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Light-scattering properties beyond weak-field excitation in atomic ensembles
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In the study of optical properties of large atomic systems, a weak laser driving is often assumed to simplify
the system dynamics by linearly coupled equations. Here we investigate the light-scattering properties of atomic
ensembles beyond weak-field excitation through the cumulant expansion method. By progressively incorporating
higher-order correlations into the steady-state equations, an enhanced accuracy can be achieved in comparison
to the exact solutions obtained by solving a full density matrix. Our analysis reveals that, in the regime of weak
dipole-dipole interaction, the first-order expansion yields satisfactory predictions for optical depth, while denser
atomic configurations necessitate consideration of higher-order correlations. As the intensity of incident light
increases, atom saturation effects become noticeable, giving rise to significant changes in light transparency,
energy shift, and decay rate. This saturation phenomenon extends to subradiant atom arrays even under weak
driving conditions, leading to substantial deviations from the linear model. Our findings demonstrate that the
mean-field model is a good extension to linear models as it balances both accuracy and computational complex-
ity. However, the crucial role of higher-order cumulants in large and dense atom systems remains unclear, since
it is challenging theoretically owing to the exponentially increasing Hilbert space in such light-matter interacting
systems.
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I. INTRODUCTION

The interaction between light and atoms stands as one of
the most fundamental phenomena in physics. Its existence ex-
tends to atoms, molecules, and solids [1–3], playing a crucial
role in modern physics. Such an interaction has many inter-
esting effects. When light interacts with atoms, a pairwise and
resonant dipole-dipole interaction (RDDI) emerges through
multiple light scatterings among the atoms [4]. This pairwise
interaction between atoms can result in intriguing properties
as the number of atoms increases or under some specific
spatial structure [5]. The complexities from the number of
atoms, ensemble geometry, and interaction forms signifi-
cantly influence the optical properties of atom ensembles,
giving rise to phenomena like superradiance [6–9], subradi-
ance [10–23], and even resonant frequency shifts [24–27].
All of these collective radiation properties signify a differ-
ence from the behavior of individual atoms and result in
pronounced deviations from the classical Beer-Lambert law
[28]. The precise manipulation of this interaction bears the
potential for numerous applications across various domains,
including nanophotonics [29], quantum technology [30,31],
and materials science [32,33].

*Contact author: b07202032@ntu.edu.tw
†Contact author: sappyjen@gmail.com

Utilizing a group of atoms to interact with light presents
one of the ways to probe the RDDI and investigate the validity
of theories in quantum optics. Through the well-developed
laser control and atom trapping technique [34,35], a variety
of systems can be effectively explored by measuring distinct
system dynamics of various platforms, for example, the anal-
ysis of scattering spectra [36,37] and optical depth [38]. This
further facilitates the examination of atomic optical properties
in various geometries, such as randomly distributed samples
[39], quasi-two-dimensional slabs [40], and ordered arrays
[22,41]. In the pursuit of the strong-coupling regime of light-
matter interactions, the atoms can be put inside a cavity [42]
or close to the waveguide [43].

While the theoretical analysis of atomic dynamics under
RDDI is well established in few-atom cases, the exact dynam-
ics of a large atomic system remains, however, a challenge
to computations due to an exponential growth of accessi-
ble Hilbert space. To deal with this difficulty, a regime of
weak driving strength is often employed. Under such con-
ditions, atoms experience only a modest level of excitation
and thus populate mostly in the ground states. In this way the
system dynamics can be simplified and reduced to coupled
linear equations allowing efficient computation. This linear
model has been studied theoretically [44–46] and examined
in many experiments [9,47,48]. However, this assumption
could be too idealized, although theoretically correct under
the weak-excitation regime, and might fall short in practice
due to finite driving strength [49]. This issue arises due to the
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FIG. 1. Schematic diagram of the experimental device measuring
an atomic ensemble’s optical depth. The input laser field EL drives
atoms and induces RDDI among them with strength Gμν . The output
field EL + Esc containing the input laser field plus the atoms’ dipole
radiation Esc is collected by the CCD camera on the right-hand
side. By comparing the field input-output ratio, we can calculate the
transmission coefficient T as well as optical depth D = − ln |T |2
of a given ensemble. For example, the plot below shows the optical
depth of the 2 × 2 array for different lattice spacings a, the laser is
chosen to be resonant, and �0 = 0.1�, with an injection direction
perpendicular to the plane of the array.

non-negligible effects of finite atomic excitation and quantum
correlations between atoms via RDDI [50]. To go beyond
weak-field approximation and include the effect of quantum
correlations among the atoms, a cumulant expansion method
[51] can be adopted. By truncating many-body correlations
by finite orders, a more controllable and precise calculation
can be performed, depending on the selected truncation order
[52]. This method has demonstrated its utility in investigating
the dynamics of superradiance from totally inverted systems
[53] and chiral waveguides [54].

In this work we study the optical properties of atoms dis-
tributed in free space. As shown in Fig. 1, atoms are driven
by a laser and interact through RDDI until they reach steady
states. We note that we are considering a free-space RDDI,
which differs from the setup described in [54], where a one-
dimensional chiral atom-waveguide interface was considered.
Additionally, our study focuses on a driven atomic system,
as opposed to the decaying inverted system in [53]. Scattered
fields together with coherent drive are collected by a camera
in the far field. By comparing the ratio of these fields in
the presence and absence of atoms, the optical depths are
obtained. In experimental realizations, the 87Rb atoms’ hyper-
fine states with D1 or D2 transitions can serve as two-level
systems. The atomic density and the laser focused waist are
capable of reaching subwavelength scales [40,41,47]. The
atomic configurations can be either high density clouds [24]

or subwavelength ordered arrays [41]. These provide us with
a benchmark for studying the system with feasible physical
parameters. We calculate the atomic steady state through the
cumulant expansion method and find that the presence of
excited-state populations and the influence of many-body cor-
relations induce substantial deviations from the linear model,
particularly in subradiant atomic configurations. This depar-
ture from linearity arises from atom saturation effects which
limit the atoms’ capacity to absorb additional photons and
thus results in the emergence of light transparency. Our re-
sults provide insight for studying various system parameter
regimes, where higher-order cumulants are useful for more-
precise light-scattering properties.

The remainder of the paper is organized as follows. In
Sec. II we introduce the system’s master equation with
photon-mediated dipole-dipole interactions and explain the
cumulant expansion method. We compare the results by the
cumulant expansion method with the exact ones and calculate
the relative errors to identify the importance of the order of
quantum correlations in the system. In Sec. III we further
explore the effect of multiexcitation, which becomes signif-
icant when the driving field or the atomic density increases.
We then extend our analysis to large atomic arrays, where we
find that the cumulant expansion method presents a significant
deviation from the linear model even in the weak driving
region. We summarize and discuss our conclusions in Sec. IV.

II. CUMULANT EXPANSION METHOD

We start with a system of N identical two-level atoms
whose ground and excited states are denoted by |g〉 and |e〉,
respectively. Here the atoms’ dipole polarization is set in the
x direction. Atoms are driven by a coherent drive EL(�r) =
ELe−ikz f (�r)x̂ propagating in the z direction and polarized in
the x direction. Here k ≡ 2π/λ, with λ the atomic wave vector
and the transition wavelength, respectively. In this work we
consider a Gaussian beam profile f (�r) ∼ e−(x2+y2 )/w2

0 , with
w0 the focus of the width on the atom sample. We choose
the width to be w0 = 2.5λ. The transmission coefficient T of
an atomic array is connected to the expectation value of the
steady-state transition rate of the μth atom 〈σμ〉 by [28,46]

T = 1 + i
3�

�0w
2
0k2

N∑
μ=1

〈σμ〉e−ikzμ , (1)

where � quantifies the atomic spontaneous decay rate and
σμ ≡ |g〉μ〈e| is the lowering operator. This expression indi-
cates the ratio of the sum of all dipole radiations Esc collected
by the camera located far away to the driving field EL. Here
�0 = 2dEL is the central Rabi frequency, with d the transi-
tion dipole moment. We require the camera to be located far
enough to ensure that the dipole radiations are in the far-field
regime. Within this regime, the strength of dipole radiations
decays as fast as the Gaussian beam and can be approximated
as if it radiates predominantly parallel to the ẑ axis. This
approximation results in a distance-independent transmission
coefficient that emerges as the second term in Eq. (1). Once
T is obtained, the optical depth can also be calculated by
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D = − ln |T |2, which we obtain throughout the paper as the
measurable light-scattering property.

Equation (1) establishes a connection between only the
atomic dipole moment and the optical depth. The distribution
of the dipole moments, however, needs to be solved sepa-
rately, depending on the effective model. To calculate the
atomic dipole and thereby obtain the light response from the
light scattering within the atomic system, the master equa-
tion for the atoms involves the coherent driving field and
the resonant dipole-dipole interactions being considered [4],
which reads

d

dt
ρ = − i

h̄
[HL, ρ] +

N∑
μ,ν=1

Gμν[σ †
μ, σνρ] + G∗

νμ[ρσ †
μ, σν].

(2)

Here ρ denotes the density matrix of N identical two-level
atomic systems and HL is the laser driving Hamiltonian

HL = − h̄

2

N∑
μ=1

�μ(e−ikzμσμ + eikzμσ †
μ), (3)

with the position-dependent Rabi frequency �μ = �0 f (�rμ).
In addition, Gμν represents the propagator of the dipole-dipole
interaction whose real and imaginary parts correspond to the
collective decay rate and collective frequency shift, respec-
tively. It is expressed as

Gμν = 3�

4
eiξ

[
(1 − cos2 θ )

i

ξ
− (1 − 3 cos2 θ )

(
1

ξ 2
+ i

ξ 3

)]
(4)

and the diagonal term is defined as Gμμ = i� − �/2, where
� ≡ ωL − ωatom is the laser detuning, defined as the differ-
ence between the laser frequency ωL and the atomic transition
frequency ωatom. Here ξ = k|�sμν | ≡ k|�rμ − �rν | is the atomic
spacing and cos θ ≡ d̂ · ŝμν is the angle between dipole orien-
tation d̂ and relative position vectors ŝμν . The plot in Fig. 1
shows an example of optical depths solved by a full master
equation, which depicts a 2 × 2 atomic array with varying
lattice spacing a. We first set up the position distribution �rμ of
the atomic array with the given spacing a. Then we calculate
all the pair interaction strengths Gμν through Eq. (4). From
these, D can be determined using Eqs. (1)–(3). A significant
D emerges when a � 0.7λ, showing the enhancement arising
from RDDI, in contrast to the noninteracting limit a → ∞.
The D also decreases as a → 0 because of the large collective
frequency shift [4] that makes the system differ from the
resonant driving condition.

The Hilbert space in solving Eq. (2) grows exponentially
and leads to difficulty in calculating the optical response of
atomic ensembles even for several atoms. Therefore, a weak-
field driving limit �0 → 0 is often assumed to hugely reduce
the exponential computational complexity to polynomial time,
neglecting the effects of quantum correlations. From Eq. (1)
we see that the light scattering from atoms only involves σμ,
and using Eqs. (2)–(4) we obtain its steady-state equation of

motion

0 = Gμμσμ + i�μ

2
e−ikzμ (1 − 2eμ) +

N∑
ν �=μ

Gμν (σν − 2σνeμ),

(5)
where eμ ≡ |e〉μ〈e| denotes the excited-state population op-
erator. In the weak driving limit, the excited-state population
is assumed to be small and thus eμ and σνeμ are neglected.
Then the system reduces to N linear coupled equations, which
can be solved by calculating the inverse of matrix Gμν . How-
ever, in this study, we find that the excited-state population
can still induce large corrections on light-scattering properties
in an atomic ensemble even under a relatively weak driving
intensity of �0 = 0.1�.

Therefore, a more complete theoretical model needs to be
applied to include the effect of the excited-state populations
and atom-atom correlations. This can be done by including
the terms of eμ and σνeμ, but these quantities are generally
coupled to operators of higher orders, leading to the hier-
archy problem [44]. To resolve this, we apply the cumulant
expansion method, which truncates higher-order operators to
products of lower-order ones by assuming a certain order of
the many-body correlation vanishes. For example, we assume
the two-body correlation (second-order cumulant) 〈σνeμ〉c ≡
〈σνeμ〉 − 〈σν〉〈eμ〉 to be vanishing in order to relate 〈σνeμ〉 =
〈σν〉〈eμ〉 to first-order cumulants, leading to 3N nonlinear
coupled equations. Similarly, we can expand the model by
truncating higher-order cumulants to second-order ones, thus
including the effect of two-body correlations. In general, cu-
mulant expansion can reduce 4N terms in the full master
equation to approximately Nn nonlinearly coupled equations,
where n is the order of expansion.

III. MULTIEXCITATION EFFECTS

In this section we demonstrate the light-scattering property
from an atomic ensemble beyond the weak-field excitation.
We first compare the cumulant expansion model with a full
density matrix solution, which indicates the performance and
validity of this model. We then investigate a finite driving
regime using the same model to reveal how atomic correla-
tions induce saturation in a few-atom system. We further find
the same saturation phenomenon in the weak driving regime
as we increase the array size in particular shapes, which is not
predicted by the linear model. This shows the limitation of the
linear model in capturing correct light-scattering properties,
and thus other extended models involving higher-order atom-
atom correlations will be considered.

A. Comparison to the exact master equation

We use the cumulant expansion as an extension of the
linear model. For the first-order expansion, we include the
excitation population eμ and σ †

μ in the steady-state equa-
tions, resulting in 3N closed nonlinearly coupled equations.
This order of expansion is also known as the mean-field
theory [54], as it assumes the density matrix is the product
of single-particle states. The equations can be easily solved
using Newton’s method. Through collecting σμ’s steady-state
equation, the problems transform to finding the root of a
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vector-valued function �F (σ1, . . . , σN ) = 0. The μ component
of �F is the right-hand side of Eq. (5). The computational
complexity is the same as the linear model, which grows
linearly with the number of atoms N .

For the second-order expansion, we further include all
two-body operators such as σνeμ, eνeμ, and σνσμ, as well
as their conjugates for ν �= μ. The truncation of higher-order
cumulants builds up a complex connection throughout the
whole coupled equations �F (�x). Here �x contains all single
and double atomic operators, and each component of �F (�x)
corresponds to the steady-state equation of operator xi derived
from Eq. (2). Due to the complexity of the coupled equations,
applying Newton’s method becomes challenging, primarily
due to the difficulty in computing the inverse of the Jacobian
matrix Ji j ≡ ∂Fi

∂x j
. Therefore, we employ Broyden’s method

[55], which offers an iterative approach to approximate the
Jacobian matrix through �x. We start with an initial vector �x0

and an initial guess for the inverse Jacobian matrix J−1
0 . We

then update their values using the formulas

�xn = �xn−1 − J−1
n−1

�F (�xn−1), (6)

J−1
n = J−1

n−1 + �sn − J−1
n−1�yn

‖�yn‖2
(7)

for the nth iteration, where �sn = �xn − �xn−1 and �yn = �F (�xn) −
�F (�xn−1). We note that Eq. (6) becomes Newton’s method if
Jn−1 is replaced by the exact Jacobian matrix at �xn−1. By re-
peating the iterations until �xn is close to the root ‖ �F (�xn)‖ → 0,
we obtain all the steady-state expectation value for these op-
erators.

Figure 2(a) shows the optical depth of the 2 × 2 atom
array under different lattice spacings and driving strengths
solved by the full master equation (2). The overall optical
depth decreases as the driving intensity increases. The optical
depth peak at a � 0.7λ also disappears as the driving gets
stronger, and a flat D versus lattice spacing emerges. This is
because the saturation in the excited-state population makes
the atoms unable to absorb more photons and results in light
transparency. In Figs. 2(b)–2(d) we scan the detuning in a
range of � ∈ [−8�, 8�] and plot the maximal error for the re-
sults calculated by the nth-order truncation Dn(�) compared
to the exact solution Dex(�) in Fig. 2(a) under a fixed atomic
spacing, which is defined as max�∈[−8�,8�] |Dn − Dex|/Dex.
We have checked that the solution of nonlinear equations con-
verges well so that the errors from numerical precision do not
come into play. In Figs. 2(b)–2(d), higher-order truncations
in the cumulant expansion method provide more-accurate re-
sults. For a weak driving regime at �0 = 0.1� in Fig. 2(b),
we also compare the results with those using the linear model.
The maximal relative error occurs at a � 0.7λ and reaches
about 10% from the linear model, while the mean-field model
only contributes to an error less than 1%. The lattice spacing
at which D is the maximum in Fig. 2(a) coincides with the one
where the maximal error emerges in Fig. 2(b). This is due to
the subradiant radiation from a periodic atomic configurations
at a ≈ 0.8λ [50], which results in a high D with significant
atom-atom correlations. Therefore, those models that neglect
these correlations would present larger errors. For a finite
driving as �0 → �, Figs. 2(b) and 2(c) show that the second-

FIG. 2. (a) Exact optical depth and (b)–(d) different models’
maximal relative error of the 2 × 2 array versus various lattice
spacings for Rabi frequencies (b) �0 = 0.1�, (c) �0 = 0.5�, and
(d) �0 = 1�. For weak driving at �0 = 0.1� we also compare the
results from the linear model’s result. Overall, the solution converges
well as we include higher-order cumulants. The only region where
the errors of the second-order cumulant expansion exceed 10% is
for strong RDDI (a < 0.3λ) and driving �0 = 1�. This indicates the
regime where higher-order correlations take place.

order expansion provides better results than the first-order
one. However, both truncations lead to less accurate results as
the lattice spacing becomes smaller at around a � 0.5λ. This
is expected since in this dense lattice regime RDDI becomes
significant, and only a full calculation can faithfully describe
the light-scattering properties. In Fig. 2(d), for �0 = 1� and
a � 0.3λ the error reaches 30% for the mean-field model
and 10% for the second-order cumulant expansion method.
This indicates that higher-order correlation must be taken into
account in the limit of short-distance lattices of atoms and
under the strong-field condition �0 � 1�.

B. Modification of optical properties beyond weak-field
excitation

From the previous results, we can see that the cumu-
lant expansion method provides accurate enough predictions
within most of the regimes, except in a dense lattice or under
a strong driving field. Here we further explore the optical
properties beyond the weak-field excitation. We turn to look
at how these additional factors (excited-state population and
two-body correlation) beyond weak-field excitations affect the
atoms’ light-scattering properties as light intensity increases.
Figure 3(a) shows the exact D spectrum of a 2 × 2 atomic
array spaced by 0.5λ under various driving strengths. It is
evident that the optical depth decreases as the intensity in-
creases due to the saturation among the atoms, which has been
observed and discussed in Fig. 2(a). For these spectra, we fit
the profile by the Lorentz function D(�) � Dmax

w2

4(�−ν)2+w2 to
obtain the corresponding frequency shift ν and the absorption
width w. As Figs. 3(b) and 3(c) show, the light intensity
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FIG. 3. Linewidth broadening and suppressed line shift for lat-
tice spacings (a) and (b) a = 0.5λ and (c) and (d) a = 0.3λ. In (a),
D decreases as the driving strength increases. The corresponding
driving strengths are, from the top curve to the bottom curve, �0 =
(0.1, 0.3, 0.5, 1, 2)�. (e) and (f) Results of a Gaussian-distributed
sample with respect to the atom number N . In (b) and (c) the line
shift ν and the linewidth w are denoted by red and blue symbols, re-
spectively. (d) Comparison of the optical depth for different cumulant
expansion orders with the exact solution at a = 0.3λ for �0 = 2�.
The overall profile of the optical depth presents a more-accurate
result using the second-order cumulant expansion method. (e) and
(f) For randomly distributed samples, a saturation in linewidth is
observed only in the second-order expansion. The line shift appears
unaffected by the introduction of correlations.

significantly modifies these parameters and induces linewidth
broadening and suppressed resonance shift as the intensity
gets stronger. For a = 0.3λ, the frequency shift decreases to
half of its value in the weak-field limit and the linewidth
broadens to about three times. This can be explained by con-
sidering the single-atom case, where the steady-state solution
of σμ is given by

σμ = �μ

2� + i�

(
1 + |�μ|2/2

�2 + �2

4

)−1

. (8)

The term in large parentheses denotes the nonlinear response
exhibited by the dipole in the presence of a finite driving.
This term attenuates the light response and depends on the
detuning �. Specifically, it is suppressed more in the case
of a resonant laser (� = 0) as compared to the nonresonant
light. We can qualitatively interpret this phenomenon in the
multiatom system, where the atoms are excited not only by
the driving but also by the dipole fields from the other atoms;

the total field would lead to the saturation of atoms and the
modification of light scattering once its strength is strong
enough. Therefore, for strong driving in Figs. 3(b) and 3(c)
a similar phenomenon is observed, that the absorption profile
broadens and the frequency shift moves toward the resonance
condition.

We also show the results fitted from different cumulant
expansion orders. In most of the cases, the first-order expan-
sion is enough to identify accurate results for the moderate
RDDI as shown in Fig. 3(b). The second-order expansion
behaves better than the mean-field model, which is more man-
ifest in Fig. 3(c). In Fig. 3(c) we see that the second-order
expansion predicts almost the same absorption width as the
exact solution, while some disagreements on frequency shift
emerge when the driving strength surpasses �. The only ex-
ception where the mean-field model has less deviation is near
�0 = 2� in the considered case of a = 0.3λ. At this point
the first-order cumulant expansion method seems to provide
more-accurate results of line shifts, but from Fig. 3(d) we
can see that this is just a coincidence since from the overall
spectrum, the spectral profile from the second-order cumulant
expansion is closer to the exact spectrum.

Instead of focusing on the strong driving regime, we in-
vestigate a larger atomic system where the exact solutions are
computationally challenging. Figures 3(e) and 3(f) show the
absorption width and frequency shift of a Gaussian-distributed
atomic cloud as its density increases. The cloud’s root-mean-
square widths are (rx, ry, rz ) = (0.25λ, 0.25λ, 1.5λ), making
it cigar shaped, and it is subjected to weak driving. As the
density of the cloud increases with the addition of more atoms,
deviation in absorption width w emerges between the first-
and second-order expansion models. While the mean-field
model predicts a linear increase in width, the second-order
expansion model exhibits a saturation. However, there is no
significant difference between these models concerning the
frequency shift ν. This observation may explain the discrep-
ancy between the width predicted by the mean-field model
and experimental results [47], showing the significance of cor-
relations in large and dense atomic ensembles. Nonetheless, it
fails to account for the disagreement in frequency shift ν, even
when considering the influence of high intensities in Figs. 3(c)
and 3(d). The inclusion of higher-order correlations may be
necessary in denser samples where N � 20.

C. Saturation of optical depth in a subradiant array

Based on the analysis in Fig. 2, we can identify the regime
where the mean-field model predicts well enough the light-
scattering properties, where the RDDI is moderate (a � 0.3λ)
and the laser intensity is below saturation (�0 � 0.5�).

It is expected that an atomic array in the subradiant
mode will display a greater deviation from the linear model
compared to the superradiant mode under the same driving
strength. This deviation arises due to the increasing influence
of incoherent scattering within the subradiant mode, which
depends on the excitation population and two-body correla-
tions [50]. Such contributions are not accounted for in the
linear model. In Fig. 4 we show the trend of D as the lat-
tice size increases. To explore the limitations of the linear
model within subradiant atomic arrays, we select a square
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(a) (b) (c)

FIG. 4. Optical depth scaling of the L × L lattice in different shapes. We consider one square array (a) 0.8λ × 0.8λ and two rectangular
arrays (b) 0.95λ × 0.76λ and (c) 0.64λ × 0.8λ. The deviation between the linear model and cumulant expansion theory increases under the
resonant (� = 0) and weak driving conditions as the lattice size scales up. The linear model overestimates D, while the cumulant expansion
shows a rather smooth and saturated result over L.

array (0.8λ × 0.8λ) known to exhibit subradiance and a large
optical depth when subjected to resonant driving conditions
[46]. Our exploration of diverse array shapes also leads to two
additional rectangular arrays, both demonstrating subradiant
behavior under resonant driving. We choose a relatively weak
RDDI region and excite the system in a weak driving con-
dition (�0 = 0.1�). For a small number of atoms, we also
calculate the results by the second-order expansion method
as a comparison. We find negligible deviations between the
mean-field model and the second-order cumulant expansion
method, which indicates the validity of using the mean-field
model in a larger system size in the considered parameter
regions.

In Fig. 4 it is obvious that the linear model breaks down
even under a weak-field excitation when a larger system is
considered. We observe that for the linear model, it predicts
the largest D for the case of a 0.8λ × 0.8λ array comparing the
other configurations in the large-L limit, while the mean-field
model presents the largest D in the case of a 0.64λ × 0.8λ

array instead. In the considered parameter regime as shown
in Fig. 4, the second-order cumulant expansion overlaps with
the mean-field model, which suggests a negligible effect of
atom-atom correlations. This indicates that mean-field theory
still provides a good model to describe the scattering property
of a large ensemble, provided the density is low (a � 0.3λ).

Among these shapes, we also find that the discrepancy
between the linear and mean-field models exists in most
subwavelength arrays once the number of atoms becomes
sufficiently large, especially when driving is resonant with the
array’s frequency shift. This is because the optical depth peak
is dominated by the subradiant mode [46]. Figure 5 illustrates
the optical depth for both 0.3λ × 0.9λ and 0.9λ × 0.3λ lat-
tices. The detunings � = −1.4� and 0.66� are chosen based
on the shift of the optical depth peak in 30 × 30 arrays. The
difference becomes noticeable at very large atomic numbers
L2 > 400, which is much larger than those shown in Fig. 4.
This shows the limitation of the linear model in predicting
large atomic arrays, whose validity also depends on the num-
ber of atoms. It demonstrates that the linear model may fail
in large atomic systems [40], even when the weak driving
condition is met.

IV. CONCLUSION

We have compared the results of light-scattering properties
from different models that host different degrees of atom-atom
correlations and excitation effect. Through adding succes-
sively higher correlations into the steady-state equations, we
could obtain an increasingly accurate result with respect to
the exact full density matrix solution. Our investigation of
the relative errors from this exact solution showed that, for
the weak RDDI regime where a � 0.3λ and the weak driving
regime, the first-order cumulant expansion has already given
satisfying accuracy for the property of optical depth. Mean-
while, the role of two-body correlations becomes significant
as the RDDI transitions into a moderate regime, approxi-
mately when a � 0.3λ, and under a strong driving condition
�0 � 0.5�. When a higher laser intensity is applied, the
atomic excitations become saturated, which hugely influences
the optical depth. This saturation will cause light transparency
and also modifies the light shift and resonance width. In the
cases where the atom density is higher, it becomes crucial
to account for second-order correlations, as they significantly
affect the resonance width. Finally, we also found that this
saturation effect can also appear in a subradiant atomic array
even when the driving is weak, where the primary contribution
to incoherent scattering stems from the excitation population,

(a) (b)

FIG. 5. Optical depth of the (a) 0.3λ × 0.9λ and (b) 0.9λ × 0.3λ

lattices. The detunings are � = −1.4� and 0.66�. There is no sig-
nificant deviation between the linear and mean-field models until the
number of atoms becomes quite large L > 20.
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leading to a large deviation from the linear model that is often
used for its simplicity. Our results show that the mean-field
model could be a good extension of the linear model due
to both its accuracy and less computational complexity in
most cases. However, for large and dense atomic ensembles,
inclusion of second- or higher-order correlations may become
necessary, even when the driving is weak. This presents a
challenge in the study of light-matter interacting systems.
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[9] M. O. Araújo, I. Krešić, R. Kaiser, and W. Guerin, Superradi-
ance in a large and dilute cloud of cold atoms in the linear-optics
regime, Phys. Rev. Lett. 117, 073002 (2016).

[10] W. Guerin, M. O. Araújo, and R. Kaiser, Subradiance in a large
cloud of cold atoms, Phys. Rev. Lett. 116, 083601 (2016).

[11] H. H. Jen, M.-S. Chang, and Y.-C. Chen, Cooperative single-
photon subradiant states, Phys. Rev. A 94, 013803 (2016).

[12] H. H. Jen, Cooperative single-photon subradiant states in a
three-dimensional atomic array, Ann. Phys. (NY) 374, 27
(2016).

[13] A. Asenjo-Garcia, M. Moreno-Cardoner, A. Albrecht, H. J.
Kimble, and D. E. Chang, Exponential improvement in photon
storage fidelities using subradiance and “selective radiance” in
atomic arrays, Phys. Rev. X 7, 031024 (2017).

[14] H. H. Jen, Phase-imprinted multiphoton subradiant states, Phys.
Rev. A 96, 023814 (2017).

[15] H. H. Jen, M.-S. Chang, and Y.-C. Chen, Cooperative light
scattering from helical-phase-imprinted atomic rings, Sci. Rep.
8, 9570 (2018).

[16] H. H. Jen, Directional subradiance from helical-phase-
imprinted multiphoton states, Sci. Rep. 8, 7163 (2018).

[17] J. A. Needham, I. Lesanovsky, and B. Olmos, Subradiance-
protected excitation transport, New J. Phys. 21, 073061
(2019).

[18] M. Moreno-Cardoner, D. Plankensteiner, L. Ostermann, D. E.
Chang, and H. Ritsch, Subradiance-enhanced excitation transfer

between dipole-coupled nanorings of quantum emitters, Phys.
Rev. A 100, 023806 (2019).

[19] M. Moreno-Cardoner, R. Holzinger, and H. Ritsch, Efficient
nano-photonic antennas based on dark states in quantum emitter
rings, Opt. Express 30, 10779 (2022).

[20] A. Cipris, N. A. Moreira, T. S. do Espirito Santo, P. Weiss,
C. J. Villas-Boas, R. Kaiser, W. Guerin, and R. Bachelard,
Subradiance with saturated atoms: Population enhancement of
the long-lived states, Phys. Rev. Lett. 126, 103604 (2021).

[21] S. Davidson, F. A. Pollock, and E. Gauger, Eliminating radiative
losses in long-range exciton transport, PRX Quantum 3, 020354
(2022).

[22] J. Ruostekoski, Cooperative quantum-optical planar arrays of
atoms, Phys. Rev. A 108, 030101 (2023).

[23] R. Holzinger, J. Peter, S. Ostermann, H. Ritsch, and S. Yelin,
Harnessing quantum emitter rings for efficient energy transport
and trapping, Opt. Quantum 2, 57 (2024).

[24] S. D. Jenkins, J. Ruostekoski, J. Javanainen, S. Jennewein, R.
Bourgain, J. Pellegrino, Y. R. P. Sortais, and A. Browaeys, Col-
lective resonance fluorescence in small and dense atom clouds:
Comparison between theory and experiment, Phys. Rev. A 94,
023842 (2016).

[25] R. T. Sutherland and F. Robicheaux, Collective dipole-dipole
interactions in an atomic array, Phys. Rev. A 94, 013847 (2016).

[26] A. Glicenstein, G. Ferioli, N. Šibalić, L. Brossard, I. Ferrier-
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