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Variational approach to light-matter interaction: Bridging quantum and semiclassical limits
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We present a time-dependent variational approach with the multiple-Davydov-D2 trial state to simulate the
dynamics of light-matter systems when the field is initially in a coherent state with an arbitrary finite mean
photon number. The variational approach captures not only the system dynamics but also the field dynamics and
is applicable to a variety of quantum models of light-matter interaction such as the Jaynes-Cummings model,
Rabi model, and Dicke model and is capable of tackling multimode quantized fields. With a comparison of the
variational and semiclassical dynamics of both the system and field, we illustrate that the variational dynamics
from the quantum models agrees with those from the corresponding semiclassical models as long as the mean
number of photons is sufficiently large. Moreover, we illustrate that in the crossover between the quantum and
semiclassical limits, the quantum corrections lead to the collapse of the oscillations in dynamics, which is absent
in the semiclassical models. The variational approach provides a unified treatment of light-matter interaction
from the quantum to the semiclassical limit.
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I. INTRODUCTION

Light-matter interaction between quantum systems and co-
herent fields plays a fundamental role in quantum optics [1,2],
which enables control of the quantum system by the field or
vice versa and is highly relevant to the realization of quantum
technologies such as quantum information processing [3],
quantum sensing [4,5], quantum metrology [6,7], and quan-
tum batteries [8–11]. Theoretically, two kinds of descriptions
of the light-matter interaction exist. One is based on the
full quantum description with a quantized field. The other is
based on the semiclassical description in which the field is
treated classically. Two paradigmatic models for such theo-
ries are the quantum and semiclassical Rabi models [12–14].
Of particular interest, the study of these basic models has
received renewed attention in artificial atoms. Both theoret-
ical and experimental studies on the quantum Rabi model
have been extended to the so-called ultrastrong-coupling
regime [15–20], where the coupling constant becomes a
considerable fraction of the field frequency. For the semi-
classical Rabi model, strong driving with the Rabi frequency
comparable to the transition frequency of the qubit can be
achieved [21,22]. Such a strong-coupling (driving) regime has
potential applications in the realization of ultrafast quantum
gates [23,24].

Provided the field is initially in a coherent state, the quan-
tum and semiclassical descriptions of light-matter interaction
become consistent with each other in the semiclassical limit;
that is, the mean photon number of the field tends to infinity,
and the coupling constant tends to zero while their product
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remains constant [1,2,25]. However, in realistic situations, the
quantum system can interact with only a finite number of
photons rather than an infinite number of photons. A ques-
tion naturally arises regarding under what conditions a finite
number of photons cause a negligible deviation between the
quantum and semiclassical models. Moreover, how quantum
corrections in the presence of a finite number of photons
contribute to the dynamics, which may be helpful in under-
standing the crossover between the quantum and semiclassical
limits in particular, remains, to the best of our knowledge,
barely explored.

Since fields are introduced in different ways in the quantum
and semiclassical Hamiltonians, the light-matter interactions
in the quantum and semiclassical limits are typically treated
by different theoretical approaches. For instance, there are
a variety of theoretical methods developed for the quantum
Rabi model and its variants, e.g., the Van Vleck perturba-
tion [26], unitary transformations [27–29], the variational
approach [30–32], extended coherent states [33], etc. How-
ever, the Floquet theory mainly applies to semiclassical
models [34,35]. In contrast to full quantum models, the field
dynamics is ignored in semiclassical models. Very recently,
a so-called photon-resolved Floquet theory was proposed to
study the field dynamics of semiclassical models [36]. How-
ever, such an approach is established in the semiclassical limit
and thus is inapplicable in the crossover between the quantum
and semiclassical limits.

In this work, we present a unified numerical method
that combines two sequential unitary transformations with
a time-dependent variational approach equipped with the
multiple-Davydov ansatz [37,38] to simulate the dynamics of
light-matter systems from the quantum to semiclassical limit
when the field is initially in a coherent state. One advantage of
the variational approach is that the multiple-Davydov ansatz
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uses the coherent states as the bases, which effectively pre-
vents the exponential increase in the size of the Hilbert space
due to the increase in the number of modes and thus is appli-
cable to a multimode case. More importantly, the variational
approach simultaneously captures the dynamics of both the
quantum system and fields. Particularly, we illustrate that the
statistical characteristic function of the field can be computed,
which allows us to calculate the mean value and variance of
the photon numbers of the field as well as the photon-number
distribution. We also show how the field dynamics can be
calculated from semiclassical models. We apply the present
approaches to a variety of light-matter systems, including
the Jaynes-Cummings (JC) model, the Rabi model, and the
Dicke model. By comparing the variational dynamics from
the full quantum models with that from the semiclassical
models, we examine the consistency between the quantum
and semiclassical models in the presence of a large number
of photons and illustrate the role of quantum corrections in
the quantum-semiclassical crossover.

The rest of this paper is organized as follows. In Sec. II,
we present the variational approach to treat the light-matter
interaction in the presence of large mean photon numbers. We
also show how to calculate the field dynamics in the semi-
classical model. In Sec. III, we apply the variational approach
and semiclassical approach to several light-matter systems
and calculate the system and field dynamics. In Sec. IV, we
draw our conclusions.

II. MODEL AND METHODS

The full quantum description of the interaction between
a quantum system and a multimode coherent field can
be described by the following Hamiltonian (we set h̄ = 1
throughout this work):

H = HS +
N∑

k=1

ωkb†
kbk +

N∑
k=1

gk

2
(b†

kVk + bkV
†

k ), (1)

where HS is the free Hamiltonian of the quantum system and
Vk is the interaction operator acting on the Hilbert space of the
quantum system. bk (b†

k) is the annihilation (creation) operator
of the bosonic field with frequency ωk . gk is the coupling con-
stant. N is the total number of modes. Note that either Vk �= V †

k

or Vk = V †
k is possible, corresponding to a rotating-wave ap-

proximation (RWA) and non-RWA Hamiltonian, respectively.
The time evolution of the composite system is governed by

the time-dependent Schrödinger equation,

i
d

dt
|�(t )〉 = H |�(t )〉, (2)

where |�(t )〉 is the state of the total system. In this work, we
consider a factorized initial state of the total system

|�(0)〉 = |ψ (0)〉 ⊗ |�α〉, (3)

where |ψ (0)〉 is an initial state of the quantum system and |�α〉
is a multimode coherent state that reads

|�α〉 = |α1〉 ⊗ |α2〉 ⊗ · · · ⊗ |αN 〉

≡ exp

(
N∑

k=1

αkb†
k − H.c.

)
|0〉 ≡ D(�α)|0〉, (4)

where |0〉 is a multimode vacuum state, D(�α) is a displace-
ment operator, and αk ≡ |αk|e−iφk is a complex number with
modulus |αk| and phase φk .

A. Time-dependent variational approach

To achieve a manageable numerical simulation, we convert
the time-evolution problem with the initial coherent state of
a large number of photons into a new time-evolution prob-
lem with an initial vacuum state. This can be achieved with
two sequential unitary transformations. First, we transform
the time-dependent Schrödinger equation into the interaction
picture governed by the free Hamiltonian of the field HF =∑N

k=1 ωkb†
kbk . In doing so, we have a new time-evolution

problem:

i
d

dt
|�̃(t )〉 = H̃ (t )|�̃(t )〉, (5)

where the Hamiltonian becomes time dependent,

H̃ (t ) = HS +
N∑

k=1

gk

2
(V †

k bke−iωkt + Vkb†
keiωkt ), (6)

and the transformed wave function is related to the original
one via

|�̃(t )〉 = exp (iHFt )|�(t )〉. (7)

The initial state in the transformed frame remains the same
as that in the original one, |�̃(0)〉 = |�(0)〉. To proceed, we
apply a displacement transformation to the equation of motion
and the initial state, yielding

i
d

dt
|� ′(t )〉 = H ′(t )|� ′(t )〉, (8)

where the displaced wave function is related to the original
one via

|� ′(t )〉 = D†(�α) exp (iHFt )|�(t )〉 (9)

and the transformed Hamiltonian is given by

H ′(t ) = D†(�α)H̃ (t )D(�α)

= HS(t ) +
N∑

k=1

gk

2
(V †

k bke−iωkt + Vkb†
keiωkt ), (10)

where

HS(t ) = HS +
N∑

k=1

�k

2
[Vkei(ωkt+φk ) + V †

k e−i(ωkt+φk )], (11)

�k = |αk|gk . (12)

In doing so, we have the following initial state:

|� ′(0)〉 = D†(�α)|�(0)〉 = |ψ (0)〉|0〉, (13)

where the field is initially in the vacuum state in the trans-
formed frame. Note that in the semiclassical limit of gk → 0
and αk → ∞ but |αk|gk = �k , the full quantum Hamiltonian
of light-matter interaction becomes the semiclassical Hamil-
tonian, i.e., H ′(t ) → HS(t ) [25].

We now use a time-dependent variational approach to
compute the dynamics described by Eq. (8). The variational
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approach is based on the Dirac-Frenkel time-dependent vari-
ational principle and the multiple-Davydov-D2 ansatz. The
former allows us to calculate the optimal solution to the time-
dependent Schrödinger equation with a parameterized trial
state. In this work, we use the multiple-Davydov-D2 ansatz
|DM

2 (t )〉, which is suitable for the spin-boson-like problems
and is parameterized as follows [37–41]:

∣∣DM
2 (t )

〉 = M∑
n=1

NS∑
j=1

An j | j〉| fn〉, (14)

where M is the number of coherent states, An j are time-
dependent variational parameters, {| j〉| j = 1, 2, . . . , NS} rep-
resents a set of orthonormal bases for the quantum system,
and

| fn〉 = exp

(
N∑

k=1

fnkb†
k − H.c.

)
|0〉 (15)

are multimode coherent states, with fnk being time-dependent
variational parameters. The equations of motion for vari-
ational parameters are determined by the Dirac-Frenkel
time-dependent variational principle [42], that is,〈

δDM
2 (t )

∣∣[i∂t − H ′(t )]
∣∣DM

2 (t )
〉 = 0, (16)

where 〈δDM
2 (t )| represents the variation of the adjoint state.

From Eq. (16), the equations of motion for the variational
parameters are simply given by

i〈 j|〈 fl

∣∣ḊM
2 (t )

〉 = 〈 j|〈 fl |H ′(t )
∣∣DM

2 (t )
〉
, (17)

i
NS∑
j=1

A∗
l j〈 j|〈 fl |bk

∣∣ḊM
2 (t )

〉 = NS∑
j=1

A∗
l j〈 j|〈 fl |bkH ′(t )

∣∣DM
2 (t )

〉
.

(18)

These equations of motion are a set of implicit first-
order nonlinear differential equations and can be solved by
the fourth-order Runge-Kutta algorithm [40,41]. A detailed
derivation and implementation of the numerical simulation of
Eqs. (17) and (18) are presented in the Appendix.

On solving the equations of motion, we can compute the
quantities of interest for both the quantum system and the
field. The observable of quantum system can be directly
computed since the applied unitary transformations do not
influence the operators acting on the Hilbert space of the
matter system; e.g., the population of the state | j〉 can be given
by

Pj (t ) = 〈DM
2 (t )

∣∣ j〉〈 j
∣∣DM

2 (t )
〉 = M∑

l,n=1

A∗
l jSlnAn j, (19)

where

Sln = exp

[
N∑

k=1

(
f ∗
lk fnk − | flk|2

2
− | fnk|2

2

)]
. (20)

For the field, we calculate the moment-generating function,

G �χ (t ) = 〈ei
∑N

k=1 χkb†
kbk
〉
t

= 〈DM
2 (t )

∣∣D†(�α)ei
∑N

k=1 χkb†
kbk D(�α)

∣∣DM
2 (t )

〉

=
M∑

n,l=1

NS∑
j=1

A∗
l jSlnAn j

× exp

[
N∑

k=1

(eiχk − 1)(α∗
k + f ∗

lk )(αk + fnk )

]
, (21)

where χk ∈ [0, 2π ), 〈·〉t represents the average taken over the
state in the laboratory frame, and we have used the identity of
the displacement operators:

D(α)D(β ) = exp

(
αβ∗ − α∗β

2

)
D(α + β ). (22)

The moment-generating function contains the information of
interest for the field. Particularly, the mean photon number in
mode k can be computed as

nk (t ) = 〈b†
kbk〉t = d

idχk
G �χ (t )|χk=0

=
M∑

l,n=1

NS∑
j=1

A∗
l jSlnAn j (α

∗
k + f ∗

lk )(αk + fnk ). (23)

The variance of the photon number of mode k is given by

σ 2
k (t ) = d2

i2dχ2
k

G �χ (t )|χk=0 − n2
k (t ). (24)

Additionally, the probability distribution of the photon num-
bers at time t can also be computed,

p(�n, t ) = 1

(2π )N

∫ 2π

0
G �χ (t )e−i �χ ·�nd �χ, (25)

where �n = (n1, n2, . . . , nN ), with nk being a non-negative in-
teger that specifies the photon number of mode k.

B. Dynamics in the semiclassical limit

In this section, we compute the dynamics of the quantum
system and field in the semiclassical limit. We first compute
the population dynamics of the quantum system with Eq. (8).
To this end, we express the time-evolution operator U ′(t ) =
T exp[−i

∫ t
0 H ′(τ )dτ ], with T being the time-ordering opera-

tor, by using the product form:

U ′(t ) = US(t )U ′
I (t ), (26)

where

US(t ) = T exp

[
−i
∫ t

0
HS(τ )dτ

]
(27)

is the time-evolution operator of the semiclassical Hamil-
tonian. U ′

I (t ) can be determined by iteration from the
time-dependent Schrödinger equation and is readily given in
terms of Dyson’s series, which reads

U ′
I (t ) = 1 − i

∫ t

0
HI(τ1)dτ1

−
∫ t

0

∫ τ1

0
dτ1dτ2HI(τ1)HI(τ2) + · · · , (28)
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where

HI(t ) =
N∑

k=1

gk

2
[V †

k (t )bke−iωkt + Vk (t )b†
keiωkt ], (29)

Vk (t ) = U †
S (t )VkUS(t ). (30)

With the above results at hand, we can calculate the population of the state | j〉 as follows:

Pj (t ) = 〈� ′(t )| j〉〈 j|� ′(t )〉 = 〈� ′(0)|U ′†(t )| j〉〈 j|U ′(t )|� ′(0)〉 = Psc
j (t ) + Pqc

j (t ), (31)

with

Psc
j (t ) = 〈� j (t )〉0, (32)

Pqc
j (t ) =

N∑
k=1

g2
k

4

∫ t

0

∫ t

0
dτ1dτ2〈V †

k (τ1)� j (t )Vk (τ2)〉0e−iωk (τ1−τ2 )

−Re
N∑

k=1

g2
k

2

∫ t

0

∫ τ1

0
dτ1dτ2〈� j (t )V †

k (τ1)Vk (τ2)〉0e−iωk (τ1−τ2 ) + O
(
g4

k

)
, (33)

where 〈·〉0 represents the average taken over the initial state of the quantum system |ψ (0)〉 and

� j (t ) = U †
S (t )| j〉〈 j|US(t ). (34)

In the above derivation, we have used the fact that the fields are in the vacuum state in the initial state |� ′(0)〉. Note that Psc
j (t )

is just the semiclassical dynamics, which is fully driven by the semiclassical Hamiltonian, that is,

U̇S(t ) = −iHS(t )US(t ). (35)

Pqc
j (t ) represents quantum corrections to the semiclassical dynamics, which is shown up to the second order in gk . Clearly,

there are higher-order corrections, which can be computed similarly. Such quantum corrections become vanishing in the limit of
gk → 0, i.e., in the semiclassical limit.

Since in the semiclassical limit |αk| → ∞, we calculate the change in the mean photon number of the mode k, which is
simply given by

�nk (t ) = 〈� ′(t )|D†(�α)(b†
kbk − |αk|2)D(�α)|� ′(t )〉 = 〈� ′(0)|U ′†(t )(b†

kbk + α∗
k bk + αkb†

k )U ′(t )|� ′(0)〉. (36)

Plugging Eq. (26) into (36), using the fact that the fields are in the vacuum state in the initial state |� ′(0)〉 and US(t ) commutes
with the field operators, and taking the semiclassical limit, we readily have

�nk (t ) = −�kRe
∫ t

0
i〈Vk (τ )〉0ei(ωkτ+φk )dτ. (37)

Similarly, we can calculate the variance in the photon number of mode k:

σ 2
k (t ) = 〈� ′(t )|D†(�α)(b†

kbk − |αk|2)2D(�α)|� ′(t )〉 − �n2
k (t ) = |αk|2 + �nk (t ) − �n2

k (t )

+ �2
k

2

∫ t

0

∫ t

0
〈V †

k (τ1)Vk (τ2)〉0e−iωk (τ1−τ2 )dτ1dτ2 − �2
kRe

∫ t

0
dτ1

∫ τ1

0
dτ2〈Vk (τ1)Vk (τ2)〉0eiωk (τ1+τ2 )+2iφk . (38)

When t = 0, one simply has σ 2
k (0) = |αk|2, which is a feature

of a coherent state. In practice, since |αk|2 is a large number
in the semiclassical limit, we subtract |αk|2 from σ 2

k (t ) and
calculate the change in the variance, i.e.,

�σ 2
k (t ) = σ 2

k (t ) − |αk|2. (39)

This quantity characterizes the variation of the width of pho-
ton statistical distribution. Note that Eqs. (37) and (38) are
justified only in the semiclassical limit gk → 0, αk → ∞,
and gk|αk| = �k . In other words, they are inapplicable in the
quantum and crossover regimes. As long as the semiclassical
time-evolution operator is obtained, we can easily com-
pute �nk (t ) and �σ 2

k (t ). The time-evolution operator US(t )

can be computed by directly integrating the time-dependent
Schrödinger equation. Alternatively, it can be numerically or
analytically computed with (generalized) Floquet theory.

III. APPLICATIONS

In this section, we apply the present variational approach
and the semiclassical approach to study the dynamics of some
light-matter systems. In doing so, we address the consistency
between the quantum variational dynamics and semiclassical
dynamics in the presence of a large number of photons and
explore the role of quantum corrections. In the following
calculations, the quantum system is assumed to be initially
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in the ground state while the field is initially in a coherent
state. Hereafter, the variational results will be denoted by
“M-D2,” with M specifying a concrete number of coherent
states used in simulations. The semiclassical results calculated
from Eqs. (32), (37), and (39) are denoted by “SC” in the
plots.

A. Jaynes-Cummings model

To begin with, we consider the JC model, the Hamiltonian
of which reads

H = 1

2
ω0σz + ωb†b + g

2
(bσ+ + b†σ−), (40)

where ω0 is the transition frequency between two levels, |1〉
and |2〉, and σz = |2〉〈2| − |1〉〈1| and σ+ = σ

†
− = |2〉〈1|. The

notations for the field part are the same as in Eq. (1), and
since there is a single mode, we have neglected the subscripts
that label different modes for the field. This model and its
semiclassical counterpart are exactly solvable, which provides
transparent insights into the system and field dynamics as well
as the quantum corrections to the semiclassical dynamics.
For the quantized JC model, we use the variational approach
to calculate the dynamics of the system and field. In the
following, we introduce some analytical results from the semi-
classical JC model.

The semiclassical Hamiltonian of the JC model is given by

HS(t ) = 1

2
ω0σz + �

2
(σ+e−iωt + σ−eiωt ). (41)

The time-evolution operator reads [1]

US(t ) = e− iωtσz
2

[
cos

(
�Rt

2

)
− i sin

(
�Rt

2

)
δσz + �σx

�R

]
,

(42)
where δ = ω0 − ω is the detuning and �R = √

�2 + δ2 is the
Rabi frequency. With the time-evolution operator and consid-
ering the initial state of the two-level system |ψ (0)〉 = |1〉, we
can easily obtain the excited-state population of the two-level
system

Psc
2 (t ) = �2

�2
R

sin2

(
�Rt

2

)
. (43)

This is the celebrated Rabi oscillation.
The change in photon number for the semiclassical JC

model is obtained as

�n(t ) = −Psc
2 (t ). (44)

This means that the change in photon number and the excited-
state population of the two-level system oscillate out of phase,
which just reflects the conservation of the excitation number
of the total system.

The change in the variance of the mean photon number is
given by

�σ 2(t ) = (�2 − δ2)�2

�4
R

sin2

(
�Rt

2

)
− �4

�4
R

sin4

(
�Rt

2

)

− �4t

2�3
R

sin(�Rt ). (45)

The above analytical results for the field part are obtained
in the semiclassical limit, and quantum corrections are not
involved.

We now address how the deviation in the dynamics be-
tween the quantum and semiclassical JC model emerges due
to the variation of the the initial mean numbers of photons by
comparing the variational and analytical results. In Fig. 1, we
show the dynamics of the system and field by computing the
excited-state population P2(t ), the change in photon number
�n(t ), and the change in variance of the photon number
�σ 2(t ) from the quantum and semiclassical JC models for
ω = ω0. For the quantum model, we consider three values
of the initial mean number of photons α2 ranging from 105

to 103. The coupling constant and the Rabi frequency are
set by gα = � = 0.5ω0. Figures 1(a)–1(c) show that when
α2 = 105, the quantum and semiclassical dynamics for either
the system or field are in perfect agreement in the time in-
terval, indicating the consistency between the quantum and
semiclassical models in the large-mean-photon-number limit.
Figures 1(d)–1(f) show that when α2 = 104, the quantum vari-
ational dynamics and the semiclassical dynamics are almost
the same when t < 200ω−1

0 , while they deviate from each
other when t > 200ω−1

0 . Moreover, Figs. 1(g)–1(i) show that
when α2 = 103, the quantum variational dynamics just coin-
cides with the semiclassical dynamics in the first few cycles
of the Rabi oscillation. As time goes on, one readily notes
that for full quantum dynamics, the Rabi oscillation in the
population of the system experiences a significant collapse,
which is a quantum feature and is absent in the semiclassical
limit [1,43]. The striking difference between the quantum and
semiclassical results reflects the role of quantum corrections
to the semiclassical dynamics in the quantum-semiclassical
crossover.

To provide a criterion for assessing the timescale within
which the quantum and semiclassical models yield consistent
dynamics, we further explore the role of the quantum cor-
rections. We calculate the difference between the variational
population dynamics P2(t ) and the semiclassical dynamics
Psc

2 (t ), which is just the “exact” quantum correction. Alter-
natively, we can calculate the quantum correction up to the
second order in g for the JC model. It follows from Eqs. (33)
and (42) that the second-order quantum correction to the semi-
classical population dynamics is given by

Pqc
2 (t ) = g2�2

4�4
R

{
�2t2

4
cos(�Rt ) + 4δ2 − �2

4�R
t sin(�Rt )

−4δ2

�2
R

sin2

(
�Rt

2

)}
. (46)

The analytical result shows that the amplitude of oscillation
is proportional to t2. This means that even if g is a small
quantity, the quantum correction can contribute significantly
to the long-time limit. Moreover, this result is ill defined as
t → ∞, suggesting that the second-order quantum correction
to the semiclassical dynamics is insufficient in the quantum-
semiclassical crossover and higher-order quantum corrections
must be involved. In Fig. 2, we plot the numerically exact
and second-order quantum corrections as a function of time
t for α2 = 104, � = gα = 0.5ω0, and ω = ω0. One read-
ily finds that the second-order quantum correction plays a
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FIG. 1. Excited-state population P2(t ), change in photon number �n(t ), and change in the variance of the photon number �σ 2(t ) calculated
by the quantum variational approach and semiclassical approach for the quantum and semiclassical JC models. For the semiclassical model,
the parameters are set as � = 0.5ω0 and ω = ω0. For the quantum model, gα = �, ω = ω0, and three values of the initial mean photon number
α2 are used. “2-D2” denotes the variational results with M = 2. “SC” denotes the semiclassical results.

predominant role and agrees with the exact one in the finite-
time interval. This finding actually can be used to estimate the
upper bound of time tc below which the quantum dynamics
and semiclassical dynamics are consistent. Roughly speaking,

FIG. 2. Exact and second-order quantum corrections to the
excited-state population of the qubit in the JC model for � = gα =
0.5ω0, ω = ω0, and α2 = 104. The exact quantum correction is ob-
tained as the difference between the quantum dynamics P2(t ) and the
semiclassical dynamics Psc

2 (t ). The second-order quantum correction
is given by Eq. (46).

we require g2t2
c < 1 such that the second-order correction is a

small quantity. Using g = �/|α|, we have tc < |α|/�; that is,
the larger the mean photon number is, the more the quantum
and semiclassical dynamics coincide with each other over
a longer time interval. For instance, when considering the
parameters in Fig. 1(c), we find that tc ≈ 63ω−1

0 , which turns
out to be a good estimation of the timescale.

The present variational approach can also be used to
calculate the photon-number distribution at given times. Fig-
ures 3(a)–3(c) show p(n, t ) as a function of n at two given
times for ω = ω0, g = 0.5ω0/α, and three values of α. When
t = 0, the photon-number distribution is the Poisson distribu-
tion peaking at n = |α|2, which is the nature of the coherent
state. When α2 = 105 or 104, we see that there is almost no
difference between the initial (t = 0) and final (t = 500ω−1

0 )
photon-number distributions. This finding is consistent with
the results in Figs. 1(c) and 1(f), where one finds that although
the oscillation amplitude of the change in the variance of pho-
ton number �σ 2(t ) increases with time t , its magnitude is far
smaller than the initial variance σ 2(0) = α2, i.e., �σ 2(t ) �
σ 2(0). Consequently, the width of the photon-number distri-
bution hardly changes in the semiclassical limit. However,
when α2 = 103, Fig. 3(c) shows that the final photon-number
distribution is different from the initial one. The present
results suggest that the photon-number distribution rarely
changes in the semiclassical limit but can change due to the
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FIG. 3. Photon-number distribution p(n, t ) as a function of the photon number n at the two given times calculated by the variational
approach for � = gα = 0.5ω0, ω = ω0, and three values of α2. ti and t f denote the initial time t = 0 and finial time t = 500ω−1

0 , respectively.

light-matter interaction in the crossover region between the
quantum and semiclassical limits.

The present results suggest that the variational approach
is applicable to light-matter systems not only in the quantum
limit [31] but also in the semiclassical limit, as well as the
crossover in between, and is capable of tackling a relatively
large mean number of photons. On the other hand, the present
results confirm that field dynamics can also be calculated in
the semiclassical model.

B. Rabi model

1. Single-mode case

The JC model may be inadequate due to the RWA, and we
move to consider the quantum Rabi model, the Hamiltonian
of which reads

H = 1

2
ω0σz + ωb†b + g

2
(b + b†)σx, (47)

where σx = σ+ + σ−. We apply the variational approach to
study the dynamics of the quantum Rabi model. We also
calculate the semiclassical dynamics of the system and field,
which is based on the numerically calculated time-evolution
operator for the semiclassical Rabi model: HS(t ) = 1

2ω0σz +
� cos(ωt )σx.

We examine the consistency between the variational dy-
namics and the semiclassical dynamics under the initial
condition of a large number of photons, i.e., α2 � 1. In Fig. 4,
we show the dynamics of the excited-state population P2(t ),
the change in photon number �n(t ), and the change in the
variance of the mean photon number �σ 2(t ) for the quantum
and semiclassical Rabi models. We consider three values of
α2 and ω = ω0. The Rabi frequency and coupling constant
are given by � = 0.5ω0 and g = �/α, respectively. We note
that the quantum variational dynamics and semiclassical dy-
namics are almost the same when α2 = 105. However, when
α2 = 104 or 103, the difference between the variational and
semiclassical dynamics appears as time increases, which is
attributed to the quantum corrections to the semiclassical dy-
namics. This situation is similar to that encountered in the JC
model. In addition, we note that there are beat behaviors in
Fig. 4 which result from the counterrotating terms [34,44,45].
To explore the validity of the variational approach in the
quantum limit, we calculate the dynamics of the system and
field for the quantum Rabi model by using the variational

approach and the numerically exact diagonalization (ED) of
the quantum Rabi Hamiltonian for ω = ω0, g = 0.2ω0, and
α2 = 5. Since g = 0.2ω0 is comparable to ω, the light-matter
coupling is ultrastrong. This is a regime where the two-level
system ultrastrongly interacts with a few photons, and thus,
the semiclassical approach is inapplicable. Figure 5 shows that
in comparison with the ED method, the variational approach
can produce accurate dynamics of the system and field, as
well as the photon-number distribution, for the quantum Rabi
model in an ultrastrong-coupling regime. The present find-
ings suggest that the variational approach provides a unified
method to tackle light-matter systems in both the quantum
and semiclassical limits. More importantly, it captures the
dynamics of both the system and field. This is of particular
importance in potential applications for studying the statistical
properties of the field.

2. Two-mode case

We now exploit the developed formalisms to study the
system and field dynamics in the two-mode cases, where
multiphoton processes become remarkable. The Hamiltonian
of the two-mode quantum Rabi model is given by

H = ω0

2
σz +

N∑
k=1

ωkb†
kbk +

N∑
k=1

gk

2
(bk + b†

k )σx, (48)

where the number of modes is N = 2. The Hamiltonian of the
two-mode semiclassical Rabi model is given by

HS(t ) = ω0

2
σz + [�1 cos(ω1t ) + �2 cos(ω2t )]σx, (49)

which describes a bichromatically driven two-level system.
As is well known, the two-level system may absorb n + 1
photons from one field and emit n photons into the other
field, which can lead to multiphoton resonances occurring at
ω0 ≈ (n + 1)ω1 − nω2, with n being an integer. Such mul-
tiphoton resonances have been studied in the semiclassical
model with and without the RWA [46–50] and are illustrated
by calculating the transition probabilities of the two-level
system. Here we revisit this phenomenon by calculating not
only the population of the system but also the photon-number
dynamics by making use of variational and semiclassical ap-
proaches. In the latter approach, the time-evolution operator
of the semiclassical model is numerically calculated using the
Runge-Kutta method.
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FIG. 4. Excited-state population P2(t ), change in photon number �n(t ), and change in the variance of the photon number �σ 2(t ) calculated
by the quantum variational approach and semiclassical approach for the quantum and semiclassical Rabi models. For the semiclassical model,
the parameters are set as � = 0.5ω0 and ω = ω0. For the quantum model, gα = �, ω = ω0, and three values of the initial mean photon number
α2 are used.

The multiphoton resonance condition can be numerically
obtained with the generalized Floquet theory [47]. To be
concrete, we consider ω1 = 0.6449ω0, ω2 = 0.8449ω0, and
�1 = �2 = 0.3ω0 for the semiclassical model, which corre-
sponds to a resonance in which the two-level system absorbs
two photons from mode 2 and emits one photon into mode 1.
For the quantized field, we set g1 = g2 = 0.3ω0/α and α2

1 =
α2

2 = α2 = 105. In Figs. 6(a)–6(c), we depict the excited-

state population P2(t ), the change in photon number �nk (t ),
and the change in the variance �σ 2

k (t ) for the quantum and
semiclassical models. It is evident that the dynamics of the
system and fields from the quantum model are in agreement
with those from the semiclassical model, confirming that the
variational approach can be applied to simulate the semiclas-
sical dynamics in the two-mode cases, provided the initial
mean photon number is sufficiently large. In Fig. 6(a), we see

FIG. 5. (a) Excited-state population P2(t ), (b) change in photon number �n(t ), (c) change in the variance of the photon number �σ 2(t ),
and (d) photon-number distribution p(n, t ) calculated by the variational approach and numerically exact diagonalization (ED) for the quantum
Rabi model. The parameters are set as g = 0.2ω0, ω = ω0, and α2 = 5. ti and t f in (d) denote the initial time t = 0 and finial time t = 500ω−1

0 ,
respectively.

013706-8



VARIATIONAL APPROACH TO LIGHT-MATTER … PHYSICAL REVIEW A 110, 013706 (2024)

FIG. 6. Excited-state population P2(t ), change in photon number �nk (t ), and change in the variance of the photon number �σ 2
k (t )

calculated by the variational approach, (a)–(c) the semiclassical approach, and (d)–(f) the ED method for the two-mode quantum and
semiclassical Rabi models. For the semiclassical model, the parameters are set as ω1 = 0.6449ω0, ω2 = 0.8449ω0, and �1 = �2 = 0.3ω0.
For the quantum model, ω1 = 0.6449ω0, ω2 = 0.8449ω0, g1 = g2 = �1/α, and α1 = α2 = α. Two values of the initial mean photon number
α2 are used.

that the excited-state population can reach a maximum value
P2(t ) = 1, which signifies the occurrence of a resonance. In
Fig. 6(b), the change in photon numbers in the two modes
manifests the multiphoton feature of the resonance.

Figures 6(d)–6(f) show the dynamics of the system and
fields for the model with quantized fields in the case of α2

1 =
α2

2 = α2 = 25 and g1 = g2 = �1/α = 0.06ω0. Comparisons
between the variational results and those of the ED method
confirm that the variational approach is applicable in the
quantum limit in the two-mode case. In addition, we see
that the system and field dynamics in the case of α2 =
25 are apparently different from those in the case of α2 =
105. Specifically, the excited-state population cannot reach
a maximum value P2(t ) = 1 in the former case, indicating
the disappearance of the multiphoton resonance due to the
quantum corrections. In Figs. 7(a) and 7(b), we compare the
photon-number distribution p(�n, t ), with �n = (n1, n2), at t =
500ω−1

0 calculated from the variational and ED methods for
the same parameters as in Figs. 6(d)–6(f). The two methods
predict almost the same photon-number distribution, which is
apparently different from the initial two-dimensional Poisson
distribution due to the strong light-matter coupling.

C. Dicke model

In this section, we consider the Dicke model [51], which is
described by the following Hamiltonian:

H = ωb†b + 1

2

Nq∑
j=1

[ω0, jσz, j + g(b + b†)σx, j], (50)

where Nq is the number of two-level systems, ω0, j is the tran-
sition frequency of the jth two-level system, and σμ, j is the
Pauli matrix for the jth two-level system. The semiclassical

counterpart of the Dicke model is given by

HS(t ) =
Nq∑
j=1

[
1

2
ω0, jσz, j + � cos(ωt )σx, j

]
. (51)

Figure 8 shows the change in photon number �n(t ) cal-
culated by the variational and semiclassical approaches for
Nq = 2, ω = ω0,1, � = 0.5ω0,1, and three values of ω0,2.
For the quantum model, we consider two values of α2 and
g = �/α. In Figs. 8(a)–8(c), we see that when α = 105, the
variational quantum dynamics coincides with the semiclassi-
cal dynamics. Figures 8(d)–8(f) show that when α2 = 103, the
oscillation from the quantum model undergoes collapse. The
present results on the consistency between the quantum and
semiclassical models are similar to those for the JC and Rabi
models.

Figure 8 also provides insights into how the field responds
due to the presence of multiple two-level systems. When the
two-level systems are identical, i.e., ω0,2 = ω0,1, the photon
number dynamics is similar to that of the Rabi model shown
in Fig. 4(b), except that the amplitude of the oscillation is
about 2, which reflects the fact that the two photons can be
absorbed by the two subsystems. On the other hand, when the
two-level systems have different transition frequencies, there
are strong beat behaviors that can be tuned by the frequency
difference in the two subsystems, which result from the two
independent Rabi oscillations of the two subsystems that have
different Rabi frequencies.

IV. CONCLUSIONS

In summary, we presented a time-dependent variational
approach to study the system and field dynamics of light-
matter systems when the field is initially in a coherent
state and possesses a finite mean number of photons. In
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FIG. 7. Photon-number distribution p(�n, t ) with �n = (n1, n2) at t = 500ω−1
0 for the two-mode quantum Rabi model calculated by (a) the

variational approach and (b) the ED method. The parameters are the same as in Fig. 6(d).

addition to the variational approach, we showed that the
field dynamics can also be deduced from the system dy-
namics in the semiclassical model. By using the variational
and semiclassical approaches, we examined the consistency
in the system and field dynamics between the quantum
and semiclassical models of light-matter interaction in the
large-mean-photon-number regimes. We illustrated that the
variational approach can produce accurate semiclassical dy-
namics of either the system or the field as long as the initial
mean photon number is sufficiently large. Moreover, it can
also produce accurate quantum dynamics of the system and
field when a few photons strongly interact with the quan-
tum system and can apply to the crossover between the
quantum and semiclassical limits. In the crossover region,
we showed that the excited-state population of the quantum

system and the change in photon number experience a col-
lapse in the amplitude of the oscillations, which reflects the
quantum nature. The present variational approach provides a
unified treatment of light-matter interaction in the quantum
and semiclassical limits as well as the crossover in between.

The variational approach can also be extended to open
quantum systems based on two routines. One is that the dissi-
pation is taken into account by considering a set of harmonic
oscillators to be the environment such as the well-known
spin-boson model [38,52]. The other is that the dissipation is
modeled by non-Hermitian Hamiltonians. The variational ap-
proach with the Davydov ansatz can be extended to solve the
time-dependent Schrödinger equation with a non-Hermitian
Hamiltonian. This has the potential to describe cavity-QED
systems with a lossy cavity.

FIG. 8. Change in photon number �n(t ) calculated by the variational approach and semiclassical approach for the two-qubit Dicke model
and its semiclassical counterpart with Nq = 2. For the semiclassical model, � = 0.5ω0,1, ω = ω0,1, and three values of ω0,2 are used. For
the quantum model, gα = �, two values of the initial mean photon number α2 are used, and the other parameters are the same as in the
semiclassical model.
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APPENDIX: THE EQUATIONS OF MOTION FOR THE
VARIATIONAL PARAMETERS AND NUMERICAL

IMPLEMENTATION

The variation of the joint state of |DM
2 (t )〉 is given by

〈
δDM

2 (t )
∣∣ =

M∑
l=1

NS∑
j=1

〈 j|〈 fl |
{

δA∗
l j + A∗

l j

N∑
k=1

[
δ f ∗

lk

(
bk − 1

2
flk

)
− 1

2
δ flk f ∗

lk

]}
. (A1)

Substituting 〈δDM
2 (t )| into Eq. (16), we simply derive

0 =
M∑

l=1

NS∑
j=1

δA∗
l j〈 j|〈 fl |[i∂t − H ′(t )]

∣∣DM
2 (t )

〉+ M∑
l=1

N∑
k=1

δ f ∗
lk

NS∑
j=1

A∗
l j〈 j|〈 fl |

(
bk − 1

2
flk

)
[i∂t − H ′(t )]

∣∣DM
2 (t )

〉

−
M∑

l=1

NS∑
j=1

A∗
l j

N∑
k=1

δ flk f ∗
lk

2
〈 j| fl |[i∂t − H ′(t )]

∣∣DM
2 (t )

〉
. (A2)

To ensure the above equation holds for arbitrary variation of the parameters, we simply have

〈 j|〈 fl |[i∂t − H ′(t )]
∣∣DM

2 (t )
〉 = 0, (A3)

NS∑
j=1

A∗
l j〈 j|〈 fl |

(
bk − 1

2
flk

)
[i∂t − H ′(t )]

∣∣DM
2 (t )

〉 = 0. (A4)

Equation (A3) corresponds to Eq. (17) in the main text and can be used to simplify Eq. (A4), which leads to Eq. (18) in the main
text.

To derive the explicit forms of the equations of motion, we use the time derivative of the trial state [40]

∣∣ḊM
2 (t )

〉 = M∑
n=1

NS∑
i=1

⎡
⎣ani + Ani

N∑
p=1

ḟnpb†
p

⎤
⎦|i〉| fn〉, (A5)

where

ani = Ȧni − 1

2
Ani

N∑
p=1

( ḟnp f ∗
np + fnp ḟ ∗

np). (A6)

To proceed, we carry out a calculation for 〈 j|〈 fl |ḊM
2 (t )〉, ∑NS

j=1 A∗
l j〈 j|〈 fl |bk|ḊM

2 (t )〉, 〈 j|〈 fl |H ′(t )|DM
2 (t )〉, and∑NS

j=1 A∗
l j〈 j|〈 fl |bkH ′(t )|DM

2 (t )〉 to express them in terms of the variational parameters, which yields

〈 j|〈 fl

∣∣ḊM
2 (t )

〉 = M∑
n=1

NS∑
i=1

⎛
⎝an j + An j

N∑
p=1

f ∗
l p ḟnp

⎞
⎠Sln, (A7)

NS∑
j=1

A∗
l j〈 j|〈 fl |bk|ḊM

2 (t )〉 =
M∑

n=1

NS∑
j,i=1

⎛
⎝A∗

l jan j fnk + A∗
l jAn j

N∑
p=1

(
δk,p + f ∗

l p fnk
)

ḟnp

⎞
⎠Sln, (A8)

[�I j]l = 〈 j|〈 fl |H ′(t )
∣∣DM

2 (t )
〉 = M∑

n=1

NS∑
i=1

〈 j|HS (t )|i〉AniSln +
M∑

n=1

NS∑
i=1

N∑
p=1

gp

2
Ani(〈 j|V †

p |i〉e−iωpt fnp + 〈 j|Vp|i〉eiωpt f ∗
l p)Sln, (A9)

[�I f ]lk =
NS∑
j=1

A∗
l j〈 j|〈 fl |bkH ′(t )

∣∣DM
2 (t )

〉 = M∑
n=1

NS∑
j,i=1

A∗
l j〈 j|HS (t )|i〉AniSln fnk +

M∑
n=1

NS∑
j,i=1

N∑
p=1

gp

2
A∗

l jAni[〈 j|V †
p |i〉e−iωpt fnp fnk

+ 〈 j|Vp|i〉eiωpt (δp,k + f ∗
l p fnk )]Sln, (A10)
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where [�I f ]lk is viewed as a column vector with its component
position being specified by l and k. By substituting these
quantities into Eqs. (17) and (18), we can rewrite the equa-
tions of motion in a matrix form:

i

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

S C (1)

S C (2)

. . .
...

S C (NS )

C (1)† C (2)† · · · C (NS )† D

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�a1

�a2

...

�aNS

�̇F

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�I1

�I2

...

�INS

�I f

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(A11)

where S is an M × M matrix whose elements are Sln, �a j =
(a1 j, a2 j, . . . , aM j )T , �̇F is a vector whose components are
given by ḟnp, C ( j) is an M × MN matrix whose elements are

given by

C ( j)
l,np = An jSln f ∗

l p, (A12)

and D is an MN × MN matrix whose matrix elements are

Dlk,np =
NS∑
j=1

A∗
l jAn j (δk,p + f ∗

l p fnk )Sln. (A13)

To perform a numerical simulation, we first numerically
solve the matrix equation (A11) as a set of linear equations to

obtain the values of �a j and �̇F . The former can be combined
with Eq. (A6) to calculate the derivatives of An j . The latter are
just the derivatives of fnp. On obtaining the derivatives of An j

and fnp, we can use the fourth-order Runge-Kutta algorithm
to update the variational parameters.
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