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and squeezing in macroscopic down-conversion
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We study the dynamics of the pump mode in the down-conversion Hamiltonian using the cumulant-expansion
method, perturbation theory, and the full numerical simulation of systems with a pump mean photon number of
up to 100 000. We particularly focus on the properties of the pump mode such as depletion, entanglement, and
squeezing for an experimentally relevant initial state in which the pump mode is initialized in a coherent state.
Through this analysis, we obtain the short-time behavior of various quantities and derive timescales at which the
above-mentioned features, which cannot be understood through the parametric approximation, originate in the
system. We also provide an entanglement witness involving moments of bosonic operators that can capture the
entanglement of the pump mode. Finally, we study the photon-number statistics of the pump and the signal and
idler modes to understand the general behavior of these modes for experimentally relevant timescales.
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I. INTRODUCTION

The interaction of light with nonlinear materials is im-
portant for the production of nonclassical light including
squeezed states, Fock states, entangled states, and non-
Gaussian states. These states of light have applications in
a variety of fields including quantum computation [1–3],
Gaussian boson sampling [4–9], metrology [10,11], and com-
munication [12]. In particular, non-Gaussian states have been
of interest in recent works because of their importance for
error correction procedures in the context of continuous-
variable quantum computing [13]. We analyze the nature of
the states, which are expected to be non-Gaussian, that are
produced in the down-conversion process beyond the para-
metric approximation. The down-conversion Hamiltonian,
sometimes referred to as the trilinear Hamiltonian, is realized
when a beam of light, referred to as the pump mode, passes
through a material with a second-order nonlinear response,
resulting in the production of photons in the signal and idler
beams. The down-conversion process has been studied since
the 1960s [14–27], particularly in the context of squeezing
[28–31]. This Hamiltonian also describes several other pro-
cesses such as the interaction of N two-level atoms with a
mode of the electromagnetic field in the Tavis-Cummings
model [23], coupling of two optical fields with an acoustic
wave, a process known as Brillouin-Mandelstam scattering
[32], zero-dimensional model of Hawking radiation [33], and
the modeling of a quantum absorption refrigerator [34,35].
The strength of the nonlinearity in the down-conversion pro-
cess through the use of bulk materials is typically very weak;
this issue can be tackled by increasing the interaction strength
or increasing the intensity of the pump mode. The former
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is typically achieved by using integrated photonic structures
such as waveguides and resonators. This Hamiltonian has
also been realized on a superconducting platform where high
nonlinearity strengths can be easily achieved in the microwave
regime [36].

The state dynamics under the down-conversion process is
typically understood through the parametric approximation
[37] where the number of pump photons is assumed to be
constant and the resulting process is modeled by replacing
the pump-mode destruction operator with the amplitude of
the pump coherent state at the initial time. This approxima-
tion yields an accurate description of the dynamics of the
system at short times, but the resulting state deviates from
this prediction as the number of pump photons decreases
with time. The depleted pump region has also been explored
experimentally [38–41], and theoretically in a number of
studies [26–28,33,42]. However, the pump-mode features,
particularly their behavior as a function of initial mean pump-
mode population (|α0|2) for large values, has not been fully
explored. Here, we study various pump-mode features of
the system that cannot be understood through the paramet-
ric approximation such as depletion time, entanglement with
the rest of the system, squeezing, and the evolution of the
zero-delay autocorrelation function associated with the pump
mode, using various analytical tools and the full numerical
simulation of these features for pump coherent states con-
taining on average up to |α0|2 = 105 photons. In particular,
we analyze these properties using the cumulant-expansion
method, perturbation theory, and photon-number statistics and
analytically identify the timescales at which these features
originate in the system for an experimentally relevant ini-
tial state, where the pump mode is in coherent state, the
signal and idler modes are in vacuum. In addition to study-
ing pump-mode entanglement with the other modes, we also
provide an explicit witness expressed in terms of bosonic
moments based on the positive partial transpose (PPT)
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criterion that can capture this entanglement. Finally, we
supplement this analysis with the study of photon-number
statistics of the pump and signal modes to provide a general
picture of the behavior of the state for experimentally relevant
times.

The rest of the paper is organized as follows. In Sec. II,
we review the parametric approximation and provide general
background material. In Sec. III A, we numerically study the
system using the cumulant-expansion method and obtain an
analytic solution to the equations of motion in the second
order which allows us to extract the pump-depletion time
analytically. To understand other important features of the
system, in Sec. III B, we perform a transformation on the
down-conversion Hamiltonian using the second-order cumu-
lant solution and then apply the time-dependent perturbation
theory using the transformed Hamiltonian. Through this, we
obtain perturbation theory expressions for various impor-
tant quantities that help explain their short-time behavior.
In Sec. III C, we analyze the photon-number statistics. Fol-
lowing this, in Sec. IV, we study the entanglement between
the pump and the rest of the modes using the purity of
the reduced density operator and introduce a witness de-
pendent on fourth-order moments of the quadratures that
can well capture the entanglement dynamics seen using the
purity.

II. EVOLUTION UNDER A MACROSCOPIC PUMP STATE

The interaction picture Hamiltonian describing the down-
conversion process on resonance (ωp = ωs + ωi where ωk is
the frequency of mode k) is given by

H = ih̄χ (apa†
s a†

i − a†
pasai ), (1)

where aμ (a†
μ) is the destruction (creation) operator for mode

μ ∈ {p, s, i} satisfying canonical bosonic commutation rela-
tions and χ is a quantity that is real (cf. Appendix A), with
the units of frequency, describing the coupling between the
modes. Here subscripts p, s, i refer to the pump, signal, and
idler modes, respectively. This Hamiltonian has two con-
served quantities: Np + Ns and Np + Ni where Nμ = a†

μaμ is
the number operator of mode μ. As a consequence of these
conserved quantities, the dynamics of the state is constrained
to a subspace of the full Hilbert space if the initial state is
an eigenstate of Np + Ns and Np + Ni [15]. These conserved
quantities map to the conservation of angular momentum and
excitation number in the case of the Tavis-Cummings model
[23]. In this work, we are interested in an experimentally
relevant initial state given by a coherent state in the pump
mode, vacuum in the signal and idler modes,

|ψ (0)〉 = |α0〉|0〉|0〉 = exp(α0[a†
p − ap])|0〉|0〉|0〉 (2)

=
∞∑

N=0

√
pN |N〉|0〉|0〉 with pN = e−α2

0
α2N

0

N!
, (3)

where the first ket corresponds to the pump mode, the second
to the signal mode, and the third to the idler mode. In the
second line we used the well-known expansion of a coherent
state in the Fock basis and assumed without loss of generality
(cf. Appendix A) that the amplitude of the coherent state
is real, allowing us to write amplitudes directly in terms of

square roots of Poisson distribution probabilities with mean
N̄ = α2

0 . Note that the state in Eq. (2), as well as the Hamil-
tonian in Eq. (1), is invariant under the permutation of signal
and idler modes. Thus, any single-mode quantity pertaining
to the idler mode will have exactly the same value as its
corresponding quantity for the signal mode. The time-evolved
state under the parametric approximation, where the pump
mode is assumed to remain in the initial coherent state, is then
given by [43]

|ψ (t )〉 = er(a†
s a†

i −asai )|α0〉|0〉|0〉 = |α0〉|TMSV(r)〉, (4)

where TMSV refers to two-mode squeezed vacuum,
|TMSV(y)〉 ≡ ∑∞

n=0
tanhn(y)
cosh(y) |nn〉, τ = χt is a reduced time,

which will be used throughout the rest of this paper and
finally r = α0τ is the squeezing parameter, which is the single
parameter that specifies the dynamics of the down-conversion
problem in the parametric approximation. As we will see later,
this single-parameter dependence no longer holds true beyond
the parametric approximation. The average number of signal
photons in this state is given by 〈Ns〉 = sinh2(α0τ ), which
grows exponentially in time. This exponential growth results
from the assumption that the pump state remains undepleted.
Since the state in Eq. (4) accurately describes the system only
for short times, the prediction associated with exponential
growth is only reliable for these initial times as shown by
the dashed line corresponding to parametric approximation in
Fig. 1(a) when the population of the pump mode remains close
to being undepleted. Note that 〈Np〉 = α2

0 − 〈Ns〉 from the
conservation laws, so the nonzero values of 〈Ns〉 correspond
to the pump-depletion region in Fig. 1(a).

The exact evolution of the state |α〉|0〉|0〉 under the
down-conversion Hamiltonian can be better understood by
considering the case where the pump mode is initialized in
a state with N photons, and vacuum in both the signal and
idler modes |ψN (0)〉 = |N〉|0〉|0〉. In this N-photon case, due
to the presence of symmetries in the system, the Hilbert
space explored by the time-evolved state is spanned only
by N + 1 states, which are given by {|N − k〉|k〉|k〉} where
k = {0, 1, 2, . . . , N} [17,18]. Therefore, the state at an arbi-
trary time can be expressed as

|ψN (τ )〉 = e−i H
h̄χ

τ |N〉|0〉|0〉 =
N∑

k=0

ck (τ )|N − k〉|k〉|k〉. (5)

Substituting the above state into the Schrödinger equa-
tion ih̄∂τ |ψN (τ )〉 = H

χ
|ψN (τ )〉, we get

∂τ c(τ ) = Mc(τ ), (6)

where c(τ ) = {c0(τ ), c1(τ ), . . . , cN (τ )} is a real vector with
ck (τ )=〈N − k|〈k|〈k|ψ (τ )〉, and M is an [(N + 1)×(N + 1)]-
dimensional real antisymmetric matrix with nonzero ele-
ments Mν+1,ν = −Mν,ν+1 = (ν + 1)

√
(N − ν) [17,18]. The

expansion coefficients of the state |ψ (τ )〉 are then obtained
by c(τ ) = exp(τM)c(0) where c(0) = (1, 0, 0, . . . , 0)T . It
should be noted that in this specific case, the state is obtained
exactly without resorting to any truncation procedure.
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FIG. 1. Signal-mode population (a), pump-mode momentum variance (b), zero-delay autocorrelation functions for both signal mode (c) and
pump mode (d) are plotted here as a function of time for α2

0 = 100 000 in columns one, two, and three, respectively. In all of these plots, the
data obtained from the numerical simulation are plotted using a thick line while the solution from the cumulant-expansion method is plotted
using different colored dashed lines as shown by the label in (a). Also, different colored vertical dotted lines identify the time at which
various quantities (〈Ns〉, (	Pp )2, g(2)

s , and g(2)
p ) obtained from the nth-order cumulant-expansion method differ from the full simulation of

the down-conversion process (numerical) value by 1% relatively. It can be seen from the above plots that the higher-order approximation of
the cumulant-expansion method describes the system dynamics longer than the lower-order approximations. (a) The second-order cumulant
solution explains the dynamics of the system longer than the parametric approximation. The fifth-order cumulant solution explains the signal-
mode population dynamics up to 37% of α2

0 with 1% relative error, and up to 54% of α2
0 if a relative error of 5% is accepted. Also, note

that 〈Ns〉(τ ) = 〈Ni〉(τ ) = α2
0 − 〈Np〉(τ ). (b) It can be seen from here that the pump-mode becomes squeezed and can be identified only from

the solution of third- and higher-order cumulant-expansion method. (c) As the signal-idler mode state evolves from being a TSMV state
at short times, the g(2)

s of the signal mode changes its value, and this change is identified by the solution of the third- and higher-order
cumulant-expansion method. Note that the second-order g(2)

s is not shown in this plot because it overlaps with the prediction obtained from
the third-order cumulant-expansion method. (d) The value of g(2)

p changes from being one at short times as the pump mode evolves to a state
different from a coherent state, and this change is identified by the solution of the third- and higher-order cumulant-expansion method.

Returning to the case of system being initialized in |ψ〉 =
|α0〉|0〉|0〉, the time-evolved state is given by

|ψ (τ )〉 =
∞∑

N=0

√
pN |ψN (τ )〉 (7a)

=
∞∑

N=0

N∑
k=0

βN−k,k (τ ) |N − k〉|k〉|k〉. (7b)

The above equation shows that, in this case, the state at
an arbitrary time is obtained by superposing the time-evolved
states acquired from the evolution of initial states with a fixed
number of pump photons {|n〉|0〉|0〉} for n = {0, 1, 2, . . . } and
weighting them appropriately using the Poisson distribution.
For our numerical simulations, we limited the range of n from
n1 to n2, which are chosen to satisfy the condition pn > 10−16,
and used Scipy’s [44] expm_multiply function to efficiently
apply the exponential of a sparse matrix on a vector using
the methods from Refs. [45,46]. Because of the conserved
quantities, only one parameter needs to be truncated for nu-
merical approximation as opposed to three for describing the
state’s support in the Fock basis if the knowledge of conserved
quantities was not utilized. Also note that the form of the state
(resulting from conserved quantities) shown in Eq. (7a) leads
many of the moments of the bosonic operators to become zero.
For instance,

〈
Apal

sa
m
i

〉 =
∞∑

n,n′=0

n,n′∑
k,k′=0

β∗
n′−k′,k′ (τ )βn−k,k (τ )

×〈n′ − k′|Ap|n − k〉〈k′|al
s|k〉〈k′|am

i |k〉 (8)

= f (Ap, l ) δl,m, (9)

where Ap is an arbitrary operator involving the pump mode.

Likewise, 〈Ap(a†
s )

l
(a†

i )
m〉 = g(Ap, l ) δl,m and 〈Ap(a†

s )
l
am

i 〉 =
h(Ap) δl,0δm,0. These relations will be used in Sec. IV to show
that the quadrature covariance matrix of the three modes does
not have any cross terms between the pump and the signal or
idler modes.

III. DYNAMICS OF THE SYSTEM

In this section, we present our analysis of the dynamics of
the system with a focus on understanding the pump mode’s
behavior beyond the parametric approximation by resorting
to cumulant expansions, perturbation theory, and the analysis
of photon-number statistics.

A. Cumulant-expansion method

The dynamics of the expectation values of operators
can be obtained using the Heisenberg equations of motion
(∂τ 〈A〉 = i

h̄χ
〈[H, A]〉). The equations of motion associated

with the single-moment variables under the down-conversion
Hamiltonian are given by

∂τ 〈ap〉 = −〈asai〉, (10)

∂τ 〈as〉 = 〈apa†
i 〉, (11)

∂τ 〈a†
i 〉 = 〈a†

pas〉. (12)

The derivatives of the first-order moments couple to second-
order moments, whose differential equations are further
coupled to third-order moments. In general, the derivatives of
nth-order moments are coupled to (n + 1)th-order moments
leading to an infinite number of equations that needs to be
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truncated using some approximation to be solved numerically.
In contrast, for a system that is initialized in a state with a fixed
number of pump photons (Np) and vacuum in the signal and
idler modes, the state at an arbitrary time always has certain
higher-order moments equal to zero (without any approxima-
tion) leading to only Np + 1 differential equations as opposed
to the infinite number of differential equations in the general
case. This is consistent with the number of differential equa-
tions that would have to be solved when using the Schrödinger
equation for such an initial state.

We resort to the cumulant-expansion method [47] that
allows us to systematically neglect higher-order correlations
furnishing a way to truncate the system of differential equa-
tions that would arise for an initial state with the pump mode
in a coherent state, and signal and idler modes in vacuum.
By neglecting higher-order correlations, the memory require-
ments and the time required to solve the dynamics of such a
system can be reduced considerably, at least for lower-order
solutions.

According to this method, all higher-order correlations
above a certain order are ignored by setting the cumulants of
that particular order to zero 〈〈A1A2 . . . An〉〉 = 0. This allows
the nth-order moments to be expressed in terms of lower-
order moments and therefore obtain a closed set of differential
equations. The nth-order cumulant [48] (also called Ursell
[49] functions, truncated correlation functions [50], or cluster
functions [50]) of a product of n operators is defined as

〈〈O1O2 . . . On〉〉 ≡
∑

p∈P(I )

(|p| − 1)!(−1)|p|−1
∏
B∈p

〈∏
i∈B

Oi

〉
,

(13)

where I = {O1, O2, . . . , On}, P(I ) is the set of all parti-
tions of I , |p| is the length of the partition p, B goes
over each block of the partition, and i goes through every
element in the block of partition while maintaining the or-
der of the operators [47,51]. For instance, in the case of
n = 3, we have 〈〈O1O2O3〉〉 = 〈O1O2O3〉 − 〈O1O2〉〈O3〉 −
〈O1〉〈O2O3〉 − 〈O1O3〉〈O2〉 + 2〈O1〉〈O2〉〈O3〉. In the general
case, the |p| = 1 partition in the set P(I ) corresponds to
〈O1O2 . . . On〉, so setting the nth-order cumulant to zero al-
lows us to express the nth-order moment as

〈O1O2 . . . On〉 =
∑

p∈P′(I )

(|p| − 1)!(−1)|p|
∏
B∈p

〈∏
i∈B

Oi

〉
, (14)

where P′(I ) is the set of all partitions excluding the |p| = 1
partition. Hence, in the nth-order cumulant-expansion
method, all the cumulants of order n + 1 are assumed to be
negligible.

1. First-order cumulant expansion

This case is referred to as the mean-field limit because
setting the second-order cumulants to zero is equivalent to
ignoring correlations between operators, 〈AB〉 = 〈A〉〈B〉. Un-
der this truncation scheme, and the assumption that the pump
amplitude α0 is real, we obtain the following equations of

motion:

∂τ 〈ap〉 = −〈as〉〈ai〉, (15)

∂τ 〈as〉 = 〈ai〉〈ap〉, (16)

∂τ 〈ai〉 = 〈as〉〈ap〉. (17)

The fixed points of the above set of differential equations are
those for which at least two of three expectation values of the
destruction operators are zero. The initial state of interest has
both 〈as〉 = 0 and 〈ai〉 = 0, so the variables in equations of
motion do not evolve and the signal-mode population in this
approximation is given by

〈Ns〉(1)(τ ) = 0. (18)

A superscript has been added to the signal-mode population
(〈Ns〉(1)) obtained from the first-order solution to highlight the
difference between this quantity and the signal-mode popula-
tion obtained from the full simulation of the down-conversion
process (〈Ns〉). In the above solution, as expected, the mean-
field equations cannot predict the production of a pair of
photons in the signal and the idler mode from vacuum. An
expression for the pump- and signal-mode population in terms
of Jacobi elliptic functions [52] for arbitrary initial conditions
has been derived in [53] for the classical case.

2. Second-order cumulant expansion

Here we set the third-order cumulants to zero, which is
equivalent to approximating third-order moments as 〈ABC〉 =
〈AB〉〈C〉 + 〈A〉〈BC〉 + 〈AC〉〈B〉 − 2〈A〉〈B〉〈C〉. In this case,
we have 15 equations of motion (13 independent equa-
tions due to conserved quantities), which have been obtained
using the QUANTUMCUMULANTSpackage [51] and are shown
in Appendix B. For our particular initial state of interest,
|ψ (0)〉 = |α0〉|0〉|0〉, the 15 equations of motion reduce to
3 independent equations because other variables are either
uncoupled from the relevant equations of motion, or they
do not evolve in time and remain at zero for all times. The
equations associated with the dynamical variables for real α0

are given by

∂τ 〈ap〉 = −〈asai〉, (19)

∂τ 〈asai〉 = 〈ap〉(1 + 2〈a†
s as〉), (20)

∂τ 〈a†
s as〉 = 2〈ap〉〈asai〉. (21)

As expected, ∂τ 〈a†
i ai〉 = ∂τ 〈a†

s as〉 = −∂τ 〈a†
pap〉, so the equa-

tions of motion associated with ∂τ 〈a†
pap〉 and ∂τ 〈a†

i ai〉 are not
shown. The above set of equations can be solved analytically
(see Appendix B for more details), and the signal-mode pop-
ulation in this approximation is given by

〈Ns〉(2)(τ ) ≡ 〈a†
s as〉 = sinh2 (η(τ )), (22)

η(τ ) = Im
[
am

(
iτα0,−1

/
α2

0

)]
, (23)

where am(z) is the Jacobi amplitude function and Im(z) is the
imaginary part of the complex number z. As in the first-order
solution, a superscript has been added to the signal-mode
population (〈Ns〉(2)) obtained from the second-order solution.
In the above solution, am(iτα0,−1/α2

0 ) is purely imaginary
for the times τ we are interested in analyzing in this work, but
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it has a real part that is a multiple of 2π for longer times. As
shown in Fig. 1(a), the above expression for the signal-mode
population is bounded in time unlike the solution obtained
from the parametric approximation and approximates the
value of 〈Ns〉 for longer times. This can be seen for the case
of α2

0 = 105 in Fig. 1(a) by comparing the location of the
dashed-dotted vertical line with that of the first dotted line. In
this figure, the signal-mode population obtained from differ-
ent orders of the cumulant-expansion method are plotted with
different colored dashed lines, and the corresponding vertical
dotted lines show the value of time until which the colored
dashed lines approximate the numerically obtained signal-
mode population (thick line) with a relative error smaller than
1%. Also, see Ref. [28] for an exact expression for the mean
signal photon number when the pump mode starts in a number
state, and the corresponding approximation for the case when
the pump mode is instead initialized in a coherent state, and
see Ref. [33] for a different expression for the population,
which is accurate at short times and closely follows the ex-
pression given in Eq. (22).

Note that the problem described by the second-order
cumulant expansion is identical to extending the paramet-
ric approximation to the case where the amplitude of the
pump mode is allowed to change in time. That is, the
state of the system is given by |ψ (τ )〉 = |α(τ )〉|χ (τ )〉,
and the equation governing pump-mode amplitude α(τ ) ≡
〈ψ (τ )|ap|ψ (τ )〉 is obtained using the Heisenberg equation of
motion in Eq. (19). In this equation, 〈asai〉 can be expressed
in terms of α(τ ) by solving for |ψ (τ )〉. To achieve this, note
that

|ψ (m	τ 〉 = eη(m	τ )(a†
s a†

i −asai )|α0〉|00〉, (24)

where ap has been replaced by α(τ ) and η(m	τ ) =∑m−1
z=0 	τ αp(z	τ ). In the limit 	τ → 0, we have

|ψ (τ )〉 = |α(τ )〉
∞∑

n=0

tanhn[η(τ )]

cosh[η(τ )]
|nn〉, (25)

where η(τ ) = ∫ τ

0 dτ ′′α(τ ′′). Using the above state, we obtain
the following system of differential equations:

∂τα(τ ) = − sinh[2η(τ )]

2
, (26a)

∂τη(τ ) = α(τ ), (26b)

which are equivalent to the set of equations given by
Eqs. (19)–(21) (cf. Appendix B), and whose solutions for
α(0) = α0 and η(0) = 0 are given by

η(τ ) = Im
[
am

(
iτα0,−1

/
α2

0

)]
, (27a)

α(τ ) = α0 dn
(
iτα0,−1

/
α2

0

)
, (27b)

where am(z) is the Jacobi amplitude function, dn(z) is the
Jacobi delta amplitude function. Since the solution for α2

0 in
the second-order expansion accurately describes the pump-
mode population of the full down-conversion process for short
times, it can be used to compute the pump depletion time. The
time at which the pump-mode population decreases relatively

from α2
0 by δ (i.e., α2

0−α2(τd )
α2

0
= δ) is given by

τd ≈ 1

α0
sinh−1(

√
δα0). (28)

FIG. 2. Depletion times obtained numerically are plotted as
a function of initial mean population α2

0 . The depletion time is
identified as the time when the pump-mode population decreases
relatively from α2

0 by δ. The plots associated with various values
of δ are shown above. The numerical data are well approximated
by 1

α0
sinh−1(

√
δα0 ) (shown by the thick lines) when δ is small. See

Eq. (28) for more details about the analytic expression describing the
pump-depletion time.

For more details on the exact solution and the derivation of
the above solution from it, see Appendix D. As can be seen in
Fig. 2, this expression accurately identifies the pump depletion
time. Moreover, using the second-order solution, we can also
approximately estimate the time at which the population of
the signal mode reaches its first local maximum, equivalently
the time at which 〈ap〉 or 〈a†

pap〉 goes to zero in this approxi-
mation. It is given by (cf. Appendix D)

τmax ≈ 1

α0
ln(4α0). (29)

The time value τmax is shown by the first vertical dotted line
in Fig. 6 (Appendix D) where it can be seen that it identifies
the maximum of sinh2[η(τ )] accurately and provides us with
a reasonable estimate of the time when the signal-mode pop-
ulation reaches local maximum and 〈ap〉 reaches zero in the
full numerically simulated down-conversion process.

We now turn our attention to moments of the quadrature
operators defined as

Xμ = 1√
2

(aμ + a†
μ) and Pμ = 1√

2i
(aμ − a†

μ). (30)

In the second-order cumulant approximation it is easy to
see that the only quadrature with a nonzero expectation is
〈XP〉 = √

2α(τ ) and that the covariance matrix of the quadra-
tures R = (XP, PP, Xs, Ps, Xi, Pi ) generally defined as

Vi, j = 〈RiRj + RjRi〉
2

− 〈Ri〉 〈Rj〉 (31)
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has the form

V (2) = 1

2

(
1 0
0 1

)
⊕

⎛
⎜⎜⎝

c 0 s 0
0 c 0 −s
s 0 c 0
0 −s 0 c

⎞
⎟⎟⎠, (32)

where c = cosh 2η(τ ) and s = sinh 2η(τ ) in the second-order
cumulant approximation. The diagonal elements of the covari-
ance matrix contain the quadrature variances given by

	2
Xμ

= 〈
X 2

μ

〉 − 〈Xμ〉2, 	2
Pμ

= 〈
P2

μ

〉 − 〈Pμ〉2. (33)

While the exact form of the covariance will change when it
is calculated for the exact state (beyond any cumulant expan-
sion), it is easy to verify, using the moment selection rules
described in Eq. (8), that the elements that are zero in the
second-order covariance matrix will remain zero for the exact
solution. In particular, the direct sum structure between pump
and signal idler will hold true, implying that the only possible
entanglement between the pump and the rest of the modes is
of non-Gaussian type. The variance of the pump mode, 	2

Pp
,

under the second-order cumulant approximation is plotted in
Fig. 1(b), and it remains at 1

2 for all times as expected since
the pump mode in a coherent state [see Eq. (25)].

3. Third- and higher-order cumulant expansions

Now we set the fourth-order cumulants to zero and approx-
imate fourth-order moments in terms of third-order moments.
In this case, the dynamics is described by 43 differential
equations, but most of the variables are either uncoupled from
the evolution of 〈a†

s as〉 or do not evolve in time provided they
start at zero, which is the case for our initial state of interest.
The relevant equations of motion are given by

∂τ 〈ap〉 = − 〈asai〉, (34)

∂τ 〈asai〉 =〈ap〉 + 2〈apa†
s as〉, (35)

∂τ 〈a2
p〉 = − 2〈apasai〉, (36)

∂τ 〈a†
s as〉 =2〈apa†

s a†
i 〉, (37)

∂τ 〈apasai〉 = −2〈asai〉2 − 4〈ap〉2〈a†
s as〉 + 〈a2

p〉
+ 4〈ap〉〈apa†

s as〉 + 2〈a2
p〉〈a†

s as〉, (38)

∂τ 〈apa†
s as〉 = −4〈ap〉2〈asai〉 + 〈ap〉〈apasai〉

+ 3〈ap〉〈apa†
s a†

i 〉 − 2〈a†
s as〉〈asai〉

+ 〈a†
pap〉〈asai〉 + 〈a2

p〉〈asai〉, (39)

∂τ 〈apa†
s a†

i 〉 = 〈a†
pap〉 − 〈a†

s as〉2 − 〈asai〉2 + 2〈a†
pap〉〈a†

s as〉
+ 4〈ap〉〈apa†

s as〉 − 4〈ap〉2〈a†
s as〉, (40)

where we have used the fact that all the variables are real
and 〈apa†

s as〉 = 〈apa†
i ai〉. Also, the relationships ∂τ 〈a†

i ai〉 =
∂τ 〈a†

s as〉 = −∂τ 〈a†
pap〉 hold true, so the equations of mo-

tion associated with 〈a†
pap〉 and 〈a†

i ai〉 are not shown. This

also means that 〈a†
s as〉 = 〈a†

i ai〉 = α2
0 − 〈a†

pap〉. The above set
of differential equations become unstable for longer times,

where the number of signal and idler photons predicted by
these differential equations become negative and thus unphys-
ical. However, the solution to this system of equations for
shorter times can still be used to obtain a better description
of the system compared to lower-order solution and study
important features of the system while avoiding the complex-
ity associated with the straightforward numerical simulation
of the full system. For instance, in Fig. 1(a), we can see
that the third-order cumulant solution explains the signal-
mode population with less than 1% relative error until the
pump mode becomes depleted by 15% while the fourth- and
the fifth-order cumulant solutions explain it until the time
the pump gets depleted by 28% and 37%, respectively. The
dynamics can be approximated even longer if the required
precision for the signal-mode population obtained from the
cumulant-expansion method is lowered.

Using these higher-order expansions we can obtain the
variance in the momentum of the pump mode as shown in
Fig. 1(b) in a manner similar to 1(a), where the values ob-
tained from the different order cumulant-expansion methods
are plotted with different colored dashed lines. As in Fig. 1(a),
the vertical dotted lines of different colors show how long
each of the colored dashed lines can approximate the value
obtained from the numerical simulation of the system with
less than 1% relative error. As seen from this figure, the third-
order cumulant-expansion method identifies squeezing in the
pump mode, and approximates the numerical curve (black
curve) up to τ = 0.0176 (15% pump depletion) with 1%
relative error. Also, the fourth- and the fifth-order solutions
approximate pump-mode squeezing until τ = 0.0189 (28%
pump depletion) and τ = 0.0196 (38% pump depletion), re-
spectively. Finally, see Figs. 1(c) and 1(d) for a comparison
of the zero-delay second-order correlation functions obtained
from the numerical simulation with the values obtained from
the cumulant-expansion method. From Figs. 1(a)–1(d), it can
be clearly seen that the nth-order cumulant expansion explains
the dynamics of the system longer than the (n − 1)th-order
cumulant expansion, as expected. However, as the order of
the approximation is increased, the information that is gained
from seeking the next-order solution decreases. That is, the
length of the time interval over which the nth-order solu-
tion accurately describes the system compared to the (n −
1)st-order dynamics decreases as n is increased. Therefore,
this method provides its biggest advantage over the full nu-
merical simulation of the Hamiltonian for short times. For
instance, as seen in this section, all the pump-mode prop-
erties (〈Np〉, 	2

XP
, and g(2)

p ) until the time pump is depleted
by 15% can be explained by the solution from the third-
order cumulant-expansion method, which is described by only
seven equations. This solution can be used to obtain important
information about various properties of the system (such as
the time when the pump mode becomes squeezed, or the time
when g(2)

p deviates from one) without having to simulate the
full down-conversion dynamics for α2

0 = 105.

B. Perturbation theory

In this section, we perform a transformation on the
Hamiltonian in Eq. (1) that allows us to further understand
the behavior of various quantities analyzed in the previous
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subsection. We do this by isolating the non-Gaussian dynam-
ics of the system [54,55]. To achieve this, we substitute the
ansatz

|ψ (τ )〉 = D(α(τ ))S(η(τ ))|φ(τ )〉 (41)

into the Schrödinger equation where D(α(τ )) =
exp[α(τ )(a†

p − ap)], S(η(τ )) = exp[η(τ )(a†
s a†

i − asai )],
and solve for the dynamics of |φ(τ )〉. Here α(τ ) and η(τ )
have initial conditions α(0) = α0 and η(0) = 0, and satisfy
Eqs. (26) and (27). As a result, |φ(τ )〉 evolves under the
effective Hamiltonian

H̃eff(τ )

ih̄
≡ Heff

ih̄χ
= sinh2[η(τ )](apasai − a†

pa†
s a†

i )

+ cosh2[η(τ )](apa†
s a†

i − a†
pasai )

+ sinh[2η(τ )]

2
(ap − a†

p)(a†
s as + a†

i ai ),

(42)

with initial state |φ(0)〉 = |0〉|0〉|0〉. In order to gain insight
into the short-time dynamics of the system, we apply time-
dependent perturbation theory and obtain expressions (cf.
Appendix C) for quantities analyzed in the previous sub-
section. The pump-mode population at short times can be
described as

〈ψ (τ )|Ns|ψ (τ )〉 − sinh2[η(τ )]

= −7α4
0

45
τ 6 −

(
48α6

0 − 77α4
0

)
630

τ 8 + O(τ 9), (43)

where we neglected terms of ninth order and above in τ .
It is interesting to note from the above expression that the
second-order cumulant expansion correctly accounts for the
signal-mode population up to fifth order in time and it over-
estimates the value of the signal-mode population beyond
that time, which is the time identified by the first vertical
dotted line in Fig. 1(a). This is consistent with the fact that
sinh2[η(τ )] reaches α2

0 , while 〈Ns〉 has a local maximum at
about 78% of α2

0 in the case of α2
0 = 105. Also, we confirm

the accuracy of the equation in Figs. 5(a)–5(d), where the
sixth-order expression is compared with 〈Ns〉 − sinh2(η(τ )),
where 〈Ns〉 is obtained from the full numerical simulation of
the down-conversion process for small times. The perturba-
tion theory expression for the variance in the momentum of
the pump mode is given by

	2
Pp

= 1

2
− 1

6
α2

0τ
4 +

(
α2

0

18
− α4

0

45

)
τ 6

+
(−4α6

0 + 144α4
0 − 19α2

0

)
2520

τ 8 + O(τ 9). (44)

Note that 1
2 variance is expected at the second-order cumu-

lant expansion since the pump-mode state predicted in this
approximation is a coherent state, and the value of the variance
in the pump-mode momentum deviates from the second-order
cumulant expansion value at fourth order in time. We compare
the fourth-order term with the numerical values of 	2

Pp
− 1

2
obtained from the full simulation of the down-conversion
process in Figs. 5(e)–5(h), and the numerical data behave in
a manner predicted by the above expression for short times.

Also, since the variance remains at 1
2 for short times, this

quantity has a threshold behavior, so it has a value close to
1
2 before a certain time τsqz, and then it decreases relatively
quickly beyond this time [see Figs. 1(b) and 6(e)–6(h)]. The
squeezing threshold time τsqz has been plotted as a function
of α2

0 in Fig. 8(a) (Appendix D), where it can be seen that
τsqz ∝ α−0.653

0 . Here we define τsqz as the time at which the
pump variance decreases relatively by 1% from 1

2 . In Fig. 8(a),
we also compare the threshold time obtained numerically
with the estimates obtained using the sixth- and eighth-order
expressions from Eq. (44) (cf. Appendix D). As shown in this
figure, both the sixth- and the eighth-order expressions explain
the behavior of threshold time reasonably well. Moreover, an
analytic estimate obtained using the sixth-order expression
in τ shows that τsqz ∝ α

−2/3
0 for α0 � 1, and this scaling

behavior is close to the one observed using the numerical data.
The perturbation theory expressions for g(2)

p and g(2)
s are given

by

g(2)
p = 1 + 1

3
τ 4 + 2

45

(
11α2

0 + 5
)
τ 6

+ 1

630

(
114α4

0 − 128α2
0 + 97

)
τ 8 + O(τ 9), (45a)

g(2)
s = 2 − 2

3
τ 2 + 1

810

(
45 − 432α2

0

)
τ 4

+
(
198α4

0 − 459α2
0 + 69

)
405

τ 6

+
(−888α6

0 + 1935α4
0 − 2838α2

0 + 415
)

4050
τ 8 + O(τ 9).

(45b)

The lowest-order corrections to g(2)
p and g(2)

s in time are at
fourth and second order, respectively. Similar to the case of
pump-mode squeezing, these g(2) functions also show thresh-
old behavior [see Figs. 1(c) and 1(d)], and the threshold time
has been plotted as a function of α2

0 in Figs. 8(c) and 8(d). As
seen in this figure, the threshold times for g(2)

p and g(2)
s scale as

τp ∝ α−0.633
0 and τs ∝ α−0.713

0 , respectively. The eighth-order
expressions shown in Eqs. (45a) and (45b) cannot accu-
rately predict this threshold time, particularly g(2)

p as shown
in Fig. 8(c). This results from the fact that the g(2)

p changes
from one at longer times, so the threshold time is longer
compared to other threshold times (see Fig. 1). Higher-order
corrections need to be obtained for a more accurate estimate,
but a rough estimate of these times could be still obtained from
the eighth-order expressions. Also see Ref. [27] for perturba-
tion theory expressions derived by taking the pump depletion
into account but with the interaction term as the perturbation
parameter, and see Ref. [33] for the state obtained through
Baker–Campbell–Hausdorff formula up to second order in
time.

C. Photon-number statistics

In this subsection, we study the marginal pump-mode and
signal- and idler-mode photon-number statistics in the Fock
basis to obtain a general understanding of the behavior of
the state. Using the state of the system given in Eq. (7a), the
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FIG. 3. The photon-number statistics of the pump mode 〈n|ρp|n〉 and the signal mode 〈n|ρs|n〉 are shown here for τ = 0.01, 0.018, 0.0195,
and 0.0231 in each column for α2

0 = 105. (a), (b) For short times, the pump-mode remains in a coherent state and the signal and idler modes
evolve into a two-mode squeezed vacuum state. Note that the photon-number statistics of the signal mode are plotted on a semilogarithm scale.
(c), (d) As the time progresses, the marginal state of the pump mode becomes skewed towards the n = 0 Fock state while the marginal state of
the signal mode starts to develop support over larger number Fock states. The time at which the statistics of the pump mode starts to become
skewed is also the time at which the pump mode first becomes squeezed. (e), (f) When the pump-mode marginal state develops support over
the Fock states in the vicinity of n = 0 state, the photon-number statistics of the odd and the even numbered Fock states develop two different
distributions. The distribution associated with the odd and even states are shown here by the thick and dashed curves, respectively. On the
other hand, note that the photon-number statistics of the signal mode becomes flatter for larger times. (g), (h) This instant corresponds to the
time when the signal (pump-)mode population shown in Fig. 1 reaches local maxima (minima). At this point, the photon statistics of the pump
mode has a large support on even states with a small support on the odd states, as can be seen in the figure above. The signal mode, on the
other hand, develops a peak around α2

0 = 105 at this instant.

density operators corresponding to the pump and signal modes
after tracing out the other modes can be expressed as

ρp =
∞∑

n,n′=0

n∑
k=0

βn−k,kβ
∗
n′−k,k |n − k〉〈n′ − k|, (46)

ρs =
∞∑

n=0

n∑
k=0

|βn−k,k|2 |k〉〈k|. (47)

At the initial time, 〈n|ρp|n〉 is a Poisson distribution since
the pump mode is in a coherent state. For short times, the
pump-mode statistics continues to remain Poissonian with
a mean shifting towards n = 0 [Fig. 3(a)], while the signal
and idler modes evolve into a TMSV, as expected from the
second-order cumulant solution. The thermal state statistics
of the signal mode can be noticed in Fig. 3(b) where the dis-
tribution associated with the photon-number statistics traces
out a straight line with negative slope when plotted on a
semilogarithm scale. For longer times, the statistics of the
pump mode start to become skewed towards n = 0 as shown
in Fig. 3(c), suggesting the role of third-order correlations.
The signal mode on the other hand starts to develop support
over the Fock states with larger number of photons [Fig. 3(d)].
As time progresses, when the pump-mode photon-number
statistics start to develop support on the Fock states in the
vicinity of n = 0, the statistics corresponding to odd and even
terms develop two different distributions as seen in Fig. 3(e).
The distribution associated with the statistics in the even Fock
states is shown by a dashed curve whereas the distribution
associated with the odd Fock states is shown by a thick
curve. Also, the distribution associated with the signal-mode
statistics at this point becomes flatter [Fig. 3(f)] suggesting
a low degree of purity in the marginal signal state. As time

increases further, the support on odd (even) Fock states de-
creases (increases) with time until τ = 0.0231, which is the
instant where the signal-mode (pump-mode) population has
a local maxima (minima) [see Fig. 1(a)]. At this instant, the
marginal pump-mode state [Fig. 3(g)] has a very small support
on odd Fock states. Note that this is also the time when 〈ap〉
has a value close to zero and the variance of momentum in the
pump-mode becomes minimum (note the location of the black
dotted line in Fig. 6). A rough time estimate of this point as a
function of α0 is given by Eq. (29). For the study of long-time
dynamics beyond this point, see Appendix E

IV. ENTANGLEMENT BETWEEN MODES

In this section, we are mainly interested in characteriz-
ing the entanglement of the pump mode with the rest of
the system and comparing it with that of signal- and idler-
mode entanglement. As schematically shown in Figs. 4(a) and
4(b), it should be emphasized that we are focused here on
identifying the bipartite entanglement between the two parts
of the system, unlike the trimodal problem considered here.
The entanglement of the pump mode for small α2

0 � 9 has
been studied using the mutual information in the context of
Hawking radiation [33], but an analysis identifying a witness
for the detection of this entanglement or the timescale of
its origin particularly for larger system sizes (α2

0) has not
been given to the best of our knowledge. Here, we aim to
analyze the behavior of pump-mode entanglement and seek
a witness that can be expressed in terms of moments of the
system. We have seen that the signal and idler modes become
entangled even in the parametric approximation where these
modes evolve into a two-mode squeezed vacuum state. The
purities of the above density operators ρp in Eq. (46) and ρs
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Pump

Signal Idler

Pump

Signal Idler

(a)

(b)

(d)

(e)

(c)

FIG. 4. (a), (b) The bipartite entanglement between pump mode or signal mode and the remaining part of the system is of interest to us
in this work, and both the cases are schematically shown here. (c) The purities of the pump and the signal mode obtained after tracing out
remaining modes are shown here for α2

0 = 105. The signal-mode purity is compared with the purity obtained from the parametric approximation
(dashed line) and the second-order cumulant-expansion method (dashed-dotted line). (d) Two entanglement witnesses for the pump-mode
corresponding to the fourth- and sixth-order moments are shown here for α2

0 = 105. As can be seen, the sixth-order witness captures the finer
details of pump purity as opposed to the fourth-order witness. Note that the rescaling of the witness does not affect where the witness is
positive or negative, which is the essential feature in identifying the entanglement of the state. A separable state has w4 and w6 positive, so the
negativity of these quantities implies that the state is entangled.

in Eq. (47), given by Tr(ρ2
p ) and Tr(ρ2

s ), are both shown in
Fig. 4(c). As seen here, the purity associated with the pump
mode deviates from one as a function of time indicating that it
becomes entangled with the remaining system. Note that for
small times the purity of the pump mode is one, as this region
corresponds to the time when the parametric approximation
and the second-order cumulant solution accurately describes
the system, and the pump mode remains unentangled. Even
though the pump mode becomes depleted in the second-order
solution, it remains unentangled with other modes indicating
that pump depletion is not equivalent to pump-mode entangle-
ment in this system. Using perturbation theory, we also show
that the purity of the pump mode is given by

γ (τ ) = 1 − 2α4
0

9
τ 6 +

(
2α4

0

9
− 4α6

0

45

)
τ 8 + O(τ 9), (48)

which shows that the purity at short times deviates from one
as τ 6, and we also confirm this numerically in Figs. 5(i)–5(l)
(cf. Appendix C). Similar to other quantities, the purity of
the pump mode also shows threshold behavior as shown in
Fig. 4(c), where it is one for times smaller than τent and
deviates from one relatively rapidly for τ > τent. Based on
numerical data, we find that the time required for pump-mode
purity to decrease from one relatively by 1% of its possi-
ble range, 1/(n2 + 1) � γ (t ) � 1 scales as τent ∝ α−0.768

0 as
shown in Fig. 8(b) (Appendix D). As shown in the figure, the
eighth-order perturbation theory expression accurately identi-
fies this threshold time. Moreover, we also obtain an analytic
expression for threshold time as a function of α0 using this
expression: τent ∝ α

−3/4
0 for α0 � 1 (cf. Appendix D), and

this agrees with the behavior of the numerical data. On the
other hand, the purity of the thermal state, which is obtained
after tracing out idler mode from the TMSV in Eq. (4), is given
by

γ (t ) = sech[2r(τ )], (49)

where r(τ ) = α0τ . This expression, as shown by the dashed
line in Fig. 4(c), agrees with the value of the signal-mode
purity obtained numerically at short times. However, the
quantity in Eq. (49) is unbounded with r(τ ) = α0τ , as it is
obtained from the parametric approximation. The purity ob-
tained from the second-order cumulant-expansion method is
also given by Eq. (49) with r(τ ) = η(τ ) where η(τ ) is defined
in terms of Jacobi amplitude function [Eq. (27a)]. This ex-
pression is bounded and better approximates the signal purity
as shown by the dashed-dotted line in Fig. 4(c). Moreover,
the numerical value of the signal-mode purity reaches close
to the minimum that can be observed in the system given by
1/(n2 + 1), where n2 is the upper cutoff used for numerical
simulations as defined in Sec. II.

As mentioned before, the state of the system in the second-
order cumulant-expansion method is Gaussian at all times
because the third-order cumulants are set to zero in this case.
A sufficient condition for a Gaussian state to be separable
is that its associated covariance matrix can be written as a
direct sum of pump and signal idler modes, σ = σp ⊕ σs,i

[56]. The off-diagonal block elements between the pump and
signal modes are given by

〈ApAs〉 =
∞∑

n,n′=0

n∑
k=0

β∗
n′−k,k (τ )βn−k,k (τ )

× 〈n′ − k|Ap|n − k〉〈k|As|k〉, (50)

where Ap and As are local operators acting only on the
pump and signal mode, respectively. The expectation value
〈k|As|k〉s is zero if As = Xs or As = Ps. Hence, 〈XpXs〉 =
〈PpXs〉 = 〈XpPs〉 = 〈PpPs〉 = 0. Likewise, for the idler mode,
it can be shown that 〈XpXi〉 = 〈PpXi〉 = 〈XpPi〉 = 〈PpPi〉 = 0.
Therefore, the covariance matrix for all times (without any
approximation) is of the form σ = σp ⊕ σs,i. This further cor-
roborates the fact that the pump mode is not entangled with the
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FIG. 5. The numerical data obtained from the full simulation (crosses) are compared with the corresponding analytic predictions from
perturbation theory (dots) for various quantities. Data corresponding to α2

0 = {102, 103, 104, 105} are plotted in four columns for different
quantities in each row. [(a)–(d)] These plots confirm the τ 6 correction to the signal-mode population given in Eq. (C10) (note that 〈Ns〉(2) −
〈Ns〉 = 〈Np〉 − 〈Np〉(2)). [(e)–(h)] The overlap of the numerical data with the analytic prediction validates the predicted τ 4 growth in squeezing
in Eq. (C13). [(i)–(l)] These plots substantiate the claim in Eq. (C18) that impurity grows as τ 6 for short times. [(m)–(p)] These plots confirm the
prediction in (C15). Note that the eighth-order expression in (C15) is compared with the numerical data here since the lower-order corrections
of perturbation theory are too small in this case, especially for the times relevant to the α2

0 = 105 case. [(q)–(t)] These plots corroborate the τ 2

correction predicted by Eq. (C16).
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other modes for short times, where the second-order cumulant
expansion is accurate.

The block-diagonal form of σ suggests the need for higher-
order witnesses for probing the pump-mode entanglement. In
fact, the form of effective Hamiltonian in Eq. (42) provides
us with a hint of the type of witness that could be helpful. In
particular, the first term in the above effective Hamiltonian
is identical to the Hamiltonian described in [57] where a
witness is prescribed for identifying tripartite entanglement.
The witness is given by

|〈apasai〉φ(τ )| �
√〈Np〉φ(τ )〈NsNi〉φ(τ ), (51)

where we emphasize that expectation values should be taken
with respect to the state

|φ(τ )〉 = D( − α(τ ))S( − η(τ )) |ψ (τ )〉 (52)

≈ |0〉 |0〉 |0〉 − α2
0τ

3

3
|1〉 |1〉 |1〉 . (53)

Our analysis shows that this witness also detects entanglement
of the pump mode for the system described here, but it only
identifies entanglement for a small-time interval and is not a
reliable witness for larger system sizes. This suggests that a
witness involving fourth-order moments is likely required to
probe this entanglement. Also note that since the operations
performed on the down-conversion Hamiltonian to obtain the
effective Hamiltonian are local unitaries with respect to pump-
and signal-idler subsystems, they do not alter the entangle-
ment between the pump- and the signal-idler modes.

Higher-order witness

In this subsection, we identify witnesses involving fourth
order and sixth order moments that detect the pump-mode
entanglement through inequalities provided by the positive
partial transpose (PPT) criterion [58]. The problem of iden-
tifying entanglement through the PPT criterion is typically
addressed by checking if the state of the system violates an
inequality that is satisfied by all separable states: a violation
of this type of inequality for a particular state successfully
provides a witness that detects entanglement. According to
Shchukin and Vogel [58], any separable state in mode a and
mode b has all the principal minors of the following matrix
non-negative:

Mj,k = 〈(a†)k2 ak1 (a†) j1 a j2 (b†) j4 bj3 (b†)k3 bk4〉, (54)

where j ≡ { j1, j2, j3, j4} and k ≡ {k1, k2, k3, k4} correspond
to jth and kth indices in some ordered sequence as described
in [58].

In our case, we identify mode a with the pump mode (a ≡
ap) and mode b with a linear combination of signal and idler
(b ≡ as cos θ + ai sin θ ). Upon inspection, we were able to
find that the principal minors involving fourth-order moments
can detect entanglement, but only for a short window of time.
For instance, a witness for θ = π/4 is given by

w4 =

∣∣∣∣∣∣∣
〈a†

papb†b〉 〈(a†
p)2b†b〉 〈(a†

p)2b2〉〈
a2

pb†b
〉 〈apa†

pb†b〉 〈apa†
pb2〉〈

a2
p(b†)2

〉 〈apa†
p(b†)2〉 〈apa†

pbb†〉

∣∣∣∣∣∣∣, (55)

and the full form of the witness in terms of as and ai is shown
in Appendix E for conciseness. This witness is plotted in
Fig. 4(d) for α2

0 = 105 where it can be seen that the entan-
glement is detected only for a small time window, and the
witness does not capture the finer details associated with the
behavior of the purity. Note that the above witness rescaled
by α4

0 has been plotted in Fig. 4(d), but this rescaling does
not alter the positivity or negativity of the witness, which
is the crucial factor for probing entanglement. Upon further
analysis, we were also able to identify a sixth-order witness
that captures the behavior of entanglement as characterized
by the pump-mode purity. The witness is given by

w6 =

∣∣∣∣∣∣∣
1 〈ap(b†)2〉 〈a†

pb2〉
〈a†

pb2〉 〈a†
pap(b†)2b2〉 〈(a†

p)2b4〉
〈ap(b†)2〉 〈a2

p(b†)4〉 〈apa†
pb2(b†)2〉

∣∣∣∣∣∣∣, (56)

where θ is chosen to be π/4. The complete form of this
expression is shown in Appendix E. The rescaled witness is
plotted as a function of time in Fig. 4(e) for α2

0 = 105. As can
be seen there, the witness starts to become negative around
the time where the entanglement becomes nonzero, and the
oscillations in purity correspond well with the witness.

V. SUMMARY AND OUTLOOK

We studied the dynamics of the down-conversion pro-
cess through the cumulant-expansion method, perturbation
theory, and photon-number statistics with a focus on the
pump-mode features such as its depletion time, squeezing,
and entanglement with the rest of the system. Through the
cumulant-expansion method, we obtained an analytic solution
for the state of the system that explains the system’s behav-
ior for short times. This solution provides an expression for
pump-depletion time, and also shows that the pump depletion
is not equivalent to pump-mode entanglement. Moreover, we
show that the third-order cumulant-expansion method (de-
scribed by seven coupled differential equations) allows us to
numerically study features such as the time when the pump-
mode squeezing originates in the system and the time when
the pump-mode autocorrelation function deviates from the
values expected from the parametric approximation. More-
over, we performed a transformation of the Hamiltonian and
used perturbation theory to study the behavior of the sys-
tem analytically beyond the second-order cumulant-expansion
method. Through this, we obtained expressions for the time
when the pump-mode squeezing and its entanglement with
the rest of the system originates in the system. Then, we stud-
ied the photon-number statistics of the pump and the signal
modes to obtain a general understanding of the behavior of the
modes. Finally, we provide an entanglement witness based on
the PPT criterion using sixth-order moments that can detect
the entanglement of the pump mode.

While we leave the study of the properties of the sys-
tem in the presence of experimental imperfections for future
work, we make some general comments about the effects
of imperfections on three pump-mode properties studied in
this work: depletion, squeezing, and entanglement. First, it
should be noted that PDC experiments are typically performed
within wavelengths away from resonances and thus where the
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material is transparent and absorption can be neglected [59].
However, scattering losses, mode mismatch, and detector in-
efficiencies can lead to loss. Despite these losses, the process
of pump depletion can still be observed in experiments by
calibrating the losses as was done in [40]. Furthermore, the
variance of a particular quadrature of a mode in the presence
of losses is given by Vmeas = ηVide + (1 − η)Vvac where Vide,
Vmes, and η are the ideal variance, measured variance, and the
energy transmission coefficient, respectively. From this equa-
tion, it can be seen that (Vmeas/Vvac) < 1 if (Vide/Vvac) < 1,
thus loss will reduce the amount of measurable noise reduc-
tion (squeezing) but will not destroy it. Finally, entanglement
being the ultimate quantum correlation is of course the quan-
tity of interest that will be most sensitive to decoherence.
The measurement of this quantity will require a more detailed
analysis incorporating the particular details of a given experi-
mental setup.

The code that has been used to produce results in this paper
is available in [60].
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APPENDIX A: GAUGE FREEDOM

In this Appendix, we show that the coupling between the
modes (χeiθ ) and α0 can be assumed to be real without any
loss of generality. The Hamiltonian in the general case is given
by

H = ih̄χ (eiθapa†
s a†

i − e−iθ a†
pasai ), (A1)

where we assume that the coupling constant (χeiθ ) can be
complex. The state of interest in this work is given by

|ψθ,α0 (τ )〉 = e−i H
h̄χ

τ |α0〉|0〉|0〉
= eτ (eiθ apa†

s a†
i −e−iθ a†

pasai )e(α0a†
p−α∗

0 ap)|0〉|0〉|0〉 (A2)

≡ U (τ, θ, |α0|eiφ0 )|0〉|0〉|0〉, (A3)

where α0 = |α0|eiφ0 and τ = χt . Now, we have

|ψθ,α0 (τ )〉
= U1(θ, φ0)

(
U †

1 (θ, φ0)eτ (eiθ apa†
s a†

i −e−iθ a†
pasai )U1(θ, φ0)

)
× e−i(θ+φ0 )a†

s as
(
e−iφ0a†

pape|α0|(eiφ0 a†
p−e−iφ0 ap)eiφ0a†

pap
)

× e−iφ0a†
pap |0〉|0〉|0〉, (A4)

where U1(θ, φ0) = eiφ0a†
papei(θ+φ0 )a†

s as . Now, using the fact that
e−iφμa†

μaμaμeiφμa†
μaμ = aμeiφμ and e−i(φ0a†

pap+(φ0+θ )a†
s as )|0〉|0〉|0〉

= |0〉|0〉|0〉, we have

|ψθ,α0 (t )〉 = U1(θ, φ0)eτ (apa†
s a†

i −a†
pasai )e|α0|(a†

p−ap)|0〉|0〉|0〉
(A5)

= U1(θ, φ0)U (τ, 0, |α0|)|0〉|0〉|0〉 (A6)

= ei(φ0a†
pap+(φ0+θ )a†

s as )|ψ0,|α0|(τ )〉. (A7)

The above derivation shows that the state obtained using
complex coupling coefficient and complex α0 is same as the
state obtained using the absolute values (χ, |α0|) of the as-
sociated coupling constant and α0 but with an extra factor
ei(φ0a†

pap+(φ0+θ )a†
s as ) added. The effect of this factor on a general

expectation value is given by〈
(a†

p)cad
p(a†

s )ea f
s (a†

i )gah
i

〉
θ,α0

= 〈ψθ,α0 (τ )|(a†
p)cad

p(a†
s )ea f

s (a†
i )gah

i |ψθ,α0 (τ )〉 (A8)

= 〈ψ|α0|(τ )
∣∣U †

1 (θ, φ0)
(
(a†

p)cad
p(a†

s )ea f
s (a†

i )gah
i

)
U1(θ, φ0)

∣∣
×ψ|α0|(τ )〉 (A9)

= eiφ0(d−c)ei(θ+φ0 )( f −e)〈ψ|α0|(τ )
∣∣(a†

p)cad
p(a†

s )ea f
s (a†

i )gah
i

∣∣
×ψ|α0|(τ )〉 (A10)

= eiφ0(d−c)ei(θ+φ0 )( f −e)
〈
(a†

p)cad
p(a†

s )ea f
s (a†

i )gah
i

〉
|α0|. (A11)

The effect of complex coupling constant and α0 for an expec-
tation value is just an extra phase factor eiφ0(d−c)ei(θ+φ0 )( f −e)

added to the expectation value obtained from the state that
is evolved with the absolute value of the coupling constant
in the Hamiltonian and initialized in the state with α0 = |α0|.
Note that the same phase factor would result even if we have
antinormal ordering of the operators. If the operator over
which the expectation value is needed has equal powers of
raising and lowering operators, the phase disappears.

APPENDIX B: GAUSSIAN LIMIT

In this Appendix, we explicitly show all the equations of
motion that result from the second-order cumulant-expansion
method and obtain an analytic solution for these differential
equations for the initial state of interest. The equations are

∂τ 〈ap〉 = −〈asai〉, (B1)

∂τ 〈as〉 = 〈apa†
i 〉, (B2)

∂τ 〈ai〉 = 〈apa†
s 〉, (B3)

∂τ 〈asai〉 = 〈ap〉 + 〈ap〉〈a†
i ai〉 + 〈ai〉〈apa†

i 〉 + 〈as〉〈apa†
s 〉

+ 〈ap〉〈a†
s as〉 − 2〈ai〉〈ap〉〈a†

i 〉 + 〈apai〉〈a†
i 〉

− 2〈ap〉〈as〉〈a†
s 〉 + 〈apas〉〈a†

s 〉, (B4)

∂τ 〈a†
i ai〉 = 〈as〉〈a†

pai〉 + 〈ai〉〈a†
pas〉 + 〈ap〉〈a†

s a†
i 〉

+ 〈apa†
s 〉〈a†

i 〉 − 2〈ai〉〈as〉〈a†
p〉 + 〈asai〉〈a†

p〉
+ 〈apa†

i 〉〈a†
s 〉 − 2〈ap〉〈a†

i 〉〈a†
s 〉, (B5)
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∂τ 〈a†
s as〉 = 〈as〉〈a†

pai〉 + 〈ai〉〈a†
pas〉 + 〈ap〉〈a†

s a†
i 〉

+ 〈apa†
s 〉〈a†

i 〉 − 2〈ai〉〈as〉〈a†
p〉 + 〈asai〉〈a†

p〉
+ 〈apa†

i 〉〈a†
s 〉 − 2〈ap〉〈a†

i 〉〈a†
s 〉, (B6)

∂τ 〈a†
pap〉 = −〈as〉〈a†

pai〉 − 〈ai〉〈a†
pas〉 − 〈ap〉〈a†

s a†
i 〉

− 〈apa†
s 〉〈a†

i 〉 + 2〈ai〉〈as〉〈a†
p〉 − 〈asai〉〈a†

p〉
− 〈apa†

i 〉〈a†
s 〉 + 2〈ap〉〈a†

i 〉〈a†
s 〉, (B7)

∂τ

〈
a2

p

〉 = 4〈ai〉〈ap〉〈as〉 − 2〈as〉〈apai〉 − 2〈ap〉〈asai〉
− 2〈ai〉〈apas〉, (B8)

∂τ 〈apa†
i 〉 = 〈as〉(〈a†

pap〉 − 〈a†
i ai〉 − 2|〈ap〉|2) − 〈ai〉(〈asa

†
i 〉

− 2〈as〉〈a†
i 〉) − 〈asai〉〈a†

i 〉 + 〈ap〉〈a†
pas〉

+ 〈apas〉〈a†
p〉, (B9)

∂τ 〈apa†
s 〉 = 〈ai〉

(〈a†
pap〉 − 〈a†

s as〉 + 2|〈as〉|2
)

− 2|〈ap〉|2〈ai〉 − 〈a†
s 〉〈asai〉 − 〈as〉〈a†

s ai〉
+ 〈ap〉〈a†

pai〉 + 〈apai〉〈a†
p〉, (B10)

∂τ 〈apai〉 = 〈as〉
(
2〈ai〉2 − 〈

a2
i

〉) + 〈a†
s 〉

(〈
a2

p

〉 − 2〈ap〉2〈a†
s 〉

)
− 2〈ai〉〈asai〉 + 2〈ap〉〈apa†

s 〉, (B11)

∂τ 〈apas〉 = 〈ai〉
(
2〈as〉2 − 〈

a2
s

〉) − 2〈as〉〈asai〉
+ 〈a†

i 〉
(〈

a2
p

〉 − 2〈ap〉2) + 2〈ap〉〈apa†
i 〉, (B12)

∂τ 〈asa
†
i 〉 = 2〈as〉(〈a†

pas〉 − 〈as〉〈a†
p〉) + 2〈a†

i 〉(〈apa†
i 〉

− 〈ap〉〈a†
i 〉) + 〈ap〉〈(a†

i )2〉 + 〈
a2

s

〉〈a†
p〉, (B13)

∂τ 〈a2
i 〉 = 2〈ai〉〈apa†

s 〉 + 2〈a†
s 〉

(〈apai〉
− 2〈ai〉〈ap〉

) + 2〈ap〉〈a†
s ai〉, (B14)

∂τ

〈
a2

s

〉 = 2〈as〉〈apa†
i 〉 + 2〈a†

i 〉
(〈apas〉

− 2〈ap〉〈as〉
) + 2〈ap〉〈asa

†
i 〉. (B15)

There are 15 equations in total. As we can see from above
(consequence of symmetries), ∂τ 〈Ns〉 = ∂τ 〈Ni〉 = −∂τ 〈Np〉,
which implies 〈a†

i ai〉(τ ) = 〈a†
s as〉(τ ) for all times and

〈a†
pap〉(τ ) = α2

0 − 〈a†
s as〉(τ ). This reduces the number of in-

dependent variables to 13. Note that for the particular initial
state of interest |ψ (0)〉 = |α0〉|0〉|0〉, Eqs. (B2), (B3), and
(B9)–(B15) do not evolve and they all remain at their initial
values, so all these variables are zero in this case. Hence, the
equations of motion reduce to four, which are given by

∂τ 〈ap〉 = −〈asai〉, (B16)

∂τ 〈asai〉 = 〈ap〉(1 + 2〈a†
s as〉), (B17)

∂τ 〈a†
s as〉 = 〈ap〉〈a†

s a†
i 〉 + 〈asai〉〈a†

p〉, (B18)

∂τ

〈
a2

p

〉 = −2〈ap〉〈asai〉. (B19)

Note that ∂τ 〈a2
p〉 = ∂τ 〈ap〉2, which allows us to eliminate one

of the equations. Furthermore, all the variables are real, so we
can further eliminate another differential equation by solving
Eqs. (B17) and (B18) leading to

2〈a†
s as〉 = −1 +

√
1 + 4〈asai〉2. (B20)

As a result, we have two independent differential equa-
tions that need to be solved:

∂τ 〈ap〉 = −〈asai〉, (B21)

∂τ 〈asai〉 = 〈ap〉
√

1 + 4〈asai〉2. (B22)

Defining 〈asai〉 ≡ 1
2 sinh[2η(τ )], we have

∂τ 〈ap〉 = − 1
2 sinh[2η(t )], (B23)

∂τη(t ) = 1√
1 + 4〈asai )〉2

∂τ 〈asai〉 = 〈ap〉, (B24)

whose solutions are given by

〈ap〉(τ ) = α0dn
(
iα0τ,−1

/
α2

0

)
, (B25)

η(τ ) = Im
[
am

(
iα0τ,−1

/
α2

0

)]
, (B26)

where am(z) is the Jacobi amplitude function, dn(z) is the
Jacobi delta amplitude function, and Im is the imaginary part
of the argument. As a result, we have

〈a†
s as〉 = sinh2[η(t )], (B27)〈

a2
p

〉 = 〈ap〉2 = α2
0dn

(
iα0τ,−1

/
α2

0

)2
. (B28)

APPENDIX C: PERTURBATION THEORY

In this Appendix, we perform a transformation on the
Hamiltonian in Eq. (1) to understand the behavior of the quan-
tities analyzed in the main text. To achieve this, we substitute
an ansatz into the Schrödinger equation that the state of the
system is given by |ψ (τ )〉 = D(α(τ ))S(η(τ ))|φ(τ )〉, where
D(α(τ )) = exp[α(τ )(a†

p − ap)], S(η(τ )) = exp[η(τ )(a†
s a†

i −
asai )], and both the variables α(τ ) and η(τ ) are assumed to
be real. As a result, we have

ih̄∂τ |φ(τ )〉 = (S†(η(τ ))D†(α(τ ))H̃D(α(τ ))S(η(τ ))

− ih̄D†(α(τ ))∂τ D(α(τ ))

− ih̄S†(η(τ ))∂τ S(η(τ )))|φ(τ )〉 (C1)

≡
(

Heff(τ )

χ

)
|φ(τ )〉, (C2)

where H̃ ≡ H
χ

[in Eq. (C1)] is the Hamiltonian from Eq. (1) up

to a factor of χ . Since ∂τ D(α(τ )) = ∂τα(τ ) D(α(τ ))(a† − a),
∂τ S†(η(τ )) = ∂τη(τ ) S(η(τ ))(b†c† − bc), the effective
Hamiltonian Heff (τ ) is given by

H̃eff (τ ) ≡
(

Heff (τ )

χ

)

= (S†(η(τ ))D†(α(τ ))H̃D(α(τ ))S(η(τ ))

− ih̄∂τα(τ ) (a†
p − ap) − ih̄∂τη(τ ) (a†

s a†
i − asai )).

(C3)

013712-13



KARTHIK CHINNI AND NICOLÁS QUESADA PHYSICAL REVIEW A 110, 013712 (2024)

Evaluating the term S†(η(τ ))D†(α(τ ))H̃S(α(τ ))S(η(τ )) in the above expression, we have

H̃eff(τ )

h̄
= iα(τ )(a†

s a†
i − asai ) + i sinh2[η(τ )](apasai − a†

pa†
s a†

i ) + i cosh2[η(τ )](apa†
s a†

i − a†
pasai )

+ i
sinh[2η(τ )]

2
(ap − a†

p)(a†
s as + a†

i ai + 1) − i∂τα(τ ) (a†
p − ap) − i∂τη(τ ) (a†

s a†
i − asai ). (C4)

Setting the variables α(τ ) and η(τ ) to satisfy the differential equations, ∂τα(τ ) = − sinh[2η(τ )]/2 and ∂τη(τ ) = α(τ ) with
α(0) = α0 and η(0) = 0, which are the ones satisfied by those in the second-order cumulant-expansion method, we have the
following effective Hamiltonian:

H̃eff(τ )

h̄
= i sinh2[η(τ )](apasai − a†

pa†
s a†

i ) + i cosh2[η(τ )](apa†
s a†

i − a†
pasai ) + i

sinh[2η(τ )]

2
(ap − a†

p)(a†
s as + a†

i ai ). (C5)

Therefore, after the above transformation, the down-conversion process is described by the state |φ(0)〉 = |0〉|0〉|0〉 evolving
under the effective Hamiltonian (C5). Next, in order to gain insight into the short-time dynamics of the system described by the
above Hamiltonian, we apply the time-dependent perturbation theory, according to which the unitary acting on the state is given
by the standard Dyson series

Ueff (τ ) = 1 − i

h̄

∫ τ

0
dτ1H̃eff (τ1) + · · · +

(
− i

h̄

)n ∫ τ

0
dτ1

∫ τ1

0
dτ2 . . .

∫ τn−1

0
dτnH̃eff (τ1) . . . H̃eff (τn) + · · · . (C6)

Note that η(τ ) = Re[−i am(iτα0,−1/α2
0 )], and am(iτα0,−1/α2

0 ) is purely imaginary for the first time period, which is also the
time domain of interest for us in this analysis. The function η(τ ) has a Taylor series expansion given by

η(τ ) = α0τ − α0

6
τ 3 − α0

(
4α2

0 − 1
)

120
τ 5 − α0

(
16α4

0 − 44α2
0 + 1

)
5040

τ 7 + O(τ 9). (C7)

Substituting the above expression in the effective Hamiltonian and obtaining Ueff |000〉 up to eighth order, we have

|φ(τ )〉 = Ueff (τ )|000〉 = |000〉 − τ 3

3
α2

0 |111〉 + τ 4

504

(
42

√
2α2

0 |200〉 − 84α2
0 |022〉) + τ 5

5040

(−336|111〉α4
0 − 672|011〉α3

0

+ 672
√

2|211〉α3
0 + 840|111〉α2

0

) + τ 6

5040

(−280|000〉α4
0 − 672|022〉α4

0 + 336
√

2|200〉α4
0

+ 560
√

2|222〉α4
0 + 112|100〉α3

0 + 1008|122〉α3
0 − 112

√
6|300〉α3

0 + 280|022〉α2
0 − 140

√
2|200〉α2

0

)
+ τ 7

5040

(−32|111〉α6
0 − 416|011〉α5

0 + 416
√

2|211〉α5
0 + 1432|111〉α4

0 + 840|133〉α4
0

− 412
√

6|311〉α4
0 + 336|011〉α3

0 + 432|033〉α3
0 − 656

√
2|211〉α3

0 − 152|111〉α2
0

)
+ τ 8

5040

(−112|000〉α6
0 − 232|022〉α6

0 + 4
√

2(29|200〉 + 56|222〉)α6
0 + 304|100〉α5

0 + 1888|122〉α5
0

− 136
√

6|300〉α5
0 − 448

√
6|322〉α5

0 + 175|000〉α4
0 + 1212|022〉α4

0 + 420|044〉α4
0 − 354

√
2|200〉α4

0

− 1478
√

2|222〉α4
0 + 103

√
6|400〉α4

0 − 42|100〉α3
0 − 700|122〉α3

0 + 82
√

6|300〉α3
0 − 38|022〉α2

0

+ 19
√

2|200〉α2
0

) + O(τ 9), (C8)

and the above state is normalized up to the eighth order in τ . Note that we use the notation |x, y, z〉 ≡ |x〉|y〉|z〉 for arbitrary
x, y, z in the above equation for compactness, and the numbers in the first, second, and third kets are associated with
the pump, signal, and idler modes, respectively. The pump-mode population at short times is given by 〈ψ (τ )|Np|ψ (τ )〉 =
〈φ(τ )|D†(α(τ ))a†

papD(α(τ ))|φ(τ )〉. Using this, we obtain the difference between pump-mode population and the pump-mode
population in the second-order cumulant expansion, which is given by

〈ψ (τ )|Np|ψ (τ )〉 − α2(τ ) = 〈φ(τ )|[a†
pap + α(τ )a†

p + α(τ )ap]|φ(τ )〉 (C9)

= 7α4
0

45
τ 6 +

(
48α6

0 − 77α4
0

)
630

τ 8 + O(τ 9). (C10)
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It is interesting to note that the second-order cumulant expansion correctly accounts for the pump-mode population up to terms

of sixth order in time. The variance in the momentum of the pump mode (Pp = ap−a†
p√

2i
) is given by

	2
Pp

= 〈P2
p 〉 − 〈Pp〉2 = 1

2
− Re

(〈ψ (τ )|a2
p|ψ (τ )〉 − 〈ψ (τ )|ap|ψ (τ )〉2) + (〈ψ (τ )a†

pap|ψ (τ )〉 − |〈ψ (τ )|ap|ψ (τ )〉|2) (C11)

= 1

2
+ 〈φ(τ )|a†

pap|φ(τ )〉 − 〈φ(τ )|a2
p|φ(τ )〉 (C12)

= 1

2
− 1

6
α2

0τ
4 +

(
α2

0

18
− α4

0

45

)
τ 6 +

(−4α6
0 + 144α4

0 − 19α2
0

)
2520

τ 8 + O(τ 9). (C13)

Note that a variance of 1
2 is expected at the second-order cumulant expansion since the pump-mode state predicted in this

approximation is a coherent state. Hence, the actual value of the variance in the pump momentum deviates from the value
predicted by second-order cumulant expansion at fourth order in time. Next, we look at the perturbation theory expression for
g(2)

p and g(2)
s :

g(2)
p = 〈ψ (τ )|(a†

p)2a2
p|ψ (τ )〉(〈ψ (τ )|a†

pap|ψ (τ )〉)2 (C14)

= 1 + 1

3
τ 4 + 2

45

(
11α2

0 + 5
)
τ 6 + 1

630

(
114α4

0 − 128α2
0 + 97

)
τ 8 + O(τ 9) (C15)

and

g(2)
s = 〈ψ (τ )|(a†

s )2a2
s |ψ (τ )〉(〈ψ (τ )|a†

s as|ψ (τ )〉)2

= 2 − 2

3
τ 2 +

(
225 − 2160α2

0

)
4050

τ 4 +
(
198α4

0 − 459α2
0 + 69

)
405

τ 6 +
(−888α6

0 + 1935α4
0 − 2838α2

0 + 415
)

4050
τ 8 + O(τ 9).

(C16)

The pump-mode density operator after tracing out the signal and idler modes is given by

�p(τ ) = |0〉〈0| + τ 4

12

(√
2α2

0 |2〉〈0| +
√

2α2
0 |0〉〈2|) + τ 6

180

(−20α4
0 |0〉〈0| + 12

√
2α4

0 |2〉〈0| + 20α4
0 |1〉〈1|

+ 12
√

2α4
0 |0〉〈2| + 4α3

0 |1〉〈0| − 4
√

6α3
0 |3〉〈0| + 4α3

0 |0〉〈1| − 4
√

6α3
0 |0〉〈3| − 5

√
2α2

0 |2〉〈0| − 5
√

2α2
0 |0〉〈2|)

+ τ 8

5040

(− 224α6
0 |0〉〈0| + 116

√
2α6

0 |2〉〈0| + 224α6
0 |1〉〈1| + 116

√
2α6

0 |0〉〈2| + 528α5
0 |1〉〈0| − 136

√
6α5

0 |3〉〈0|

+ 528α5
0 |0〉〈1| − 224

√
2α5

0 |2〉〈1| − 224
√

2α5
0 |1〉〈2| − 136

√
6α5

0 |0〉〈3| + 490α4
0 |0〉〈0| − 354

√
2α4

0 |2〉〈0|
+ 103

√
6α4

0 |4〉〈0| − 560α4
0 |1〉〈1| − 354

√
2α4

0 |0〉〈2| + 70α4
0 |2〉〈2| + 103

√
6α4

0 |0〉〈4| − 42α3
0 |1〉〈0|

+ 82
√

6α3
0 |3〉〈0| − 42α3

0 |0〉〈1| + 82
√

6α3
0 |0〉〈3| + 19

√
2α2

0 |2〉〈0| + 19
√

2α2
0 |0〉〈2|) + O(τ 9). (C17)

Using the above expression, we get the purity of the pump
mode:

γ (τ ) = Tr[�2
p(τ )] = 1 − 2α4

0

9
τ 6 +

(
2α4

0

9
− 4α6

0

45

)
τ 8

+ O(τ 9). (C18)

Finally, we compare the perturbation theory expressions with
the numerical data for various system sizes in Fig. 5, which
confirms the validity of the analytic expressions derived in this
section.

APPENDIX D: FINITE SYSTEM-SIZE EFFECTS

In this Appendix, we analyze the various properties of the
system as a function of α2

0 . In Fig. 6, the plots of signal-mode
population, pump-mode variance in momentum, purity of the

pump and signal modes, and the mean-mode amplitude of the
pump mode for different values of α2

0 are shown. In the first
row of the figure, the signal-mode population obtained from
the full numerical simulation of systems for various values of
α2

0 is shown by thick curves. In these plots, the population
obtained from the second-order cumulant-expansion method
is plotted using dashed lines, and, as it can be seen, they
approximate the numerical simulations (black curves) well
for short times. Therefore, the solution to the second-order
cumulant-expansion method can be used to derive the pump-
depletion time as a function of α0:

α2
0 − α2(τdep)

α2
0

= δ, (D1)

whose solution is given by τdep = − i
α0

arcsn(i
√

δα0,− 1
α2

0
)

where arcsn(z) is the inverse of Jacobi elliptic sn(z) function.
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FIG. 6. Different quantities are plotted here for α2
0 = {102, 103, 104, 105} in four columns. In all the plots, the location of the black dotted

vertical line (the vertical dotted line at later time) corresponds to the time where the signal-mode population(〈Ns〉) reaches local maximum [see
thick curves in (a)–(d)], and the other dotted vertical line indicates the time at which the signal-mode population in the second-order cumulant
solution reaches α2

0 [see dashed curves in (a)–(d)]. [(a)–(d)] Signal-mode population from the full numerical simulation (black curve) is
plotted here along with the prediction from the second-order cumulant-expansion method (dashed curve). [(e)–(h)] The pump-mode variance
is plotted for different α2

0 . Note that the pump mode is most squeezed at the time when the pump-mode population reaches local minimum
(local maximum for signal-mode population). The pump-mode variance in momentum shows threshold behavior: variance is close to 1

2 for
short times and then starts decreasing after a certain time τsqz. [(i)–(l)] The purities associated with the pump and the signal modes after tracing
out other modes are shown here. Notice that the purity of the pump mode shows threshold behavior. [(m)–(p)] The pump-mode amplitude
〈ap〉 obtained numerically (thick curve) is shown here for different α2

0 and compared with the amplitude obtained from the second-order
cumulant-expansion method (dashed curve).

For more details on Jacobi elliptic functions, see [52]. Per-
forming a Taylor series expansion in the second argument of
arcsn and ignoring terms of the order O(1/α2

0 ) in the expan-
sion, we get τdep ≈ 1

α0
sinh−1(

√
δα0). Likewise, we can also

obtain an analytic expression for the time at which the popula-
tion of the signal mode reaches maximum in the second-order
cumulant-expansion method, which is also the time at which
〈ap〉 or 〈a†

pap〉 goes to zero in this approximation. It is given
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by

τmax = 1

α0
Re

[
K

(
1 + 1

/
α2

0

)]
(D2)

≈ 1

α0
ln(4α0), (D3)

where K is the complete elliptic integral of the first kind. The
value of τmax shown in Eq. (D3) is obtained from Eq. (D2) by
Taylor expanding the function in (D2) and ignoring terms of
order O(1/α2

0 ). τmax is shown by the first vertical dotted line
in Fig. 6 where it can be seen that it identifies the maximum
of sinh2(η(t )) accurately and provides us with a reasonable
estimate of the time when the signal-mode population reaches
local maximum and 〈ap〉 reaches zero in the full numerically
simulated down-conversion process. Also, see Fig. 7 for a plot
of the signal-mode population as a function of α2

0 .
The plot corresponding to the pump-mode momentum

variance is shown in the second row of Fig. 6, and it can
be seen here that it shows a threshold behavior. That is, the
value of the variance remains close to 1

2 for small times and
then it changes relatively rapidly after a certain value of time
τsqz. Since this happens at small times, where we expect the
lower-order terms of perturbation theory to accurately explain
the behavior of these quantities, we derive an estimate of the
threshold time using the results of the previous Appendix. To
achieve this, we solve for

0.5 − 	2
Pp

(τsqz)

0.5
= δ. (D4)

Using the sixth-order expression in τ for 	2
Pp

(τ ), we have(
α4

0

45
− α2

0

18

)
τ 6

sqz + α2
0

6
τ 4

sqz − δ

2
= 0, (D5)

whose solution for α0 � 1 is given by τsqz ≈ (180δ)1/6√
2

α
−2/3
0 . A

plot of this squeezing threshold time is shown in Fig. 8(a) as a
function of α2

0 . For this plot, we numerically obtain the value
of time when the variance in the pump-mode momentum de-
creases relatively by 1% percent (δ = 1

100 ) from 1
2 for different

values of α0 and then obtain a fit for the curve. The fit shows
that the threshold time scales as α−0.6534

0 , which is very close
to our analytic estimate.

Similarly, it can be noticed from Fig. 6 that the purity of the
pump mode also shows threshold behavior. We can perform a
similar analysis as above to obtain the threshold time τent in

FIG. 7. The signal-mode population is plotted as a function of α2
0

for a fixed time τ = 0.025. This type of plot would be relevant for an
experimental situation where the pump mode in a coherent state is
sent through a crystal with nonlinear response whose length is fixed,
and the signal-mode population at the output is analyzed for various
input coherent states. Note that the signal-mode population overlaps
with the curve predicted by the parametric approximation for small
α2

0 since the time (τ = 0.025) that is being analyzed in this plot
corresponds to the undepleted pump region for these values of α2

0 .
The numerical data plotted here are consistent with the experimental
observation of the signal-mode population shown in [40].

this case. Solving for

1 − γ (τent ) = δ, (D6)

where we substitute eighth-order expression in τ obtained
from perturbation theory for γ (τ ) to get(

4α6
0

45
− 2α4

0

9

)
τ 8

ent + 2α4
0

9
τ 6

ent − δ = 0. (D7)

For α0 � 1, the solution to the above equation is given by
τent ≈ (3/2)1/4(5δ)1/8α

−3/4
0 . We obtain numerical scaling be-

havior in Fig. 8(b), where we choose δ = 1
100 ( n2

n2+1 ), which is
1% of the possible range for purity, 1/(n2 + 1) � γ (t ) � 1,
and for large α2

0 , δ ≈ 1
100 has no α0 dependence. Hence, the

observed numerical behavior α−0.769
0 agrees with our analytic

prediction.

APPENDIX E: ENTANGLEMENT WITNESS

In this Appendix, we show the explicit form of the witness mentioned in Sec. IV in terms of creation and annihilation operators
of pump, signal, and idler modes. The matrix elements of w4 are given by

w4 =

∣∣∣∣∣∣∣
〈a†

papb†b〉 〈(a†
p)2b†b〉 〈(a†

p)2b2〉
〈a2

pb†b〉 〈apa†
pb†b〉 〈apa†

pb2〉
〈a2

p(b†)2〉 〈apa†
p(b†)2〉 〈apa†

pbb†〉

∣∣∣∣∣∣∣ (E1)

=

∣∣∣∣∣∣∣∣
1
2 (〈a†

papa†
s as〉 + 〈a†

papa†
i ai〉) 1

2

(〈(a†
p)2a†

s as〉 + 〈(a†
p)2a†

i ai〉
) 〈(a†

p)2asai〉
1
2 (〈a2

pa†
s as〉 + 〈a2

pa†
i ai〉) 1

2 (〈a†
papa†

s as〉 + 〈a†
papa†

i ai〉 + 〈a†
s as〉 + 〈a†

i ai〉) 〈a†
papasai〉 + 〈asai〉

〈a2
pa†

s a†
i 〉 〈a†

papa†
s a†

i 〉 + 〈a†
s a†

i 〉 a33

∣∣∣∣∣∣∣∣
, (E2)
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FIG. 8. The threshold times associated with various quantities are shown here. In each of these plots, the crosses show the numerical
data, the dashed line is the fit associated with the numerical data, triangles and dots show the threshold time τ obtained using the sixth- and
eighth-order expressions in time derived from perturbation theory. (a) The squeezing threshold time is given by τ ∼ α−0.653, which is obtained
numerically. The numerical data overlap well with the eighth-order estimate, but, as seen in the plot, even the sixth-order expression shown in
Eq. (D5) provides reasonable estimate of the time when squeezing originates in the system. (b) The threshold time of the pump-mode purity
is plotted as a function of α2

0 , and the numerical data show that τent ∼ α−0.769
0 . As shown here, the eighth-order expression in Eq. (D7) detects

this time reasonably well. (c), (d) The threshold times associated with zero-time autocorrelation functions of the pump (τp) and the signal (τs)
mode are plotted here, and their values scale as τp ∼ α0.713

0 and τs ∼ α0.633
0 . As can be seen, the eighth-order expressions cannot predict this

time accurately, but they can still be used to get a rough estimate of the threshold time.

where a33 = 1
2 (〈a†

papa†
s as〉 + 〈a†

papa†
i ai〉 + 〈a†

s as〉 + 〈a†
i ai〉) + 〈a†

pap〉 + 1, and the matrix elements of w6 in terms of ap, as, and
ai are given by

w6 =

∣∣∣∣∣∣∣∣
1 〈ap(b†)2〉 〈a†

pb2〉
〈a†

pb2〉 〈a†
pap(b†)2b2〉 〈(a†

p)2b4〉
〈ap(b†)2〉 〈

a2
p(b†)4

〉 〈apa†
pb2(b†)2〉

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1 〈apa†

s a†
i 〉 〈a†

pasai〉
〈a†

pasai〉 b22
3
2

〈
(a†

p)2a2
s a2

i

〉
〈apa†

s a†
i 〉 3

2

〈
a2

p(a†
s )2(a†

i )2
〉

b33

∣∣∣∣∣∣∣∣
, (E3)

where

b22 = 1
4

(〈
a†

pap(a†
s )2a2

s

〉 + 〈
a†

pap(a†
i )2a2

i

〉) + 〈a†
papa†

s asa
†
i ai〉, (E4)

b33 = 1
4

(〈
a†

pap(a†
s )2a2

s

〉 + 4〈a†
papa†

s as〉 + 2〈a†
pap〉 + 〈

(a†
s )2a2

s

〉 + 4〈a†
s as〉 + 2

)
+ 1

4

(〈
a†

pap(a†
i )2a2

i

〉 + 4〈a†
papa†

i ai〉 + 2〈a†
pap〉 + 〈

(a†
i )2a2

i

〉 + 4〈a†
i ai〉 + 2

)
+〈a†

papa†
s asa

†
i ai〉 + 〈a†

papa†
s as〉 + 〈a†

papa†
i ai〉 + 〈a†

s asa
†
i ai〉 + 〈a†

pap〉 + 〈a†
s as〉 + 〈a†

i ai〉 + 1. (E5)

APPENDIX F: LONG-TIME EVOLUTION OF THE SYSTEM

In this Appendix, we provide a brief analysis of the dynam-
ics of the system for longer times, beyond the time at which
the signal-mode population reaches its first local maximum.
In Figs. 9(a) and 9(b), the signal-mode population is plotted
both from the full numerical solution and the second-order
cumulant solution for α2

0 = 100 and 1000, respectively. The
signal-mode population shows oscillatory, but not periodic,
behavior, and the value of the signal-mode population at the
local maximum keeps decreasing with time. On the other
hand, the population obtained from the second-order cumulant
solution, which is expected to approximate the numerically
obtained population for short times, can be expressed in terms
of Jacobi elliptic function and is therefore periodic in time
[see Eqs. (B27) and Eq. (29)]. While the population obtained
from the second-order cumulant-expansion method deviates

significantly from the full numerical solution for long times,
the period of the Jacobi elliptic function can be still used
to obtain a rough estimate of the position of the first two
local maxima in the signal-mode population obtained from the
full numerical solution (compare the position of the vertical
dotted lines). More concretely, we compare the position of
first two local maxima in signal-mode population obtained
from the full numerical solution, labeled by τ

(num)
1 and τ

(num)
2 ,

with the analytic expressions for the position of first two
maxima of 〈Ns〉 obtained from the second-order cumulant
solution, labeled by τ

(cumu)
1 and τ

(cumu)
2 in Fig. 9(c). These

maxima of the second-order cumulant solution are located at
τ

(cumu)
1 = 1

α0
ln(4α0) and τ

(cumu)
2 = 3

α0
ln(4α0). From the plot,

it can be seen that the position of first local maximum can
be estimated well using the analytic expression 1

α0
ln(4α0) as

already mentioned in Appendix D.
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FIG. 9. (a), (b) The signal-mode population obtained from the full numerical solution (thick curve) is compared with the one obtained
from the second-order cumulant solution (dashed curve) for α2

0 = 100 and 1000. As can be seen in this plot, the position of local maxima
in the signal-mode population obtained from the full numerical solution (vertical dotted lines of corresponding color) can be approximated
using the period of 〈Ns〉 obtained from the second-order cumulant solution. (c) The location of first and second local maxima obtained from
the full numerical simulation, τ

(num)
1 and τ

(num)
2 , are shown by crosses, and they are compared against the position of first and second maxima

of the population obtained from the second-order cumulant solution, τ
(cumu)
1 and τ

(cumu)
2 , which are plotted using thick curves. The analytic

expressions associated with the second-order cumulant solution are given by τ
(cumu)
1 = 1

α0
ln(4α0) and τ

(cumu)
2 = 3

α0
ln(4α0).

APPENDIX G: ANALYSIS OF CUMULANT-EXPANSION
METHOD AS A FUNCTION OF α0

In this Appendix, we analyze how the cumulant-expansion
method performs as a function of α2

0 for our system by

comparing the data from the cumulant-expansion method with
that of the full numerical simulation data. Here, we focus
on three particular quantities: the signal-mode population
(equivalently the pump-mode population), the pump-mode

FIG. 10. The cumulant time for signal-mode population [(a)–(c)], pump-mode variance along the momentum quadrature [(d)–(f)], zero-
delay autocorrelation function for the pump mode [(g)–(i)] are all plotted on the log-log scale in the first, second, third, and fourth rows,
respectively. We define the cumulant time for each quantity as the time at which the relative difference between the quantity of interest obtained
from the cumulant-expansion method and the full numerical solution is greater than 1% for the first time. All quantities corresponding to a
particular order cumulant expansion are plotted as a function of α2

0 in one column. We notice the general threshold time decreases as a function
of α2

0 , which is consistent with the fact that the higher-order correlations appear faster in larger α2
0 , and therefore the cumulant expansion breaks

down sooner.
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variance along the momentum quadrature, and the pump-
mode zero-delay autocorrelation function. In order to analyze
the time interval over which the cumulant-expansion method
follows the full numerical simulation data, we define cumu-
lant time for various quantities, which is the time at which
the relative difference between the quantity of interest ob-
tained from the cumulant-expansion method and the full
numerical solution is greater than 1% for the first time. In
Fig. 10, we plot the cumulant threshold times of the signal-
mode population, pump-mode variance along the momentum
quadrature, and the pump-mode zero-delay autocorrelation
function along rows one, two, and three, respectively. The
cumulant-expansion data obtained from the second, third, and

fourth order is plotted along columns one, two, and three.
For all quantities, we observe that the threshold time for
each cumulant expansion follows a power law with a negative
exponent. Moreover, for a particular quantity, the magnitude
of the power-law exponent increases with the order of the
expansion. The negative exponent is in accordance with the
observation that the correlations build up sooner (at smaller τ )
in larger system sizes and, therefore, the cumulant expansion
breaks down sooner. The larger exponent for higher-order
cumulant expansion shows that the time interval over which
we obtain a better approximation of the dynamics with the
(n + 1)st-order expansion is smaller compared to the nth-
order expansion.
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[39] J. Peřina Jr., O. Haderka, A. Allevi, and M. Bondani, Internal
dynamics of intense twin beams and their coherence, Sci. Rep.
6, 22320 (2016).

[40] J. Flórez, J. S. Lundeen, and M. V. Chekhova, Pump deple-
tion in parametric down-conversion with low pump energies,
Opt. Lett. 45, 4264 (2020).

[41] S. Ding, G. Maslennikov, R. Hablützel, and D. Matsukevich,
Quantum simulation with a trilinear Hamiltonian, Phys. Rev.
Lett. 121, 130502 (2018).

[42] R. J. Birrittella, P. M. Alsing, and C. C. Gerry, Phase effects in
coherently stimulated down-conversion with a quantized pump
field, Phys. Rev. A 101, 013813 (2020).

[43] G. S. Agarwal, Quantum Optics (Cambridge University Press,
Cambridge, 2012).

[44] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T.
Reddy, D. Cournapeau, E. Burovski, P. Peterson, W. Weckesser,
J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman,
N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J.
Carey et al., SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python, Nat. Methods 17, 261 (2020).

[45] A. H. Al-Mohy and N. J. Higham, Computing the action of the
matrix exponential, with an application to exponential integra-
tors, SIAM J. Sci. Comput. 33, 488 (2011).

[46] N. J. Higham and A. H. Al-Mohy, Computing matrix functions,
Acta Numer. 19, 159 (2010).

[47] R. Kubo, Generalized cumulant expansion method, J. Phys.
Soc. Jpn. 17, 1100 (1962).

[48] R. A. Fisher and J. Wishart, The derivation of the pattern for-
mulae of two-way partitions from those of simpler patterns,
Proc. London Math. Soc. s2-33, 195 (1932).

[49] H. D. Ursell, The evaluation of gibbs’ phase-integral for im-
perfect gases, Math. Proc. Cambridge Philos. Soc. 23, 685
(1927).

[50] M. Duneau, D. Iagolnitzer, and B. Souillard, Decrease proper-
ties of truncated correlation functions and analyticity properties
for classical lattices and continuous systems, Commun. Math.
Phys. 31, 191 (1973).

[51] D. Plankensteiner, C. Hotter, and H. Ritsch, Quantumcumu-
lants. jl: A julia framework for generalized mean-field equations
in open quantum systems, Quantum 6, 617 (2022).

[52] DLMF, NIST Digital Library of Mathematical Functions
https://dlmf.nist.gov/, Release 1.1.11 of 2023-09-15, edited by
F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schnei-
der, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders,
H. S. Cohl, and M. A. McClain.

[53] J. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan,
Interactions between light waves in a nonlinear dielectric,
Phys. Rev. 127, 1918 (1962).

[54] R. Yanagimoto, E. Ng, A. Yamamura, T. Onodera, L. G. Wright,
M. Jankowski, M. Fejer, P. L. McMahon, and H. Mabuchi,
Onset of non-Gaussian quantum physics in pulsed squeezing
with mesoscopic fields, Optica 9, 379 (2022).

[55] R. Yanagimoto, E. Ng, M. Jankowski, R. Nehra, T. P. McKenna,
T. Onodera, L. G. Wright, R. Hamerly, A. Marandi, M. M.
Fejer, and H. Mabuchi, Mesoscopic ultrafast nonlinear optics–
the emergence of multimode quantum non-Gaussian physics,
Optica 11, 896 (2024).

[56] A. Serafini, Quantum Continuous Variables: A Primer of
Theoretical Methods (CRC Press, Boca Raton, FL, 2023).

[57] A. Agustí, C. W. Sandbo Chang, F. Quijandría, G. Johansson,
C. M. Wilson, and C. Sabín, Tripartite genuine non-Gaussian
entanglement in three-mode spontaneous parametric down-
conversion, Phys. Rev. Lett. 125, 020502 (2020).

[58] E. Shchukin and W. Vogel, Inseparability criteria for contin-
uous bipartite quantum states, Phys. Rev. Lett. 95, 230502
(2005).

[59] J. Steinlechner, S. Ast, C. Krüger, A. P. Singh, T. Eberle,
V. Händchen, and R. Schnabel, Absorption measurements of pe-
riodically poled potassium titanyl phosphate (ppktp) at 775 nm
and 1550 nm, Sensors 13, 565 (2013).

[60] See https://github.com/polyquantique/beyond_parametric

013712-21

https://doi.org/10.1103/PhysRevA.29.1275
https://doi.org/10.1103/PhysRevA.38.4696
https://doi.org/10.1364/OPTICA.501089
https://doi.org/10.1088/1367-2630/12/9/095013
https://doi.org/10.1103/PhysRevLett.108.070604
https://doi.org/10.1038/srep03949
https://doi.org/10.1103/PhysRevB.87.014508
https://doi.org/10.1103/PhysRevA.90.063812
https://doi.org/10.1038/srep22320
https://doi.org/10.1364/OL.394925
https://doi.org/10.1103/PhysRevLett.121.130502
https://doi.org/10.1103/PhysRevA.101.013813
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1137/100788860
https://doi.org/10.1017/S0962492910000036
https://doi.org/10.1143/JPSJ.17.1100
https://doi.org/10.1112/plms/s2-33.1.195
https://doi.org/10.1017/S0305004100011191
https://doi.org/10.1007/BF01646265
https://doi.org/10.22331/q-2022-01-04-617
https://dlmf.nist.gov/
https://doi.org/10.1103/PhysRev.127.1918
https://doi.org/10.1364/OPTICA.447782
https://doi.org/10.1364/OPTICA.514075
https://doi.org/10.1103/PhysRevLett.125.020502
https://doi.org/10.1103/PhysRevLett.95.230502
https://doi.org/10.3390/s130100565
https://github.com/polyquantique/beyond_parametric

