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Quantum electrodynamics of lossy magnetodielectric samples
in vacuum: Modified Langevin noise formalism
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Quantum behavior of the electromagnetic field in unbounded macroscopic media displaying absorption is
properly described by the Langevin noise formalism (macroscopic quantum electrodynamics), where the field
is assumed to be entirely produced by medium fluctuating sources via the dyadic Green’s function. On the
other hand, such formalism is able to deal with the case of finite-size lossy objects placed in vacuum only as a
limiting situation where the permittivity limit Im(ε) → 0+ pertaining the regions filled by vacuum is taken at the
end of the calculations. Strictly setting Im(ε) = 0 is forbidden in the Langevin noise formalism since the field
would vanish in the lossless regions, and this is physically due to the fact that the contribution of the scattering
modes to the field is not separated from the contribution produced by the medium fluctuating sources. Recently,
a modified Langevin noise formalism has been proposed to encompass the scattering modes and accordingly,
it is able to describe the structured lossless situations by strictly setting Im(ε) = 0. However, such modified
formalism has been numerically validated only in a few specific geometries. In this paper we analytically derive
the modified Langevin noise formalism from the established canonical quantization of the electromagnetic field
in macroscopic media, thus proving that it models any possible scenario involving linear, inhomogeneous, and
magnetodielectric samples. The derivation starts from quantum Maxwell equations in the Heisenberg picture
together with their formal solution as the superposition of the medium assisted field and the scattering modes. We
analytically prove that each of the two field parts can be expressed in term of particular bosonic operators, which
in turn diagonalize the electromagnetic Hamiltonian and whose associated quasiparticles are medium assisted
and scattering polaritons, respectively. The key ingredient underpinning our reasoning is a peculiar integral
relation linking the far-field amplitude of the dyadic Green’s function and the scattering modes, a relation we
rigorously derive and physically explain by identifying the scattering modes as fields generated by infinitely far
dipole point sources.
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I. INTRODUCTION

Investigating the quantum features of light interacting with
macroscopic matter [1] is both conceptually significant and
crucial for describing a plethora of relevant applications.
In view of the practical impossibility to achieve a detailed
microscopic description, the quantization of the electromag-
netic field, when it experiences a continuum dielectric only
through its permittivity and permeability, calls for a suit-
able model effectively accounting for matter dispersion and
absorption. Quantum description of damping generally re-
lies on the model inclusion of a bath with infinitely many
degrees of freedom to dissipate energy [2] and such strat-
egy is adopted in the Huttner-Barnett approach [3,4], in
turn based on the Hopfield [5] and Fano [6] models, where
matter polarization is represented by a harmonic oscillator
coupled to a continuum of reservoir oscillator fields. Even
though generalizations of the Huttner-Barnett approach have
been proposed [7–9], specializing the method to an arbitrary
electromagnetic geometry is still a challenging task, since
dielectric permittivities with different dispersive properties
are usually in order. In this respect, various and more flexible
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quantization schemes have been proposed, not including the
matter oscillator but encoding an arbitrary medium elec-
tromagnetic response into the field-reservoir coupling term
[10–15]. In addition to such approaches where quantiza-
tion is canonically performed, i.e., commutation relations are
imposed to classical canonically conjugated variables, a phe-
nomenological method [16–20] has been proposed which is
based on the fluctuation-dissipation theorem and which is
usually referred to as macroscopic quantum electrodynam-
ics (MQED) or Langevin noise formalism (LNF). In this
approach the field is assumed to be generated by medium
fluctuating sources, using the classical dyadic Green’s func-
tion [21,22], and quantization is performed by imposing
the standard vacuum quantum electrodynamics commutation
relations ruling the electric and induction magnetic fields.
This leads to the introduction of bosonic polariton operators,
whereas the harmonic-oscillator-like Hamiltonian is postu-
lated to produce the correct time evolution of field operators
in the Heisenberg picture. Major virtues of such approach
are its relative simplicity and extreme flexibility resulting
from the central role played by the Green’s function through
which the medium properties solely show up and whose
detailed knowledge is generally only required at the even-
tual numerical evaluation stage. Due to its large versatility,
LNF has been extensively exploited to describe a number of
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applications in many research subjects encompassing disper-
sion forces [23–29], quantum emitter decay [30–38], cavity
QED [39–41], quantum nanophotonics [42–46], and fast elec-
tron scattering [47–51]. It is essential to point out that, even
though LNF has been introduced in a phenomenological and
noncanonical way, Philbin has provided a canonical approach
for quantizing the field-reservoir system fully reproducing,
and hence theoretically substantiating, the LNF [52].

The main LNF prescription consists in relating the field
operators to the polaritonic operators through the Green’s
function, this physically amounting to processes where the
field is generated by localized sources. Such a prescription
is fully adequate to deal with electrodynamics in unbounded
absorbing media where any field exponentially vanishes far
from the sources and the energy flow is forbidden at infinity
so that radiation from localized sources is the only field gener-
ation mechanism. On the other hand, if a finite-size dielectric
object is placed in vacuum, the electromagnetic energy carried
by the radiation generated by a localized source can reach
indefinitely far regions. Conversely, it is possible to place
the radiation source as far as desired from the object, thus
resulting in a second field excitation mechanism where radi-
ation is ideally sent from infinity as plane waves which are
subsequently scattered by the object. Such reasoning agrees
with the early observations of Di Stefano [53], lately empha-
sized by Drezet in Ref. [54], and further analyzed in [55],
where a closer analysis of the fundamental integral relation
involving the dyadic Green’s function has unveiled an addi-
tional surface term (also discussed in Ref. [56]) which, for
a finite-size dielectric object placed in vacuum, persists even
when the integration surface is brought to infinity. The obser-
vation has triggered renewed interest in the subject [57–61],
and a modified Langevin noise formalism (MLNF) explicitly
accounting for the scattering modes has been proposed and
numerically checked in a few specific geometries [62]. One of
the main differences between the MLNF and the LNF is that
the former enables treating the situations comprising lossless
spatial regions by strictly setting Im(ε) = 0 in such regions,
whereas the latter deals with the lossless case only by taking
the singular limit Im(ε) → 0+ at the end of the calculations,
as shown in Ref. [63].

In this paper we extensively analyze quantum electro-
dynamics of macroscopic finite-size absorbing objects in
vacuum, and we analytically validate the modified Langevin
noise formalism by deriving it from the Philbin approach
of Ref. [52], where canonical quantization of macroscopic
electromagnetism is achieved. Specifically, instead of diag-
onalizing the electromagnetic Hamiltonian through the Fano
method, we start from quantum Maxwell equations (result-
ing as Heisenberg equations for the field operators) and we
argue that their most general formal solution is the super-
position of the medium assisted field (particular solution,
containing the Green’s function) and the scattering modes
(general solution of the source-free equations). As a first
crucial result, we prove that each field contribution can be
expressed in terms of specific creation and annihilation op-
erators, and this is done by assuming bosonic commutation
relations for them and showing that all the field commutation
relations are self-consistently reproduced. Such a result
stems from the exact cancellation, when evaluating the field

commutation relations, between the above-discussed surface
term (containing the dyadic Green’s function) and a contribu-
tion produced by the scattering modes, a rigorous and highly
nontrivial result in view of the different character of the two
fields they stem from. We physically interpret such balance
by identifying the scattering modes as fields generated by
dipole point sources infinitely far from the object. In addition,
using the field expressions, we show that the electromag-
netic Hamiltonian is the sum of two harmonic-oscillator-like
Hamiltonians, as expected from Ref. [62], pertaining to two
different kids of quasiparticles, medium assisted and scatter-
ing polaritons, respectively.

II. QUANTUM MAXWELL EQUATIONS

We start by reviewing the main results of the quan-
tum theory of macroscopic electromagnetism discussed in
Ref. [52]. The considered medium is an arbitrary isotropic,
inhomogeneous magnetodielectric one whose macroscopic
electromagnetic response is described by the polarization and
magnetization densities

P(ε)(r, t ) = ε0

2π

∫ t

−∞
dt ′ χ (ε)(r, t − t ′)E(r, t ′),

M(μ)(r, t ) = 1

2πμ0

∫ t

−∞
dt ′ χ (μ)(r, t − t ′)B(r, t ′), (1)

where χ (ε)(r, τ ) and χ (μ)(r, τ ) are the electric and magnetic
susceptibilities, respectively, whose vanishing for τ < 0 due
to causality requires their frequency-domain representations

χ (ε,μ)
ω (r) = 1

2π

∫ ∞

0
dτeiωτχ (ε,μ)(r, τ ), (2)

to satisfy the Kramers-Kronig relations

Re χ (ε,μ)
ω = 2

π
P

∫ +∞

0
dω′ ω′ Im χ

(ε,μ)
ω′

ω′2 − ω2
. (3)

The electric permittivity and magnetic permeability are de-
fined in the frequency domain as

εω(r) = 1 + χ (ε)
ω (r),

μω(r) = 1

1 − χ
(μ)
ω (r)

, (4)

respectively.
The Heisenberg picture is used hereafter, and the electro-

magnetic field is described by the vector potential operator
Â(r, t ) in the Coulomb gauge ∇ · Â = 0. Besides, the reser-
voir is modeled by the field operators X̂�(r, t ) and Ŷ�(r, t ),
representing a twofold continuum of harmonic oscillators of
proper frequencies � and enabling the description of elec-
tric and magnetic energy dissipation, respectively. Letting
�̂A(r, t ), �̂�

X (r, t ), and �̂�
Y (r, t ) be the corresponding canon-

ical momenta, the basic equal-time canonical commutation
relations are

[Â(r, t ), �̂A(r′, t )] = ih̄δ⊥(r − r′),[
X̂�(r, t ), �̂�′

X (r′, t )
] = ih̄δ(� − �′)δ(r − r′)I,[

Ŷ�(r, t ), �̂�′
Y (r′, t )

] = ih̄δ(� − �′)δ(r − r′)I, (5)
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together with the vanishing of any other equal-time commu-
tation relation [here δ⊥(r) is the dyadic transverse δ function
and I is the dyadic identity, see Appendix A]. The electro-
magnetic field-reservoir coupled dynamics is generated by the
Hamiltonian

Ĥ =
∫

d3r
{

1

ε0
�̂A ·

(
1

2
�̂A +

∫ +∞

0
d� α�X̂�

)

+ 1

2ε0

(∫ +∞

0
d� α�X̂�

)2

+ 1

2μ0
|∇ × Â|2

−
(∫ +∞

0
d� β�Ŷ�

)
· (∇ × Â)

+1

2

∫ +∞

0
d�

[(
�̂�2

X + �̂�2
Y

) + �2(X̂�2 + Ŷ�2)
]}

,

(6)

where

αω(r) =
√

2ε0

π
ωIm[εω(r)],

βω(r) =
√

2

πμ0
ωIm

[ −1

μω(r)

]
(7)

are fundamental real coupling coefficients fully accounting
for the medium response. Besides, the electric and induction
magnetic field operators are given by

Ê = −∂Â
∂t

+
(

− 1

ε0

∫ +∞

0
d� α�X̂�

)‖
,

B̂ = ∇ × Â, (8)

where the superscript ‖ labels the longitudinal part of the
vector (see Appendix A), so that the homogeneous quantum
Maxwell equations

∇ · B̂ = 0,

∇ × Ê = −∂B̂
∂t

(9)

are automatically satisfied. Such a quantum description
arises from a canonical quantization procedure which, after
exhibiting a suitable Lagrangian whose Euler-Lagrange equa-
tions reproduce classical macroscopic Maxwell equations,
identifies conjugated variables to which canonical commu-
tation relations are imposed (constrained by the transverse
character of the vector potential in the Coulomb gauge).

An additional and remarkable feature of the approach is
that the Heisenberg equations of the canonical field opera-
tors yield the inhomogeneous quantum Maxwell equations, as
pointed out in Ref. [52]. Since this is the starting point of the
present paper investigation, we closely review this result by
explicitly writing the six dynamical Heisenberg equations:

∂Â
∂t

= 1

ε0
�̂A +

(
1

ε0

∫ +∞

0
d� α�X̂�

)⊥
,

∂�̂A

∂t
= ∇ ×

(
− 1

μ0
∇ × Â +

∫ +∞

0
d� β�Ŷ�

)
,

∂X̂�

∂t
= �̂�

X ,

∂�̂�
X

∂t
= −α�

ε0

(
�̂A +

∫ +∞

0
d�′ α�′X̂�′

)
− �2X̂�,

∂Ŷ�

∂t
= �̂�

Y ,

∂�̂�
Y

∂t
= −�2Ŷ� + β�∇ × Â, (10)

where the superscript ⊥ labels the transverse part of the vector
(see Appendix A) and which are obtained by using the general
equation ∂Ô

∂t = i
h̄ [Ĥ, Ô] for the Heisenberg operator Ô(t ) to-

gether with the commutation relations of Eqs. (5). Combining
the first of Eqs. (8) and the first of Eqs. (10) we get

�̂A = −ε0Ê −
∫ +∞

0
d� α�X̂�, (11)

which, again, from the first of Eqs. (10), is easily seen to
be a transverse field operator [in agreement with the first of
Eqs. (5)], and thus leading to the equation

∇ ·
(

ε0Ê +
∫ +∞

0
d� α�X̂�

)
= 0. (12)

Besides, using the second of Eqs. (8) together with Eq. (11),
the second of Eqs. (10) turns into

∇ ×
(

− 1

μ0
B̂ +

∫ +∞

0
d� βωŶ�

)

+ ∂

∂t

(
ε0Ê +

∫ +∞

0
d� α�X̂�

)
= 0. (13)

Equations (12) and (13) are seen to be the inhomogeneous
quantum Maxwell equations. To prove this, eliminating reser-
voir fields is essential, and this can be done by noting that,
after using Eq. (11) together with the second of Eqs. (8),
the last four of Eqs. (10) yield the forced harmonic-oscillator
equations

∂2X̂�

∂t2
+ �2X̂� = α�Ê,

(14)
∂2Ŷ�

∂t2
+ �2Ŷ� = β�B̂,

whose most general and causal solutions are

X̂�(r, t ) = α�(r)
∫ t

−∞
dt ′ sin [�(t − t ′)]

�
Ê(r, t ′)

+ [e−i�t Ẑ�(r) + H.c.],

Ŷ�(r, t ) = β�(r)
∫ t

−∞
dt ′ sin [�(t − t ′)]

�
B̂(r, t ′)

+ [e−i�t Ŵ�(r) + H.c.]. (15)

Here the terms containing the time integrals provide the par-
ticular solutions by means of the retarded Green’s function
of the classical harmonic oscillator, whereas the remaining
terms containing the operators Ẑ� and Ŵ� represent the
general solutions of the homogeneous equations. Now, using
the polarization and magnetization densities of Eqs. (1), the
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Kramers-Kronig relation of Eq. (3) and the frequency-domain
representation of the operators

F̂(r, t ) =
∫ +∞

0
dωe−iωt F̂ω(r) + H.c., (16)

it is possible to prove the relations∫ +∞

0
d� α�X̂� = P̂(ε) + P̂(M ),

∫ +∞

0
d� β�Ŷ� = M̂(μ) + M̂(M ), (17)

where

P̂(M )
ω = αωẐω,

M̂(M )
ω = βωŴω, (18)

are the noise polarization and magnetization densities in the
frequency domain, respectively. Equations (17) clarify the
physical meaning of the reservoir fields by showing that
α�X̂� and β�Ŷ� are the differential contributions to the total
polarization and magnetization densities of the medium, com-
prising the permittivity and permeability parts P̂(ε), M̂(μ) and
the fluctuating noise source parts P̂(M ), M̂(M ). We hereafter
label with the superscript (M ) any physical quantity which
is related with such medium assisted fluctuating sources. In-
serting Eqs. (17) into Eqs. (12) and (13), we eventually get the
inhomogeneous quantum Maxwell equations

∇ · D̂ = ρ̂ (M ),
(19)

∇ × Ĥ = Ĵ(M ) + ∂D̂
∂t

,

where

D̂ = ε0Ê + P̂(ε),

Ĥ = 1

μ0
B̂ − M̂(μ) (20)

are the electric displacement and magnetic field, respectively,
whereas

ρ̂ (M ) = −∇ · P̂(M ),

Ĵ(M ) = ∂P̂(M )

∂t
+ ∇ × M̂(M ) (21)

are the noise charge and current densities evidently satisfy-
ing the continuity equation ∇ · Ĵ(M ) + ∂ρ̂ (M )

∂t = 0. It is worth
stressing that the above quantum Maxwell equations are fully
general and they hold in every medium geometry, also pos-
sibly encompassing spatial regions filled by vacuum where
D̂ = ε0Ê, Ĥ = 1

μ0
B̂, and where the noise sources of Eqs. (21)

vanish due to the coupling coefficients αω and βω in the
expressions for P̂(M )

ω and M̂(M )
ω in Eqs. (18).

As a final but not less important comment, we note the cen-
tral role played by the operators Ẑ� and Ŵ� which appeared
in Eqs. (15) merely to represent the possible free evolution
part of the reservoir fields X̂� and Ŷ�. After obtaining the
quantum Maxwell equations of Eqs. (19), the operators Ẑ�

and Ŵ� were found to be associated with additional charge
ρ̂ (M ) and current Ĵ(M ) densities, and it is remarkable that, in

classical optics, their classical counterparts are usually dra-
matically ignored. Conversely, in the quantum approach we
are considering, such seemingly superfluous quantum sources
cannot be arbitrarily suppressed without violating the canon-
ical commutation relations (see the end of Sec. IV) and are
essential to describe the part of the field which is produced by
localized sources, the medium assisted field (see below).

We conclude this paragraph by reporting the frequency-
domain representation of the field operators and of their
conjugated canonical momenta:

Âω = 1

iω
Ê⊥

ω ,

X̂�
ω = α�

�2 − (ω + iη)2 Êω + δ(ω − �)Ẑω,

Ŷ�
ω = β�

�2 − (ω + iη)2

∇ × Êω

iω
+ δ(ω − �)Ŵω,

(�̂A)ω = −ε0εωÊω − αωẐω,(
�̂�

X

)
ω

= −iωX̂�
ω ,(

�̂�
Y

)
ω

= −iωŶ�
ω , (22)

where the prescription η → 0+ here accounts for the causality
of the electromagnetic response.

III. MEDIUM ASSISTED AND SCATTERING FIELDS

We now start our investigation which here departs from the
approach described in Ref. [52] in that we directly analyze
quantum Maxwell equations and their solutions instead of
using the Fano method for diagonalizing the Hamiltonian of
Eq. (6). Quantum Maxwell equations are formally identical to
their classical counterpart and hence they are better dealt with
in the frequency domain where, in the usual way, they provide
the inhomogeneous Helmholtz equation for the electric field(

∇ × 1

μω

∇ × −k2
ωεω

)
Êω = iωμ0Ĵ(M )

ω , (23)

where kω = ω/c is the vacuum wave number and

Ĵ(M )
ω = −iωαωẐω + ∇ × (βωŴω ). (24)

The general solution of Eq. (23) is necessarily given by

Êω = Ê(M )
ω + Ê(S)

ω , (25)

where Ê(M )
ω is the particular solution accounting for the noise

source iωμ0Ĵ(M )
ω , whereas Ê(S)

ω is the most general solution
of the homogeneous Helmholtz equation. Physically, Ê(M )

ω

represents the medium assisted field, i.e., the part of the field
generated by the medium fluctuating noise sources, whereas
Ê(S)

ω is the part of the field which is produced by infinitely
far sources so that it necessarily has to represent any possible
scattering process. Now in the standard LNF only the medium
assisted contribution Ê(M )

ω is phenomenologically assumed
[16–20] or theoretically obtained by the Fano diagonalization
method [52]. On the other hand, superposing the particular
solution and the general solution of the homogeneous equa-
tion is a fundamental rule associated with the linearity of the
equation, and hence it is also rigorously true for operator equa-
tions as Eq. (23) [or Eqs. (14) as we have reviewed above].

013707-4



QUANTUM ELECTRODYNAMICS OF LOSSY … PHYSICAL REVIEW A 110, 013707 (2024)

Therefore the introduction of the scattering field Ê(S)
ω in the

MLNF is here not postulated, but it is a direct consequence
of quantum Maxwell equations. It is worth highlighting that,
in the situation where the lossy medium fills the whole space,
the scattering contribution Ê(S)

ω necessarily vanishes, since so-
lutions of the homogeneous Helmholtz equation exponentially
growing at infinity are ruled out. From a physical point of
view, this amounts to the impossibility of a finite amount
of energy coming from infinity to reach a finite portion of
the lossy medium. In view of this observation, we hereafter
specialize our investigation to the situation where an arbi-
trary magnetodielectric sample is placed in vacuum so that
the coexistence of both medium assisted Ê(M )

ω and scattering
Ê(S)

ω fields can be investigated. As a prelude to the quantum
description of such coexistence, it is imperative to investigate
both the properties of such two field contributions and their
intimate relationship.

A. Medium assisted field

The medium assisted field is given by

Ê(M )
ω (r) = iωμ0

∫
d3r′Gω(r, r′) · Ĵ(M )

ω (r′), (26)

where Gω(r, r′) is the dyadic Green’s function satisfying the
equation(

∇ × 1

μω

∇ × −k2
ωεω

)
Gω(r, r′) = δ(r − r′)I, (27)

and the boundary condition Gω(r, r′) → 0 when r, r′ → ∞.
In the specific situation we are considering in this paper where
vacuum surrounds the sample, the dyadic Green’s function
asymptotically satisfies the Sommerfeld radiation condition
for r → ∞, expressed by the relations

Gω(r, r′) = eikωr

r
Wω(or, r′) + O

(
1

r2

)
,

∇ × Gω(r, r′) = eikωr

r
ikωur × Wω(or, r′) + O

(
1

r2

)
, (28)

where ur = r/r is the radial unit vector along the obser-
vation direction whose polar angles are or = (θr, ϕr ), and
Wω(or, r′) is a dyadic amplitude independent on r which is
left-orthogonal to the observation direction, i.e.,

ur · Wω(or, r′) = 0. (29)

The validity and self-consistency of the MLNF we are to
prove in the present paper are almost entirely substantiated
by two basic properties of the dyadic Green’s function (which
we prove in Appendix B), namely, the reciprocity relation

Gω(r, r′) = GT
ω (r′, r) (30)

and the fundamental integral relation∫
d3s

∑
λ=e,m

Aωλ(r, s) · A∗T
ωλ(r′, s)

+ kω

∫
doWT

ω (o, r) · W∗
ω(o, r′)

= Im[Gω(r, r′)], (31)

where o = (θ, ϕ), do = sin θdθdϕ is the solid angle differen-
tial, the integration is performed over the whole solid angle,
and we have introduced the dyadics

Aωe(r, r′) = kω

√
Im[εω(r′)]Gω(r, r′),

Aωm(r, r′) =
√

Im

[ −1

μω(r′)

]
[Gω(r, r′) × ←∇r′ ]. (32)

As correctly argued by Drezet in Ref. [55], a surface contri-
bution to the fundamental integral relation [second term in
the left-hand side of Eq. (31)] persists when the medium is
not lossy, and here we have extended the correctness of such
a basic observation to the more general magnetodielectric
situation.

In Appendix C we analytically check the fundamental in-
tegral relation of Eq. (31) in the case where there is no lossy
medium, i.e., the whole space is filled by vacuum. The result is
particularly interesting for our purposes, since for vacuum the
dyadics of Eqs. (32) rigorously vanish so that the fundamental
integral relation reduces to

kω

∫
do WT

ω (o, r) · W∗
ω

(
o, r′) = Im[Gω(r, r′)], (33)

i.e., its consistency is fully due to the surface contribution.
Now this result, pertaining the MLNF we are describing
here, should be compared with the analogous one derived
from the standard LNF and discussed in Ref. [63], where
the fundamental integral relation for the dyadic Green’s func-
tion correctly lacks the surface contribution since there the
medium is absorbing everywhere. In that analysis the lossless
case is correctly obtained by taking the limit Im(εω ) → 0+ of
the fundamental integral relation. We conclude that, as stated
above, the lossless situation can be dealt with in the MLNF
without retaining a small imaginary part of the permittivity
[i.e., by setting Im(εω ) = 0 from the beginning], whereas in
the LNF the limit Im(εω ) → 0+ has necessarily to be taken at
the end of the calculations.

Inserting Eq. (24) into Eq. (26) and using Eq. (A8) of
Appendix A together with the definition of the coupling co-
efficients in Eqs. (7), we get

Ê(M )
ω (r) =

√
2μ0

π
ω3

∫
d3r′[Aωe(r, r′) · Ẑω(r′)

+ iAωm(r, r′) · Ŵω(r′)], (34)

where we have dropped the surface term appearing in Eq. (A8)
since βω vanishes at infinity. Equation (34) directly relates
the medium assisted field Ê(M )

ω to the operators Ẑω and Ŵω

pertaining to the medium electric and magnetic noise sources,
the link being provided by the electric and magnetic dyadics
Aωe and Aωm, which, due to the permittivity and permeability
imaginary parts in Eqs. (32), vanish outside the sample vol-
ume, thus effectively enabling the restriction of the integration
domain in Eq. (34) to such volume.
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B. Scattering field

The scattering field Ê(S)
ω is the most general solution of the

homogeneous Helmholtz equation, namely,(
∇ × 1

μω

∇ × −k2
ωεω

)
Ê(S)

ω = 0. (35)

An incident (in) plane wave launched from vacuum onto the
sample produces a scattered field (sc) so that their super-
position is a basic scattering mode (S) which satisfies the
homogeneous Helmholtz equation and it is labeled by the in-
cident plane-wave parameters. We express the incident plane
wave as

F(in)
ωnν (r) = eikωn·renν, (36)

where n is a unit vector along the wave vector k = kωn and
en1, en2 are two mutually orthogonal polarization unit vectors
which are orthogonal to n. Denoting with F(sc)

ωnν (r) the scat-
tered field produced by the plane wave F(in)

ωnν , we here express
the overall scattering mode as

F(S)
ωnν (r) = F(in)

ωnν (r) + F(sc)
ωnν (r). (37)

Now the scattering field operator is constructed by superim-
posing all the possible scattering modes, i.e., we set

Ê(S)
ω (r) =

∫
don

∑
ν=1,2

F(S)
ωnν (r)Q̂ωnν, (38)

where on = (θn, ϕn) are the polar angles of the unit vector n,
don = sin θndθndϕn is the solid angle differential, the inte-
gration is performed over the whole solid angle, and Q̂ωnν are
operators.

Before moving on to the validation of the full MLNF, it is
here essential discussing the scattering modes F(S)

ωnν together
with some of their remarkable properties. We start by noting
that in Eq. (37) we have defined the scattered field F(sc)

ωnν

in such a way that this relation holds throughout the whole
space (both in vacuum and inside the sample). Now this is
particularly convenient since, using the fact that the scattering-
mode field F(S)

ωnν satisfies Eq. (35), it is easy to prove that the
scattered field is given by

F(sc)
ωnν (r) = −

∫
d3r′Gω(r, r′)

·
[
∇r′ × 1

μω(r′)
∇r′ × −k2

ωεω(r′)
]

F(in)
ωnν (r′), (39)

an expression lucidly clarifying that the dyadic Green’s func-
tion provides the description of the scattering modes as well,
so that its knowledge amounts to a complete description of
field-macroscopic matter interaction. Note that the integrand
in the right-hand side of Eq. (39) vanishes for r′ outside the
sample volume, since the incident plane wave satisfies the
vacuum Helmholtz equation (∇ × ∇ × −k2

ω )F(in)
ωnν = 0 and

accordingly, the integration domain can be restricted to the
volume occupied by the object. From a physical point of
view, this means that the scattered field F(sc)

ωnν can be regarded
as being generated by localized sources inside the sample
and accordingly, in view of Eqs. (28), it is evident from
Eq. (39) that the scattered field asymptotically satisfies the
Sommerfeld radiation condition for r → ∞ expressed by the

relations

F(sc)
ωnν (r) = eikωr

r
w(sc)

ωnν (or ) + O

(
1

r2

)
,

∇ × F(sc)
ωnν (r) = eikωr

r
ikωur × w(sc)

ωnν (or ) + O

(
1

r2

)
, (40)

where w(sc)
ωnν (or ) is a vector amplitude which is orthogonal to

the observation direction

ur · w(sc)
ωnν (or ) = 0. (41)

The far-field behaviors of the scattering mode in Eqs. (40)
and of the dyadic Green’s function in Eqs. (28) are the key
ingredients to prove the rigorous relation (see Appendix D)

F(S)
ωnν (r) = 4π enν · Wω(o−n, r), (42)

which deserves some discussion at this point. First, this
relation shows that the overall scattering mode F(S)

ωnν is di-
rectly available if the asymptotic dyadic amplitude Wω is
known, thus avoiding the task of performing the integration
in Eq. (39). Second, Eq. (42) admits the simple physical inter-
pretation (see Appendix D), according to which the scattering
mode F(S)

ωnν can be regarded as the field produced by a point
dipole directed along the incident plane-wave polarization enν

and located infinitely far away from the object in the direc-
tion −n, opposite to the incident wave vector, as intuitively
expected. In addition, Eq. (42) has a very important conse-
quence, namely, the integral relation (see Appendix D)∫

don

∑
ν=1,2

F(S)
ωnν (r)FS∗

ωnν (r′)

= 16π2
∫

do WT
ω (o, r) · W∗

ω(o, r′), (43)

which is of particular relevance for our investigation, since
it relates an integral property of the scattering modes in its
left-hand side to the surface contribution appearing in the
fundamental integral relation in Eq. (31).

IV. BOSONIC OPERATORS

We aim now at proving that two sets of bosonic opera-
tors can be introduced to independently describe the medium
assisted field and the scattering field. We start by slightly
changing the hitherto used notation in order to fit the standard
one adopted in the LNF literature, and accordingly, for the
medium assisted field we consider the electric and magnetic
dyadics and operators

Gωe(r, r′) = i
ω2

c2

√
h̄

πε0
Im[εω(r′)]Gω(r, r′),

Gωm(r, r′) = −i
ω

c

√
h̄

πε0
Im

[ −1

μω(r′)

]
[Gω(r, r′) × ←∇r′ ],

f̂ωe(r) = −i

√
2ω

h̄
Ẑω(r),

f̂ωm(r) =
√

2ω

h̄
Ŵω(r), (44)
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where the G dyadics are related to the A ones by
Gωe(r, r′) = i

√
h̄μ0ω2/πAωe(r, r′) and Gωm(r, r′) =

−i
√

h̄μ0ω2/πAωm(r, r′), whereas for the scattering field
we introduce the vectors and operators

Eωnν (r) =
√

h̄μ0ω3

16π3c
F(S)

ωnν (r),

ĝωnν =
√

16π3c

h̄μ0ω3
Q̂ωnν . (45)

Using such definitions, the field operator from Eqs. (25), (34),
and (38) turns out to be

Êω(r) =
∫

d3r′ ∑
λ

Gωλ(r, r′) · f̂ωλ(r′)

+
∫

don

∑
ν

Eωnν (r)ĝωnν, (46)

whereas the fundamental integral relation from Eq. (31)
becomes ∫

d3s
∑

λ

Gωλ(r, s) · G∗T
ωλ (r′, s)

+ h̄μ0ω
3

cπ

∫
doWT

ω (o, r) · W∗
ω(o, r′)

= h̄μ0ω
2

π
Im[Gω(r, r′)]. (47)

We emphasize that the field expression in Eq. (46) and the
fundamental integral relation in Eq. (47) differ from those usu-
ally considered in the LNF [1] because of the scattering modes
and of the surface term contribution containing the asymptotic
amplitude of the dyadic Green’s function, respectively. Note
that Eq. (43) becomes

∫
don

∑
ν

Eωnν (r)E∗
ωnν (r′)

= h̄μ0ω
3

πc

∫
doWT

ω (o, r) · W∗
ω(o, r′). (48)

We now show that f̂ωλ(r) and ĝωnν are independent bosonic
operators or, in other words, that any possible commutation
relations between them vanish except the fundamental ones,

[f̂ωλ(r), f̂†
ω′λ′ (r′)] = δ(ω − ω′)δλλ′δ(r − r′)I,

[ĝωnν, ĝ†
ω′n′ν ′ ] = δ(ω − ω′)δ(on − on′ )δνν ′ , (49)

where the δ function with solid angle argument is defined
as δ(on − on′ ) = δ(θn − θ ′

n)δ(ϕn − ϕ′
n)/ sin θn. In order to

achieve this goal, we adopt the strategy to assume that the
bosonic commutation relations of Eq. (49) hold and show
that the canonical commutation relations of Eq. (5) are self-
consistently reproduced. As a first basic observation, we note

that Eqs. (46) and (49) directly yield

[Êω(r), Ê†
ω′ (r′)]

= δ(ω − ω′)

{∫
d3s

∑
λ

Gωλ(r, s) · G∗T
ωλ (r′, s) +

+
∫

don

∑
ν

Eωnν (r)E∗
ωnν (r′)

}
, (50)

which, by using the fundamental integral relation of Eq. (47),
becomes

[Êω(r), Ê†
ω′ (r′)]

= δ(ω − ω′)
{

h̄μ0ω
2

π
Im[Gω(r, r′)]

+
∫

don

∑
ν

Eωnν (r)E∗
ωnν (r′)

+
(

− h̄μ0ω
3

cπ

) ∫
doWT

ω (o, r) · W∗
ω(or, r′)

}
, (51)

so that, with the help of Eq. (48), we get

[Êω(r), Ê†
ω′ (r′)] = δ(ω − ω′)

h̄μ0ω
2

π
Im[Gω(r, r′)]. (52)

It is crucial to highlight that the commutator in Eq. (52) has the
same expression it has in the LNF with the substantial differ-
ence that in the MLNF we are examining here, it results from
the exact balance in Eq. (51) between the scattering-mode
contribution and the surface term of the fundamental integral
equation, as assured by Eq. (48). The second observation is
that from Eqs. (46) and (49) we readily obtain the commutator

[Êω(r), f̂†
ω′λ(r′)] = δ(ω − ω′)Gωλ(r, r′), (53)

which again has the same expression it has in the LNF. Now
it is manifest that the six canonical fields in Eq. (22) solely
depend on Êω and f̂ωλ, and hence any possible commutation
relation between the canonical fields is evidently determined
by Eqs. (52) and (53) only. As observed above, these two
commutation relations coincide with those pertaining to the
LNF and hence also pertaining to the canonical approach
of Ref. [52], where canonical commutation relations hold
true. Therefore we conclude that the canonical commutation
relations of Eqs. (5) are automatically satisfied in the here
considered MLNF as well.

As a supplement to such a formal proof of the equal-time
commutation relations in Eqs. (5) based on the bosonic com-
mutation relations of Eqs. (49), we here show how they can
be explicitly deduced from the frequency-domain expressions
of the fields in Eq. (22) and the commutation relations in
Eqs. (52) and (53) by means of the general commutation
relation of Eq. (A11) in Appendix A. For the vector potential
and its canonical momentum we get, after some algebra,

[Â(r, t ), �̂A(r′, t )] = ih̄
∫

d3s δ⊥(r − s)

· 2

πc2
Im

[∫ ∞

0
dω ωGω(s, r′)εω(r′)

]
,

(54)
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which reproduces the first of the canonical commutation relations of Eqs. (5) since the imaginary part of the inner integral is
equal to πc2

2 δ(s − r′)I as shown in Appendix E [see Eq. (E5)]. For the reservoir field operators and their canonical momenta,
after some heavy but straightforward algebra we obtain

[
X̂�(r, t ), �̂�′

X (r′, t )
] = ih̄μ0α�(r)α�′ (r′) Re

{
2

π

∫ ∞

0
dω

ω3Im[Gω(r, r′)]
[�2 − (ω + iη)2][�′2 − (ω − iη)2]

+ �2G�(r, r′)
�′2 − (� + iη)2 + �′2G�′ (r, r′)

�2 − (�′ + iη)2

}
+ ih̄δ(� − �′)δ(r − r′)I, (55)

and [
Ŷ�(r, t ), �̂�′

Y (r′, t )
] = −ih̄μ0β�(r)β�′ (r′)∇r × Re

{
2

π

∫ ∞

0
dω

ωIm[Gω(r, r′)]
[�2 − (ω + iη)2][�′2 − (ω − iη)2]

+ G�(r, r′)
�′2 − (� + iη)2 + G�′ (r, r′)

�2 − (�′ + iη)2

}
× ←∇r′ + ih̄δ(� − �′)δ(r − r′)I, (56)

and they reproduce the second and the third of the canonical
commutation relations of Eqs. (5), since the terms with the
curly brackets vanish as shown in Appendix E [see Eqs. (E9)
and (E10)]. As a single example of commuting fields, we eval-
uate the equal-time commutator between the vector potential
and one of the reservoir field, namely,

[Â(r, t ), X̂�(r′, t )]

= −ih̄μ0α�(r′)
∫

d3sδ⊥(r − s)

· Re

{
2

π

∫ ∞

0
dω

ωIm[Gω(s, r′)]
�2 − (ω − iη)2 + G�(s, r′)

}
, (57)

which is easily seen to vanish due to the vanishing of the curly
bracket term, as shown in Appendix E [see Eq. (E11)].

A final remark concerning the commutation relation is
in order. In Sec. II we outlined that the operators Ẑ� and
Ŵ� show up in the general solutions of the homogeneous
counterparts of Eqs. (14) and that they cannot be arbitrarily
suppressed without violating the canonical commutation rela-
tions. We are here to prove this statement by noting that in
the absence of the operator Ẑ� and Ŵ�, the noise current
density Ĵ(M ) in Eq. (24) vanishes and the medium assisted
field Ê(M )

ω disappears from Eq. (25), thus reducing the field
Êω to coincide with its scattering part Ê(S)

ω . Accordingly, the
commutation relation of Eq. (50) becomes

[Êω(r), Ê†
ω′ (r′)] = δ(ω − ω′)

∫
don

∑
ν

Eωnν (r)E∗
ωnν (r′),

(58)

or, by using Eqs. (48) and (47),

[Êω(r), Ê†
ω′ (r′)] = δ(ω − ω′)

{
h̄μ0ω

2

π
Im[Gω(r, r′)]

−
∫

d3s
∑

λ

Gωλ(r, s) · G∗T
ωλ (r′, s)

}
,

(59)

which by no means, in the presence of absorption, reduces to
the correct expression of Eq. (52), which is the only possi-
ble one consistent with the canonical commutation relations,

as argued above. Note that in the transparent limit, which
is strictly rigorous only for vacuum, Im(εω ) = Im(μω ) = 0
so that the dyadics Gωe and Gωm of Eqs. (44) vanish and
Eq. (59) reduces to Eq. (52), this restoring theoretical con-
sistency and indicating that the medium assisted field Ê(M )

ω

plays no physical role when absorbtion is neglected. We
conclude that quantum mechanics requires retaining the free
oscillating parts of the reservoir field dynamics [solution of
the homogeneous counterparts of Eqs. (14)], thus postulating
the existence of the quantum sources ρ̂ (M ) and Ĵ(M ), which are
essential in the presence of matter dispersion and absorption.

V. HAMILTONIAN AND POLARITONS

We now show that the Hamiltonian is diagonalized by the
introduction of the medium assisted f̂ωλ(r) and scattering ĝωnν

polariton bosonic operators. To this end, we start by eliminat-
ing from the Hamiltonian, the vector potential Â, its canonical
momentum �̂A, and the polarization fields

∫ +∞
0 d� α�X̂�,∫ +∞

0 d� β�Ŷ� by inserting the second of Eqs. (8), Eq. (11),
and Eqs. (17) into Eq. (6), thus getting

Ĥ =
∫

d3r
[

1

2
ε0Ê · Ê − 1

2μ0
B̂ · B̂ + (Ĥ − M̂(M ) ) · B̂ + ĥR

]
,

(60)

where

ĥR = 1

2

∫ +∞

0
d�

[(
�̂�2

X + �̂�2
Y

) + �2(X̂�2 + Ŷ�2)
]

(61)

is the reservoir Hamiltonian density. Here we have also made
use of the commutativity between electric field and reservoir
field, i.e., [Ê(r, t ), X̂�(r′, t )] = 0. The reservoir fields X̂� and
Ŷ� and their canonical momenta �̂�

X and �̂�
Y can be elimi-

nated from the reservoir Hamiltonian density ĥR by using the
causal time-domain expressions of Eqs. (15). By doing this, as
detailed in Appendix F, the reservoir Hamiltonian density ĥR

turns out to display a contribution which exactly cancels the
term in the square bracket in Eq. (60) so that the Hamiltonian
can be written as

Ĥ = Ĥ (M ) + Ĥ (S), (62)
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where

Ĥ (M ) =
∫ +∞

0
dω h̄ω

∑
λ

∫
d3r f̂†

ωλ · f̂ωλ, (63)

and

Ĥ (S) = 1

2

∫ t

−∞
dτ

∫
d3r

·
[

Ê · ∂ (D̂ + P̂(M ) )

∂τ
+ ∂ (D̂ + P̂(M ) )

∂τ
· Ê

+∂B̂
∂τ

· (Ĥ − M̂(M ) ) + (Ĥ − M̂(M ) ) · ∂B̂
∂τ

]
. (64)

The operator Ĥ (M ) coincides with the Hamiltonian ruling the
LNF (and the macroscopic quantum electrodynamics), and we
evidently refer to it as the medium assisted contribution to the
Hamiltonian. On the other hand, the operator Ĥ (S) does not
show up in the LNF, and we have labeled it with a superscript
(S) since, as we are showing in a while, it is the contribution
to the Hamiltonian which is provided by the scattering modes.

To discuss this fundamental point, we note that the third
and fourth quantum Maxwell equation, the second of Eqs. (9)
and the second of Eqs. (19), respectively, with the help of the
noise current density Ĵ(M ) in the second of Eqs. (21), can be
written as

∂B̂
∂t

= −∇ × Ê,

∂ (D̂ + P̂(M ) )

∂t
= ∇ × (Ĥ − M̂(M ) ), (65)

so that they can be used to eliminate the time derivatives in
Eq. (64), thus getting

Ĥ (S) = 1

2

∫ t

−∞
dτ

∫
d3r{Ê · [∇ × (Ĥ − M̂(M ) )]

− (∇ × Ê) · (Ĥ − M̂(M ) )

− (Ĥ − M̂(M ) ) · (∇ × Ê) + [∇ × (Ĥ − M̂(M ) )] · Ê}.
(66)

Using twice the fundamental operator relation of Eq. (A12)
proven in Appendix A, we readily get

Ĥ (S) = −1

2

∫ t

−∞
dτ

∫
S∞

dS ur · [Ê × (Ĥ − M̂(M ) )

− (Ĥ − M̂(M ) ) × Ê], (67)

so that, bearing in mind that the sample is embedded in vac-
uum in such a way that M̂(M ) = 0 and Ĥ = 1

μ0
B̂ on S∞ (i.e.,

for r → ∞), Eq. (67) can be written as

Ĥ (S) = −
∫ t

−∞
dτ

∫
S∞

dS ur ·
(

Ê × B̂ − B̂ × Ê
2μ0

)
. (68)

A discussion is here in order, since this expression of Ĥ (S)

admits a simple and important physical interpretation. The
vector operator appearing inside the bracket is noting more
than the quantum Poynting vector, which correctly shows up
opportunely symmetrized due to the Hermitian requirement.
Accordingly, the opposite of the surface integral over S∞ in
Eq. (68) represents the electromagnetic power coming from
infinity (as generated by infinitely far sources) at time τ ,
and its time integral from −∞ to t , which is precisely Ĥ (S),
represents the total electromagnetic energy, which has flown
from infinity during this upper-bounded time period. In view
of such interpretation, it is evident that Ĥ (S) is necessarily
related solely to the scattering modes, since their plane-wave
part F̂(in)

ω of Eq. (36) is the only field contribution able to carry
energy in from infinity at any finite time. To see it in more
detail, note that all the other field contributions, namely, the
medium assisted field Ê(M )

ω of Eq. (34) and the scattered field
F̂(sc)

ω of Eq. (39), can be regarded as generated by sources
localized inside the sample volume and they are assumed to
be absent at τ = −∞. Accordingly, the field they produce
necessarily vanishes on the surface S∞ at any finite time, since
such fields travel in vacuum at the finite speed of light c and
the surface is infinitely far from the sample. In order to prove
this statement, we consider the far-field limit r → ∞ of the
electric field operator of Eq. (46), namely,

Êω(r) = Ê(ra)
ω (r) + Ê(in)

ω (r) + O

(
1

r2

)
, (69)

where

Ê(ra)
ω (r) = eikωr

r
T̂ω(or ),

Ê(in)
ω (r) =

√
h̄μ0ω3

16π3c

∫
don

∑
ν

eikωn·renν ĝωnν, (70)

are the asymptotic radiated field and the incident field made
up of plane waves coming from infinity. In the radiated field
expression, the operator T̂ω(or ) is independent of r, and it
collects the asymptotic contributions of the dyadics Gωe and
Gωe by means of the first two of Eqs. (44) and the first of
Eqs. (28) and of the asymptotic amplitude f (sc)

ωnν defined in the
first of Eqs. (40) and pertaining the scattered field. Now the
time-domain expression of the radiated field is

Ê(ra)(r, t ) = 1

r

∫ ∞

0
dωeikω (r−ct )T̂ω(or ) + H.c., (71)

which is seen to be composed of solely outgoing spherical
waves traveling at speed c. The crucial point is here that at
any finite time t , we have

lim
r→∞ rÊ(ra)(r, t ) = 0 (72)

as a consequence of the Riemann-Lebesgue lemma, and this
shows that the scattering Hamiltonian of Eq. (68) gets a con-
tribution only from the incident field, i.e.,

Ĥ (S) = −
∫ t

−∞
dτ

∫
S∞

dS ur · Ê(in) × B̂(in) − B̂(in) × Ê(in)

2μ0
,

(73)

013707-9



A. CIATTONI PHYSICAL REVIEW A 110, 013707 (2024)

where

Ê(in)(r, t ) =
∫ ∞

0
dω

∫
don

∑
ν

√
h̄μ0ω3

16π3c

· eikω (n·r−ct )ĝωnνenν + H.c.,

B̂(in)(r, t ) =
∫ ∞

0
dω

∫
don

∑
ν

√
h̄μ0ω3

16π3c3

· eikω (n·r−ct )ĝωnν (n × enν ) + H.c. (74)

Substituting the incident field of Eqs. (74) into the scattering
Hamiltonian of Eq. (73), after some manipulation detailed in
Appendix G, we eventually get

Ĥ (S) =
∫ ∞

0
dωh̄ω

∫
don

∑
ν

ĝ†
ωnν ĝωnν, (75)

thus proving that the introduction of the gωnν operator di-
agonalizes the scattering Hamiltonian. We conclude that the
Hamiltonian pertaining the here considered MLNF is

Ĥ =
∫ +∞

0
dω h̄ω

[ ∫
d3r

∑
λ

f̂†
ωλ · f̂ωλ

+
∫

don

∑
ν

ĝ†
ωnν ĝωnν

]
. (76)

As a final remark, we note that the bosonic commuta-
tion relation of Eqs. (49) together with the structure of the
Hamiltonian in Eq. (76) naturally enable the quasiparticle
interpretation where the operators f̂†

ωλ, f̂ωλ and ĝ†
ωnν , ĝωnν are

viewed as creation and annihilation operators of two different
kinds of polaritons, the medium assisted and the scattering
ones. Medium assisted polaritons play a fundamental role in
LNF as well, and they are quanta of sources, localized inside
the absorbing medium, which supports hybrid matter-field
excitations. On the other hand, scattering polaritons are not
considered in the LNF, as above comprehensively outlined,
and they are quanta of scattering modes in analogy to what
happens in vacuum quantum electrodynamics where photons
are quanta of free-field modes. The physical difference be-
tween scattering polaritons and photons of vacuum quantum
electrodynamics is that the existence of the former is com-
pletely consistent with the sample dispersion and absorption,
which are here fully and rigorously accounted for. Scattering
polaritons can genuinely be regarded as a generalization of
photons to situations where dispersion and absorption cannot
be neglected. This observation is supported by the fact that
in the transparent limit, which is strictly rigorous only for
vacuum, Im(εω ) = Im(μω ) = 0 so that the dyadics Gωe and
Gωm of Eqs. (44) vanish, and the electric field operator accord-
ingly becomes independent on the operators f̂†

ωλ, f̂ωλ, meaning
that medium assisted polaritons can be neither created nor
destroyed, i.e., they have no physical existence. This is con-
sistent with the observation at the end of Sec. IV regarding
the physical irrelevance of the medium assisted field Ê(M )

ω in
the transparent limit. Likewise, scattering polaritons do not
disappear but conversely reduce to genuine photons as quanta
of mode fields pertaining the transparent geometry.

VI. CONCLUSION

In summary, we have analytically deduced the modified
Langevin noise formalism (MLNF) for the general mag-
netodielectric situation using, as a sole staring point, the
quantum Maxwell equations in turn canonically derived in
Ref. [52] as Heisenberg equations generated by a suitable
field-reservoir Hamiltonian. The MLNF provides the quan-
tum electrodynamical description of finite-size samples in
vacuum, where matter dispersion and absorption are fully
accounted for, and, as we have shown here, it avoids the
requirement of taking the lossless limit at the end of the
calculations, an unavoidable requirement in the standard LNF.
This is possible since in the MLNF, the medium assisted field,
describing electromagnetic excitations produced by localized
sources, is explicitly separated by the scattering field asso-
ciated to sources infinitely far from the object. In addition,
since vacuum is lossless, it is known that a specific asymptotic
surface contribution shows up in the fundamental integral
relation for the dyadic Green’s function, and this term is es-
sential since we have here proved that it exactly compensates
the contribution of the scattering field [see Eq. (48)] in the
self-consistent derivation of the electric field commutation
relations [see Eqs. (51) and (52)]. In this paper we have
thoroughly investigated this point in the general magnetodi-
electric situation and provided the hitherto lacking analytical
validation of the MLNF. Our reasoning has been crucially
based on a classical electromagnetic relation, Eq. (42), we
have here derived and which relates the scattering modes
with the far-field amplitude of the dyadic Green’s function,
an electromagnetic relation which, to best of our knowledge,
has not been discussed in literature. Such an electromagnetic
relation is responsible for the above-discussed crucial balance
between the surface term and scattering-field contribution in
the electric-field commutation relations. Besides, we have
shown that creation and annihilation operators can be intro-
duced for both the medium assisted field and the scattering
field, and we also proved that their introduction diagonal-
izes the Hamiltonian, eventually reducing to the sum of two
corresponding harmonic-oscillator-like terms. The ensuing
quasiparticle picture is that the quantum electromagnetic field
is described by two sets of quanta, the medium assisted po-
laritons and the scattering polaritons. Polaritons of both kind
fully experience the effect of matter dispersion and absorp-
tion, but their roles and physical natures are quite different
as clarified by the transparent limit. Indeed, in the absence
of absorption, medium polaritons disappear (thus enlightening
their specific and crucial role in the general situation), whereas
scattering polaritons reduce to photons of standard quantum
electrodynamics. As a final remark, we stress that expressing
the field as a superposition of medium assisted and scattering
contributions, in addition to providing the ability to comprise
a vacuum without taking any lossless limit, could in princi-
ple make the MLNF very useful in describing experiments
of radiation quantum scattering in the presence of complex
structures. In such situations, the ab initio identification of the
scattering modes, related solely to the asymptotic amplitude
of the Green’s function [Eq. (42)], could prove vital in the
interpretation of the experimental result due to the possible
complexity of the full dyadic Green’s function.
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APPENDIX A: VECTOR AND DYADIC RELATIONS

We label with ab the dyad formed by the vectors a and b.
The identity dyadic is

I = uxux + uyuy + uzuz, (A1)

where ux, uy, and uz are Cartesian unit vectors. The dyadic
transverse and longitudinal δ functions are

δ⊥(r) = 1

(2π )3

∫
d3k eik·r

(
I − kk

k2

)
,

δ‖(r) = 1

(2π )3

∫
d3k eik·r

(
kk
k2

)
. (A2)

Accordingly, the transverse and longitudinal parts of a vector
field F(r) are given by

F⊥(r) =
∫

d3r′δ⊥(r − r′) · F(r′),

F‖(r) =
∫

d3r′δ‖(r − r′) · F(r′). (A3)

In correspondence of the vector P = Pju j and the dyadic P =
Pi juiu j fields, four kinds of curl can be defined according to

∇ × P = εi jk∂iPjuk,

P × ←∇ = ε jik∂iPjuk,

∇ × P = εkip∂kPi jupu j,

P × ←∇ = ε jkp∂kPi juiup. (A4)

Since in the present paper we mainly consider a magne-
todielectric object placed in vacuum, we are dealing with
the very general situation where dielectric permittivity and
magnetic permeability are piecewise continuous functions.
Accordingly, also the electromagnetic field is generally piece-
wise continuous, and therefore it is worth stressing that if the
divergence is intended in the sense of distributions [64], the
divergence theorem∫

V
d3r ∇ · F =

∫
∂V

dS n · F (A5)

holds true even when the field F(r) is piecewise continuous
over the interior of V . After setting F = P × Q and choosing
a sphere of radius R as the integration domain V in Eq. (A5),
in the limit R → ∞ we get∫

d3r P · (∇ × Q)

=
∫

d3r(∇ × P) · Q −
∫

S∞
dS ur · (P × Q), (A6)

where ur = r/r is the radial unit vectors and the surface
integral is performed over the sphere S∞ of infinite radius by
means of the limiting prescription∫

S∞
dS f = lim

R→∞

∫
SR

dS f , (A7)

where SR is the surface of the sphere of radius R. Due to the

evident relations ∇ × P = −P × ←∇ and ur · (P × Q) = −P ·

(ur × Q), it is straightforward to show that Eq. (A6) admits
the dyadic generalizations∫

d3s P (r, s) · [∇s × Q(s)]

=
∫

d3s[−P (r, s) × ←∇s] · Q(s)

+
∫

S∞
dS P (r, s) · [us × Q(s)], (A8)

and ∫
d3s P (r, s) · [∇s × Q(s, r′)]

=
∫

d3s[−P (r, s) × ←∇s] · Q(s, r′)

+
∫

S∞
dS P (r, s) · [us × Q(s, r′)], (A9)

where P (r, r′) and Q(r, r′) are piecewise-continuous dyadic
functions.

The commutator of two field operators P̂ = P̂iui and Q̂ =
Q̂ ju j is the dyadic operator

[P̂, Q̂] = [P̂i, Q̂ j]eie j . (A10)

The equal-time commutator of two field operators P̂(r, t )
and Q̂(r, t ) admitting the frequency-domain representation of
Eq. (16) is straightforwardly seen to be given by

[P̂(r, t ), Q̂(r′, t )]

=
∫ ∞

0
dω

∫ ∞

0
dω′{e−i(ω+ω′ )t [P̂ω(r), Q̂ω′ (r′)]

+ e−i(ω−ω′ )t [P̂ω(r), Q̂†
ω′ (r′)]} − H.c. (A11)

Since the order of the fields has not been changed in the
derivation of Eq. (A6), it is evident that it holds for field
operators as well, i.e.,∫

d3r P̂ · (∇ × Q̂)

=
∫

d3r(∇ × P̂) · Q̂ −
∫

S∞
dS ur · (P̂ × Q̂). (A12)

APPENDIX B: DYADIC GREEN’S FUNCTION
RECIPROCITY AND FUNDAMENTAL

INTEGRAL RELATION

After relabeling r → s in Eq. (27), scalar multiplying both
of its sides by GT

ω (s, r), and integrating over s, we get

GT
ω (r′, r)=

∫
d3s GT

ω (s, r) ·
{
∇s ×

[∇s × Gω(s, r′)
μω(s)

]}

+ (− k2
ω

) ∫
d3s εω(s)GT

ω (s, r) · Gω(s, r′), (B1)

which, using Eq. (A9) of Appendix A and the dyadic identity

−GT
ω (s, r) × ←∇s = [∇s × G(s, r)]T , (B2)
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turns into

GT
ω (r′, r) =

∫
S∞

dS
GT

ω (s, r) · [us × ∇s × Gω(s, r′)]
μω(s)

+
∫

d3s
[∇s × G(s, r)]T · [∇s × Gω(s, r′)]

μω(r)

+ ( − k2
ω

) ∫
d3s εω(s)GT

ω (s, r) · Gω(s, r′). (B3)

It is now very useful exchanging r and r′ in Eq. (B3) and taking its transpose, thus getting

Gω(r, r′) =
∫

S∞
dS

[us × ∇s × Gω(s, r)]T · Gω(s, r′)
μω(s)

+
∫

d3s
[∇s × G(s, r)]T · [∇s × Gω(s, r′)]

μω(s)

+ ( − k2
ω

) ∫
d3s εω(s)GT

ω (s, r) · Gω(s, r′), (B4)

so that the subtraction of Eq. (B3) from Eq. (B4) readily yields

Gω(r, r′) − GT
ω (r′, r) =

∫
S∞

dS

{
[us × ∇s × Gω(s, r)]T · Gω(s, r′)

μω(s)
+

(
−GT

ω (s, r) · [us × ∇s × Gω(s, r′)]
μω(s)

)}
. (B5)

Note that the right-hand side of this equation contains surface integral contributions only, and hence it can be evaluated by means
of the asymptotic behavior of the dyadic Green’s function. By using Eqs. (28) together with the relation

us × [us × Wω(os, r′)] = −Wω

(
os, r′), (B6)

which easily follows from Eq. (29), we obtain

[us × ∇s × Gω(s, r)]T · Gω(s, r′)
μω(s)

= −ei2kωs

s2
ikωWT

ω (os, r) · Wω(os, r′) + O

(
1

s3

)
,

GT
ω (s, r) · [us × ∇s × Gω(s, r′)]

μω(s)
= −ei2kωs

s2
ikωWT

ω (os, r) · Wω(os, r′) + O

(
1

s3

)
, (B7)

where we also have used the condition μω = 1 on S∞. Inserting these expressions into Eq. (B5) we readily get

Gω(r, r′) − GT
ω (r′, r) =

∫
S∞

dS O

(
1

s3

)
= 0, (B8)

which is the reciprocity relation for the dyadic Green’s function.
We now relabel r → s in Eq. (27) and we scalar multiply both of its sides by G∗

ω(r, s) so that, after integrating over s, we get

G∗
ω(r, r′) =

∫
d3s G∗

ω(r, s) ·
{
∇s ×

[∇s × Gω(s, r′)
μω(s)

]}
− k2

ω

∫
d3s εω(s)G∗

ω(r, s) · Gω(s, r′). (B9)

By using Eq. (A9) of Appendix A and the dyadic identity

[−Gω(r, s) × ←∇s] = [∇s × G(s, r)]T , (B10)

obtained by combining Eq. (B2) with the reciprocity relation GT
ω (s, r) = Gω(r, s), Eq. (B9) yields

G∗
ω(r, r′) =

∫
S∞

dS
G∗

ω(r, s) · [us × ∇s × Gω(s, r′)]
μω(s)

+
∫

d3s
[∇s × G(s, r)]∗T · [∇s × Gω(s, r′)]

μω(s)

+ (− k2
ω

) ∫
d3s εω(s)G∗

ω(r, s) · Gω(s, r′). (B11)

It is now essential noting that the reciprocity relation can be written as Gω(r, r′) = [G∗
ω(r′, r)]T ∗ which, combined with Eq. (B11),

yields

Gω(r, r′) =
∫

S∞
dS

[us × ∇s × G∗
ω(s, r)]T · Gω(s, r′)
μ∗

ω(s)
+

∫
d3s

[∇s × Gω(s, r)]∗T · [∇s × G(s, r′)]
μ∗

ω(s)

+ (−k2
ω

) ∫
d3s ε∗

ω(s)G∗
ω(r, s) · Gω(s, r′). (B12)
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Equations (B11) and (B12) directly imply that

Im[Gω(r, r′)] =
∫

S∞
dS

1

2i

{
Gω(r, s) · [

us × ∇s × G∗
ω(s, r′)

]
μ∗

ω(s)
+

(
− [us × ∇s × Gω(s, r)]T · G∗

ω(s, r′)
μω(s)

)}

+
∫

d3s
{

k2
ωIm [εω(s)]Gω(r, s) · G∗

ω(s, r′)+Im

[ −1

μω(s)

]
[∇s × Gω(s, r)]T · [∇s × G∗(s, r′)]

}
, (B13)

where we have also taken the complex conjugate of both
sides to stick to the conventional notation. Again the surface
term contribution in the right-hand side of Eq. (B13) can be
evaluated by means of the dyadic Green’s function asymptotic
behavior of Eq. (28), together with Eq. (B6), so that after some
algebra, we get

Im[Gω(r, r′)] = kω

∫
do WT

ω (o, r) · W∗
ω(o, r′)

+
∫

d3s
∑

λ=e,m

Aωλ(r, s) · A∗T
ωλ(r′, s),

(B14)

where o = (θ, ϕ), do = sin θdθdϕ is the solid angle differen-
tial, its integration is performed over the whole solid angle,
and we have introduced the dyadics

Aωe(r, r′) = kω

√
Im[εω(r′)]Gω(r, r′),

Aωm(r, r′) =
√

Im

[ −1

μω(r′)

]
[Gω(r, r′) × ←∇r′ ], (B15)

where use has been made of Eq. (B10) to define Aωm. Equa-
tion (B14) is the fundamental integral relation of the dyadic
Green’s function.

APPENDIX C: ANALYTICAL CHECK OF THE
FUNDAMENTAL INTEGRAL RELATION PERTAINING

TO THE VACUUM DYADIC GREEN’S FUNCTION

We here check the fundamental integral relation of Eq. (31)
in the case where there is no lossy object, i.e., the whole space
is filled by vacuum. The dyadic Green’s function of vacuum
for r 
= r′ is given by [22]

Gω(r, r′) = kωeis

4πs

[(−1 + is + s2

s2

)
I

+
(

3 − 3is − s2

s2

)
ss
s2

]
, (C1)

where s = kω(r − r′), and it displays the asymptotic behavior
of Eq. (28), where

Wω(o, r′) = e−ikωuo·r′

4π
(I − uouo), (C2)

and where o = (θ, ϕ) are the polar angles associated to the
unit vector

uo = sin θ (cos ϕex + sin ϕey) + cos θez. (C3)

Since for vacuum εω = 1 and μω = 1, from Eqs. (32) we get

Aωe(r, r′) = 0,

Aωm(r, r′) = 0, (C4)

so that the first contribution in the left-hand side of Eq. (31)
vanishes and the fundamental integral relation reduces to

kω

∫
do WT

ω (o, r) · W∗
ω(o, r′) = Im[Gω(r, r′)]. (C5)

To explicitly check this relation, we evaluate the integral in its
left-hand side and we start noting that by using Eq. (C2), the
integral can be written as∫

do WT
ω (o, r) · W∗

ω(o, r′) = 1

16π2

∫
do e−is·uo (I − uouo),

(C6)

so that after choosing the polar axis to coincide with the z axis
in such a way that

s = sez, (C7)

we get∫
do WT

ω (o, r) · W∗
ω(o, r′)

= 1

16π2

∫ π

0
dθ sin θe−is cos θ

∫ 2π

0
dϕ (I − uouo). (C8)

By using the integral∫ 2π

0
dϕ uouo = π [sin2 θ

(
exex + eyey

) + 2 cos2 θezez],

(C9)
the integration over ϕ in Eq. (C8) can be straightforwardly
performed, thus getting, after some algebra,∫

do WT
ω (o, r) · W∗

ω(o, r′)

= (I + ezez )
1

16π

∫ π

0
dθ e−is cos θ sin θ

+ (I − 3ezez )
1

16π

∫ π

0
dθ e−is cos θ sin θ cos2 θ. (C10)

The integrations over θ are straightforward as well due to the
integrals∫ π

0
dθ e−is cos θ sin θ = 2

s
sin (s),

∫ π

0
dθ e−is cos θ cos2 θ sin θ = 4

s2
cos (s) +

(
2

s
− 4

s3

)
sin (s),

(C11)
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so that from Eq. (C10) we get, after some algebra,

kω

∫
do WT

ω (o, r) · W∗
ω(o, r′)

= kω

4πs

{
cos (s)

s
(I − 3ezez )

+ sin (s)

s2
[(s2 − 1)I − (s2 − 3)ezez]

}
. (C12)

On the other hand, it is immediate to get from Eq. (C1) the
relation

Im[Gω(r, r′)] = kω

4πs

{
cos (s)

s

(
I − 3

ss
s2

)

+ sin (s)

s2

[
(s2 − 1)I − (s2 − 3)

ss
s2

]}
,

(C13)

so that the proof that Eq. (C5) is satisfied is complete after
noting that Eq. (C7) implies that ezez = ss/s2.

APPENDIX D: RELATIONS BETWEEN SCATTERING
MODES AND DYADIC GREEN’S FUNCTION

FAR-FIELD AMPLITUDE

The scattering modes F(S)
ωnν introduced in Sec. III B are

solutions of the homogeneous Helmholtz equation,

(
∇ × 1

μω

∇ × −k2
ωεω

)
F(S)

ωnν = 0, (D1)

and, as a consequence, it can easily be proved that they satisfy
the vector Huygens’ principle relation [22]

F(S)
ωnν (r′) = −

∫
SR

dS ur ·
{

F(S)
ωnν (r) × [∇ × Gω(r, r′)]

μω(r)

+
[∇ × F(S)

ωnν (r)
] × Gω(r, r′)

μω(r)

}
, (D2)

where the point r′ lies inside the sphere SR of radius R over
which the integration is carried out. After using the expression
of the scattering modes F(S)

ωnν = F(in)
ωnν + F(sc)

ωnν [see Eq. (37)],
we take the limit R → ∞ of this expression by exploiting
the asymptotic behavior of both the Green’s function Eq. (28)
and the scattered field Eq. (40) so that, after some algebra, we
obtain

F(S)
ωnν (r′) = U(in)

ωnν (r′) + U(sc)
ωnν (r′), (D3)

where

U(in)
ωnν (r′) = − lim

R→∞
R

∫
doreikωRur

· {
ikωF(in)

ωnν (Rur ) × [ur × Wω(or, r′)]

+ [∇ × F(in)
ωnν (Rur )

] × Wω(or, r′)
}
, (D4)

and

U(sc)
ωnν (r′) = −ikω lim

R→∞

∫
dorei2kωRur

· {
w(sc)

ωnν (or ) × [ur × Wω(or, r′)]

+ [
ur × w(sc)

ωnν (or )
] × Wω(or, r′)

}
, (D5)

which holds at any point r′ (we have also used the fact that
μω = 1 for R → ∞). The contribution U(sc)

ωnν of the scattered
field is easily seen to vanish identically, since the relations

A × (B × A) = BA · A − (A · B)A,

(A × B) × A = BA · A − AB · A, (D6)

holding for arbitrary vectors A, B and dyadic A together with
the transversality of both Wω in Eq. (29) and w(sc)

ωnν in Eq. (41)
readily imply that

w(sc)
ωnν (or ) × [ur × Wω(or, r′)] = urw(sc)

ωnν (or ) · Wω(or, r′),[
ur × w(sc)

ωnν (or )
] × Wω(or, r′) = −urw(sc)

ωnν (or ) · Wω(or, r′).

(D7)

Therefore, by inserting the expression of the plane wave
F(in)

ωnν (r) of Eq. (36) into Eq. (D3), exploiting the relations in
Eqs. (D6) together with the transversality of Wω in Eq. (29),
we get

F(S)
ωnν (r′) = −i lim

R→∞
(kωR)

∫
dor ei(kωR)(1+n·ur )

· {[1 − (ur · n)]enν + n(ur · enν )} · Wω(or, r′).

(D8)

To evaluate the limit in the right-hand side, we resort to the
classical Jones’ lemma according to which the asymptotic
relation

ξ

∫
dor eiξ (n·ur ) f (or )

= 2π i[e−iξ f (o−n) − eiξ f (on)] + O

(
1

ξ 2

)
(D9)

holds for ξ → ∞ (see Appendix XII of Ref. [65]), so that
Eq. (D8) readily yields

F(S)
ωnν (r) = 4π enν · Wω(o−n, r), (D10)

where we have relabeled r′ as r.
In addition to its practical utility in providing the scattering

modes directly in terms of the far-field amplitude of the dyadic
Green’s function, the rigorous relation in Eq. (D10) admits
a very simple physical interpretation. To briefly discuss this
point, in correspondence of the scattering mode F(S)

ωnν , consider
a point dipole located at a distance � from the origin along the
direction −n (parallel and opposite to the wave vector of the
incident plane wave), whose moment is along the polarization
unit vector enν and whose strength depends on � according
to E0(4πε0/k2

ω )�e−ikω�, where E0 is a constant dielectric field
amplitude. The dipole is described by the current density

Jω(r) = −iω

[
E0

4πε0

k2
ω

�e−ikω�

]
δ(r + �n)enν, (D11)
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which, inserted into the expression

Eω(r) = iωμ0

∫
d3r′Gω(r, r′) · Jω(r), (D12)

directly yields

Eω(r) = 4πE0�e−ikω�Gω(r,−�n) · enν, (D13)

which is the field radiated by the dipole in the presence of the
object. We are now to take the limit � → ∞ of this expression,
and to do so it is convenient to cast it as

Eω(r) = 4πE0�e−ikω�enν · Gω(−�n, r), (D14)

where we have used the reciprocity relation of dyadic Green’s
function [see Eq. (30)]. Exploiting the asymptotic behavior
of Eq. (28), it is straightforward to show that for � → ∞ the
precedent relation yields

Eω(r) = 4πE0enν · Wω(o−n, r), (D15)

which, for E0 = 1, reproduces the scattering mode in
Eq. (D10). Therefore we conclude that Eq. (D10) simply
states that the scattering mode can be regarded as the field
produced by a point dipole directed along the incident plane-
wave polarization and located infinitely far away from the
object in the opposite direction of the incident wave vector,
as intuitively expected.

We now form the dyad F(S)
ωnν (r)FS∗

ωnν (r′) which, once in-
tegrated over the whole solid angle and summed over the
polarizations, yields∫

don

∑
ν

F(S)
ωnν (r)FS∗

ωnν (r′)

= 16π2
∫

donWT
ω (o−n, r) ·

∑
ν

enνenν · W∗
ω(o−n, r′).

(D16)

The polarization unit vectors en1 and en2 together with the
wave unit vector n form an orthonormal basis so that∑

ν

enνenν = I − nn, (D17)

and using this relation, together with the transversality of Wω

in Eq. (29), we cast Eq. (D16) as∫
don

∑
ν

F(S)
ωnν (r)FS∗

ωnν (r′)

= 16π2
∫

do WT
ω (o, r) · W∗

ω(o, r′). (D18)

APPENDIX E: DYADIC GREEN’S FUNCTION INTEGRALS

The dyadic Green’s function is a holomorphic function of
ω in the upper half-plane Im ω > 0, and it is characterized
by the reflection principle and the large frequency behavior
given by

G∗
ω(r, r′) = G−ω∗ (r, r′),

Gω(r, r′) ≈ − c2

ω2
δ(r − r′)I, for ω → ∞, (E1)

respectively. The first integral we are to evaluate is

I1 = Im

[∫ +∞

0
dω ω Gω(r, r′)εω(r′)

]
, (E2)

which, in view of the relation (Gωεω )∗ = G−ωε−ω, can be
casted as

I1 = 1

2i

∫ +∞

−∞
dω ω Gω(r, r′)εω(r′). (E3)

Since Gω and εω are holomorphic functions for Im ω > 0,
by Cauchy theorem the real axis integration contour can be
deformed to a very large semicircle in the upper half-plane so
that

I1 = 1

2
lim

ρ→∞ ρ

∫ 0

π

dθeiθ [ω Gω(r, r′)εω(r′)]ω=ρeiθ , (E4)

which, by using the second of Eqs. (E1) together with εω ≈ 1
for ω → ∞, very easily yields

Im

[∫ +∞

0
dω ω Gω(r, r′)εω(r′)

]
= πc2

2
δ(r − r′)I. (E5)

The second integral we need to consider is

I2 = Re

{
2

π

∫ ∞

0
dω

ωIm[Gω(r, r′)]
[�2 − (ω + iη)2][�′2 − (ω − iη)2]

}
,

(E6)

where � and �′ are arbitrary positive frequencies. Using the
first of Eq. (E1) we get

I2 = 1

2π i

∫ ∞

−∞
dω ωGω(r, r′)

·
{

1

[�2 − (ω − iη)2][�′2 − (ω + iη)2]

+ 1

[�2 − (ω + iη)2][�′2 − (ω − iη)2]

}
, (E7)

and we note that the integrand is a holomorphic function in
the upper half-plane Im ω > 0, except for the four simple
poles ±� + iη, ±�′ + iη. Since the integrand has asymptotic
behavior 1/ω5 for ω → ∞, the integration along the infinite
semicircle in the upper half-plane can be added to close the
contour path so that the residue theorem yields

I2 = G�(r, r′)
2[(� + i2η)2 − �′2]

+ G−�(r, r′)
2[(� − i2η)2 − �′2]

+ G�′ (r, r′)
2[(�′ + i2η)2 − �2]

+ G−�′ (r, r′)
2[(�′ − i2η)2 − �2]

(E8)

or

Re

{
2

π

∫ ∞

0
dω

ωIm[Gω(r, r′)]
[�2 − (ω + iη)2][�′2 − (ω − iη)2]

}

= −Re

[ G�(r, r′)
�′2 − (� + iη)2 + G�′ (r, r′)

�2 − (�′ + iη)2

]
, (E9)
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where we have relabeled 2η → η for convenience. The same
method enables to prove that

Re

{
2

π

∫ ∞

0
dω

ω3Im[Gω(r, r′)]
[�2 − (ω + iη)2][�′2 − (ω − iη)2]

}

= −Re

[
�2G�(r, r′)

�′2 − (� + iη)2 + �′2G�′ (r, r′)
�2 − (�′ + iη)2

]
, (E10)

where the only observation is that the integrand has now the
asymptotic behavior 1/ω3 for ω → ∞ so that infinite semi-
circle in the upper half-plane with vanishing contribution can
again be added to close the integration contour path. Similarly,
it is straightforward to prove that

Re

{
2

π

∫ ∞

0
dω

ωIm[Gω(r, r′)]
�2 − (ω − iη)2

}
= −Re[G�(r, r′)]. (E11)

APPENDIX F: RESERVOIR HAMILTONIAN DENSITY

The reservoir Hamiltonian density

ĥR = 1

2

∫ +∞

0
d�

[(
�̂�2

X + �̂�2
Y

) + �2(X̂�2 + Ŷ�2)
]

(F1)

can be conveniently rewritten by resorting to the time-dependent expressions of the reservoir fields X̂� and Ŷ� in Eqs. (15)
together with those of their conjugated canonical moments �̂�

X and �̂�
Y in the third and fifth Heisenberg equation in Eqs. (10),

respectively. After some tedious algebra we get

ĥR = ĥR1 + ĥR2 + ĥR3, (F2)

where

ĥR1 =
∫ +∞

0
d� �2(Ẑ� · Ẑ†

� + Ẑ†
� · Ẑ�+Ŵ� · Ŵ†

� + Ŵ†
� · Ŵ�), (F3)

ĥR2 = − i

2

∫ t

−∞
dτ ·

{
Ê(τ ) ·

[∫ +∞

0
d� �α�(e−i�τ Ẑ� − ei�τ Ẑ†

�)

]
+

[∫ +∞

0
d� �α�(e−i�τ Ẑ� − ei�τ Ẑ†

�)

]
· Ê(τ )

+ B̂(τ ) ·
[∫ +∞

0
d� �β�(e−i�τ Ŵ� − ei�τ Ŵ†

�)

]
+

[∫ +∞

0
d� �β�(e−i�τ Ŵ� − ei�τ Ŵ†

�)

]
· B̂(τ )

}
, (F4)

and

ĥR3 = 1

2

∫ t

−∞
dτ

∫ t

−∞
dτ ′ ·

{
Ê(τ ) · Ê(τ ′)

∫ +∞

0
d� α2

� cos[�(τ − τ ′)] + B̂(τ ) · B̂(τ ′)
∫ +∞

0
d� β2

� cos[�(τ − τ ′)]
}
. (F5)

By using the definition of the polaritonic operators f̂ωe and f̂ωm in the third and fourth of Eqs. (44), after relabeling � into ω, the
first contribution ĥR1 to the reservoir Hamiltonian density becomes

ĥR1 = 1

2

∫ +∞

0
dω h̄ω

∑
λ

(f̂†
ωλ · f̂ωλ + f̂ωλ · f̂†

ωλ) (F6)

or

ĥR1 =
∫ +∞

0
dω h̄ω

∑
λ

f̂†
ωλ · f̂ωλ, (F7)

where use has been made of the boson commutation relation in the first of Eqs. (49) and the (divergent) zero-point energy has
been neglected.

Note now that Eqs. (18) containing the definition of the noise polarization P̂(M ) and magnetization M̂(M ) densities in the
frequency domain directly imply that

∂P̂(M )

∂τ
= −i

∫ +∞

0
d� �α�(e−i�τ Ẑ� − ei�τ Ẑ†

�),

∂M̂(M )

∂τ
= −i

∫ +∞

0
d� �β�(e−i�τ Ŵ� − ei�τ Ŵ†

�), (F8)

so that the second contribution ĥR2 to the reservoir Hamiltonian density turns into

ĥR2 = 1

2

∫ t

−∞
dτ

[
Ê · ∂P̂(M )

∂τ
+ ∂P̂(M )

∂τ
· Ê+B̂ · ∂M̂(M )

∂τ
+ ∂M̂(M )

∂τ
· B̂

]
. (F9)
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In order to manipulate the third contribution ĥR3 to the reservoir Hamiltonian density, we preliminarily note that a straightforward
calculation yields

∫ +∞

0
d� α2

�(r) cos[�(τ − τ ′)] = ε0

2π

[
∂χ (ε)(r, τ − τ ′)

∂τ
+ ∂χ (ε)(r, τ ′ − τ )

∂τ ′

]
,

∫ +∞

0
d� β2

�(r) cos[�(τ − τ ′)] = 1

2πμ0

[
∂χ (μ)(r, τ − τ ′)

∂τ
+ ∂χ (μ)(r, τ ′ − τ )

∂τ ′

]
, (F10)

where we have used the expressions for the fundamental coupling coefficients αω and βω in Eqs. (7), together with the relations
(χε,μ

ω )∗ = χ
ε,μ
−ω for the dielectric and magnetic susceptibilities in the frequency domain. Inserting Eq. (F10) into Eq. (F5), we get

ĥR3 = 1

2

∫ t

−∞
dτ

[
Ê · ∂P̂(ε)

∂τ
+ ∂P̂(ε)

∂τ
· Ê + B̂ · ∂M̂(μ)

∂τ
+ ∂M̂(μ)

∂τ
· B̂

]
, (F11)

where we have used the time-domain expressions of the polarization and magnetization densities of Eq. (1).
By adding the two contributions of Eqs. (F9) and (F11) we get

ĥR2 + ĥR3 = 1

2

∫ t

−∞
dτ

[
Ê · ∂ (P̂(ε) + P̂(M ) )

∂τ
+ ∂ (P̂(ε) + P̂(M ) )

∂τ
· Ê + B̂ · ∂ (M̂(μ) + M̂(M ) )

∂τ
+ ∂ (M̂(μ) + M̂(M ) )

∂τ
· B̂

]
, (F12)

which, using the operator identity

ε0Ê · Ê − 1

μ0
B̂ · B̂ =

∫ t

−∞
dτ

[
ε0

(
Ê · ∂Ê

∂τ
+ ∂Ê

∂τ
· Ê

)
− 1

μ0

(
B̂ · ∂B̂

∂τ
+ ∂B̂

∂τ
· B̂

)]
, (F13)

and the definition of the electric displacement D̂ and magnetic field Ĥ in Eqs. (20) can be casted as

ĥR2 + ĥR3 = −1

2
ε0Ê · Ê + 1

2μ0
B̂ · B̂ + 1

2

∫ t

−∞
dτ

[
Ê · ∂ (D̂ + P̂(M ) )

∂τ
+ ∂ (D̂ + P̂(M ) )

∂τ
· Ê − B̂ · ∂ (Ĥ − M̂(M ) )

∂τ

− ∂ (Ĥ − M̂(M ) )

∂τ
· B̂

]
. (F14)

After integrating by parts the magnetic integral terms we get

ĥR2 + ĥR3 = −1

2
ε0Ê · Ê + 1

2μ0
B̂ · B̂ + −1

2
B̂ · (Ĥ − M̂(M ) ) − 1

2
(Ĥ − M̂(M ) ) · B̂ + 1

2

∫ t

−∞
dτ

[
Ê · ∂ (D̂ + P̂(M ) )

∂τ

+ ∂ (D̂ + P̂(M ) )

∂τ
· Ê + ∂B̂

∂τ
· (Ĥ − M̂(M ) ) + (Ĥ − M̂(M ) ) · ∂B̂

∂τ

]
, (F15)

so that, adding the contribution ĥR1 of Eq. (F7), the overall reservoir Hamiltonian density turns out to be

ĥR =
∫ +∞

0
dω h̄ω

∑
λ

f̂†
ωλ · f̂ωλ − 1

2
ε0Ê · Ê + 1

2μ0
B̂ · B̂ − (Ĥ − M̂(M ) ) · B̂ + 1

2

∫ t

−∞
dτ

[̂
E · ∂ (D̂ + P̂(M ) )

∂τ
+ ∂ (D̂ + P̂(M ) )

∂τ
· Ê

+ ∂B̂
∂τ

· (Ĥ − M̂(M ) ) + (Ĥ − M̂(M ) ) · ∂B̂
∂τ

]
, (F16)

where we have also exploited the commutativity between the fields (Ĥ − M̂(M ) ) and B̂, in turn resulting from the relation

Ĥ − M̂(M ) = 1

μ0
B̂ −

∫ +∞

0
d� β�Ŷ� (F17)

[see the seconds of Eqs. (17) and (20)] and the commutativity between magnetic induction field and reservoir field, i.e.,
[B̂(r, t ), Ŷ�(r′, t )] = 0.
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APPENDIX G: SCATTERING HAMILTONIAN

In order to manipulate the scattering Hamiltonian Ĥ (S) in Eq. (73), we start by noting that Eq. (A12) of Appendix A
implies that

−
∫

S∞
dS ur · (Ê(in) × B̂(in) − B̂(in) × Ê(in) ) =

∫
d3r[Ê(in) · (∇ × B̂(in) ) + (∇ × B̂(in) ) · Ê(in) + (−B̂(in) ) · (∇ × Ê(in) )

− (∇ × Ê(in) ) · B̂(in)]. (G1)

The curls of the electric and magnetic induction fields can be eliminated from this expression after noting that the incident
electromagnetic field is a freely propagating field in vacuum, and hence it satisfies the vacuum Maxwell equations

∇ × Ê(in) = −∂B̂(in)

∂t
,

∇ × B̂(in) = ε0μ0
∂Ê(in)

∂t
, (G2)

as it can easily be verified by means of the expressions in Eq. (74). Accordingly, from Eq. (G1) we get

−
∫

S∞
dS ur ·

(
Ê(in) × B̂(in) − B̂(in) × Ê(in)

2μ0

)
= ∂

∂t

∫
d3r

(
1

2
ε0Ê(in) · Ê(in) + 1

2μ0
B̂(in) · B̂(in)

)
, (G3)

a very reasonable relation equating the power carried by the incident field and flowing from infinity with the rate of changing of
the total electromagnetic energy stored throughout the space by the incident field. By inserting Eq. (G3) into Eq. (73) we find

Ĥ (S) =
∫

d3r
(

1

2
ε0Ê(in) · Ê(in) + 1

2μ0
B̂(in) · B̂(in)

)
, (G4)

which states that the scattering Hamiltonian coincides with the electromagnetic energy of the overall incident field, as expected.
To proceed, it is convenient setting k = kωn for the wave vector of the plane waves so that Eqs. (74) can be written as

Ê(in)(r, t ) = c

√
h̄

16π3ε0

∫
d3k

1√
k

∑
ν

enν · [ei(k·r−ωt )ĝωnν + e−i(k·r−ωt )ĝ†
ωnν],

B̂(in)(r, t ) = c

√
h̄μ0

16π3

∫
d3k

1√
k

∑
ν

(n × enν ) · [ei(k·r−ωt )ĝωnν + e−i(k·r−ωt )ĝ†
ωnν], (G5)

so that a straightforward manipulation yields

1

2
ε0Ê(in) · Ê(in) + 1

2μ0
B̂(in) · B̂(in) = h̄c2

4(2π )3

∫
d3k

∫
d3k′ ∑

ν

∑
ν ′

1√
kk′ · [enν · en′ν ′ + (n × enν ) · (n′ × en′ν ′ )]

· [ei(k+k′ )·re−i(ω+ω′ )t ĝωnν ĝω′n′ν ′ + e−i(k+k′ )·rei(ω+ω′ )t ĝ†
ωnν ĝ†

ω′n′ν ′

+ e−i(k−k′ )·rei(ω−ω′ )t ĝ†
ωnν ĝω′n′ν ′+ ei(k−k′ )·re−i(ω−ω′ )t ĝωnν ĝ†

ω′n′ν ′]. (G6)

Inserting this expression into Eq. (G4) and performing the spatial integration with the help of the δ function we get

Ĥ (S) = h̄c2

4

∫
d3k

∑
ν

∑
ν ′

1

k
· {[enν · e−nν ′ − (n × enν ) · (n × e−nν ′ )] · [e−i2ωt ĝωnν ĝω−nν ′ + ei2ωt ĝ†

ωnν ĝ†
ω−nν ′ ]

+ [enν · enν ′ + (n × enν ) · (n × enν ′ )] · [ĝ†
ωnν ĝωnν ′ + ĝωnν ĝ†

ωnν ′]}, (G7)

which is easily seen to reduce to

Ĥ (S) = h̄c2

2

∫
d3k

1

k

∑
ν

(ĝ†
ωnν ĝωnν + ĝωnν ĝ†

ωnν ) (G8)
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by using the vector identity

(A × B) · (A × C) = (A · A)(B · C) − (A · B)(A · C), (G9)

together with the polarization unit vector orthogonality enν · enν ′ = δνν ′ . Restoring the polar coordinates for the k integra-
tion, using the boson commutation relation in the second of Eqs. (49) and neglecting the (divergent) zero-point energy, we
eventually get

Ĥ (S) =
∫ ∞

0
dωh̄ω

∫
don

∑
ν

ĝ†
ωnν ĝωnν . (G10)
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