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Entanglement formation between magnon and center-of-mass motion of a levitated
particle in a magnomechanical system
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Entanglement formation between the magnons as the internal degrees of freedom and the center-of-mass
motion (CM) as the external degrees of freedom of a levitated yttrium iron garnet (YIG) sphere in a cavity-
magnomechanical system is studied. Here, we propose a scheme for generating magnon-CM entanglement
independent from the mass and size of the sphere in the hybrid magnonic system by driving the magnon with
the parametric amplification. First, we show that the power and frequency of the driving field significantly
affect this entanglement, since the driving field increases effective magnon-CM coupling. But, by increasing
the magnon damping rate, this entanglement considerably decreases. Moreover, in the next step, we demonstrate
the manipulation and enhancement of this entanglement by driving the magnon into the squeezed state. Our
results present an approach for preparing quantum states and may find promising applications in the quantum
metrology and sensing.
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I. INTRODUCTION

Magnetic materials have emerged as a compelling al-
ternative for achieving robust light-matter interactions. The
advent of hybrid magnonic systems has introduced a new
type of quantum system that is based on magnons (collective
spin excitations) of a ferromagnetic crystal such as yttrium
iron garnet (YIG) which provides unique properties, i.e.,
high spin density and low damping rate, as well as offers
a promising avenue for exploring the frontiers of quantum
technologies. Magnons have been extensively investigated be-
cause of their long coherence times [1–5] as well as their
potential for coupling with other quantum excitations, such
as other magnons [6], spin qubits [7,8], and optical and
microwave photons [9–12]. Furthermore, magnons could cou-
ple to deformation phonons through magnetostrictive force
[13,14] and the center-of-mass motion (CM) through an inho-
mogeneous driving field [7,8,15], which may open up a new
way to thoroughly study quantum phenomena and promising
applications in quantum communication and information. In
other words, various magnonic-based hybrid quantum sys-
tems have led to some interesting effects, e.g., ground-state
cooling of the mechanical vibration mode [16,17], spin cur-
rent control [18,19], magnon-phonon entanglement, magnon-
squeezed states [20–26], coherent optical-to-microwave con-
version [27,28], and magnon-induced nonreciprocity [29,30].
Additionally, intriguing applications have been investi-
gated in such hybrid systems, such as precision measure-
ments [31–34], long-time memory [35,36], ultraslow light

*Contact author: phsnbayati@gmail.com
†Contact author: ali.mahdifar@sci.ui.ac.ir
‡Contact author: m-bagheri@phys.ui.ac.ir

engineering [37,38], magnon lasers [39,40], quantum ther-
mometry [41], and magnon-photon manipulation using excep-
tional points [42–46].

On the other hand, it is noteworthy that a magnet particle
can be trapped using various techniques, for example, with
an ion trap [47], with a magnetic trap [48,49], with an optical
trap [50], or by being clamped to an ultrahigh-Q mechanical
resonator [51]. In addition, alternative levitation methods,
such as magnetic levitation in a microwave cavity [52] or
floating above a superconductor in free space [53,54], have
the potential to levitate and cool millimeter-sized spherical
magnets. So, besides the magnonic system, levitated objects
offer a robust platform for exploring the boundary between
the classical and quantum realms with massive objects
[55,56]. Moreover, their weak coupling to the environment
and their capability to cool their center-of-mass motion
make them ideal systems for sensing weak forces [57,58].
Intriguing possibilities have been proposed for interacting
systems comprising levitated particles, consisting of dark
matter detection [59] and measurement of quantum gravity
[60]. Beyond these significant aspects, levitated systems
provide an excellent framework for studying nonequilibrium
physics [61]. Furthermore, using these quantum systems for
ultrasensitive force detection opens up innovative avenues for
commercial sensing applications [62].

Quantum entanglement stands out as a remarkable as-
pect of quantum mechanics. This quantum effect plays an
important role in different applications, including quantum
metrology [63], quantum computing [64], quantum memory
[65], and quantum teleportation [66,67]. Quantum entan-
glement not only facilitates the development of quantum
technologies but also contributes to a deeper understanding of
the quantum behaviors exhibited by quantum systems. More-
over, entangled states naturally have a key role in quantum
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control experiments when studying the nonclassical phenom-
ena [68]. In addition, squeezed states, crucial quantum states,
play a significant role in quantum measurement. For instance,
squeezed light can enhance the sensitivity of interferometers
in gravitational-wave detection [69,70], generate an entan-
gled source for quantum teleportation [71], and improve the
entangled state [72,73]. So, due to these exceptional char-
acteristics of squeezed states, various approaches have been
suggested to prepare squeezed states of magnons and pho-
tons based on magnonic systems, e.g., applying ferromagnetic
anisotropy [74], employing a two-tone microwave field to
drive the magnon mode [75], and transferring squeezing from
a squeezed vacuum microwave [26].

As we know, the ability to generate the entanglement is at
the center of most protocols in quantum information and quan-
tum processing. Also, motivated by the features of magnonic
and levitated systems, we are interested in studying the entan-
glement between magnons as the internal degrees of freedom
and the CM as the external degrees of freedom associated with
a levitated particle in a hybrid magnonic system.

To this end, in the present paper, we consider a microwave
cavity magnomechanical system, composed of a levitated
YIG sphere. Additionally, in the proposed magnomechanical
system we propose a parametric amplification drive for the
magnon subsystem to prepare the magnon squeezed state. We
demonstrate that we can enhance and manipulate the entan-
glement by magnon squeezing.

The obtained magnon-CM entanglement (MCE) has the
following properties. It is independent of the size and mass
of the YIG sphere and is increased by increasing the driving
field. Although the MCE is sensitive to the temperature, we
can preserve it up to higher temperatures by assuming magnon
squeezing. In other words, magnon squeezing plays a com-
pensation role against the temperature increasing. Also, the
MCE between the external and internal degrees of freedom
has potential applications in the study of macroscopic quan-
tum phenomena. Moreover, utilizing these external degrees
of freedom enables manipulation of the magnon degrees of
freedom.

The paper is organized as follows. In Sec. II the quantum
system is introduced, and then the dynamics of the system is
investigated through the quantum Langevin-Heisenberg equa-
tions of motion. The numerical results are studied in Sec. III.
Finally, the conclusion and outlook are given in Sec. IV.

II. THE SYSTEM AND HAMILTONIAN

The system we are going to investigate is a cavity-
magnomechanical system with a levitated YIG sphere whose
center of mass is trapped in a harmonic oscillator potential.
In addition, a homogeneous magnetic field is applied on the
sphere to excite the magnon modes [76,77]. A schematic of
the system under study is shown in Fig. 1. The Hamiltonian
of the system can be decomposed to the following three
contributions:

Ĥ = Ĥ0 + Ĥint + Ĥd . (1)

The first term Ĥ0 is the free Hamiltonian, given by

Ĥ0/h̄ = ωaâ†â + ωmm̂†m̂ + ωc

2

(
x̂2 + p̂2

x

)
, (2)

FIG. 1. Schematic of the cavity which consists of the levitated
YIG sphere and is driven by an external field.

where the first two terms describe the cavity and the magnonic
modes, with the bosonic annihilation operators â and m̂ with
frequencies ωa and ωm, respectively. In the third term, x̂
and p̂x are the position and momentum operators of the
magnetic particle CM that oscillates at ωc, the frequency of
the trap.

The second term, Ĥint, in the Hamiltonian (1) describes the
interaction between the magnon and photon modes as

Ĥint/h̄ = gam(â†m̂ + âm̂†) cos(k x), (3)

where we have used the rotating-wave approximation. As is
known, the magnon-photon coupling which is characterized
by the magnetic dipole interaction, Hint = − �m · �Bcav, can be
studied as the coupling between a microwave cavity mode
and the Kittel magnon [8,9,15]. It is worth mentioning that
the magnon frequency is determined by the external magnetic
field B0 and the gyromagnetic ratio γ /2π = 28 GHz/T as
ωm = γ B0. Moreover, we assumed that the cavity mode along
ŷ direction has the form as �Bcav = ŷB cos(kx), where k is
the microwave field wave number [15]. The magnon-photon
coupling strength is gam = γ

2

√
h̄ωaμ0

Va

√
2ρsV s, in which Va and

V are the mode volume of the cavity mode and the volume
of the YIG sphere, respectively, s = 5

2 is the spin number of
the YIG’s ground state, μ0 is the vacuum permeability, and ρs

is the spin density of the YIG sphere. Here, we focus on the
Kittle magnon mode which is the homogeneous ground state
of the magnonic mode and can be simply tuned by B0.

The last term, Ĥd , in Hamiltonian (1) represents the driving
of the cavity mode and the magnon mode with parametric
amplification:

Ĥd/h̄ = εd (â†e−iωd t − âeiωd t )

+ iρ

2
(m̂†2eiθ e−iω0t + m̂2e−iθ eiω0t ), (4)

where ωd is frequency of an external laser which drives the
cavity mode with the amplitude εd =

√
2γaPd

h̄ωd
. Here, γa and Pd

denote the cavity decay rate and the power of the input drive
field, respectively. Moreover, the last term in Hd represents
the squeezing of the magnonic mode where ρ and θ are
the squeezing parameter and phase. It should be noted that
magnon squeezing can be realized by, e.g., squeezing from the
cavity with a squeezed vacuum field [26], using the anisotropy
of the ferromagnet [74], or driving a qubit with two microwave
fields in cavity-magnon-qubit systems [75].
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By expanding cos(kx) up to the first order in x around the
minimum position of the trap, x0, and supposing ωd = ω0, the
total Hamiltonian (1) in the frame rotating at this frequency is
given by

Ĥ/h̄ = �aâ†â + �mm̂†m̂ + ωcĉ†ĉ

+ (âm̂† + â†m̂)[gam cos(kx0) − gamc sin(kx0)(ĉ† + ĉ)]

+ εd (â† − â) + iρ

2
(m̂†2eiθ + m̂2e−iθ ), (5)

where � j = ω j − ωd ( j = a and m) is the detuning between
the photon and magnon excitations concerning the driving
field and ĉ is the annihilation operator of the CM oscil-
lation. Also, the photon-magnon-CM coupling strength is
determined by gamc = gamk

√
h̄

2ρmV ωc
, where the YIG sphere’s

mass density is ρm = 5170 kg m−3. It should be noted that
gamc is independent of the sphere’s mass and size and the
Kittel magnon frequency can be adjusted to rather close to
on-resonance with the cavity mode.

Dynamics of the system

By employing the quantum Langevin equations (QLEs),
which are obtained by adding damping and noise terms to
the Heisenberg equations [78], we can describe the dynamics
of cavity, magnonic, and levitated particle CM subsystems as
follows:

ˆ̇a = −
(

γa

2
+ i�a

)
â + i gamc sin(kx0) m̂ (ĉ + ĉ†) − iεd

− i gam cos(kx0) m̂ + √
γaâin,

ˆ̇m = −
(

γm

2
+ i�m

)
m̂ + i gamc sin(kx0) â (ĉ + ĉ†) + ρeiθ m̂†

− i gam cos(kx0) â + √
γmm̂in,

ˆ̇c = −
(
γc

2
+ iωc

)
ĉ + i gamc sin(kx0) (âm̂† + â†m̂) + √

γcĉin.

(6)

Here, γo (o = a, m, and c) is the related damping rate, and
the noise operator ôin is considered to satisfy the following
correlation functions:

〈ôin(t )ôin†(t ′)〉 = (n̄o + 1)δ(t − t ′),
(7)

〈ôin†(t )ôin(t ′)〉 = n̄oδ(t − t ′),

where n̄o = [e( h̄ωo
kBT ) − 1]−1 is the bosonic mode’s mean ther-

mal occupation, T is the temperature of the thermal environ-
ment, and kB is the Boltzmann constant. In order to find the
solutions of the nonlinear QLEs in Eqs. (6), we decompose
each operator as the sum of its steady-state value and a small
fluctuation as ô = o0 + δô, and we ignore small second-order
fluctuation terms. The equations of the steady-state mean val-
ues of the system are obtained as

ȧ0 = −
(
γa

2
+ i�a

)
a0 − i(Gam + 2GamcRe[c0])m0 − i

εd = 0,

ṁ0 = −
(

γm

2
+ i�m

)
m0 − i(Gam + 2GamcRe[c0])

a0 + ρeiθ = 0,

ċ0 = −
(

γc

2
+ iωc

)
c0 − iGamc(a0m∗

0 + a∗
0m0) = 0,

(8)

where Gamc = −gamc sin(kx0) (which has small experimental
value) and Gam = gam cos(kx0). Furthermore, we suppose that
the YIG sphere is located at the node of the cavity magnetic
field, which is k x0 = (2n + 1)π/2 [15]. On the other hand,
the levitation developments enable us to control the parti-
cle position [56]. Therefore, we could achieve Gam = 0 and
Gamc = −gamc via controlling the particle position. Also, we
assume that |ρ| � |εd |. With these assumptions, we can ob-
tain stable solutions. So, the steady-state values are obtained
as follows:

a0 	 −iεd

γa/2 + i�a
, m0 = c0 	 0. (9)

Besides, the linearized QLEs for the quantum fluctuations are
obtained as follows:

δ ˙̂a(t ) = −
(

γa

2
+ i�a

)
δâ + √

γaâin,

δ ˙̂m(t ) = −
(

γm

2
+ i�m

)
δm̂ − igeff (δĉ + δĉ†) + ρeiθ δm̂†

+ √
γmm̂in,

δ ˙̂c(t ) = −
(

γc

2
+ iωc

)
δĉ − igeff (δm̂† + δm̂) + √

γcĉin,

(10)

where geff = gamc|a0| is an effective coupling. In addition, we
choose a0 as a real positive number (we have ignored the
phase of a0). It should be noted that, by supposing the power
of the driving field to be about a milliwatt, i.e., Pd ∼ mW, we
will obtain the effective coupling geff in the Hz–kHz range,
which is an important factor to have for the magnon-CM
entanglement. It is clear from Eqs. (10) that the fluctuations
of the cavity mode are decoupled from the other modes of the
hybrid magnonic system. In this case, the system is reduced
effectively into two subsystems in which the magnon mode in
the microwave regime is coupled to the CM of the YIG sphere
as the external degrees of freedom. Now, we can rewrite the
above equations in terms of quadrature fluctuations as follows:

δu̇(t ) = Aδu(t ) + Q. (11)

Here δu = (δXm, δYm, δXc, δYc)T , the quadrature fluctuation
operators are defined as δXo ≡ δo+δo†√

2
and δYo ≡ δo−δo†√

2i
, and

the drift matrix A is given by

A =

⎛
⎜⎜⎜⎝

− γm

2 + ρ cos θ �m + ρ sin θ 0 0

−�m + ρ sin θ − γm

2 − ρ cos θ 2geff 0

0 0 − γc

2 ωc

2geff 0 −ωc − γc

2

⎞
⎟⎟⎟⎠.

(12)

Also, similarly the noise quadratures are defined as

X in
o ≡ oin+oin†

√
2

and Y in
o ≡ oin−oin†

√
2i

, and the vector Q =
(
√

γmX in
m ,

√
γmY in

m ,
√

γcX in
c ,

√
γcX in

c ) is the noise vector.
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It should be mentioned that the hybrid magnomechanical
system’s stability is controlled by the Routh-Hurwitz criterion
[79]. In fact, the system is stable only if all the eigenvalues
of the drift matrix have negative real parts. According
to this criterion, we have selected the parameters so that
the cavity-magnomechanical system with a levitated YIG
sphere will be stable. Moreover, because we are applying
the linearized quantum Langevin equations and also because
the input noises have Gaussian nature, the Gaussian state
of the system will be preserved. So, the steady state of the
system will be characterized by its 4 × 4 covariance matrix
(CVM):

Vi j = 〈ui(t )u j (t ) + u j (t )ui(t )〉
2

. (13)

In addition, the steady state of the CVM can be obtained by
letting t → ∞ in the above equation and solving the Lya-
punov equation:

AV + V AT = −D, (14)

where the diffusion matrix is given by

DT = diag(γmnm, γmnm, γcnc, γcnc), (15)

with nm(c) ≡ (n̄m(c) + 1/2). In next section, we
demonstrate the magnon-CM entanglement in the
cavity-magnomechanical system by applying the logarithmic
negativity.

III. MAGNON–CENTER-OF-MASS MOTION
ENTANGLEMENT

In this section, to investigate the bipartite entanglement
between the magnon and CM modes, we calculate the loga-
rithmic negativity which is defined as [80]

EN = Max[0,−ln2v−], (16)

where the lowest symplectic eigenvalue of the partial trans-
pose of CVM, v−, is given by

v− = 1
2 [
(V )2 −

√

(V )2 − 4DetV ]1/2, (17)

with 
(V ) ≡ DetVm + DetVc − 2DetVmc. In addition, we have
used the following form of the CVM:

V =
(

Vm Vmc

V T
mc Vc

)
, (18)

where

Vm ≡
(

V11 V12

V21 V22

)
and Vc ≡

(
V33 V34

V43 V44

)
(19)

are the 2 × 2 sub-block matrices associated with the magnon
and the CM modes, respectively, and

Vmc ≡
(

V13 V14

V23 V24

)
(20)

is the sub-block matrix related to their correlation.
In the following, we investigate the MCE in our hybrid

magnonic system, in the two situations of the absence and the
presence of the magnon squeezing. That is, we investigate the
role of squeezing in the nonclassical correlations.

FIG. 2. Magnon-CM entanglement versus the normalized de-
tuning frequency �m/ωc and the effective coupling geff/ωc for (a)
γm/2π = 0.1 MHz and (b) γm/2π = 0.24 MHz. The parameters are
selected as follows: ωm/2π = 30 GHz, γc/2π = 10−3 Hz, ωc/2π =
50 kHz, and T = 10 mK [3,15].

In the first setup, we ignore the magnon squeezing, i.e.,
we assume ρ = 0. In this situation, we consider MCE by
using the logarithmic negativity, Eq. (16). In Fig. 2, we have
plotted EN versus the normalized detuning frequency �/ωc

and the effective coupling strength geff/ωc. Obviously, the
MCE has considerable enhancement by increasing the effec-
tive coupling strength. Besides, the magnon-CM modes show
entanglement in a wide range of detuning frequency, espe-
cially around �m 	 ωc. Additionally, considering an ultrapure
YIG, the damping rate of the magnon mode, γm/2π , can
be smaller than the order of MHz. [3,15]. So, by supposing
γm/2π = 0.1 MHz, we have an MCE of more than 0.35 as
shown in Fig. 2(a). However, when we increase the damping
rate of the magnon (i.e., γm/2π = 0.24 MHz [3]), the bipartite
entanglement EN decreases, as is shown in Fig. 2(b). The
other parameters are chosen as ωm/2π = 30 GHz, ωc/2π =
50 kHz, and γc/2π = 10−3 Hz. [15].
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FIG. 3. Magnon-CM entanglement versus (a) the normalized
detuning frequency �m/ωc (T = 10 mK) and (b) temperature T K
(�m = ωc) for various effective couplings: geff = 0.7ωc (solid green
line), geff = 0.6ωc (dashed purple line), geff = 0.5ωc (dot-dashed
red line), geff = 0.4ωc (dotted blue line), geff = 0.3ωc (dot-dot-
dashed pink line), geff = 0.2ωc (dash-dash-dotted black line), and
geff = 0.1ωc (dash-dash-dot-dotted brown line). (c) The entangle-
ment death’s temperature, Td , versus the effective coupling, geff/ωc.
Damping rate γm/2π = 0.1 MHz and the other parameters are the
same as those in Fig. 2(a).

To get more insight, in Fig. 3(a), the MCE has been
plotted versus the normalized detuning frequency, �/ωc,
for various values of the effective coupling strength:
geff = 0.7ωc (solid green line), geff = 0.6ωc (dashed
purple line), geff = 0.5ωc (dot-dashed red line), geff = 0.4ωc

(dotted blue line), geff = 0.3ωc (dot-dot-dashed pink line),

and geff = 0.2ωc (dash-dash-dotted black line), geff = 0.1ωc

(dash-dash-dot-dotted brown line). As previously noted, by
increasing the effective coupling strength, especially in the
vicinity of resonance � 	 ωc, we have the maximum values
of entanglement. It should be noted that we can increase
the effective coupling strength by a strong external driving
field. Therefore, the power and frequency of the driving field
as two controllable parameters have a significant role in
entanglement enhancement.

In addition, in Fig. 3(b) we have plotted the MCE versus
the temperature T for various values of the effective coupling
strength. As is evident, the temperature increasing will lead to
entanglement decrement between the magnon and CM modes.
This figure shows that entanglement death occurs at a specific
temperature. Thus, we define a death temperature, Td , as the
temperature which induces a transition from the nonzero to
the zero MCE. In Fig 3(c), we show the entanglement death’s
temperature, Td , in terms of the effective coupling, geff/ωc.
Interestingly, by increasing the effective coupling, we can
preserve the two-mode entanglement at the higher tempera-
ture ranges. As is known, when the magnon damping rate is
increased, the MCE decreases considerably. So, for preserving
this bipartite entanglement, in the following we consider the

FIG. 4. Magnon-CM entanglement versus (a) the normalized de-
tuning frequency �m/ωc with T = 10 mK and (b) the temperature
T with �m = 1.3ωc in the presence and absence of the magnon
squeezing, solid red line and dashed purple line, respectively, by
γm/2π = 0.24 MHz and geff = 0.7ωc. The other parameters are the
same as those in Fig. 2(b).
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FIG. 5. Magnon-CM entanglement versus the normalized de-
tuning frequency �m/ωc and the effective coupling geff/ωc, in the
presence of the magnon squeezing. The parameters are the same as
those in Fig. 2(b).

magnon squeezing [74,75,81], i.e., ρ �= 0, and we study the
influence of this nonclassical effect on the MCE.

In the second setup, we concentrate on the role of magnon
squeezing, as a nonclassical effect, on the enhancement
and the manipulation of the MCE. To obtain more insights
about the effects of magnon squeezing, in Fig. 4, we have
plotted the MCE versus the normalized detuning frequency,
�m/ωc, and the temperature, T , in the presence (red line) and
absence (blue line) of the magnon squeezing. As it is seen,
by enhancing the damping rate of the magnon, we can see
the MCE up to the temperature of 250 mK. Furthermore,
in Fig. 5 the MCE has been plotted versus the normalized
detuning frequency �m/ωc and the effective coupling geff/ω.
A comparison between Figs. 5 and 2(b) clearly shows that
the MCE increases due to magnon squeezing, while magnon
damping rate is enhanced in comparison with Fig. 2(a). In
Fig. 6 the MCE has been plotted versus the squeezing pa-
rameter ρ and the phase θ . It should be noted that the MCE
increases by enhancing the squeezing parameter. In addition,
the maximum of the entanglement happens around θ = π .
Interestingly, this nonclassical effect allows us to manipulate
entanglement through two squeezing parameters. As is men-
tioned before, the hybrid magnomechanical system’s stability
is determined by the Routh-Hurwitz criterion. Therefore, it
is worth noting that the blank, uncalculated parameters in
Figs. 2(a) and 6 demonstrate the system is unstable for these
parameters.

Remark. One of the most convenient measures for
the squeezing is expressed in the dB unit, given by
−10 Log10[〈(δXm)2〉/〈(δXm)2〉vac], where 〈(δXm)2〉vac = 0.5
denotes the vacuum fluctuations [26,82]. The variance
〈(δXm)2〉 can be determined in terms of the CVM elements,
so that for the magnon mode we have 〈(δXm)2〉 = V11. It is
worth noting that, for the parameters that we used, the level of
magnon squeezing is approximately 1 dB.

FIG. 6. Magnon-CM entanglement versus the normalized
squeezing parameters ρ/ωc and the phase θ/π with geff = 0.7ωc

and �m = 1.3ωc. The parameters are the same as those in Fig. 2(b).

FIG. 7. (a) Magnon-CM entanglement versus temperature T (K)
for various magnon squeezing parameters: ρ = 2ωc (solid green
line), ρ = 1.5ωc (dashed purple line), ρ = ωc (dot-dashed red line),
ρ = 0.5ωc (dotted blue line), and ρ = 0 (dot-dot-dashed brown line).
(b) The entanglement death’s temperature Td versus the normalized
magnon squeezing parameter ρ/ωc. The damping rate γm/2π =
0.24 MHz, the effecting coupling geff = 0.7ωc, the detuning fre-
quency �m = 1.3ωc, and the other parameters are the same as those
in Fig 2(b).
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In addition, in Fig. 7(a) we have plotted the MCE versus
the temperature T for different values of magnon squeezing
parameters: ρ = 2ωc (solid green line), ρ = 1.5ωc (dashed
purple line), ρ = ωc (dot-dashed red line), ρ = 0.5ωc (dotted
blue line), and ρ = 0 (dot-dot-dashed brown line). As men-
tioned before, the MCE decreases by increasing temperatures,
but if we look at the entanglement death’s temperature Td

versus the normalized magnon squeezing parameters, as il-
lustrated in Fig. 7(b), by enhancing the magnon squeezing, we
can preserve the MCE at higher temperatures. As an important
result, we find that by changing the magnon squeezing, we can
control this bipartite entanglement. In order to understand the
physical reason of this behavior, we must note that increasing
the magnon squeezing parameter ρ causes the nonlinearity of
the system to be enhanced and finally causes the entanglement
to increase. Moreover, the MCE is sensitive to temperature
and the nonlinearity induced by magnon squeezing helps to
preserve the entanglement at higher temperatures.

Finally, let us discuss how to measure the bipartite en-
tanglement. In order to measure EN at the steady state, one
needs to measure the CVM [23,83]. Also, by sending a weak
microwave probe field and homodyning the cavity output of
the probe field, we can read out the magnon state. This ap-
proach requires that the dissipation rate of the magnon mode
be smaller than the dissipation rate of the cavity mode, such
that when the drive field is switched off and all cavity photons
are decayed, the magnon state remains almost unchanged
[20]. However, a better approach would be to detect entan-
glement indirectly. It means that using indirect measurement,
the magnon state and the mechanical state read out separately,

utilizing auxiliary cavities with beam-splitter-like interactions
with those two modes [83,84].

IV. CONCLUSION AND OUTLOOK

We have proposed a scheme for formation of entanglement
in a cavity magnomechanical system, including a levitated
YIG sphere micromagnet. In fact, by supposing that the YIG
sphere is trapped in the node of the cavity magnetic field,
the effective coupling that is independent of mass and size
of the YIG sphere arises between magnon and CM and is
increased by increasing the driving field. We find that the
entanglement death’s temperature increases by enhancing the
effective coupling.

However, by increasing the magnon damping rate, this en-
tanglement considerably decreases. Therefore, for enhancing
the MCE, we assume the magnon squeezing and we demon-
strate that this nonclassical effect has a significant role in the
manipulation and increment of MCE. In other words, magnon
squeezing gives us the opportunity to preserve this entangle-
ment at elevated temperatures even if the magnon damping
rate increases. Interestingly, this entanglement between the
external and internal degrees of freedom finds potential ap-
plication in the study of macroscopic quantum phenomena.
Since the CM degrees freedom are external degrees of free-
dom, their manipulation is possible. Thus, with these external
degrees of freedom we can manipulate the magnon degrees
of freedom. Therefore, the entanglement between magnons
and CM provides this opportunity to manipulate the magnon
subsystem.
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