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Robust generation of a magnonic cat state via a superconducting flux qubit
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We study the hybrid system of a high-quality yttrium-iron-garnet (YIG) sphere magnetically coupled to a
superconducting flux qubit via the magnetic fields created by two persistent-current quantum states. When the
flux qubit is operated away from its sweet point, a coherent nonlinear two-magnon interaction can be predicted;
that is, the qubit is excited by absorbing a pair of magnons. We show that the spontaneous emission of the qubit
can be exploited to steer the magnon mode of the YIG sphere into a Schrödinger cat state with high fidelity. Our
scheme has practical advantages in that it eliminates the need for precise control of the evolution time and the
projective measurement, and is also insensitive to the qubit’s pure dephasing.
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I. INTRODUCTION

Quantum magnonics holds significant promise for devel-
oping various kinds of technological applications in quantum
information science [1–8], owing to the exceptional proper-
ties exhibited by magnons, i.e., the bosonic collective spin
excitations in magnetic materials. For the realization of co-
herent magnetic excitations and strong magnon coupling,
the ferromagnetic material of yttrium iron garnet (YIG) has
emerged as a preferred candidate. This preference depends
on YIG’s favorable properties, such as the low Curie tem-
perature, exceptional magnetic quality, ultralow dissipation,
and high spin density [9–26]. Experimentally, strong and ul-
trastrong couplings between the magnon mode in YIG and
the microwave mode in the superconducting cavity have been
reported [13,27–32], which make an ideal platform to pro-
vide opportunities for many quantum information applications
[14,17,33–42]. Based on this composite quantum architecture,
the indirect coupling between a magnon mode and a supercon-
ducting qubit can be mediated by adiabatically eliminating the
cavity mode. Since the superconducting qubit has a strong an-
harmonicity, it can be used to generate nonclassical magnonic
states [43–49] and detect single magnons [50–53].

On the other hand, recent advancements have demonstrated
the feasibility of direct coupling between YIG magnets and
superconducting qubits with naturally commensurate energies
[54–60]. In comparison to indirect coupling via a microwave
cavity, the direct one possesses some practical advantages.
First, it enables a much larger coupling strength, such that
the size of the magnetic materials can be effectively reduced.
Moreover, the in situ tunability of this magnon-qubit system
is beneficial for constructing large-scale magnonic quantum
networks. In a recent work [54], Kounalakis et al. proposed
an interesting approach for the generation of quantum
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superpositions of two distinguishable magnonic coherent
states in a YIG particle directly coupled to a superconducting
transmon qubit. It relies on a unitary dynamical evolution
process, and the state-projection measurement is required
at a specific point in time. Consequently, the fidelity of the
target state may be easily affected by the decoherence of
the qubit.

Different from Ref. [54], we put forward an efficient
scheme for the robust generation of a magnonic cat state,
where neither the unitary dynamics nor the projective mea-
surement is required. The proposed scheme is based on a
hybrid system of a high-quality YIG sphere magnetically
coupled to a superconducting flux qubit via the magnetic
fields created by two persistent-current quantum states. The
key point is to induce both the transverse and longitudinal
couplings, when the flux qubit is operated away from its
degeneracy point. As a result, the interference of these two
coupling terms leads to a strong two-magnon nonlinear inter-
action; that is, the magnon mode of the YIG sphere exchanges
energy with the qubit in the form of magnon pairs. It is further
shown that the spontaneous emission of the qubit as a resource
can be utilized to drive magnetic excitations of the YIG sphere
into a Schrödinger cat state. We emphasize here that since our
scheme is based on a dissipative quantum state engineering
process, it eliminates the need for precise control of the evolu-
tion time and the projective measurement, and is also immune
to the pure dephasing of the qubit. The present result may have
potential applications in the field of quantum computation and
quantum sensing with hybrid magnonic systems.

II. MODEL

As illustrated in Fig. 1, we consider the hybrid architecture
of a magnetic YIG sphere that is positioned at the center of a
square superconducting flux qubit. The two persistent-current
quantum states of the flux qubit generate the desired magnetic
fields, which can give rise to a magnetic dipole coupling to
the electron spins associated with the YIG sphere. In the
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FIG. 1. The schematic diagram of the magnetically coupled hy-
brid architecture. It consists of a YIG sphere that is located at the
center of a superconducting flux qubit with three Josephson junctions
(the red markers on the loop). In addition, an external magnetic field
Bz along the z direction is applied to the YIG sphere, which interacts
with the flux qubit via the persistent currents IP and I ′

P, flowing in the
clockwise and anticlockwise directions, respectively.

following, we will give a detailed description of the system’s
Hamiltonian.

A. Hamiltonian of the flux qubit

The flux qubit system is made up of three Josephson junc-
tions as seen in Fig. 1, where one junction has a smaller
Josephson energy than the two others. The distinct feature
of this qubit is that it has two persistent-current quantum
states, i.e., the clockwise one |�〉 and the anticlockwise one
|�〉. Due to the strong anharmonicity of the flux qubit, it
can effectively serve as a two-level system, and the associated
Hamiltonian under the basis |�〉 and |�〉 is given by [61–63]
(let h̄ = 1 hereafter)

HFQ = −εz

2
σz − �x

2
σx. (1)

Here, εz = 2IP(�ext − �0
2 ) is the energy bias of the two cur-

rent states, where IP is the magnitude of the persistent current
in the qubit and �0 = h

2e is the magnetic flux quantum. The
external magnetic flux �ext penetrating the qubit loop yields
the tunable parameter εz. Additionally, �x is the tunnel split-
ting between the two current states, and σz and σx are the
Pauli operators. Provided that we replace the junction with
smaller Josephson energy with two identical Josephson junc-
tions that form a dc superconducting quantum interference
device (SQUID), the parameter �x can also be controlled via
the magnetic flux threading the SQUID loop [64,65].

B. Hamiltonian of the YIG

The isotropic Heisenberg Hamiltonian of the YIG sphere
can be expressed as [1,2,66]

Hm = −2J
∑
〈i, j〉

Si · S j + geμBBz

∑
i

Sz
i . (2)

The first term describes the ferromagnetic exchange interac-
tion. Here, the sum with 〈i, j〉 denotes a summation over the

nearestneighbor spins, where J is the coupling constant and
Si is the ith spin in the sphere. The second term describes the
Zeeman effect influenced by the external magnetic field Bz

along the z direction, where Sz
i is the spin projection operator,

ge is the electron g factor, and μB is the Bohr magneton.
By introducing the Holstein-Primakoff transformation

[67], we can transform the spin operators into the new har-
monic oscillators

S+
i =

√
2S

√
1 − a†

i ai

2S
ai, S−

i =
√

2Sa†
i

√
1 − a†

i ai

2S
,

Sz
i = S − a†

i ai. (3)

In Eq. (3), S±
i = Sx

i ± iSy
i are the spin raising and lowering

operators, and S is the spin quantum number, while a†
i (ai) is

the mapped bosonic creation (annihilation) operator and obeys
the standard commutation relation [ai, a†

i ] = 1. In the weak
excitation limit, i.e., the total number of flipped spins in the
system is much smaller than the total number of spins, the
spin raising and lowering operators can be approximated as
S+

i ≈ √
Sai and S−

i ≈ √
Sa†

i .
On the basis of the above transformations, we proceed to

diagonalize the Hamiltonian Hm in Eq. (2) by using the plane-
wave Ansätze

ak = 1√
N

∑
ri

e−ik·ri ai,

a†
k = 1√

N

∑
ri

eik·ri a†
i , (4)

where ri is the position of the ith lattice site and N is the
total number of spins in the YIG sphere. Under the long-
wavelength limit, the Hm can be expressed as the summation
of different magnon modes

Hm =
∑

k

ω(k)a†
kak, (5)

where ω(k) ≈ geμBBz + 4SJa2
0|k|2 is the dispersion relation,

and a0 is the lattice parameter. For our specific system, we
only consider the Kittel mode k = 0, which is a low-energy
uniform mode regardless of the ferromagnetic exchange in-
teraction [68]. For the Kittle mode, all spins precess with the
same phase and amplitude, and all the precessing magneti-
zations are along the same direction in the YIG sphere. By
neglecting the other modes k �= 0, the Hamiltonian of the YIG
sphere can be simplified to

Hm = ωa†a, (6)

where ω = geμBBz is the eigenfrequency that can be well
controlled via the biased magnetic field.

C. Interaction Hamiltonian between
the flux qubit and the YIG sphere

Now let us consider the magnetic coupling between the
flux qubit and the magnon mode in the YIG sphere. The
magnetic field generated by the persistent current in the flux
qubit is denoted as BFQ, which has only a component along
the x direction due to the given geometric configuration of
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FIG. 2. The variation range of the magnon-qubit coupling
strength g vs the the radius R and the persistent current IP, where
the side length L of the flux qubit is fixed at 10 µm.

the flux qubit (see Fig. 1). Therefore, two persistent-current
quantum states |�〉 and |�〉 produce different oppositely
aligned magnetic fields σzBx

FQ, where Bx
FQ is the amplitude of

the generated magnetic field at the center of the qubit loop.
As a result, the magnetic interaction between the YIG sphere
and the flux qubit takes the form geμBBx

FQσzSx, where Sx =∑
i Sx

i is the collective spin operator. By using the bosonic
operators a and a†, we can give the qubit-magnon interaction
Hamiltonian

Hint = gσz(a + a†), (7)

where g = √
NgeμBBx

FQ

√
2S
2 is the associated coupling

strength.
To estimate the value of g, we choose the following pa-

rameters based on the current experiments. For a YIG sphere
with the radius R = 0.5 µm and the spin density ρ = 2.1 ×
1022 cm−3, the contained total spin number is about N ≈
1.1 × 1010. For a flux qubit with the side length L = 10 µm
and the persistent current IP = 0.4 µA, the resulted magnetic
field is Bx

FQ ≈ 2
√

2 μ0IP

πL ≈ 4.5 × 10−5 mT by means of the
Biot-Savart law, where μ0 = 4π × 10−7 T m/A is the per-
meability of vacuum. Together with the physical constants
ge = 2 and μB = 9.274 × 10−24 A m2, we can calculate
the magnetic magnon-qubit interaction g ≈ 2π × 0.15 GHz.
Compared to the indirect coupling schemes by adiabatically
eliminating the cavity mode [43–53], the direct one here can
increase the magnon-qubit coupling strength by at least an
order of magnitude. To gain a more comprehensive under-
standing, Fig. 2 shows the variation range of the coupling
coefficient g in pace with the parameters R and IP.

To sum up, we obtain the total Hamiltonian of the system:

H = ωa†a − εz

2
σz − �x

2
σx + gσz(a + a†). (8)

Here |�〉 and | �〉 are not the eigenstates of the flux qubit. To
diagonalize the qubit’s Hamiltonian, we bring in the dressed
states

|g〉 = cos
θ

2
|�〉 + sin

θ

2
|�〉, Eg = −ν

2
, (9)

|e〉 = sin
θ

2
|�〉 − cos

θ

2
|�〉, Ee = ν

2
, (10)

where |g〉 and |e〉 denote the ground state and excited state
of the flux qubit, respectively. In addition, the flux angle is
defined as θ = arctan( �x

εz
), and the energy difference between

the two dressed states is ν = √
ε2

z + �2
x . Under the basis of

these dressed states, Eq. (8) will be transformed to the form

H = ωa†a + ν

2
σ̄z + gz(a + a†)σ̄z + gx(a + a†)(σ̄+ + σ̄−),

(11)

where we have σ̄z = |e〉〈e| − |g〉〈g|, σ̄+ = |e〉〈g|, and σ̄− =
|g〉〈e|. Note that both the transverse coupling gx = g sin θ and
the longitudinal coupling gz = gcos θ appear, which can give
rise to a strong nonlinear two-magnon exchange interaction
between the qubit and the magnon mode in the YIG sphere.
This constitutes the key ingredients for the robust generation
of a magnonic cat state.

III. GENERATION OF THE MAGNONIC CAT STATE

In this section, we will detail the procedure for the prepara-
tion of the magnonic Schrödinger cat state of the YIG sphere.
The basic idea is to engineer a two-magnon driven-dissipative
process, where the dissipation of the flux qubit as a resource
is utilized to steer the magnon mode into a cat state.

A. Effective Hamiltonian

We start our discussion by deriving the effective Hamil-
tonian of the system. To this end, we first add an external
microwave driving field resonantly applied to the flux qubit,
which is described by the Hamiltonian Hext = �(σ̄+e−iωpt +
σ̄−eiωpt ), with the Rabi frequency � and the oscillating fre-
quency ωp. Combined with the Hamiltonian in Eq. (11),
we then perform a unitary transformation U = exp[−i(a†a +
σ̄z )ωpt

2 ] with ωp = ν. The transformed Hamiltonian of the
whole system yields

H ′ = �a†a + gx(aσ̄−e− 3
2 iνt + aσ̄+e

1
2 iνt

+ a†σ̄−e− 1
2 iνt + a†σ̄+e

3
2 iνt ) + gz(ae− 1

2 iνt + a†e
1
2 iνt )σ̄z

+ �(σ̄+ + σ̄−), (12)

where the detuning is � = ω − ν
2 . To go a further step, we

can draw support from the effective Hamiltonian to extract
the time-averaged dynamics of this highly detuned quantum
system, provided that the rapidly oscillating condition ν �
�, gx, gz, � is satisfied in Eq. (12). As a result, the effective
Hamiltonian of the system can be achieved (more details in
the Appendix):

Heff = 8g2
x

3ν
(|e〉〈e| + 2a†a|e〉〈e|) − geff (a2σ̄+ + a†2σ̄−)

+ �(σ̄+ + σ̄−), (13)
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where geff = 4gxgz

ν
and � = 8g2

x
3ν

have been used. It is
now clear that the presence of transverse and longitudinal
couplings can lead to an effective two-magnon exchange
interaction, represented by the second term in Eq. (13).
Unlike the usual Jaynes-Cummings model, here the qubit
and the magnon mode in the YIG sphere exchange en-
ergy in the form of magnon pairs. It is a typical nonlinear
qubit-magnon interaction; that is, the qubit is excited by
absorbing a pair of magnons, and vice versa. By choos-
ing the direct magnon-qubit coupling g = 2π × 0.15 GHz,
gx = gz = √

2g/2 (θ = 45◦), and ν = 2π × 3 GHz, we can
work out the effective two-magnon coupling geff = 2π ×
15 MHz. It provides opportunities for the efficient genera-
tion of the magnonic cat state via a two-magnon exchange
process.

B. Quantum state engineering

Now we show how to prepare the magnonic cat state
based on the Hamiltonian Heff . For this goal, we have to take
into account the decoherence of the flux qubit, which acts
as a quantum reservoir and loses magnons in pairs. Under
the Markovian approximation, we can give the master equa-
tion that governs the time evolution of the density matrix ρ of
the system:

dρ

dt
= −i[Heff , ρ] + �

2
D[σ̄−]ρ + �φ

4
D[σ̄z]ρ, (14)

where � and �φ represent the energy relaxation rate and
the pure dephasing rate of the flux qubit [69], respectively,
and D[o]ρ = 2oρo† − ρo†o − o†oρ is the standard Lindblad
operator. To clarify the mechanism of quantum state engi-
neering, let us neglect the dissipation of the magnon mode,
the effect of which will later be analyzed via numerical
simulations.

The master Eq. (14) describes a two-magnon driven-
dissipative process. To be specific, the flux qubit is resonantly
driven by an external field, enabling the transition from the
ground state |g〉 to the excited state |e〉. Then, the nonlin-
ear term geff (a2σ̄+ + a†2σ̄−) will transfer a pair of magnons
into the magnon mode. The above steps are equivalent to
a two-magnon driven process. In contrast, the flux qubit
can also absorb a pair of quanta from the magnon mode,
and subsequently dissipate them into the environment via
its spontaneous emission. This corresponds to a two-magnon
dissipative process. Therefore, the competition of these two
repumping and dissipation processes will force the whole
system to eventually reach the steady state.

It is understandable that the steady state of the flux qubit
is the ground state |g〉 due to its coupling to the bath, while
the steady state of the magnon mode is the superposition of
coherent states, the specific form of which is determined by its
initial state [70]. This is because the magnon-number parity is
conserved during the two-magnon quantum state engineering
process, such that the final state depends on the parity of
the initial state. If we initially prepare the magnon mode in
the vacuum state (even parity), the final state of the system
will take the form |�s〉 = |�〉 ⊗ |g〉, where |�〉 is the even

FIG. 3. Fidelity F vs the dimensionless variable �t by numeri-
cally solving the master Eq. (14), where the initial state of the system
is |0〉 ⊗ |g〉. The parameters are chosen as g = √

2gx = √
2gz =

2π × 0.15 GHz, ν = 2π × 3GHz, � = 2π × 33.75 MHz, and � =
2π × 15 MHz.

Schrödinger cat state

|�〉 = (|α〉 + | − α〉)/
√

2 + 2e−2α2 , (15)

with the displacement α =
√

�ν
4gxgz

. In addition, the amplitude

α can be readily controlled by tuning the external driving mi-
crowave field. According to a dissipative quantum dynamical
process, the magnonic cat state can be generated. As a conse-
quence, it does not need the accurate control of the evolution
time and the projective measurement, greatly loosening the
requirement for the experimental implementation. To confirm
the above discussion, we numerically solve master Eq. (14)
with the system initialized in the state |0〉 ⊗ |g〉. Here we
define the fidelity F = Tr[ρsρm], where ρs = |�〉〈�| is the
density matrix of the target state and ρm = Trqubit (ρ) is the
reduced density matrix of the magnon mode by tracing out
the freedom of the qubit. Figure 3 displays the numerical
result. With the time evolution, it is observed that the fidelity
F converges to 1 at the steady state, implying that the magnon
mode in the YIG sphere eventually evolves into the even cat
state with α = 1.5. Additionally, we can see that the presence
of the qubit’s pure dephasing has almost no effect on the
quantum state preparation. This is due to the fact that the
final state of the qubit is the ground state. In the subsequent
discussion, we always set �φ = 2π × 15 MHz.

To further elucidate the quantum characteristics of the gen-
erated state, we employ the Wigner function for validation,
which has the form [71]

W (α) = 2

π
〈D(α)PD(−α)〉, (16)

where D(α) = exp(αa† − α∗a) is the state displaced operator,
P = exp(iπa†a) is the parity operator, and 〈〉 denotes the
expected value. It represents the quasiprobability distribution
of a given quantum state in the phase space, enabling a
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FIG. 4. Time evolution of the Wigner function by numerically solving the the master equation (14). Initial absence of negativity transitions
to gradually pronounced negativity, culminating in an even cat state with α = 1.5. The parameters are chosen the same as in Fig. 3.

visualization of its quantum features. Figure 4 illustrates
the time evolution of the Wigner function from the initial
magnonic vacuum state to an even cat state at the stationary
state, i.e., �t = 15. In the phase space, two coherent states
| ± α〉 with α = 1.5 are observed to be localized in opposite
sides. Meanwhile, the quantum interference of them leads
to two negative peaks clearly, manifesting the nonclassical
properties of the magnonic cat state.

Up to now, we have ignored the dissipation of the magnon
mode in the YIG sphere, which is unavoidable and affects
the fidelity of the desired state. In fact, its energy relaxation
will break the conservation of parity during the quantum state
preparation, thereby spoiling the coherence. However, for a
large enough nonlinear coupling geff , the two-magnon process
transiently dominates the dynamics, such that we can produce
a high-fidelity magnonic state. In Fig. 5, we investigate the
fidelity of the magnonic cat state by adding the dissipation
term of the magnon mode into the master Eq. (14), where
the energy damping rate is κ = αGω, and αG is the Gilbert
damping constant. In current experiments, αG can typically
reach the value of 10−5–10−4 for a high-quality YIG sphere
[2,50,54,72]. Even for the damping constant αG = 1 × 10−4,

FIG. 5. Numerical result of the fidelity F vs the Gilbert damping
constant αG at the different evolution times �t = 10 and 15. The
other parameters are chosen the same as in Fig. 3.

we can see that the fidelity F > 0.97 can still be achieved at
the time points �t = 10 and 15. On the other hand, we also
examine the impact of the magnon dissipation on the Wigner
function. Figure 6 exhibits the time evolution of the Wigner
function by considering the damping constant αG. For the
case of αG = 1 × 10−5, i.e., as seen in Fig. 6(a), the Wigner
function in the whole phase space has negligible deviation
from the ideal case αG = 0. Although there is a reduction of
the Wigner negativity under the situation of αG = 1 × 10−4,
i.e., as shown in Fig. 6(b), the quantum nature of the generated
magnonic state is still clearly visible in the negative fringes of
the Wigner function.

IV. CONCLUSION

Before concluding, we now discuss the experimental fea-
sibility of our proposed scheme. For the flux qubit referring
to experimentally achievable parameters [61,63,64], we se-
lect a persistent current of IP = 0.4 µA and a side length of
L = 10 µm, which can generate a magnetic field of Bx

FQ =
4.5 × 10−5 mT at the center of the qubit loop. Combined with
the chosen radius of the YIG sphere R = 0.5 µm, our scheme
can produce a direct coupling strength of g ≈ 2π × 0.15 GHz
between the magnon mode and the qubit. Additionally, in our
proposed model, the bias magnetic field of the YIG sphere is
parallel to the qubit, ensuring that the bias field setting does
not impact the qubit’s performance. Based on these parameter
settings and model design, our scheme can be experimentally
implemented.

In conclusion, we have investigated the magnetic coupling
between a high-quality YIG sphere and a superconducting
flux qubit in detail, and proposed achieving a strong non-
linear two-magnon interaction by biasing the qubit away
from its degeneracy point. Based on a well-designed two-
magnon drive and dissipation process, we further showcase
that the magnon mode in the YIG sphere can be driven into
the Schrödinger cat state with high fidelity through the en-
ergy relaxation of the flux qubit. Our scheme has several
distinct advantages. Unlike previous works that mostly rely
on unitary dynamical evolution processes, our approach is
based on a dissipative quantum state engineering process,
and consequently neither the precise control of evolution
time nor the projective measurement is required. More-
over, our scheme is insensitive to the pure dephasing of
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FIG. 6. Time evolution of the Wigner function in the presence of the energy damping of the magnon mode in the YIG sphere, i.e., the
damping constant is αG = 1 × 10−5 for (a) and αG = 1 × 10−4 for (b). The other parameters are chosen the same as in Fig. 3.

the flux qubit, which makes it more feasible in realistic
experiments.
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APPENDIX: DERIVATION OF THE EFFECTIVE
HAMILTONIAN

Here, we provide a detailed derivation of the effective
Hamiltonian Eq. (13) from the time-dependent Hamiltonian
Eq. (12).

We denote the time-dependent part of Eq. (12) as H ′
t (t ),

which can be rewritten in the following form:

H ′
t (t ) =

∑
m=1,2,3

h†
meiδmt + H.c., (A1)

with h†
1 = gxaσ̄+, h†

2 = gxa†σ̄+, h†
3 = gza†σ̄z, and δ1 = δ3 =

ν
2 , δ2 = 3ν

2 . Given that the condition ν � gx, gz is satisfied,
the parameter δm in Eq. (A1) is sufficiently large. As a result,
the system’s large detuning condition is satisfied. Thus, we
can substitute Eq. (A1) into the standard form of the effective
Hamiltonian to obtain the effective Hamiltonian of H ′

t (t ),
denoted as Ht

eff , which takes the form [73]

Ht
eff =

∑
m,n=1,2,3

− 1

δn
[h†

mh†
nei(δm+δn )t + hmh†

ne−i(δm−δn )t

− h†
mhnei(δm−δn )t − hmhne−i(δm+δn )t ]. (A2)

Then, by employing the rotating-wave approximation and
neglecting the rapidly oscillating terms, Eq. (A2) can be

simplified to

Ht
eff =

∑
n=1,2,3

1

δn
[h†

n, hn] +
m<n∑

m,n=1,2,3

1

δ̄mn
{[h†

m, hn]ei(δm−δn )t

+ H.c., (A3)

with δ̄mn = δm+δn
2 . By substituting the specific commuta-

tion relations of the operators, according to Eq. (A1), into
Eq. (A3), we obtain

Ht
eff = 8g2

x

3ν
(2a†a|e〉〈e| + |e〉〈e| − a†a) + g2

x

ν
(a2σ̄ze

−iνt

+ a†2σ̄ze
iνt ) − gxgz

ν
(1 + 2a†a)(σ̄+eiνt + σ̄−e−iνt )

− 4gxgz

ν
(a†2σ̄− + a2σ̄+), (A4)

where aa† = 1 + a†a and |g〉〈g| = 1 − |e〉〈e| have been used.
Now, by neglecting the rapidly oscillating terms in Eq. (A4)
and including the time-independent terms from Eq. (12), the
effective Hamiltonian of the system is

Heff =
(
� − 8g2

x

3ν

)
a†a + 8g2

x

3ν
(2a†a|e〉〈e| + |e〉〈e|)

− 4gxgz

ν
(a†2σ̄− + a2σ̄+) + �(σ̄+ + σ̄−). (A5)

By setting � = 8g2
x

3ν
, we can obtain the form of Eq. (13):

Heff = 8g2
x

3ν
(|e〉〈e| + 2a†a|e〉〈e|) − geff (a2σ̄+ + a†2σ̄−)

+ �(σ̄+ + σ̄−), (A6)

with the effective two-magnon coupling geff = 4gxgz

ν
.

013711-6



ROBUST GENERATION OF A MAGNONIC CAT STATE VIA … PHYSICAL REVIEW A 110, 013711 (2024)

[1] H. Y. Yuan, Y. Cao, A. Kamra, R. A. Duine, and P. Yan,
Quantum magnonics: When magnon spintronics meets quan-
tum information science, Phys. Rep. 965, 1 (2022).

[2] B. Zare Rameshti, S. Viola Kusminskiy, J. A. Haigh, K. Usami,
D. Lachance-Quirion, Y. Nakamura, C.-M. Hu, H. X. Tang,
G. E. Bauer, and Y. M. Blanter, Cavity magnonics, Phys. Rep.
979, 1 (2022).

[3] D. Lachance-Quirion, Y. Tabuchi, A. Gloppe, K. Usami, and
Y. Nakamura, Hybrid quantum systems based on magnonics,
Appl. Phys. Express 12, 070101 (2019).

[4] Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami,
and Y. Nakamura, Hybridizing ferromagnetic magnons and mi-
crowave photons in the quantum limit, Phys. Rev. Lett. 113,
083603 (2014).

[5] Y.-P. Wang, J. W. Rao, Y. Yang, P.-C. Xu, Y. S. Gui, B. M. Yao,
J. Q. You, and C.-M. Hu, Nonreciprocity and unidirectional
invisibility in cavity magnonics, Phys. Rev. Lett. 123, 127202
(2019).

[6] S. P. Wolski, D. Lachance-Quirion, Y. Tabuchi, S. Kono, A.
Noguchi, K. Usami, and Y. Nakamura, Dissipation-based quan-
tum sensing of magnons with a superconducting qubit, Phys.
Rev. Lett. 125, 117701 (2020).

[7] Y. Yang, Y.-P. Wang, J. W. Rao, Y. S. Gui, B. M. Yao, W. Lu,
and C.-M. Hu, Unconventional singularity in anti-parity-time
symmetric cavity magnonics, Phys. Rev. Lett. 125, 147202
(2020).

[8] P. Pirro, V. I. Vasyuchka, A. A. Serga, and B. Hillebrands,
Advances in coherent magnonics, Nat. Rev. Mater. 6, 1114
(2021).

[9] X. Zhang, C.-L. Zou, L. Jiang, and H. X. Tang, Cavity mag-
nomechanics, Sci. Adv. 2, e1501286 (2016).

[10] X. Zhang, C.-L. Zou, N. Zhu, F. Marquardt, L. Jiang, and
H. X. Tang, Magnon dark modes and gradient memory, Nat.
Commun. 6, 8914 (2015).

[11] D. Zhang, X.-M. Wang, T.-F. Li, X.-Q. Luo, W. Wu, F. Nori, and
J. You, Cavity quantum electrodynamics with ferromagnetic
magnons in a small yttrium-iron-garnet sphere, npj Quantum
Inf. 1, 15014 (2015).

[12] A. A. Serga, A. V. Chumak, and B. Hillebrands, YIG magnon-
ics, J. Phys. D 43, 264002 (2010).

[13] L. Bai, M. Harder, Y. P. Chen, X. Fan, J. Q. Xiao, and C.-M. Hu,
Spin pumping in electrodynamically coupled magnon-photon
systems, Phys. Rev. Lett. 114, 227201 (2015).

[14] A. Gardin, J. Bourhill, V. Vlaminck, C. Person, C. Fumeaux,
V. Castel, and G. C. Tettamanzi, Manifestation of the coupling
phase in microwave cavity magnonics, Phys. Rev. Appl. 19,
054069 (2023).

[15] J. A. Haigh, A. Nunnenkamp, A. J. Ramsay, and A. J. Ferguson,
Triple-resonant Brillouin light scattering in magneto-optical
cavities, Phys. Rev. Lett. 117, 133602 (2016).

[16] H. Y. Yuan, P. Yan, S. Zheng, Q. Y. He, K. Xia, and M.-H. Yung,
Steady Bell state generation via magnon-photon coupling, Phys.
Rev. Lett. 124, 053602 (2020).

[17] G.-Q. Zhang, Y. Wang, and W. Xiong, Detection sensitivity
enhancement of magnon Kerr nonlinearity in cavity magnon-
ics induced by coherent perfect absorption, Phys. Rev. B 107,
064417 (2023).

[18] X. Zhang, N. Zhu, C.-L. Zou, and H. X. Tang, Optomagnonic
whispering gallery microresonators, Phys. Rev. Lett. 117,
123605 (2016).

[19] M. Harder, B. M. Yao, Y. S. Gui, and C.-M. Hu, Coherent
and dissipative cavity magnonics, J. Appl. Phys. 129, 201101
(2021).

[20] F.-X. Sun, S.-S. Zheng, Y. Xiao, Q. Gong, Q. He, and K.
Xia, Remote generation of magnon Schrödinger cat state via
magnon-photon entanglement, Phys. Rev. Lett. 127, 087203
(2021).

[21] H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein,
A. Marx, R. Gross, and S. T. B. Goennenwein, High cooper-
ativity in coupled microwave resonator ferrimagnetic insulator
hybrids, Phys. Rev. Lett. 111, 127003 (2013).

[22] A. Navabi, Y. Liu, P. Upadhyaya, K. Murata, F. Ebrahimi,
G. Yu, B. Ma, Y. Rao, M. Yazdani, M. Montazeri, L. Pan,
I. N. Krivorotov, I. Barsukov, Q. Yang, P. Khalili Amiri, Y.
Tserkovnyak, and K. L. Wang, Control of spin-wave damping
in YIG using spin currents from topological insulators, Phys.
Rev. Appl. 11, 034046 (2019).

[23] Y. Li, W. Zhang, V. Tyberkevych, W.-K. Kwok, A. Hoffmann,
and V. Novosad, Hybrid magnonics: Physics, circuits, and ap-
plications for coherent information processing, J. Appl. Phys.
128, 130902 (2020).

[24] J.-X. Peng, A. Kundu, Z.-X. Liu, A. u. Rahman, N. Akhtar,
and M. Asjad, Vector photon-magnon-phonon coherence in a
polarized microwave driven cavity magnomechanical system,
Phys. Rev. B 109, 064412 (2024).

[25] X.-L. Hei, P.-B. Li, X.-F. Pan, and F. Nori, Enhanced tripartite
interactions in spin-magnon-mechanical hybrid systems, Phys.
Rev. Lett. 130, 073602 (2023).

[26] X.-L. Hei, X.-L. Dong, J.-Q. Chen, C.-P. Shen, Y.-F. Qiao, and
P.-B. Li, Enhancing spin-photon coupling with a micromagnet,
Phys. Rev. A 103, 043706 (2021).

[27] A. Osada, R. Hisatomi, A. Noguchi, Y. Tabuchi, R. Yamazaki,
K. Usami, M. Sadgrove, R. Yalla, M. Nomura, and Y.
Nakamura, Cavity optomagnonics with spin-orbit coupled pho-
tons, Phys. Rev. Lett. 116, 223601 (2016).

[28] X. Zhang, C.-L. Zou, L. Jiang, and H. X. Tang, Strongly cou-
pled magnons and cavity microwave photons, Phys. Rev. Lett.
113, 156401 (2014).

[29] M. Goryachev, W. G. Farr, D. L. Creedon, Y. Fan, M.
Kostylev, and M. E. Tobar, High-cooperativity cavity QED with
magnons at microwave frequencies, Phys. Rev. Appl. 2, 054002
(2014).

[30] Y. Li, T. Polakovic, Y.-L. Wang, J. Xu, S. Lendinez, Z. Zhang, J.
Ding, T. Khaire, H. Saglam, R. Divan, J. Pearson, W.-K. Kwok,
Z. Xiao, V. Novosad, A. Hoffmann, and W. Zhang, Strong
coupling between magnons and microwave photons in on-chip
ferromagnet-superconductor thin-film devices, Phys. Rev. Lett.
123, 107701 (2019).

[31] J. T. Hou and L. Liu, Strong coupling between microwave pho-
tons and nanomagnet magnons, Phys. Rev. Lett. 123, 107702
(2019).

[32] J. Bourhill, N. Kostylev, M. Goryachev, D. L. Creedon, and
M. E. Tobar, Ultrahigh cooperativity interactions between
magnons and resonant photons in a YIG sphere, Phys. Rev. B
93, 144420 (2016).

[33] Z.-X. Liu, H. Xiong, M.-Y. Wu, and Y.-Q. Li, Absorption
of magnons in dispersively coupled hybrid quantum systems,
Phys. Rev. A 103, 063702 (2021).

[34] Z.-H. Yuan, Y.-J. Chen, J.-X. Han, J.-L. Wu, W.-Q. Li, Y. Xia,
Y.-Y. Jiang, and J. Song, Periodic photon-magnon blockade in

013711-7

https://doi.org/10.1016/j.physrep.2022.03.002
https://doi.org/10.1016/j.physrep.2022.06.001
https://doi.org/10.7567/1882-0786/ab248d
https://doi.org/10.1103/PhysRevLett.113.083603
https://doi.org/10.1103/PhysRevLett.123.127202
https://doi.org/10.1103/PhysRevLett.125.117701
https://doi.org/10.1103/PhysRevLett.125.147202
https://doi.org/10.1038/s41578-021-00332-w
https://doi.org/10.1126/sciadv.1501286
https://doi.org/10.1038/ncomms9914
https://doi.org/10.1038/npjqi.2015.14
https://doi.org/10.1088/0022-3727/43/26/264002
https://doi.org/10.1103/PhysRevLett.114.227201
https://doi.org/10.1103/PhysRevApplied.19.054069
https://doi.org/10.1103/PhysRevLett.117.133602
https://doi.org/10.1103/PhysRevLett.124.053602
https://doi.org/10.1103/PhysRevB.107.064417
https://doi.org/10.1103/PhysRevLett.117.123605
https://doi.org/10.1063/5.0046202
https://doi.org/10.1103/PhysRevLett.127.087203
https://doi.org/10.1103/PhysRevLett.111.127003
https://doi.org/10.1103/PhysRevApplied.11.034046
https://doi.org/10.1063/5.0020277
https://doi.org/10.1103/PhysRevB.109.064412
https://doi.org/10.1103/PhysRevLett.130.073602
https://doi.org/10.1103/PhysRevA.103.043706
https://doi.org/10.1103/PhysRevLett.116.223601
https://doi.org/10.1103/PhysRevLett.113.156401
https://doi.org/10.1103/PhysRevApplied.2.054002
https://doi.org/10.1103/PhysRevLett.123.107701
https://doi.org/10.1103/PhysRevLett.123.107702
https://doi.org/10.1103/PhysRevB.93.144420
https://doi.org/10.1103/PhysRevA.103.063702


YU-BO HOU et al. PHYSICAL REVIEW A 110, 013711 (2024)

an optomagnonic system with chiral exceptional points, Phys.
Rev. B 108, 134409 (2023).

[35] S. Das, S. Chakraborty, and T. N. Dey, Gain-assisted con-
trollable fast-light generation in cavity magnomechanics, Phys.
Rev. A 108, 033517 (2023).

[36] J.-K. Xie, S.-L. Ma, Y.-L. Ren, S.-Y. Gao, and F.-L. Li, Chiral
cavity-magnonic system for the unidirectional emission of a
tunable squeezed microwave field, Phys. Rev. A 108, 033701
(2023).

[37] C. Zhao, Z. Yang, D. Wang, Y. Yan, C. Li, Z. Wang, and
L. Zhou, Quantum networks assisted by dark modes in opto-
magnonic systems, Phys. Rev. A 108, 043703 (2023).

[38] Y. Li, V. G. Yefremenko, M. Lisovenko, C. Trevillian, T.
Polakovic, T. W. Cecil, P. S. Barry, J. Pearson, R. Divan,
V. Tyberkevych, C. L. Chang, U. Welp, W.-K. Kwok, and
V. Novosad, Coherent coupling of two remote magnonic res-
onators mediated by superconducting circuits, Phys. Rev. Lett.
128, 047701 (2022).

[39] J. Li, Y.-P. Wang, J.-Q. You, and S.-Y. Zhu, Squeezing mi-
crowaves by magnetostriction, Natl. Sci. Rev. 10, nwac247
(2022).

[40] R.-C. Shen, J. Li, Z.-Y. Fan, Y.-P. Wang, and J. Q. You, Mechan-
ical bistability in Kerr-modified cavity magnomechanics, Phys.
Rev. Lett. 129, 123601 (2022).

[41] C. Zhao, Z. Yang, R. Peng, J. Yang, C. Li, and L. Zhou,
Dissipative-coupling-induced transparency and high-order side-
bands with Kerr nonlinearity in a cavity-magnonics system,
Phys. Rev. Appl. 18, 044074 (2022).

[42] R. Hou, W. Zhang, X. Han, H.-F. Wang, and S. Zhang, Magnon
blockade based on the Kerr nonlinearity in cavity electro-
magnonics, Phys. Rev. A 109, 033721 (2024).

[43] S. He, X. Xin, F.-Y. Zhang, and C. Li, Generation of a
Schrödinger cat state in a hybrid ferromagnet-superconductor
system, Phys. Rev. A 107, 023709 (2023).

[44] Q. Guo, J. Cheng, H. Tan, and J. Li, Magnon squeezing by two-
tone driving of a qubit in cavity-magnon-qubit systems, Phys.
Rev. A 108, 063703 (2023).

[45] J.-K. Xie, S.-L. Ma, and F.-L. Li, Quantum-interference-
enhanced magnon blockade in an yttrium-iron-garnet sphere
coupled to superconducting circuits, Phys. Rev. A 101, 042331
(2020).

[46] X. Li, X. Wang, Z. Wu, W.-X. Yang, and A. Chen, Tunable
magnon antibunching in a hybrid ferromagnet-superconductor
system with two qubits, Phys. Rev. B 104, 224434 (2021).

[47] F. Wang, C. Gou, J. Xu, and C. Gong, Hybrid magnon-atom
entanglement and magnon blockade via quantum interference,
Phys. Rev. A 106, 013705 (2022).

[48] Y.-L. Ren, J.-K. Xie, X.-K. Li, S.-L. Ma, and F.-L. Li, Long-
range generation of a magnon-magnon entangled state, Phys.
Rev. B 105, 094422 (2022).

[49] V. Azimi-Mousolou, A. Bergman, A. Delin, O. Eriksson, M.
Pereiro, D. Thonig, and E. Sjöqvist, Transmon probe for quan-
tum characteristics of magnons in antiferromagnets, Phys. Rev.
B 108, 094430 (2023).

[50] Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki,
K. Usami, and Y. Nakamura, Coherent coupling between a
ferromagnetic magnon and a superconducting qubit, Science
349, 405 (2015).

[51] D. Xu, X.-K. Gu, H.-K. Li, Y.-C. Weng, Y.-P. Wang, J. Li, H.
Wang, S.-Y. Zhu, and J. Q. You, Quantum control of a single

magnon in a macroscopic spin system, Phys. Rev. Lett. 130,
193603 (2023).

[52] T. Ikeda, A. Ito, K. Miuchi, J. Soda, H. Kurashige, and Y.
Shikano, Axion search with quantum nondemolition detection
of magnons, Phys. Rev. D 105, 102004 (2022).

[53] D. Lachance-Quirion, S. P. Wolski, Y. Tabuchi, S. Kono, K.
Usami, and Y. Nakamura, Entanglement-based single-shot de-
tection of a single magnon with a superconducting qubit,
Science 367, 425 (2020).

[54] M. Kounalakis, G. E. W. Bauer, and Y. M. Blanter, Analog
quantum control of magnonic cat states on a chip by a super-
conducting qubit, Phys. Rev. Lett. 129, 037205 (2022).

[55] H. Y. Yuan, J. Xie, and R. A. Duine, Magnon bundle in
a strongly dissipative magnet, Phys. Rev. Appl. 19, 064070
(2023).

[56] S. Yuan, C. Liu, J. Chen, S. Liu, J. Lan, H. Yu, J. Wu, F. Yan,
M.-H. Yung, J. Xiao, L. Jiang, and D. Yu, Spin-wave-based tun-
able coupler between superconducting flux qubits, Phys. Rev. A
107, 012434 (2023).

[57] Z.-Y. Jin and J. Jing, Magnon blockade in magnon-qubit sys-
tems, Phys. Rev. A 108, 053702 (2023).

[58] M. Kounalakis, S. Viola Kusminskiy, and Y. M. Blanter, Engi-
neering entangled coherent states of magnons and phonons via
a transmon qubit, Phys. Rev. B 108, 224416 (2023).

[59] Y. Fan, J. Li, and Y. Wu, Nonclassical magnon pair generation
and Cauchy-Schwarz inequality violation, Phys. Rev. A 108,
053715 (2023).

[60] A.-L. E. Römling, A. Vivas-Viaña, C. S. Muñoz, and A. Kamra,
Resolving nonclassical magnon composition of a magnetic
ground state via a qubit, Phys. Rev. Lett. 131, 143602 (2023).

[61] J. Bylander, S. Gustavsson, F. Yan, F. Yoshihara, K. Harrabi,
G. Fitch, D. G. Cory, Y. Nakamura, J.-S. Tsai, and W. D.
Oliver, Noise spectroscopy through dynamical decoupling with
a superconducting flux qubit, Nat. Phys. 7, 565 (2011).

[62] S.-L. Ma, J.-K. Xie, and F.-L. Li, Generation of superposition
coherent states of microwave fields via dissipation of a super-
conducting qubit with broken inversion symmetry, Phys. Rev.
A 99, 022302 (2019).

[63] X. Zhu, S. Saito, A. Kemp, K. Kakuyanagi, S.-i. Karimoto, H.
Nakano, W. J. Munro, Y. Tokura, M. S. Everitt, K. Nemoto,
M. Kasu, N. Mizuochi, and K. Semba, Coherent coupling of
a superconducting flux qubit to an electron spin ensemble in
diamond, Nature (London) 478, 221 (2011).

[64] F. Yan, S. Gustavsson, A. Kamal, J. Birenbaum, A. P. Sears,
D. Hover, T. J. Gudmundsen, D. Rosenberg, G. Samach,
S. Weber, J. L. Yoder, T. P. Orlando, J. Clarke, A. J.
Kerman, and W. D. Oliver, The flux qubit revisited to en-
hance coherence and reproducibility, Nat. Commun. 7, 12964
(2016).

[65] M. J. Schwarz, J. Goetz, Z. Jiang, T. Niemczyk, F. Deppe, A.
Marx, and R. Gross, Gradiometric flux qubits with a tunable
gap, New J. Phys. 15, 045001 (2013).

[66] I. C. Skogvoll, J. Lidal, J. Danon, and A. Kamra, Tunable
anisotropic quantum Rabi model via a magnon–spin-qubit en-
semble, Phys. Rev. Appl. 16, 064008 (2021).

[67] T. Holstein and H. Primakoff, Field dependence of the intrinsic
domain magnetization of a ferromagnet, Phys. Rev. 58, 1098
(1940).

[68] C. Kittel, On the theory of ferromagnetic resonance absorption,
Phys. Rev. 73, 155 (1948).

013711-8

https://doi.org/10.1103/PhysRevB.108.134409
https://doi.org/10.1103/PhysRevA.108.033517
https://doi.org/10.1103/PhysRevA.108.033701
https://doi.org/10.1103/PhysRevA.108.043703
https://doi.org/10.1103/PhysRevLett.128.047701
https://doi.org/10.1093/nsr/nwac247
https://doi.org/10.1103/PhysRevLett.129.123601
https://doi.org/10.1103/PhysRevApplied.18.044074
https://doi.org/10.1103/PhysRevA.109.033721
https://doi.org/10.1103/PhysRevA.107.023709
https://doi.org/10.1103/PhysRevA.108.063703
https://doi.org/10.1103/PhysRevA.101.042331
https://doi.org/10.1103/PhysRevB.104.224434
https://doi.org/10.1103/PhysRevA.106.013705
https://doi.org/10.1103/PhysRevB.105.094422
https://doi.org/10.1103/PhysRevB.108.094430
https://doi.org/10.1126/science.aaa3693
https://doi.org/10.1103/PhysRevLett.130.193603
https://doi.org/10.1103/PhysRevD.105.102004
https://doi.org/10.1126/science.aaz9236
https://doi.org/10.1103/PhysRevLett.129.037205
https://doi.org/10.1103/PhysRevApplied.19.064070
https://doi.org/10.1103/PhysRevA.107.012434
https://doi.org/10.1103/PhysRevA.108.053702
https://doi.org/10.1103/PhysRevB.108.224416
https://doi.org/10.1103/PhysRevA.108.053715
https://doi.org/10.1103/PhysRevLett.131.143602
https://doi.org/10.1038/nphys1994
https://doi.org/10.1103/PhysRevA.99.022302
https://doi.org/10.1038/nature10462
https://doi.org/10.1038/ncomms12964
https://doi.org/10.1088/1367-2630/15/4/045001
https://doi.org/10.1103/PhysRevApplied.16.064008
https://doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1103/PhysRev.73.155


ROBUST GENERATION OF A MAGNONIC CAT STATE VIA … PHYSICAL REVIEW A 110, 013711 (2024)

[69] A. Blais, J. Gambetta, A. Wallraff, D. I. Schuster, S. M. Girvin,
M. H. Devoret, and R. J. Schoelkopf, Quantum-information
processing with circuit quantum electrodynamics, Phys. Rev. A
75, 032329 (2007).

[70] M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard, R. J.
Schoelkopf, L. Jiang, and M. H. Devoret, Dynamically pro-
tected cat-qubits: A new paradigm for universal quantum
computation, New J. Phys. 16, 045014 (2014).

[71] Z. Leghtas, S. Touzard, I. M. Pop, A. Kou, B. Vlastakis, A.
Petrenko, K. M. Sliwa, A. Narla, S. Shankar, M. J. Hatridge,

M. Reagor, L. Frunzio, R. J. Schoelkopf, M. Mirrahimi, and
M. H. Devoret, Confining the state of light to a quantum mani-
fold by engineered two-photon loss, Science 347, 853 (2015).

[72] S. Klingler, H. Maier-Flaig, C. Dubs, O. Surzhenko, R. Gross,
H. Huebl, S. T. B. Goennenwein, and M. Weiler, Gilbert damp-
ing of magnetostatic modes in a yttrium iron garnet sphere,
Appl. Phys. Lett. 110, 092409 (2017).

[73] D. F. James and J. Jerke, Effective Hamiltonian theory and
its applications in quantum information, Can. J. Phys. 85, 625
(2007).

013711-9

https://doi.org/10.1103/PhysRevA.75.032329
https://doi.org/10.1088/1367-2630/16/4/045014
https://doi.org/10.1126/science.aaa2085
https://doi.org/10.1063/1.4977423
https://doi.org/10.1139/p07-060

