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Cavity spin twisting in coherent population trapping
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Spin twisting is generally not incompatible with steady-state atomic coherence because spin twisting as
a representative kind of parametric processes is based on far-off-resonant atom-field interactions while the
steady-state atomic coherence is achieved mainly by resonant interactions. Here we propose a resonant plus
far-off-resonant scheme to generate the compatibility. The resonant part uses coherent population trapping (CPT)
for steady-state maximal atomic coherence, while the far-off-resonant part utilizes Stark shift for a nonlinear
response in analog with the motion of a cavity mirror under radiation pressure. The compatible combination
CPT with the spin optodymanics analog to cavity optomechanics leads to the spin one- or two-axis-twisting
together with steady-state maximal atomic coherence. The general conditions and the parameter regimes for the
compatibility are analyzed. This scheme illustrates that the combination of CPT with Stark shift provides an
efficient way for the compatibility of the spin twisting squeezing with steady-state maximal atomic coherence.
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I. INTRODUCTION

Squeezed spin states [1–4] have applications in so many
fields such as Ramsey spectroscopy [1–4], atomic clocks
[2,3], gravitational wave interferometers [5–7], and quantum
information processing [8–11]. There are two representa-
tive squeezing mechanisms [1–4], which are respectively
referred to as one-axis-twisting (OAT) Ĥ ∝ Ĵ2

y or Ĥ ∝ Ĵ2
z , and

two-axis-twisting (TAT) Ĥ ∝ Ĵ2
y − Ĵ2

z , where (Ĵy, Ĵz ) are zero-
mean components orthogonal to the total mean J = Jx. These
two mechanisms, which are suited for a pair of ground states,
are established through the dispersive atom-field interactions
in � configuration [12–26]. An initial spin coherent state is
prepared by optically pumping the atoms into a ground state
and then by applying a microwave π/2 pulse to yield the Jx

component as the total mean spin J = Jx. Then an evolution
into the spin squeezed states is usually performed by using
optical π pulses [15–18].

The spin twisting as a large type of parametric processes
since it is based on far off-resonant atom-field interactions,
is generally not coexistent with steady-state large or maxi-
mal atomic coherence, which is usually based on resonant
or near-resonant interactions. The large or maximal atomic
coherence is just highly demanded for quantum manipula-
tion, such as single photon swap gate [27], efficient nonlinear
frequency conversion [28–31], and storage and retrieval of
coherent optical information [32]. We propose a resonant plus
far-off-resonant scheme.

On one hand, the resonant part is based on coherent pop-
ulation trapping (CPT) [33] and used to yield steady-state
maximal atomic coherence. When two beams of lasers couple
two atomic ground states to a common excited state in � con-
figuration, the atoms are trapped in a coherent superposition
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(dark state) of the ground states. Since the atoms stay in
the dark state, fluorescence disappears. Within the CPT win-
dow, the absorption and the fluorescence emission remains
negligibly weak, and in contrast, the dispersive nonlinearity
is remarkably strong. As is well known, CPT underlines a
wealth of related phenomena such as electromagnetically in-
duced transparency [34–37], laser without inversion [38–41],
magnetometry [42], nonlinear optics at low light levels [37],
and atomic spin squeezing [36,37,43]. Here we use CPT for
steady-state maximal level coherence and interferingly elimi-
nating spontaneous emission.

On the other hand, the far-off-resonant part is relied
on Stark shift and acts as spin optodynamics analogous to
cavity optomechanics. Cavity optomechanics has arisen as
a fascinating field controlling macroscopic mechanical ob-
jects at the quantum limit [44]. The position change of a
mechanical oscillator by radiation pressure gives an incre-
ment to the frequency of cavity photons. Various phenomena
emerge, including ponderomotive optical squeezing [45],
quantum-limited measurements [46], cavity cooling [47,48],
and mechanical response to photon shot noise [49]. In terms of
bare atomic states, an analog of spin optodynamics to cavity
optomechanics was proposed by Brahms and Stamper-Kurn
[50], who used an ac Stark shift in the absence of resonant
interaction. In the present scheme, we introduce the ac Stark
shift into the CPT resonant system. In this setting, we con-
struct a CPT based cavity spin optodynamics and exploit the
similarities between CPT based spins and harmonic oscilla-
tors [51]. The Stark shift interaction of the ground state spin
with the cavity field turns out to take an analog of the cavity
optomechanics in terms of the dark state.

The compatible combination of CPT resonance with spin
optomechanics analog drives the system into a steady state, in
which spin OAT or TAT (or general twisting between them) is
coexistent with the maximal atomic coherence as long as the
applied fields persist. We performed an analytic description
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and a numerical calculation for the coexistent effects. The
steady-state squeezing reaches about 50% (3 dB), which is
the best degree for the noise squeezing as in the parametric
processes [52,53].

The most remarkable difference of our scheme from the
previous ones lies in the compatible combination of reso-
nant interaction (CPT) with far-off-resonant interaction (Stark
shift), and in the coexistence of the steady-state maximal
atomic coherence with the spin twisting squeezing. Previ-
ously, to seek for the nonlinearities for the spin twisting and
to avoid spontaneous emission, one resorts to far-off-resonant
(purely dispersive) cases, where the atoms are hardly excited
and spontaneous emission is free. However, the steady-state
atomic coherence is prepared usually when resonant inter-
actions are employed. The nonlinearities necessary for the
spin twisting are spoiled when some resonant processes are
involved. To performing the spin twisting squeezing mech-
anisms, it is necessary to prepare initially the coherent spin
states by using microwave pulses. In a surprising contrast, in
our scheme, there is no need to prepare the initial coherent
spin states. Specifically, it is no longer necessary to prepare
initially the large or maximal atomic coherence. As the sys-
tem evolves into the steady state, the resonant part (CPT)
maintains the atomic dark state and gives the steady-state
maximal atomic coherence and the far-off-resonant part (spin
optomechanics analog) induces the OAT or TAT (or general
twisting between them) and yields the spin squeezing. It is the
compatible combination of CPT with the spin optomechan-
ics analog that leads to the coexistence of the spin twisting
squeezing with the steady-state maximal atomic coherence.

II. STEADY-STATE MAXIMAL ATOMIC COHERENCE
AND SPIN OPTOMECHANICS ANALOG

First of all, we present our model system. As shown in
Fig. 1(a), an ensemble of N atoms interacts resonantly or
near-resonantly with two coherent fields in � configuration
and far off resonantly with a cavity field leading to a N
configuration. The master equation is derived for the density
operator ρ̂ of the coupled system in a dipole approximation
and an appropriate rotating frame as (h̄ = 1) [52,53]

˙̂ρ = −i[ĤCPT + ĤStark, ρ̂] + Lρ̂, (1)

with

ĤCPT = �1(Ĵ13 + Ĵ31) + �2(Ĵ23 + Ĵ32) + (�1 − �2)Ĵ22

+ �1Ĵ33, (2)

ĤStark = g(â†Ĵ24 + Ĵ42â) + (�1 − �2 + �0)Ĵ44

+ i(εâ†ei�ct − ε∗âe−i�ct ), (3)

Lρ̂ =
N∑

μ=1

(�1LĴ13,μ
ρ̂ + �1LĴ23,μ

ρ̂ + �2LĴ14,μ
ρ̂ + �2LĴ24,μ

ρ̂

+ γzLĴz,μ
ρ̂ ) + κLâρ̂, (4)

where ĤCPT, ĤStark, and Lρ̂ are the CPT interaction, the
atom-cavity-field interaction, and the vacuum-induced re-
laxation, respectively. We define Ĵi j = ∑N

μ=1 Ĵi j,μ (Ĵi j,μ =

FIG. 1. Resonant plus far off-resonant atom-field interaction for
spin optodynamics analog to cavity optomechanics. (a) The picture
in terms of bare states (|1〉, |2〉, |3〉, |4〉). The atoms are trapped co-
herently in the bare state |1〉 and |2〉 by the two classical fields (Rabi

frequencies �1,2) through the |1〉 �1↔ |3〉 and |2〉 �2↔ |3〉 transitions in
� configuration with. Not shown in the sketch are the spontaneous

transitions |3〉 �1� |1, 2〉 and |4〉 �2� |1, 2〉. The far off-resonant |2〉 â↔
|4〉 transition (large detuning �0) with a cavity field (annihilation
operator â) is introduced for ac Stark shift (dispersive interaction).
(b) The picture with the ground state superpositions (|D〉, |B〉). The
dark state |D〉 collects all population while the bright state |B〉 be-
comes empty. CPT is performed through the successive coherent and

spontaneous transitions |B〉 �̄↔ |3〉 �1� |D〉. Raman transition between
|D〉 and |B〉 through the virtual level |4〉 by the far off-resonant cavity
field â creates cavity optomechanics-like interaction [Eq. (14)].

(|i〉〈 j|)μ, i, j = 1, 2, 3, 4) as the collective spin-flip (i �= j)
and population projection (i = j) operators. â and â† are the
annihilation and creation operators, respectively, of the quan-
tized cavity field. �1,2 are half Rabi frequencies (real) for the
transitions |1, 2〉 ↔ |3〉. g is the coupling constant between
the cavity field and the atoms and ε is the amplitude of the
external driving field. � j = ω j3 − ω j ( j = 1, 2) and �0 =
ω24 − ωc are the atom-field detunings, ω1,2 are the frequencies
of the CPT fields, ωc is the cavity field frequency. �c =
ωc − ω0 is the cavity detuning from the external driving field
frequency ω0. Lôρ in the relaxation term Lρ takes the from
with Lôρ = ôρô† − 1

2 ô†ôρ − 1
2ρô†ô, Ĵz,μ = Ĵ22,μ − Ĵ11,μ. �1

(�2) is the rate of spontaneous emission from the excited state
|3〉 (|4〉) to the ground state |1〉 and |2〉, respectively, γz is the
dephasing rate of the ground state |1〉 and |2〉 and κ is the
rate of the cavity loss. For cold atoms the phase damping is
negligibly weak compared with the atomic and cavity decay
rates: γz ∼ (10−4 ∼ 10−3)(�1,2, κ ) ≪ (�1,2, κ ).

The present model consists of CPT effect and Stark shift
as its two compartible parts. Let’s describe first the CPT
effect due to the driving fields (�1,2). In terms of a pair of
superposition states [33–37]

|D〉 = 1

�̄
(−�2|1〉 + �1|2〉),

(5)

|B〉 = 1

�̄
(�1|1〉 + �2|2〉),

where �̄ =
√

�2
1 + �2

2. In the case of two-photon resonance
(�1 = �2 = �), Hamiltonian (2) takes a simple form

ĤCPT = �̄(ĴB3 + Ĵ3B) + �Ĵ33, (6)
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in which the |D〉 state is decoupled and �̄ acts as an effective
field. As shown in Fig. 1(b), through the successive coherent

and spontaneous transitions |B〉 �̄−→ |3〉 �1� |D〉, the atoms are
only transferred into the |D〉 state but not out of it. In the
absence of the cavity field (ga = 0), to the first order in γz/�1,
we easily obtain steady-state solutions such as

JDD = N

[
1 − 2γz

�1

(
1 + �2

1 + �2

2�̄2

)]
, (7)

where and from now on we denote the mean value of any
operator by removing the hat on it. Since the phase damping is
negligibly weak (γz/�1 → 0), so long as �/�̄ is not too large
we have

JDD = N, Ji j = 0 (i, j = D, B, 3; i j �= DD), (8)

which indicates clearly that the atoms are trapped in the |D〉
state while both |B〉 and |3〉 states are empty. The |D〉 state is
usually named the “dark state,” while the |B〉 state is called the
“bright state.” The atoms, since they stay in the |D〉 state as a
coherent superposition of the |1〉 and |2〉 states, essentially flip
only forward and back between them. This is just the so-called
“dark resonance.” Using the reverse transform of Eq. (5), we
can obtain the atomic populations and coherence in terms of
the bare states (|1〉, |2〉, |3〉). For �1 = �2 = � we have

J11 = J22 = N

2
, J12 = −N

2
, (9)

which indicates the maximal atomic coherence between the
ground states when CPT happens.

For convenience we define the Cartesian components
(Ĵx, Ĵy, Ĵz) using single letter axis names as the subscripts
and discriminating the flip and projection operators with two
atomic level letters as subscripts

Ĵx ≡ −(Ĵ12 + Ĵ21) = ĴDD − ĴBB,

Ĵy ≡ −i(Ĵ12 − Ĵ21) = i(ĴDB − ĴBD),

Ĵz ≡ Ĵ22 − Ĵ11 = ĴDB + ĴBD. (10)

Using Eqs. (8) or (9) we express the means of the Cartesian
components

Jx = N, Jy = Jz = 0. (11)

Next we turn to the Stark shift due to the cavity field
(ga �= 0). Eliminating the excited state |4〉 and using the equal
detunings �1 = �2 = � for CPT, we simplify the interaction
Hamiltonian H̃Stark in Eq. (3) to

ĤStark = − g2

�0
â†âĴ22 + i(εâ†ei�ct − ε∗âe−i�ct ). (12)

The first term indicates the atomic state |2〉 shift −(g2/�0)a∗a
by the cavity and the cavity field frequency shift −(g2/�0)J22

by the atoms. We assume that the amount of the atomic Stark
shift is much smaller than the parameters for CPT: g2a∗a �
�̄|�0|, so that the atoms do not escape from the ground states
|1〉 and |2〉 even under the perturbation of the cavity field.
This weak shift introduces a small detuning to the otherwise
resonant two-photon transition between the ground states |1〉
and |2〉. Although the otherwise resonant two-photon transi-
tion between them is made slightly detuned due to the Stark

shift of the |2〉 state, the maximal atomic coherence is well
maintained, Jx ≈ N .

In terms of the dark and bright states |D〉 and |B〉 in Eq. (5),
we write

Ĵ22 = 1
2 (ĴDB + Ĵ†

DB + ĴDD + ĴBB). (13)

Actually, the pair of operators ĴDB and Ĵ†
DB are the zero mean

components orthogonal to the total spin JDD − JBB = N and
follow their commutation relation [ĴDB, Ĵ†

DB] = N . This means
that the spin ensemble acts as bosons in terms of the superpo-
sition states. Then the Hamiltonian (12) for Stark shift takes
the form

ĤStark = −Gâ†â(ĴDB + Ĵ†
DB + ĴDD + ĴBB)

+ i(εâ†ei�ct − ε∗âe−i�ct ), (14)

where we define the interaction strength G = g2/(2�0).
The interaction is pictorially depicted in Fig. 1(b). The
−Gâ†â(ĴDB + Ĵ†

DB) term describes the Raman transition be-
tween |D〉 and |B〉 through |4〉 (as virtual state) and displays
a CPT-based spin ĴDB optodynamics analog to cavity optome-
chanics [44,50], while the −Gâ†â(ĴDD + ĴBB) term describes
the transitions from |D〉 (and |B〉) through |4〉 (as the virtual
state) back to |D〉 (and |B〉) and gives the atomic and field
shifts. So far the resonant plus far-off-resonant four-level sys-
tem is reduced to a resonant three-level one.

Now the simplified three-level system, which is described
by Hamiltonians (6) and (14) in terms of the equivalent states
(|D〉, |B〉, |3〉), serves for our purpose. In Appendix A we
derive Heisenberg-Langevin equations in the presence of the
Stark shift using the Hamiltonians (6) and (14) and following
the standard techniques (as shown in Chap. 12 of [52] and
in Chap. 9 in [53]). At the same time we give the steady-
state atomic solutions. For the conditions we are interested
in for the present scheme (the very weak phase damping
γz � �1 and the weak cavity field g2a∗a � �̄|�0|), as given
in Eqs. (A11) and (A12), Eq. (8) holds. That is, the atoms keep
trapped in the dark state. Correspondingly, Eqs. (9) and (11)
hold. This establishes the cavity optomechanics analog while
the present system keeps its steady-state maximal atomic co-
herence J12 ≈ −N/2 (i.e., Jx ≈ N). This lays a foundation for
us to explore the coexistence of the spin twisting squeezing
with the steady-state maximal atomic coherence.

The essential difference of the present scheme from
the optomechanical systems is the coexistence of the spin
optomechanics analog [Eq. (14)] with the resonant CPT in-
teraction [Eq. (6)]. This is the very novelty of the present
work. It is known that, in cavity optomechanics, there are
no resonant interactions involved and there happen only
the purely dispersive (far-off-resonant) interactions. Previous
schemes for spin squeezing are mainly confined to the far-off-
resonant systems to avoid resonant excitation and resonance
fluorescence. In sharp contrast, usually the resonant inter-
actions and resonance fluorescence have to be faced within
spin systems. Since CPT is a best way to avoid the reso-
nance fluorescence, we expect that CPT resonance-involved
spin optodynamics generates spin squeezing. Our purpose
is to show that the cavity optomechanics analog manifests
its effect in the CPT resonance-based system. In addition,
The optomechanical-like interaction −Gâ†â(ĴDB + Ĵ†

DB) is
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accompanied with frequency shift −Gâ†â(ĴDD + ĴBB). In con-
trast, the latter is absent in the optomechanical systems. This
leads to the cavity frequency shift −GN and the atomic-state
frequency shift −Ga∗a. Such shifts will be fed to the ground-
state spin that we are interested in and exert their effects
on the spin uncertainty. To sum up, what we focus on is
not the purely dispersive cavity optomechanics itself but its
compatible combination with the CPT resonance.

III. SPIN TWISTING VIA SPIN
OPTOMECHANICS ANALOG

Next we make an analytic analysis for the coexistent coher-
ent effects of cavity optomechanics analog and the resonant
CPT interaction. In Appendix A we derive a complete set
of Heisenberg-Langevin equations [Eq. (A3)] and give the
steady-state atomic solutions [Eqs. (A11) and (A12)], JDD ≈
N , Ji j ≈ 0 (i, j = D, B, 3; i j �= DD) for the negligible phase
damping (γz � �1) and for the given cavity field (g2a∗a �
�̄|�0|). In this situation we have a self-consistently coupled
system for â, ĴD3, and ĴDB. We take Heisenberg-Langevin
equations from Eq. (A3) as follows:

˙̂a = ε −
[
κ

2
+ i(�c − GĴDD)

]
â + iGâ(ĴDB + Ĵ†

DB) + F̂a,

˙̂JD3 = −[�̃ + i(� + Gâ†â)]ĴD3 − i
√

2�ĴDB + F̂JD3 ,

˙̂JDB = −γz(ĴDB − Ĵ†
DB) − i

√
2�ĴD3 + iGâ†â(ĴDD − ĴBB)

+ F̂JDB , (15)

where we define �̃ = �1 + γz/2 as the decay rate for
ĴD3, and F̂ ′s terms are white-noise operators with corre-
lations 〈F̂o(t )F̂o′ (t ′)〉 = 2Doo′δ(t − t ′). The nonzero correla-
tions are derived as 2Daa† = κ , 2DJDBJ†

DB
= 2γzN , 2DJDBJDB =

2DJ†
DBJ†

DB
= −γzN , and 2DJD3J†

D3
= 2�̃N . We write the cavity

field as the sum of the mean a ( �= 0) and fluctuating parts
â = a + δâ. Since Eq. (8) holds we have Ĵi j ≈ δĴi j . Then
Eq. (15) is rewritten

δ̇â = −
(

κ

2
+ i�̃c

)
δâ + iGa(ĴDB + Ĵ†

DB) + F̂a,

˙̂JD3 = −(�̃ + i�̃)ĴD3 − i
√

2�ĴDB + F̂JD3 ,

˙̂JDB = −γz(ĴDB − Ĵ†
DB) − i

√
2�ĴD3 + iGN (a∗δâ + aδâ†)

+ F̂JDB , (16)

where we defined �̃ = � + Ga∗a and �̃c = �c − GN as the
detunings in the presence of the Stark shift. Since the cavity
field noise sideband δâ and the atomic operator ĴD3 decays
much more rapidly than the ground-state operator ĴDB (i.e.,
�̃, κ � γz), we can eliminate δâ and ĴD3 by setting δ̇â = 0
and ˙̂JD3 = 0. After doing this we substitute δâ and ĴD3 into
the equation for ĴDB and give

˙̂JDB = −γz(ĴDB − Ĵ†
DB) − [γ + i(α + δ)]ĴDB − iαĴ†

DB + F̂ ,

(17)

where we defined the induced parameters (α, δ, γ ), respec-
tively, as

α = −g2a∗a

�2
0

2g2N�̃c

κ2 + 4�̃2
c

, (18)

δ = − 2�2�̃

�̃2 + �̃2
, (19)

γ = 2�2�̃

�̃2 + �̃2
, (20)

and the noise F (t )

F̂ = F̂JDB − i
√

2�

�̃ + i�̃
F̂JD3

+ ig2N

�0

(
a∗

κ + 2i�̃c
F̂a + a

κ − 2i�̃c
F̂a†

)
. (21)

Of these parameters, α appears as both the parametric in-
teraction and the frequency shift, (δ, γ ) represent the CPT
field-induced frequency shift and decay rate, respectively, and
F̂ collects the noises from the atomic and the cavity relax-
ations. From Eq. (17) we can extract the essential mechanism
and calculate the spin uncertainty.

We first identify the essential spin optodynamics mech-
anisms from Eq. (17) before our numerical calculation
is presented. Generally, these induced parameters (α, δ, γ )
are dependent on the system parameters (�0, �̃ = � +
g2a∗a/(2�0), �̃c = �c − g2N/(2�0),�, ga, g2N, �̃, κ).
However, the parametric interaction coefficient α depends on
the parameters (�̃, �̃c, ga, g2N, κ), and the relative amplitude
of the frequency shift δ to the decay rate γ is determined
by the ratio �̃/�̃. Therefore, the three induced parameters
(α, δ, γ ) can be controlled in an independent way. An ef-
fective Hamiltonian for the spin interaction is obtained from
the coherent terms in Eq. (17) when the relaxation term is
temporarily put aside as

Ĥeff = (α + δ)Ĵ†
DBĴDB + α

2

(
Ĵ2

DB + Ĵ†2
DB

)
. (22)

Now we can present the spin optodynamics in terms of
the Cartesian components of the ground-state spin (Ĵx, Ĵy, Ĵz).
Using the definitions in Eq. (10) we express ĴDB = 1

2 (Ĵz − iĴy)
and rewrite Hamiltonian (22) as

Ĥeff = δ

4
Ĵ2

y +
(

α

2
+ δ

4

)
Ĵ2

z . (23)

Typically, by manipulating the induced parameters (α, δ) we
have the standard forms for spin twisting [1,4]

OAT: Ĥeff = α

2
Ĵ2

z for δ = 0,

(24)
Ĥeff = −α

2
Ĵ2

y for δ = −2α,

and

TAT: Ĥeff = α

4

(
Ĵ2

z − Ĵ2
y

)
for δ = −α. (25)

When δ = 0 or δ = −2α, Hamiltonian (23) reduces to the
OAT form as in Eq. (24). Alternatively, when δ = −α, the
CPT fields and the cavity field induce opposite frequency
shifts and combine to give a vanishing shift in total, and thus
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Hamiltonian (23) takes the TAT form as in Eq. (25). The
conditions for δ = −α are obtained as

�̃± = 1

α
(�2 ±

√
�4 − α2�̃2), |α|�̃ � �2, (26)

in which the smaller one meets the stability condition
[Eq. (36)] as given in the following section. Beyond the above
two cases, δ �= (0,−α, −2α), the CPT-based spin interaction
is in a general twisting form as in Eq. (23).

Before concluding the analytic analysis it is worth recalling
the two elements of the present scheme.

The first element is the existence of the CPT resonance
for the steady-state maximal atomic coherence. The atoms are
prepared in the dark state |D〉 through the � configuration,
JDD = N . Even when the Stark shift is included, the atoms
are almost kept in the dark state, which corresponds to the
maximal coherence between the ground states J12 ≈ N/2. In
this case we can treat the ensemble of the atoms in terms of
the dark state as a bosonized mode ĴDB/

√
N , which follows

the commutation relation [ĴDB, Ĵ†
DB] ≈ N .

The second element is the existence of the spin optome-
chanics analog for the spin twisting. When the cavity field is
far off resonant with the atoms, g2a∗a � �̄|�0|, it introduces
the Stark shift and preserves the CPT state. The Stark shift
behaves as Raman transitions between |D〉 and |B〉 and takes
an analog of the cavity optomechanics: −Gâ†â(ĴDB + Ĵ†

DB).
The cavity field side-frequency noise responses to the atoms:
δâ = 2iGa(ĴDB + Ĵ†

DB)/(κ + 2i�̃c). This gives the spin in-
teraction of the (α/2)(ĴDB + Ĵ†

DB)2 form. The feedback is
performed through two simultaneous Raman transitions. The
simultaneous back-forth transitions lead to a two-order tran-
sition: (α/2)(Ĵ2

DB + Ĵ†2
DB) and frequency shift αĴ†

DBĴDB. Note
that this interaction (α �= 0) exists only when �̃c �= 0. This
is because two degenerate transitions interfere constructively
only when �̃c �= 0. In fact, the cavity field feeds only its phase
back to the atoms just like in the optomechanical case [44]. In
addition, due to the CPT resonant interaction, the detuning �̃

and the atomic decay �̃ are fed to the ground-state spin ĴDB as
a frequency shift δ and a relaxation rate γ , respectively, as in
Eq. (17).

IV. STEADY-STATE SPIN SQUEEZING

Then we turn to the numerical calculation and check if
the spin twisting as in Eqs. (23) to (25) prevails over the
atomic and cavity relaxations and yields the steady-state spin
squeezing. To obtain an optimized spin uncertainty we use an
angle φ and define a spin quadrature

Ĵφ = Ĵy cos φ + Ĵz sin φ. (27)

Its variance reads〈
Ĵ2
φ

〉 = 〈
Ĵ2

y

〉
cos2 φ + 〈

Ĵ2
z

〉
sin2 φ + 〈

Ĵ2
0

〉
sin (2φ), (28)

where we defined the cross correlation 〈Ĵ2
0 〉 = 1

2 (〈ĴzĴy +
ĴyĴz〉) and we used 〈Ĵ2

o 〉 = 〈(δĴo)2〉 (o = φ, y, z, 0) for vari-
ances since they have zero means Jo = 0. A squeezed spin
state is defined as having reduced fluctuations in a certain spin
component than a coherent spin state. Spin squeezing happens

when the uncertainty meets the criterion [2,3]

ξ 2 = N
〈
Ĵ2
φ

〉
min

J2
< 1. (29)

Since we are interested in the weak phase damping (γz �
�1) and the weak cavity field (g2a∗a � �̄|�0|), as given in
Eqs. (A11) and (A12) in Appendix A, Eq. (8) holds, i.e.,
JDD ≈ N , Ji j ≈ 0 (i, j = D, B, 3; i j �= DD). From Eq. (10)
we have the Cartesian components (Jx ≈ N , Jy,z ≈ 0), which
gives the total spin mean J ≈ Jx ≈ N , and the steady-state
maximal atomic coherence J12 ≈ −N/2. As a consequence,
the criterion (29) simplifies as

ξ 2 =
〈
Ĵ2
φ

〉
min

N
< 1. (30)

If the criterion is met, the spin twisting squeezing is coexistent
with the steady-state maximal atomic coherence. Both of them
last so long as the applied fields persist. The smaller the spin
uncertainty ξ 2 the stronger the spin squeezing. The angle φ =
φm or φ = π/2 − φm for optimization is found to satisfy

tan(2φm ) = 2
〈
Ĵ2

0

〉
〈
Ĵ2

y

〉 − 〈
Ĵ2

z

〉 . (31)

In what follows we perform the calculation from the
Heisenberg-Langevin equation (17). For the clearness and
conciseness we make a phase shift

ĴDB → ĴDBei( π
4 + θ

2 ), (32)

with

tan θ = γz

α
, −π

2
< θ <

π

2
(33)

and rewrite Eq. (17) in a compact form

˙̂JDB = −[γ̃ + i(α + δ)]ĴDB − α̃Ĵ†
DB + F̂ e−i( π

4 + θ
2 ), (34)

where the parameters (α̃, γ̃ ) are merged with the small quan-
tity γz,

γ̃ = γ + γz,

α̃ = �(α)
√

α2 + γ 2
z ,

{
�(α) = 1 for α > 0,

�(α) = −1 for α < 0.
(35)

When � is comparable to �1, we have γ̃ ≈ γ since γz � �1.
If |α| is comparable to γ , we also have α̃ ≈ α. The stability
condition, under which the eigenvalues of the drift matrix of
both Eq. (34) and its Hermitian conjugate have negative real
parts, is derived as

γ̃ 2 − α̃2 + (α + δ)2 > 0. (36)

Then the set of equations for the coupled correlations is
derived

d

dt

〈
Ĵ2

y

〉 = −2(γ̃ − α̃)
〈
Ĵ2

y

〉 + 2(α + δ)
〈
Ĵ2

0

〉 + 2D1,

d

dt

〈
Ĵ2

z

〉 = −2(γ̃ + α̃)
〈
Ĵ2

z

〉 − 2(α + δ)
〈
Ĵ2

0

〉 + 2D2, (37)

d

dt

〈
Ĵ2

0

〉 = −2γ̃
〈
Ĵ2

0

〉 − (α + δ)
(〈

Ĵ2
y

〉 + 〈
Ĵ2

z

〉) + 2D0,
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where we used the diffusion coefficients

D1,2 = N[γ + β + γz ± (β − γz ) sin θ ],
(38)

D0 = −N (β + γz ) cos θ,

and a cavity-loss rate κ involved rate

β = g2a∗a

�2
0

g2Nκ

κ2 + 4�̃2
c

. (39)

By setting d/dt = 0 and from Eq. (37) we obtain the variances and cross correlation in steady state as

〈
Ĵ2

y

〉 = N
γ̃ (γ̃ + α̃)[γ + β + γz + (β − γz ) sin θ ] + (α + δ)2(γ + β + γz ) − (γ̃ + α̃)(α + δ)(β + γz ) cos θ

γ̃ [γ̃ 2 − α̃2 + (α + δ)2]
,

〈
Ĵ2

z

〉 = N
γ̃ (γ̃ − α̃)[γ + β + γz − (β − γz ) sin θ ] + (α + δ)2(γ + β + γz ) + (γ̃ − α̃)(α + δ)(β + γz ) cos θ

γ̃ [γ̃ 2 − α̃2 + (α + δ)2]
,

〈
Ĵ2

0

〉 = N
−(α + δ)[α̃γ + α̃(β + γz ) + γ̃ (β − γz ) sin θ ] − (γ̃ 2 − α̃2)(β + γz ) cos θ

γ̃ [γ̃ 2 − α̃2 + (α + δ)2]
. (40)

We analyze the dependence of the parameters on the fields
before the numerical results are presented. For vanishing cav-
ity field (a∗a = 0, i.e., α = β = 0) and detuning (δ = 0) and
to the first order γz/γ we have 〈Ĵ2

z 〉 ≈ N (1 − γz/γ ), which is
very slightly smaller than 1. This is the remaining effect of
the ground state phase dephasing in the CPT dark resonance.
Since the phasing rate is negligibly small (γz � �1) and the
Rabi frequency is comparable to the decay rate (� ∼ �1), we
have �̃ ≈ �1, α̃ ≈ α, γ̃ ≈ γ . When the parametric interac-
tion strength α is comparable to the rate γ , we have θ → 0
(sin θ → 0, cos θ → 1). Thus, the variances are strongly de-
pendent on three kinds of the induced parameters (α; α + δ;
γ , β), as seen from Eq. (40). The first is the twisting interac-
tion strength α, as given in Eq. (18), which is closely related
to the cavity detuning �̃c = �c − g2N/(2�0). The second
parameter is the total frequency shift α + δ, of which δ is
closely related to the atomic detuning �̃ = � + g2a∗a/(2�0).
The third kind of parameters are the decay rates (γ , β), which
are closely related to the atomic spontaneous emission rate �1

and the cavity loss rate κ , respectively. The parameters (α, β)
depend on the original parameters (�0, �̃c, g2a∗a, g2N, κ)
[Eqs. (18) and (39)], while the other parameters (δ, γ ) de-
pend on different original parameters (�, �̃, �̃) [Eqs. (19) and
(20)]. Therefore, we can manipulate (α, β) and (δ, γ ) in an
independent way. For a dispersive cavity we are interested in
κ � 2|�̃c|, we have β � |α|.

For particular parameters we can show the best achiev-
able squeezing. It is seen from Eq. (36) that the stability
for the OAT case (δ = 0) is guaranteed for arbitrary α,
and the stability for the TAT case (α + δ = 0) is met when
|α| < (γ ,�2/�1). For the sufficiently weak phase damping
(γz � γ ) and the dispersive cavity (κ � 2|�̃c|), as shown in
Appendix B, the steady-state spin uncertainty for OAT and
TAT cases is simplified, respectively, as

ξ 2
OAT = 1 − 1

1 +
√

1 + γ 2/α2
for |α| �= 0, (41)

ξ 2
TAT = 1

1 + |α|/γ for |α| < (γ ,�2/�1), (42)

both of which are monotonous functions of |α|/γ . Then we
have the same minimal spin uncertainty

ξ 2
OAT → 1

2 for |α| � γ , (43)

ξ 2
TAT → 1

2 for |α| → γ (� �2/�1), (44)

which indicates the best achievable squeezing of 50% for
both OAT and TAT cases. It should be noted that this limit
appears generally in steady state and for parametric processes.
The twisting interactions behave essentially as optical para-
metric oscillations, for which the steady-state squeezing has
the intrinsic 3-dB limit (50%) due to the detuning and/or
instability, as shown in Chap. 16 of [52] and Chap. 7 in [53].
The present case can be shown as follows. Since γz � γ , we
have α̃ ≈ α, γ̃ ≈ γ . From the Langevin equation (17) and the
stability condition (36) we can see clearly that the OAT and
TAT cases serve as typically different types. For the OAT case
(δ = 0), the induced detuning α + δ = α is the same as the
parametric interaction strength α no matter how large it is.
It is just the detuning that limits the squeezing. However, for
the TAT case (δ = −α), while the induced detuning vanishes
α + δ = 0, the induced parametric interaction strength is lim-
ited to |α| < γ for stability. It is the parametric instability
that limits the squeezing. Usually it is the squeezing in the
individual frequency components which may be measured by
a spectrum analyser based on a homodyne detection scheme.
To surpass the limited squeezing, one can use the individual
output frequency components which have squeezing beyond
3 dB or even almost perfect squeezing (100%) [43,52–54].
Recently the cavity field feedback [15–18], which is based
on the repeated (switchable) and time-dependent atom-cavity-
field interactions, serves as a kind of methods to prepare the
squeezing beyond 3 dB. Essentially different from this, our
scheme is for the steady-state squeezing, which is indepen-
dent of time. Also the present scheme is different from other
methods for the steady-state squeezing such as the quantum
state transfer [55,56] and the reservoir engineering [57–59].
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FIG. 2. Spin uncertainty versus the total cavity detuning �̃c for
different the atomic detunings �̃ = 0 (i.e., δ = 0, the OAT case),
0.25,0.5,1,2 and for the TAT case [δ = −α, i.e., �̃ = �̃− as in
Eq. (26) for the stability]. (a) κ = 1, g2N = 1000, (b) κ = 0.2,
g2N = 1000, (c) κ = 1, g2N = 2000, and (d) κ = 0.2, g2N = 2000.
The other parameters are � = 1, ga = 1, �0 = 10, and γz = 10−3.

To enhance the squeezing if it is necessary, it is feasible to
employ the spectral components or the repeated switchable
cavity feedback.

We are now in a position to present the numerical depen-
dence of the spin uncertaity on parameters. The atomic decay
rates �1 is used as the unit of the decay rates, the Rabi frequen-
cies, the detunings, and the coupling constant. We plot the spin
uncertainty ξ 2 versus the total cavity detuning �̃c for different
atomic detuning �̃ in Fig. 2 and for different parameter g2N
in Fig. 3. It is clearly seen that the spin uncertainty drops
below the coherent-state noise level in a very wide range of
parameters. This indicates that the spin squeezing appears in
such regimes. The best achievable squeezing approaches 50%.
The characteristic dependence on the parameters are described
as follows.

(i) Two symmetric dips happen about �̃c = 0 for OAT (δ =
0, i.e., �̃ = 0), while two symmetric broken wings appear
without a dip for TAT [δ = −α, i.e., �̃ = �̃− as in Eq. (26)
for the stability]. The first is shown by the black solid lines in
Figs. 2(a) and 3(b) in Fig. 3, and the second is shown by the
red solid lines in Figs. 2(c) and 2(d) in Fig. 3. The symmetry
is because of the exchange between the spin uncertainties 〈Ĵ2

y 〉
and 〈Ĵ2

z 〉 and the invariance of the cross correlation 〈Ĵ2
0 〉 when

�̃c changes its sign. The OAT case is stable for the whole
regime while the TAT case is stable only for the separated
two wings.

(ii) Beyond OAT and TAT cases (i.e., for given �̃ but
δ �= 0,−α), two wings are no longer symmetric with respect
to �̃c = 0, and only one wing carries a dip. As shown in the
plot, the dip appears when �̃c > 0. If we switch to �̃ < 0
the dip will happen for �̃c < 0. That is to say, there is an
exchange between the left and right sides of the figure when

FIG. 3. Spin uncertainty versus the total cavity detuning �̃c for
different cooperativity parameter g2N . (a) κ = 1, (b) κ = 0.2, for the
OAT case (δ = 0, i.e., �̃ = 0): and (c) κ = 1, (d) κ = 0.2 for the
TAT case [δ = −α, i.e., �̃ = �̃− as in Eq. (26) for the stability]. The
other parameters are the same as in Fig. 2.

�̃ changes its sign. In the disconnected regime the system
becomes unstable. As �̃ rises, the two wings are gradually
separated from each other.

(iii) The bigger the cooperativity parameter C = g2N/(κ�)
the more the spin uncertainty approaches 0.5, which cor-
responds 50% squeezing. Although increasing g2N and
decreasing κ are both raise effectively the parameter C, but
the two ways have different effects on the wing spread.
The case for increasing g2N is seen from Figs. 2(a) to
2(c) and from Figs. 2(b) to 2(d), and from Figs. 3(c) and
3(d). The case for decreasing κ is shown from Figs. 2(a)
to 2(b) and from Figs. 2(c) to 2(d) and in Fig. 3. The
two wings spread remarkably as g2N rises. In comparison,
however, the two wings remain almost not spread as the
cavity loss rate κ drops. The difference originates from the
fact that g2N appears in the parametric interaction strength
α while κ exists only in the diffusion coefficients as the
parameter β.

Finally, we give a discussion on the experimental accessi-
bility. Experimentally cold atoms confined in a magnetoopti-
cal trap can be used for the present scheme. A great number
of atomic structures can be used as candidates. Take 87Rb
as an example, the D1 transition is used for CPT and the
D2 transition serves for the Stark shift, |1〉 = |52S1/2, F =
1〉, |2〉 = |52S1/2, F = 2〉, |3〉 = |52P1/2, F = 1〉, and |4〉 =
|52P3/2, F = 3〉. The cavity parameters of [60] can be used
for our purpose, including the beam waist w ∼ 35 µm, homo-
geneous laser beams of width d ∼ 50 µm, and an interaction
volume of 10−7 cm3. An ensemble of N ∼ 105 atoms corre-
sponds to a density of � 1012 cm3 (small enough to prevent
coherence losses due to collisions). For the parameters g2N ∼
103 and κ ∼ �1, the atom-cavity coupling coefficient is only
required to be g ∼ 0.1�1.
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TABLE I. Comparison of the present scheme with the previous ones.

Compared aspects Present scheme Previous schemes

(1) Coexistence or not of
resonant and dispersive
interactions

Coexistence of resonant and
dispersive interactions (CPT acts
as resonant part for steady-state
maximal atomic coherence while
Stark shift behaves as the
dispersive part for spin
optomechanics analog and for
spin twisting)

No coexistence of resonant and
dispersive interactions (Confined
to far off resonance regimes after
initial preparation of atomic
coherence)

(2) Steady-state preparation
or time evolution preparation

Steady-state preparation (Spin
twisting squeezing and maximal
atomic coherence are both
prepared in the steady state
regardless of initial spin state)

Time evolution preparation
(Maximal atomic coherence is
initially prepared by microwave
pulses and then squeezed spin
state is obtained via evolution
from initial coherent spin state)

V. CONCLUSION

In conclusion we presented a scheme which combines
CPT resonance with the Stark shift. While the first creates
the steady-state maximal atomic coherence, the second es-
tablishes spin optomechanics analog and yields the spin OAT
or TAT (or general twisting between them) interactions. The
two coherent effects coexist in a wide range of parameters
and last as long as the applied fields persist. Summarized in
Table I are the essential differences of the present scheme
from the previous ones. The compatible coexistence of CPT
with Stark shift provides us with a unique way to exploit
the spin optomechanics analog, and to make compatible the
spin twisting squeezing with steady-state large or maximal
atomic coherence.
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APPENDIX A: HEISENBERG-LANGEVIN EQUATIONS
AND ATOMIC STEADY-STATE SOLUTIONS FOR WEAK

CAVITY FIELD

The master equation of the atom-cavity system reads as

˙̂ρ = −i[Ĥ, ρ̂] + �1LĴD3
ρ̂ + �1LĴB3

ρ̂ + γzLĴDB+ĴBD
ρ̂, (A1)

where the system Hamiltonian is written in terms of the dark
and bright states and is given by the sum of the CPT part
[Eq. (6)] and the Stark shift part [Eq. (14)], i.e.,

Ĥ = �̄(ĴB3 + Ĵ3B) + �Ĵ33 − Gâ†â(ĴDB + ĴBD + ĴDD + ĴBB)

+ iε(â†ei�ct − âe−i�ct ), (A2)

and the damping terms take the form Loρ̂ = oρ̂o† − 1
2 o†oρ̂ −

1
2 ρ̂o†o. Following the standard techniques as in Chap. 12 of
[52] and in Chap. 9 in [53]), we derive a complete set of
Langvein equation in the rotation frame of the cavity driving

frequency as

˙̂a = ε −
[
κ

2
+ i(�c − GĴDD)

]
â + iGâ(ĴDB + Ĵ†

DB) + F̂a,

˙̂JD3 = −[�̃ + i(� + Gâ†â)]ĴD3 − i�̄ĴDB − iGâ†âĴB3 + F̂JD3 ,

˙̂JB3 = −[�̃ + i(� + Gâ†â)]ĴB3 + i�̄(Ĵ33 − ĴBB)

− iGâ†âĴB3 + F̂JB3 ,

˙̂JDB = −γz(ĴDB − ĴBD) − i�̄ĴD3 + iGâ†â(ĴDD − ĴBB) + F̂JDB ,

˙̂JBB = �1Ĵ33 + γz(ĴDD − ĴBB) − i�̄(ĴB3 − Ĵ3B)

− iGâ†â(ĴDB − ĴBD) + F̂JBB ,

˙̂JDD = �1Ĵ33 − γz(ĴDD − ĴBB) + iGâ†â(ĴDB − ĴBD) + F̂JDD ,

(A3)

and those for the Hermitian conjugates if existent. Neglecting
the noises F̂ ′s and factorizing the operators we write simply
the equations for the means as

J̇D3 = −(�̃ + i�̃)JD3 − i�̄JDB − iGa∗aJB3,

J̇B3 = −(�̃ + i�̃)JB3 + i�̄(J33 − JBB) − iGa∗aJB3,

J̇DB = −γz(JDB − JBD) − i�̄JD3 + iGa∗a(JDD − JBB),

J̇BB = �1J33 + γz(JDD − JBB) − i�̄(JB3 − J3B)

− iGa∗a(JDB − JBD),

J̇DD = �1J33 − γz(JDD − JBB) + iGa∗a(JDB − JBD), (A4)

with �̃ = �1 + γz/2 and �̃ = � + Ga∗a. For the weak cavity
field g2a∗a � �̄|�0| and for the steady state (J̇D3 = J̇B3 = 0)
we obtain from the first two equations in Eq. (A4)

JD3 = −i�̄

�̃ + i�̃
JDB, JB3 = i�̄

�̃ + i�̃
(J33 − JBB). (A5)

Then we have JB3 − J3B = 2i�̄�̃

�̃2+�̃2 (J33 − JBB). Using the clo-
sure relation J33 + JDD + JBB = N , we obtain from the last
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three equations in Eq. (A4)

J̇DB = −γz(JDB − JBD) − (γ + iδ)JDB + iGa∗a(JDD − JBB),

J̇BB = �1(N − JDD − JBB) + γz(JDD − JBB)

+ 2γ (N − JDD − 2JBB) − iGa∗a(JDB − JBD),

J̇DD = �1(N − JDD − JBB) − γz(JDD − JBB)

+ iGa∗a(JDB − JBD), (A6)

with δ = − �̄2�̃

�̃2+�̃2 and γ = �̄2�̃

�̃2+�̃2 . For JDB and JBD we write
the equations for JDB ± JBD, respectively,

J̇DB + J̇BD = −γ (JDB + JBD) − iδ(JDB − JBD),

J̇DB − J̇BD = −(γ + 2γz )(JDB − JBD) − iδ(JDB + JBD)

+ 2iGa∗a(JDD − JBB). (A7)

We derive the solution of JDB − JBD in the steady state by
setting J̇DB ± J̇BD = 0 as

JDB − JBD = 2iGa∗a(JDD − JBB)

2γz + γ + δ2/γ
. (A8)

For JBB and JDD we write the equations for JBB ± JDD, respec-
tively,

(J̇BB + J̇DD)/2 = �1(N − JDD − JBB) + γ (N − JDD − 2JBB),

(J̇BB − J̇DD)/2 = γz(JDD − JBB) + γ (N − JDD − 2JBB)

+ 2λ(JDD − JBB), (A9)

where λ = (Ga∗a)2

2γz+γ+δ2/γ
describes the population transfer rate

due to the cavity field. We derive the solution of JDD in the
steady state by setting J̇BB ± J̇DD = 0 as

JDD = N
�1γ + (2λ + γz )(�1 + γ )

�1γ + (2λ + γz )(2�1 + 3γ )
. (A10)

Since γz � �1 and g2a∗a � �̄|�0| (which leads to λ � �1)
we have

JDD ≈ N. (A11)

For the same conditions we have

Ji j ≈ 0 (i, j = D, B, 3; i j �= DD). (A12)

APPENDIX B: SPIN UNCERTAINTY FOR OAT
AND TAT SITUATIONS

Here we give the optimized squeezing factors for OAT and
TAT situations from Eq. (40). We consider the weak phase

damping (γz � γ ) and the dispersive cavity (κ � 2|�̃c|). For
the OAT case (δ = 0), it is seen from Eq. (36) that the sta-
bility is guaranteed for arbitrary α. The variances and cross
correlation in Eq. (40) reduce to

〈
Ĵ2

y,z

〉 = N

(
1 ± |α|

γ
+ α2

γ 2

)
,

(B1)〈
Ĵ2

0

〉 = −N
α|α|
γ 2

,

and then we have the spin uncertainty

ξ 2
OAT = 1

2N

[〈
Ĵ2

y

〉 + 〈
Ĵ2

z

〉 − √(〈
Ĵ2

y

〉 − 〈
Ĵ2

z

〉)2 + 4
〈
Ĵ2

0

〉2]
= 1 − 1

1 +
√

1 + γ 2/α2
. (B2)

This is a monotonous function of γ /|α| and it takes its values
for particular parameters as follows:

ξ 2
OAT =

⎧⎪⎨
⎪⎩

→ 1 for |α| � γ ,

→ 1
2 for |α| � γ ,

→ 2 − √
2 for |α| = γ .

(B3)

For TAT case (δ = −α), it is seen from Eq. (36) that the
stability condition is |α| � γ . The variances in Eq. (40)
reduce to 〈

Ĵ2
y,z

〉 = N
γ

γ ∓ |α| ,〈
Ĵ2

0

〉 = 0. (B4)

The spin uncertainty is obtained as

ξ 2
TAT = 1

N

〈
Ĵ2

z

〉
= 1

1 + |α|/γ . (B5)

In the stability range, the spin uncertainty is a monotonous
function of |α|/γ , and it takes its values for particular param-
eters as follows:

ξ 2
TAT =

{→ 1 for |α| → 0,

→ 1
2 for |α| → γ .

(B6)
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