are β+ = 1 and β+ = 1/3 for the
NP-FASP and NP-CSP transitions, respectively. Meanwhile,
the anomalous exponents of the fluctuations in position vari-
ance are ν+ = 1/2 and ν+ = 1/6. They are distinguished from
the exponents of the remaining cavities with β+ = 1/2 and
ν+ = 1/4. This reveals that the magnetic flux leads to unusual
exponents compared to geometric frustrations, resulting in
the distinct universality classes of the NP-CSP and NP-FASP
transitions.

V. CONCLUSION

Quantum fluctuations and scaling behaviors in the Rabi
triangle with an artificial magnetic field are investigated be-
yond the mean-field approximation. Our analytical method is
an accurate solution even by involving the fluctuations terms
and is valid for a large system of N > 3 under the constraints
of a large frequency ratio of �/ω 
 1 and a small hopping
strength of J/ω � 1. At the critical value, two scaling laws

of the observables emerge, one for the frustrated cavity with
an unusual exponent and the other for the remaining cavities
with the same exponent as the conventional quantum Rabi
model. It ascribes to the geometric frustrations of the triangu-
lar system. In addition, the frustrated cavity exhibits different
scaling exponents by applying the magnetic flux in the chiral
phase. Moreover, we find nondivergent quantum fluctuation
below the critical value in the chiral phase, which is associated
with the magnetic flux. The unconventional critical exponents
predict different universality classes beyond the conventional
superradiant phase transitions. Our work paves a way for
exploring unconventional phase transitions in the few-body
light-matter interacting systems.
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APPENDIX A: DIAGONALIZATION OF HAMILTONIAN
IN THE SUPERRADIANT PHASE

After shifting the bosonic operator ãn = an + αn, the
Hamiltonian in the superradiant phases becomes

HSR =
3∑

n=1

ωã†
nan − �n

2
τ z

n + λn(ã†
n + ãn)τ x

n

+ Jã†
n(eiθ ãn+1 + e−iθ ãn−1) + Voff + E0, (A1)

where the transformed Pauli matrix is τ z
n = �/�nσ

z
n +

4gAn/�nσ
x
n . The off-diagonal term is expressed as Voff =∑

n ω(αnã†
n + α∗

n ãn) + g(ã†
n+ãn) sin(2γn)σ z

n+J[ã†
n(eiθαn+1 +

e−iθαn−1) + H.c.]. By eliminating the Voff term, we obtain
the equations explicitly of An and Bn in Eqs. (11) and (12).
The Hamiltonian HSR in Eq. (A1) has the same form as
the original QRT Hamiltonian HQRT, one can obtain the
effective Hamiltonian by using the similar Schrieffer-Wolff
transformation described for the normal phase. Then we
obtain the lowest-energy Hamiltonian in Eq. (10).

Using the denotation γ = {ã1, ã2, ã3, ã†
1, ã†

2, ã†
3}, the

Hamiltonian in Eq. (10) can be written in matrix form as
H↓

eff = γ Mγ † − 3(ω − λ2
n/�n)/2, where a transformed ma-

trix M is as follows:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω/2 − λ2
1/�1 Je−iθ /2 Jeiθ /2 −λ2

1/�1 0 0

Jeiθ /2 ω/2 − λ2
2/�2 Je−iθ /2 0 −λ2

2/�2 0

Je−iθ /2 Jeiθ /2 ω/2 − λ2
3/�3 0 0 −λ2

3/�3

−λ2
1/�1 0 0 ω/2 − λ2

1/�1 Jeiθ /2 Je−iθ /2

0 −λ2
2/�2 0 Je−iθ /2 ω/2 − λ2

2/�2 Jeiθ /2

0 0 −λ2
3/�3 Jeiθ /2 Je−iθ /2 ω/2 − λ2

3/�3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A2)

We perform a Bogoliubov transformation to give bosonic
operators β = {b†

1, b†
2, b†

3, b1, b2, b3}, which are a linear com-
bination of γ = {ã1, ã2, ã3, ã†

1, ã†
2, ã†

3}. It satisfies γ † = T β†

with a paraunitary matrix T . The Hamiltonian can be diago-

nalized as H↓
eff = βT †MT β† = 2

∑3
k=1 εkb†

kbk + (εk − ω)/2.
The eigenvalues εk are obtained by diagonalizing the matrix
�M, where � = (I3×3 0

0 −I3×3
), with I3×3 being the identity

matrix of order 3.
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APPENDIX B: DERIVATIONS
OF QUANTUM FLUCTUATIONS

In the superradiant phase, the operator an is shifted as
an + αn. Using the Bogoliubov diagonalization method, the
ground state of the photon part is obtained as |ϕSR〉 =
|0〉b1 |0〉b2 |0〉b3 , with bn|0〉bn = 0. With the transformation
D(α) and the transformation α† = T β†, the operator a be-
comes an = ∑3

i=1 Tn,ibi + Tn,i+3b†
i + αn. The expected value

of xn = (an + a†
n) is given by

〈xn〉 = bn〈0|(an + a†
n)|0〉bn

= αn + α∗
n + bn〈0|

3∑
i=1

Tn,ibi + Tn,i+3b†
i

+ T ∗
n,ib

†
i + T ∗

n,i+3bi|0〉bn

= α∗
n + αn. (B1)

Then we derive the mean value of x2
n as〈

x2
n

〉 = bn〈0|(an + a†
n + α∗

n + αn)2|0〉bn

= 〈(an + a†
n)2 + (α∗

n + αn)(an + a†
n)〉 + (α∗

n + αn)2

= 〈ϕSR|[(Tn1 + T ∗
n4)b1 + (Tn2 + T ∗

n5)b2

+ (Tn3 + T ∗
n6)b3 + H.c.]2|ϕSR〉 + (α∗

n + αn)2

= |Tn1 + T ∗
n4|2 + |Tn2 + T ∗

n5|2

+ |Tn3 + T ∗
n6|2 + (α∗

n + αn)2.

The expected value of the variance of �xn is obtained as

(�xn)2 = 〈
x2

n

〉 − 〈xn〉2

= |Tn1 + T ∗
n4|2 + |Tn2 + T ∗

n5|2 + |Tn3 + T ∗
n6|2. (B2)

Additionally, the expected value of the momentum quadrature
pn = i(a†

n − an) is

〈pn〉 = bn〈0|i(a†
n − an + α∗

n − αn)|0〉bn = i(α∗
n − αn). (B3)

The expected value of p2
n is derived as〈

p2
n

〉 = bn〈0| − (a†
n − an + α∗

n − αn)2|0〉bn

= −〈(a†
n − an)2 + (α∗

n − αn)(a†
n − an)〉 − (α∗

n − αn)2

= −〈|[(T ∗
n4 − Tn1)b1 + (T ∗

n5 − Tn2)b2 + (T ∗
n6 − Tn3)b3

− (Tn4 − T ∗
n1)b†

1 − (Tn5 − T ∗
n2)b†

2 − (Tn6 − T ∗
n3)b†

3]2〉
− (α∗

n − αn)2

= |T ∗
n4 − Tn1|2 + |T ∗

n5 − Tn2|2 + |T ∗
n6 − Tn3|2

− (α∗
n − αn)2. (B4)

Then one obtains the variance of �pn:

(�pn)2 = 〈
p2

n

〉 − 〈pn〉2

= |T ∗
n4 − Tn1|2 + |T ∗

n5 − Tn2|2 + |T ∗
n6 − Tn3|2. (B5)
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